[1711] | 1 | MODULE callradite_mod |
---|
| 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
| 5 | CONTAINS |
---|
| 6 | |
---|
[38] | 7 | SUBROUTINE callradite(icount,ngrid,nlayer,nq,zday,ls,pq,albedo, |
---|
| 8 | $ emis,mu0,pplev,pplay,pt,tsurf,fract,dist_sol,igout, |
---|
[2685] | 9 | $ dtlw,dtsw,fluxsurf_lw,fluxsurf_dn_sw,fluxsurf_up_sw, |
---|
| 10 | $ fluxtop_lw,fluxtop_dn_sw,fluxtop_up_sw, |
---|
| 11 | & tau_pref_scenario,tau_pref_gcm, |
---|
[2643] | 12 | & tau,aerosol,dsodust,tauscaling,dust_rad_adjust,IRtoVIScoef, |
---|
[2447] | 13 | $ taucloudtes,rdust,rice,nuice,riceco2,nuiceco2,co2ice, |
---|
| 14 | $ rstormdust,rtopdust,totstormfract,clearatm,dsords,dsotop, |
---|
[2628] | 15 | $ nohmons,clearsky,totcloudfrac) |
---|
[38] | 16 | |
---|
[1918] | 17 | use aeropacity_mod, only: aeropacity |
---|
[1969] | 18 | use updatereffrad_mod, only: updatereffrad |
---|
[1047] | 19 | use dimradmars_mod, only: ndomainsz, nflev, nsun, nir |
---|
[1246] | 20 | use dimradmars_mod, only: naerkind, name_iaer, |
---|
| 21 | & iaer_dust_conrath,iaer_dust_doubleq, |
---|
[2447] | 22 | & iaer_dust_submicron, iaer_h2o_ice, iaer_co2_ice, |
---|
[2678] | 23 | & iaer_stormdust_doubleq,iaer_topdust_doubleq,flux_1AU |
---|
[1047] | 24 | use yomlw_h, only: gcp, nlaylte |
---|
[1524] | 25 | use comcstfi_h, only: g,cpp |
---|
| 26 | use time_phylmdz_mod, only: daysec |
---|
[1983] | 27 | use lwmain_mod, only: lwmain |
---|
| 28 | use swmain_mod, only: swmain |
---|
[2409] | 29 | use dust_param_mod, only: doubleq, active, submicron |
---|
[1047] | 30 | IMPLICIT NONE |
---|
[38] | 31 | c======================================================================= |
---|
| 32 | c subject: |
---|
| 33 | c -------- |
---|
| 34 | c Subroutine designed to call the main canonic |
---|
| 35 | c radiative transfer subroutine "lwmain" et "swmain" |
---|
| 36 | c to compute radiative heating and cooling rate and |
---|
| 37 | c radiative fluxes to the surface. |
---|
| 38 | c |
---|
| 39 | c These calculations are only valid on the part of the atmosphere |
---|
[2246] | 40 | c where Local Thermal Equilibrium (LTE) is verified. In practice |
---|
| 41 | c the calculations are only performed for the first "nlaylte" |
---|
[38] | 42 | c parameters (nlaylte is calculated by subroutine "nlthermeq" |
---|
[1047] | 43 | c and stored in module "yomlw_h"). |
---|
[38] | 44 | c |
---|
| 45 | c The purpose of this subroutine is to: |
---|
| 46 | c 1) Make some initial calculation at first call |
---|
| 47 | c 2) Split the calculation in several sub-grid |
---|
| 48 | c ("sub-domain") to save memory and |
---|
| 49 | c be able run on a workstation at high resolution |
---|
[1047] | 50 | c The sub-grid size is defined in dimradmars_mod |
---|
[38] | 51 | c 3) Compute the 3D scattering parameters depending on the |
---|
| 52 | c size distribution of the different tracers (added by JBM) |
---|
| 53 | c 4) call "lwmain" and "swmain" |
---|
| 54 | c |
---|
| 55 | c |
---|
| 56 | c authors: |
---|
| 57 | c ------ |
---|
| 58 | c Francois Forget / Christophe Hourdin / J.-B. Madeleine (2009) |
---|
| 59 | c |
---|
| 60 | c |
---|
| 61 | c 3D scattering scheme user's guide (J.-B. Madeleine) |
---|
| 62 | c --------------------------------- |
---|
| 63 | c |
---|
| 64 | c This routine has been modified to take into account 3D, time |
---|
| 65 | c dependent scattering properties of the aerosols. |
---|
| 66 | c---- The look-up tables that contain the scattering parameters |
---|
| 67 | c of a given tracer, for different sizes, are read by SUAER.F90. |
---|
| 68 | c The names of the corresponding ASCII files have to be set in |
---|
| 69 | c this subroutine (file_id variable), and files must be in the |
---|
[1918] | 70 | c directory specified in datafile_mod. Please make sure that the |
---|
[38] | 71 | c ASCII files are correctly written, and that the range |
---|
| 72 | c of particle sizes is consistent with what you would expect. |
---|
| 73 | c---- SUAER.F90 is in charge of reading the ASCII files and averaging |
---|
| 74 | c the scattering parameters in each GCM channel, using the three last |
---|
| 75 | c equations of Forget et al. 1998 (GRL 25, No.7, p.1105-1108). |
---|
| 76 | c---- These look-up tables, loaded during the firstcall, are then |
---|
| 77 | c constantly used by the subroutine "aeroptproperties.F" to compute, |
---|
| 78 | c online, the 3D scattering parameters, based on the size distribution |
---|
| 79 | c (reffrad and nueffrad) of the different tracers, in each grid box. |
---|
| 80 | c These 3D size distributions are loaded by the "updatereffrad.F" |
---|
| 81 | c subroutine. A log-normal distribution is then assumed in |
---|
| 82 | c "aeroptproperties.F", along with a Gauss-Legendre integration. |
---|
| 83 | c---- The optical depth at the visible reference wavelength (set in |
---|
| 84 | c SUAER.F90, after the file_id variable) is then computed by |
---|
| 85 | c the subroutine "aeropacity.F", by using the size and spatial |
---|
| 86 | c distribution of the corresponding tracer. This connection has to |
---|
| 87 | c be implemented in "aeropacity.F" when adding a new tracer. To do so, |
---|
| 88 | c one can use equation 2 of Forget et al. 1998 (Icarus 131, p.302-316). |
---|
| 89 | c---- The resulting variables "aerosol", "QVISsQREF3d", "omegaVIS3d" and |
---|
| 90 | c "gVIS3d" (same in the infrared) are finally used by lwmain.F and |
---|
| 91 | c swmain.F to solve the radiative transfer equation. |
---|
| 92 | c |
---|
| 93 | c changes: |
---|
| 94 | c ------- |
---|
| 95 | c |
---|
| 96 | c > SRL 7/2000 |
---|
| 97 | c |
---|
| 98 | c This version has been modified to only calculate radiative tendencies |
---|
[1047] | 99 | c over layers 1..NFLEV (set in dimradmars_mod). Returns zero for higher |
---|
[38] | 100 | c layers, if any. |
---|
[1266] | 101 | c In other routines, nlayer -> nflev. |
---|
[38] | 102 | c Routines affected: lwflux, lwi, lwmain, lwxb, lwxd, lwxn. |
---|
| 103 | c |
---|
| 104 | c > J.-B. Madeleine 10W12 |
---|
| 105 | c This version uses the variable's splitting, which can be usefull |
---|
| 106 | c when performing very high resolution simulation like LES. |
---|
| 107 | c |
---|
| 108 | c ---------- |
---|
| 109 | c Here, solar band#1 is spectral interval between "long1vis" and "long2vis" |
---|
[1047] | 110 | c set in dimradmars_mod |
---|
[38] | 111 | c Here, solar band#2 is spectral interval between "long2vis" and "long3vis" |
---|
[1047] | 112 | c set in dimradmars_mod |
---|
[38] | 113 | c |
---|
| 114 | c input: |
---|
| 115 | c ----- |
---|
| 116 | c icount counter of call to subroutine physic by gcm |
---|
| 117 | c ngrid number of gridpoint of horizontal grid |
---|
| 118 | c nlayer Number of layer |
---|
| 119 | c nq Number of tracer |
---|
| 120 | c ls Solar longitude (Ls) , radian |
---|
| 121 | c zday Date (time since Ls=0, in martian days) |
---|
| 122 | c pq(ngrid,nlayer,nq) Advected fields |
---|
| 123 | c |
---|
| 124 | c albedo (ngrid,2) hemispheric surface albedo |
---|
| 125 | c albedo (i,1) : mean albedo for solar band#1 |
---|
| 126 | c (see below) |
---|
| 127 | c albedo (i,2) : mean albedo for solar band#2 |
---|
| 128 | c (see below) |
---|
| 129 | c emis Thermal IR surface emissivity (no unit) |
---|
[1047] | 130 | c mu0(ngrid) cos of solar zenith angle |
---|
[38] | 131 | c (=1 when sun at zenith) |
---|
| 132 | c pplay(ngrid,nlayer) pressure (Pa) in the middle of each layer |
---|
| 133 | c pplev(ngrid,nlayer+1) pressure (Pa) at boundaries of each layer |
---|
| 134 | c pt(ngrid,nlayer) atmospheric temperature in each layer (K) |
---|
| 135 | c tsurf(ngrid) surface temperature (K) |
---|
[1047] | 136 | c fract(ngrid) day fraction of the time interval |
---|
[38] | 137 | c =1 during the full day ; =0 during the night |
---|
| 138 | c declin latitude of subsolar point |
---|
| 139 | c dist_sol sun-Mars distance (AU) |
---|
| 140 | c igout coordinate of analysed point for debugging |
---|
| 141 | c reffrad(ngrid,nlayer,naerkind) Aerosol effective radius |
---|
| 142 | c nueffrad(ngrid,nlayer,naerkind) Aerosol effective variance |
---|
| 143 | |
---|
| 144 | c======================================================================= |
---|
| 145 | c |
---|
| 146 | c Declarations : |
---|
| 147 | c ------------- |
---|
| 148 | c |
---|
[1974] | 149 | include "callkeys.h" |
---|
[38] | 150 | |
---|
| 151 | c----------------------------------------------------------------------- |
---|
| 152 | c Input/Output |
---|
| 153 | c ------------ |
---|
[1047] | 154 | INTEGER,INTENT(IN) :: icount |
---|
| 155 | INTEGER,INTENT(IN) :: ngrid,nlayer,nq |
---|
| 156 | INTEGER,INTENT(IN) :: igout |
---|
[38] | 157 | |
---|
[1047] | 158 | REAL,INTENT(IN) :: pq(ngrid,nlayer,nq) |
---|
[1974] | 159 | REAL,INTENT(INOUT) :: tauscaling(ngrid) ! Conversion factor for |
---|
[358] | 160 | ! qdust and Ndust |
---|
[2634] | 161 | REAL,INTENT(INOUT) :: dust_rad_adjust(ngrid) ! Radiative adjustment |
---|
[2417] | 162 | ! factor for dust |
---|
[2643] | 163 | REAL,INTENT(INOUT) :: IRtoVIScoef(ngrid) ! conversion coefficient to apply on |
---|
| 164 | ! scenario absorption IR (9.3um) CDOD |
---|
| 165 | ! = tau_pref_gcm_VIS / tau_pref_gcm_IR |
---|
[1047] | 166 | REAL,INTENT(IN) :: albedo(ngrid,2),emis(ngrid) |
---|
| 167 | REAL,INTENT(IN) :: ls,zday |
---|
[38] | 168 | |
---|
[1047] | 169 | REAL,INTENT(IN) :: pplev(ngrid,nlayer+1),pplay(ngrid,nlayer) |
---|
| 170 | REAL,INTENT(IN) :: pt(ngrid,nlayer) |
---|
| 171 | REAL,INTENT(IN) :: tsurf(ngrid) |
---|
| 172 | REAL,INTENT(IN) :: dist_sol,mu0(ngrid),fract(ngrid) |
---|
[2685] | 173 | REAL,INTENT(OUT) :: dtlw(ngrid,nlayer) ! longwave (IR) heating rate (K/s) |
---|
| 174 | REAL,INTENT(OUT) :: dtsw(ngrid,nlayer) ! shortwave (Solar) heating rate (K/s) |
---|
| 175 | REAL,INTENT(OUT) :: fluxsurf_lw(ngrid) ! total LW (thermal IR) downward flux |
---|
| 176 | ! (W.m-2) at the surface |
---|
| 177 | REAL,INTENT(OUT) :: fluxtop_lw(ngrid) ! outgoing total LW (thermal IR) |
---|
| 178 | ! upward flux (W.m-2) at the top of the atm. |
---|
| 179 | REAL,INTENT(OUT) :: fluxsurf_dn_sw(ngrid,2) ! surface downward SW flux for |
---|
| 180 | ! solar bands #1 and #2 (W.m-2) |
---|
| 181 | REAL,INTENT(OUT) :: fluxsurf_up_sw(ngrid,2) ! surface upward SW flux for |
---|
| 182 | ! solar bands #1 and #2 (W.m-2) |
---|
| 183 | REAL,INTENT(OUT) :: fluxtop_dn_sw(ngrid,2) ! incoming downward SW flux for |
---|
| 184 | ! solar bands #1 and #2 (W.m-2) at top of atm. |
---|
| 185 | REAL,INTENT(OUT) :: fluxtop_up_sw(ngrid,2) ! outgoing upward SW flux for |
---|
| 186 | ! solar bands #1 and #2 (W.m-2) at top of atm. |
---|
[2415] | 187 | REAL,INTENT(OUT) :: tau_pref_scenario(ngrid) ! prescribed dust column |
---|
| 188 | ! visible opacity at odpref from scenario |
---|
| 189 | REAL,INTENT(OUT) :: tau_pref_gcm(ngrid) ! computed dust column |
---|
| 190 | ! visible opacity at odpref in the GCM |
---|
[2685] | 191 | REAL,INTENT(OUT) :: tau(ngrid,naerkind) ! Column visible optical depth |
---|
| 192 | ! for each aerosol |
---|
[1047] | 193 | REAL,INTENT(OUT) :: taucloudtes(ngrid)! Cloud opacity at infrared |
---|
[520] | 194 | ! reference wavelength using |
---|
| 195 | ! Qabs instead of Qext |
---|
| 196 | ! (direct comparison with TES) |
---|
[2685] | 197 | REAL,INTENT(OUT) :: aerosol(ngrid,nlayer,naerkind) ! aerosol extinction |
---|
| 198 | ! optical depth at reference wavelength "longrefvis", |
---|
| 199 | ! set in dimradmars_h, for each kind of aerosol |
---|
[2252] | 200 | REAL,INTENT(INOUT) :: dsodust(ngrid,nlayer) |
---|
[1047] | 201 | REAL,INTENT(OUT) :: rdust(ngrid,nlayer) ! Dust geometric mean radius (m) |
---|
| 202 | REAL,INTENT(OUT) :: rice(ngrid,nlayer) ! Ice geometric mean radius (m) |
---|
| 203 | REAL,INTENT(OUT) :: nuice(ngrid,nlayer) ! Estimated effective variance |
---|
[2459] | 204 | double precision,INTENT(OUT) :: riceco2(ngrid,nlayer) ! CO2 ice mean radius(m) |
---|
[2447] | 205 | REAL,INTENT(OUT) :: nuiceco2(ngrid,nlayer) ! Effective variance |
---|
[1047] | 206 | REAL,INTENT(IN) :: co2ice(ngrid) ! co2 ice surface layer (kg.m-2) |
---|
[1974] | 207 | |
---|
| 208 | c rocket dust storm |
---|
| 209 | LOGICAL,INTENT(IN) :: clearatm ! true for background dust |
---|
| 210 | REAL,INTENT(IN) :: totstormfract(ngrid) ! dust storm mesh fraction |
---|
| 211 | REAL,INTENT(OUT) :: rstormdust(ngrid,nlayer) ! Storm dust geometric mean radius (m) |
---|
[2415] | 212 | REAL,INTENT(OUT) :: dsords(ngrid,nlayer) ! density scaled opacity for rocket dust storm dust |
---|
[2246] | 213 | |
---|
[2628] | 214 | c entrainment by mountain top dust flows |
---|
| 215 | LOGICAL, INTENT(IN) :: nohmons ! true for background dust |
---|
[2199] | 216 | REAL,INTENT(OUT) :: rtopdust(ngrid,nlayer) ! Topdust geometric mean radius (m) |
---|
[2415] | 217 | REAL,INTENT(OUT) :: dsotop(ngrid,nlayer) ! density scaled opacity for topmons dust |
---|
[2246] | 218 | |
---|
[1711] | 219 | c sub-grid scale water ice clouds |
---|
[1974] | 220 | LOGICAL,INTENT(IN) :: clearsky |
---|
| 221 | REAL,INTENT(IN) :: totcloudfrac(ngrid) |
---|
[353] | 222 | |
---|
[38] | 223 | c |
---|
| 224 | c Local variables : |
---|
| 225 | c ----------------- |
---|
| 226 | |
---|
| 227 | INTEGER j,l,ig,n,ich |
---|
| 228 | INTEGER aer_count,iaer |
---|
| 229 | INTEGER jd,ig0,nd |
---|
| 230 | |
---|
| 231 | real cste_mars ! solar constant on Mars (Wm-2) |
---|
[1047] | 232 | REAL ptlev(ngrid,nlayer+1) |
---|
[38] | 233 | |
---|
[1774] | 234 | INTEGER :: ndomain |
---|
[38] | 235 | |
---|
| 236 | c Thermal IR net radiative budget (W m-2) |
---|
| 237 | |
---|
| 238 | real znetrad(ndomainsz,nflev) |
---|
| 239 | |
---|
| 240 | real zfluxd_sw(ndomainsz,nflev+1,2) |
---|
| 241 | real zfluxu_sw(ndomainsz,nflev+1,2) |
---|
| 242 | |
---|
| 243 | REAL zplev(ndomainsz,nflev+1) |
---|
| 244 | REAL zztlev(ndomainsz,nflev+1) |
---|
| 245 | REAL zplay(ndomainsz,nflev) |
---|
| 246 | REAL zt(ndomainsz,nflev) |
---|
| 247 | REAL zaerosol(ndomainsz,nflev,naerkind) |
---|
| 248 | REAL zalbedo(ndomainsz,2) |
---|
| 249 | REAL zdp(ndomainsz,nflev) |
---|
| 250 | REAL zdt0(ndomainsz) |
---|
| 251 | |
---|
| 252 | REAL zzdtlw(ndomainsz,nflev) |
---|
| 253 | REAL zzdtsw(ndomainsz,nflev) |
---|
| 254 | REAL zzflux(ndomainsz,6) |
---|
| 255 | real zrmuz |
---|
| 256 | |
---|
| 257 | REAL :: zQVISsQREF3d(ndomainsz,nflev,nsun,naerkind) |
---|
| 258 | REAL :: zomegaVIS3d(ndomainsz,nflev,nsun,naerkind) |
---|
| 259 | REAL :: zgVIS3d(ndomainsz,nflev,nsun,naerkind) |
---|
| 260 | |
---|
| 261 | REAL :: zQIRsQREF3d(ndomainsz,nflev,nir,naerkind) |
---|
| 262 | REAL :: zomegaIR3d(ndomainsz,nflev,nir,naerkind) |
---|
| 263 | REAL :: zgIR3d(ndomainsz,nflev,nir,naerkind) |
---|
| 264 | |
---|
| 265 | c Aerosol size distribution |
---|
| 266 | REAL :: reffrad(ngrid,nlayer,naerkind) |
---|
| 267 | REAL :: nueffrad(ngrid,nlayer,naerkind) |
---|
| 268 | c Aerosol optical properties |
---|
[1047] | 269 | REAL :: QVISsQREF3d(ngrid,nlayer,nsun,naerkind) |
---|
| 270 | REAL :: omegaVIS3d(ngrid,nlayer,nsun,naerkind) |
---|
| 271 | REAL :: gVIS3d(ngrid,nlayer,nsun,naerkind) |
---|
[38] | 272 | |
---|
[1047] | 273 | REAL :: QIRsQREF3d(ngrid,nlayer,nir,naerkind) |
---|
| 274 | REAL :: omegaIR3d(ngrid,nlayer,nir,naerkind) |
---|
| 275 | REAL :: gIR3d(ngrid,nlayer,nir,naerkind) |
---|
[38] | 276 | |
---|
[1047] | 277 | REAL :: QREFvis3d(ngrid,nlayer,naerkind) |
---|
[2246] | 278 | ! QREFvis3d : Extinction efficiency at the VISible reference wavelength |
---|
[1047] | 279 | REAL :: QREFir3d(ngrid,nlayer,naerkind) |
---|
[2246] | 280 | ! QREFir3d : Extinction efficiency at the InfraRed reference wavelength |
---|
[38] | 281 | |
---|
[1047] | 282 | REAL :: omegaREFvis3d(ngrid,nlayer,naerkind) |
---|
| 283 | REAL :: omegaREFir3d(ngrid,nlayer,naerkind) |
---|
[38] | 284 | |
---|
| 285 | c local saved variables |
---|
| 286 | c --------------------- |
---|
| 287 | |
---|
| 288 | real zco2 ! volume fraction of CO2 in Mars atmosphere |
---|
[2584] | 289 | !$OMP THREADPRIVATE(zco2) |
---|
[38] | 290 | DATA zco2/0.95/ |
---|
| 291 | SAVE zco2 |
---|
| 292 | |
---|
| 293 | LOGICAL firstcall |
---|
[2584] | 294 | !$OMP THREADPRIVATE(firstcall) |
---|
[38] | 295 | DATA firstcall/.true./ |
---|
| 296 | SAVE firstcall |
---|
| 297 | |
---|
[2584] | 298 | |
---|
| 299 | |
---|
[38] | 300 | c---------------------------------------------------------------------- |
---|
| 301 | |
---|
| 302 | c Initialisation |
---|
| 303 | c -------------- |
---|
| 304 | |
---|
[1776] | 305 | ! compute ndomain |
---|
| 306 | ! AS: moved out of firstcall to allow nesting+evoluting domain |
---|
| 307 | ! ------------------------------------------------------------ |
---|
| 308 | ndomain= (ngrid-1) / ndomainsz + 1 |
---|
| 309 | |
---|
[38] | 310 | IF (firstcall) THEN |
---|
| 311 | |
---|
[1776] | 312 | write(*,*) 'Splitting radiative calculations: ', |
---|
| 313 | $ ' ngrid,ndomainsz,ndomain', |
---|
| 314 | $ ngrid,ndomainsz,ndomain |
---|
| 315 | |
---|
[38] | 316 | c Assign a number to the different scatterers |
---|
| 317 | c ------------------------------------------- |
---|
| 318 | |
---|
| 319 | iaer_dust_conrath=0 |
---|
| 320 | iaer_dust_doubleq=0 |
---|
| 321 | iaer_dust_submicron=0 |
---|
| 322 | iaer_h2o_ice=0 |
---|
[2447] | 323 | iaer_co2_ice=0 |
---|
[1974] | 324 | iaer_stormdust_doubleq=0 |
---|
[2199] | 325 | iaer_topdust_doubleq=0 |
---|
[38] | 326 | |
---|
| 327 | aer_count=0 |
---|
| 328 | if (.NOT.active) then |
---|
| 329 | do iaer=1,naerkind |
---|
| 330 | if (name_iaer(iaer).eq."dust_conrath") then |
---|
| 331 | iaer_dust_conrath = iaer |
---|
| 332 | aer_count = aer_count + 1 |
---|
| 333 | endif |
---|
| 334 | enddo |
---|
| 335 | endif |
---|
| 336 | if (doubleq.AND.active) then |
---|
| 337 | do iaer=1,naerkind |
---|
| 338 | if (name_iaer(iaer).eq."dust_doubleq") then |
---|
| 339 | iaer_dust_doubleq = iaer |
---|
| 340 | aer_count = aer_count + 1 |
---|
| 341 | endif |
---|
| 342 | enddo |
---|
| 343 | endif |
---|
| 344 | if (submicron.AND.active) then |
---|
| 345 | do iaer=1,naerkind |
---|
| 346 | if (name_iaer(iaer).eq."dust_submicron") then |
---|
| 347 | iaer_dust_submicron = iaer |
---|
| 348 | aer_count = aer_count + 1 |
---|
| 349 | endif |
---|
| 350 | enddo |
---|
| 351 | endif |
---|
| 352 | if (water.AND.activice) then |
---|
| 353 | do iaer=1,naerkind |
---|
| 354 | if (name_iaer(iaer).eq."h2o_ice") then |
---|
| 355 | iaer_h2o_ice = iaer |
---|
| 356 | aer_count = aer_count + 1 |
---|
| 357 | endif |
---|
| 358 | enddo |
---|
| 359 | endif |
---|
[2447] | 360 | if (co2clouds.AND.activeco2ice) then |
---|
| 361 | do iaer=1,naerkind |
---|
| 362 | if (name_iaer(iaer).eq."co2_ice") then |
---|
| 363 | iaer_co2_ice = iaer |
---|
| 364 | aer_count = aer_count + 1 |
---|
| 365 | endif |
---|
| 366 | enddo |
---|
| 367 | endif |
---|
[1974] | 368 | if (rdstorm.AND.active) then |
---|
| 369 | do iaer=1,naerkind |
---|
| 370 | if (name_iaer(iaer).eq."stormdust_doubleq") then |
---|
| 371 | iaer_stormdust_doubleq = iaer |
---|
| 372 | aer_count = aer_count + 1 |
---|
| 373 | endif |
---|
| 374 | enddo |
---|
| 375 | end if |
---|
[2628] | 376 | if (topflows.AND.active) then |
---|
[2199] | 377 | do iaer=1,naerkind |
---|
| 378 | if (name_iaer(iaer).eq."topdust_doubleq") then |
---|
| 379 | iaer_topdust_doubleq = iaer |
---|
| 380 | aer_count = aer_count + 1 |
---|
| 381 | endif |
---|
| 382 | enddo |
---|
| 383 | end if |
---|
[38] | 384 | |
---|
| 385 | c Check that we identified all tracers: |
---|
| 386 | if (aer_count.ne.naerkind) then |
---|
| 387 | write(*,*) "callradite: found only ",aer_count," scatterers" |
---|
| 388 | write(*,*) " expected ",naerkind |
---|
| 389 | write(*,*) "please make sure that the number of" |
---|
[1047] | 390 | write(*,*) "scatterers in scatterers.h, the names" |
---|
[38] | 391 | write(*,*) "in callradite.F, and the flags in" |
---|
| 392 | write(*,*) "callphys.def are all consistent!" |
---|
| 393 | do iaer=1,naerkind |
---|
| 394 | write(*,*)' ',iaer,' ',trim(name_iaer(iaer)) |
---|
| 395 | enddo |
---|
[2398] | 396 | call abort_physic("callradite","incoherent scatterers",1) |
---|
[38] | 397 | else |
---|
| 398 | write(*,*) "callradite: found all scatterers, namely:" |
---|
| 399 | do iaer=1,naerkind |
---|
| 400 | write(*,*)' ',iaer,' ',trim(name_iaer(iaer)) |
---|
| 401 | enddo |
---|
| 402 | endif |
---|
| 403 | c ------------------------------------------- |
---|
| 404 | |
---|
| 405 | gcp = g/cpp |
---|
| 406 | |
---|
[2584] | 407 | |
---|
[38] | 408 | c Loading the optical properties in external look-up tables: |
---|
[2584] | 409 | |
---|
[38] | 410 | CALL SUAER |
---|
[2584] | 411 | |
---|
[1047] | 412 | ! CALL SULW ! this step is now done in ini_yomlw_h |
---|
[38] | 413 | |
---|
[1047] | 414 | if (ngrid .EQ. 1) then |
---|
[38] | 415 | if (ndomainsz .NE. 1) then |
---|
| 416 | print* |
---|
| 417 | print*,'ATTENTION !!!' |
---|
| 418 | print*,'pour tourner en 1D, ' |
---|
[1047] | 419 | print*,'fixer ndomainsz=1 dans phymars/dimradmars_h' |
---|
[38] | 420 | print* |
---|
| 421 | call exit(1) |
---|
| 422 | endif |
---|
| 423 | endif |
---|
[1774] | 424 | |
---|
[38] | 425 | firstcall=.false. |
---|
| 426 | END IF |
---|
| 427 | |
---|
| 428 | c Computing aerosol optical properties and opacity |
---|
| 429 | c ------------------------------------------------ |
---|
| 430 | c Updating aerosol size distributions: |
---|
| 431 | CALL updatereffrad(ngrid,nlayer, |
---|
[2199] | 432 | & rdust,rstormdust,rtopdust,rice,nuice, |
---|
[2447] | 433 | & reffrad,nueffrad, riceco2, nuiceco2, |
---|
[2494] | 434 | & pq,tauscaling,tau,pplay, pt) |
---|
[38] | 435 | c Computing 3D scattering parameters: |
---|
[2494] | 436 | gVIS3d(:,:,:,:) = 0. |
---|
[38] | 437 | CALL aeroptproperties(ngrid,nlayer,reffrad,nueffrad, |
---|
| 438 | & QVISsQREF3d,omegaVIS3d,gVIS3d, |
---|
| 439 | & QIRsQREF3d,omegaIR3d,gIR3d, |
---|
| 440 | & QREFvis3d,QREFir3d, |
---|
| 441 | & omegaREFvis3d,omegaREFir3d) |
---|
| 442 | c Computing aerosol optical depth in each layer: |
---|
| 443 | CALL aeropacity(ngrid,nlayer,nq,zday,pplay,pplev,ls, |
---|
[2643] | 444 | & pq,pt,tauscaling,dust_rad_adjust,IRtoVIScoef, |
---|
| 445 | & tau_pref_scenario,tau_pref_gcm,tau,taucloudtes, |
---|
| 446 | & aerosol,dsodust,reffrad, |
---|
[1974] | 447 | & QREFvis3d,QREFir3d,omegaREFir3d, |
---|
[2246] | 448 | & totstormfract,clearatm,dsords,dsotop, |
---|
[2628] | 449 | & nohmons,clearsky,totcloudfrac) |
---|
| 450 | |
---|
[38] | 451 | c Starting loop on sub-domain |
---|
| 452 | c ---------------------------- |
---|
[2494] | 453 | zgVIS3d(:,:,:,:) = 0. |
---|
| 454 | zfluxd_sw(:,:,:) = 0. |
---|
| 455 | zfluxu_sw(:,:,:) = 0. |
---|
| 456 | zQVISsQREF3d(:,:,:,:) = 0. |
---|
| 457 | zomegaVIS3d(:,:,:,:) = 0. |
---|
[38] | 458 | DO jd=1,ndomain |
---|
| 459 | ig0=(jd-1)*ndomainsz |
---|
| 460 | if (jd.eq.ndomain) then |
---|
[1047] | 461 | nd=ngrid-ig0 |
---|
[38] | 462 | else |
---|
| 463 | nd=ndomainsz |
---|
| 464 | endif |
---|
| 465 | |
---|
| 466 | c Spliting input variable in sub-domain input variables |
---|
| 467 | c --------------------------------------------------- |
---|
| 468 | |
---|
| 469 | do l=1,nlaylte |
---|
| 470 | do ig = 1,nd |
---|
| 471 | do iaer = 1, naerkind |
---|
| 472 | do ich = 1, nsun |
---|
| 473 | zQVISsQREF3d(ig,l,ich,iaer) = |
---|
| 474 | & QVISsQREF3d(ig0+ig,l,ich,iaer) |
---|
| 475 | zomegaVIS3d(ig,l,ich,iaer) = |
---|
| 476 | & omegaVIS3d(ig0+ig,l,ich,iaer) |
---|
| 477 | zgVIS3d(ig,l,ich,iaer) = |
---|
| 478 | & gVIS3d(ig0+ig,l,ich,iaer) |
---|
| 479 | enddo |
---|
| 480 | do ich = 1, nir |
---|
| 481 | zQIRsQREF3d(ig,l,ich,iaer) = |
---|
| 482 | & QIRsQREF3d(ig0+ig,l,ich,iaer) |
---|
| 483 | zomegaIR3d(ig,l,ich,iaer) = |
---|
| 484 | & omegaIR3d(ig0+ig,l,ich,iaer) |
---|
| 485 | zgIR3d(ig,l,ich,iaer) = |
---|
| 486 | & gIR3d(ig0+ig,l,ich,iaer) |
---|
| 487 | enddo |
---|
| 488 | enddo |
---|
| 489 | enddo |
---|
| 490 | enddo |
---|
[2494] | 491 | zplev(:,:) = 0. |
---|
[38] | 492 | do l=1,nlaylte+1 |
---|
| 493 | do ig = 1,nd |
---|
| 494 | zplev(ig,l) = pplev(ig0+ig,l) |
---|
| 495 | enddo |
---|
| 496 | enddo |
---|
[2494] | 497 | zdp(:,:) = 0. |
---|
| 498 | |
---|
[38] | 499 | do l=1,nlaylte |
---|
| 500 | do ig = 1,nd |
---|
| 501 | zplay(ig,l) = pplay(ig0+ig,l) |
---|
| 502 | zt(ig,l) = pt(ig0+ig,l) |
---|
| 503 | c Thickness of each layer (Pa) : |
---|
| 504 | zdp(ig,l)= pplev(ig0+ig,l) - pplev(ig0+ig,l+1) |
---|
| 505 | enddo |
---|
| 506 | enddo |
---|
[2494] | 507 | zaerosol(:,:,:) = 0. |
---|
[38] | 508 | do n=1,naerkind |
---|
| 509 | do l=1,nlaylte |
---|
| 510 | do ig=1,nd |
---|
| 511 | zaerosol(ig,l,n) = aerosol(ig0+ig,l,n) |
---|
| 512 | enddo |
---|
| 513 | enddo |
---|
| 514 | enddo |
---|
[2494] | 515 | zalbedo(:,:) = 0. |
---|
[38] | 516 | do j=1,2 |
---|
| 517 | do ig = 1,nd |
---|
| 518 | zalbedo(ig,j) = albedo(ig0+ig,j) |
---|
| 519 | enddo |
---|
| 520 | enddo |
---|
| 521 | |
---|
| 522 | c Intermediate levels: (computing tlev) |
---|
| 523 | c --------------------------------------- |
---|
| 524 | c Extrapolation for the air temperature above the surface |
---|
| 525 | DO ig=1,nd |
---|
| 526 | zztlev(ig,1)=zt(ig,1)+ |
---|
| 527 | s (zplev(ig,1)-zplay(ig,1))* |
---|
| 528 | s (zt(ig,1)-zt(ig,2))/(zplay(ig,1)-zplay(ig,2)) |
---|
| 529 | |
---|
| 530 | zdt0(ig) = tsurf(ig0+ig) - zztlev(ig,1) |
---|
| 531 | ENDDO |
---|
| 532 | |
---|
| 533 | DO l=2,nlaylte |
---|
| 534 | DO ig=1, nd |
---|
| 535 | zztlev(ig,l)=0.5*(zt(ig,l-1)+zt(ig,l)) |
---|
| 536 | ENDDO |
---|
| 537 | ENDDO |
---|
| 538 | |
---|
| 539 | DO ig=1, nd |
---|
| 540 | zztlev(ig,nlaylte+1)=zt(ig,nlaylte) |
---|
| 541 | ENDDO |
---|
| 542 | |
---|
| 543 | |
---|
| 544 | c Longwave ("lw") radiative transfer (= thermal infrared) |
---|
| 545 | c ------------------------------------------------------- |
---|
| 546 | call lwmain (ig0,icount,nd,nflev |
---|
| 547 | . ,zdp,zdt0,emis(ig0+1),zplev,zztlev,zt |
---|
| 548 | . ,zaerosol,zzdtlw |
---|
| 549 | . ,fluxsurf_lw(ig0+1),fluxtop_lw(ig0+1) |
---|
| 550 | . ,znetrad |
---|
[353] | 551 | & ,zQIRsQREF3d,zomegaIR3d,zgIR3d |
---|
| 552 | & ,co2ice(ig0+1)) |
---|
[38] | 553 | |
---|
| 554 | c Shortwave ("sw") radiative transfer (= solar radiation) |
---|
| 555 | c ------------------------------------------------------- |
---|
| 556 | c Mars solar constant (W m-2) |
---|
[2678] | 557 | c flux_1AU = 1370 W.m-2 is the solar constant at 1 AU. |
---|
| 558 | cste_mars=flux_1AU/(dist_sol*dist_sol) |
---|
[2494] | 559 | zzdtsw(:,:) = 0. |
---|
[38] | 560 | call swmain ( nd, nflev, |
---|
| 561 | S cste_mars, zalbedo, |
---|
| 562 | S mu0(ig0+1), zdp, zplev, zaerosol, fract(ig0+1), |
---|
| 563 | S zzdtsw, zfluxd_sw, zfluxu_sw, |
---|
| 564 | & zQVISsQREF3d,zomegaVIS3d,zgVIS3d) |
---|
| 565 | c ------------------------------------------------------------ |
---|
| 566 | c Un-spliting output variable from sub-domain input variables |
---|
| 567 | c ------------------------------------------------------------ |
---|
| 568 | |
---|
| 569 | do l=1,nlaylte |
---|
| 570 | do ig = 1,nd |
---|
| 571 | dtlw(ig0+ig,l) = zzdtlw(ig,l) |
---|
| 572 | dtsw(ig0+ig,l) = zzdtsw(ig,l) |
---|
| 573 | enddo |
---|
| 574 | enddo |
---|
| 575 | |
---|
[2494] | 576 | ptlev(:, :) = 0. |
---|
[38] | 577 | do l=1,nlaylte+1 |
---|
| 578 | do ig = 1,nd |
---|
| 579 | ptlev(ig0+ig,l) = zztlev(ig,l) |
---|
| 580 | enddo |
---|
| 581 | enddo |
---|
| 582 | |
---|
[2685] | 583 | ! copy SW fluxes at surface and TOA |
---|
[38] | 584 | do ig = 1,nd |
---|
[2685] | 585 | ! surface downward SW flux |
---|
| 586 | fluxsurf_dn_sw(ig0+ig,1) = zfluxd_sw(ig,1,1) |
---|
| 587 | fluxsurf_dn_sw(ig0+ig,2) = zfluxd_sw(ig,1,2) |
---|
| 588 | ! surface upward SW flux |
---|
| 589 | fluxsurf_up_sw(ig0+ig,1) = zfluxu_sw(ig,1,1) |
---|
| 590 | fluxsurf_up_sw(ig0+ig,2) = zfluxu_sw(ig,1,2) |
---|
| 591 | ! downward SW flux at top of atmosphere |
---|
| 592 | fluxtop_dn_sw(ig0+ig,1) = zfluxd_sw(ig,nlaylte+1,1) |
---|
| 593 | fluxtop_dn_sw(ig0+ig,2) = zfluxd_sw(ig,nlaylte+1,2) |
---|
| 594 | ! upward SW flux at top of atmosphere |
---|
| 595 | fluxtop_up_sw(ig0+ig,1) = zfluxu_sw(ig,nlaylte+1,1) |
---|
| 596 | fluxtop_up_sw(ig0+ig,2) = zfluxu_sw(ig,nlaylte+1,2) |
---|
[38] | 597 | enddo |
---|
| 598 | |
---|
| 599 | ENDDO ! (boucle jd=1, ndomain) |
---|
| 600 | |
---|
| 601 | c Zero tendencies for any remaining layers between nlaylte and nlayer |
---|
| 602 | if (nlayer.gt.nlaylte) then |
---|
| 603 | do l = nlaylte+1, nlayer |
---|
| 604 | do ig = 1, ngrid |
---|
| 605 | dtlw(ig, l) = 0. |
---|
| 606 | dtsw(ig, l) = 0. |
---|
| 607 | enddo |
---|
| 608 | enddo |
---|
| 609 | endif |
---|
| 610 | c Output for debugging if lwrite=T |
---|
| 611 | c -------------------------------- |
---|
| 612 | c Write all nlayer layers, even though only nlaylte layers may have |
---|
| 613 | c non-zero tendencies. |
---|
| 614 | |
---|
| 615 | IF(lwrite) THEN |
---|
| 616 | PRINT*,'Diagnotique for the radiation' |
---|
| 617 | PRINT*,'albedo, emissiv, mu0,fract,fluxsurf_lw,fluxsurf_sw' |
---|
| 618 | PRINT*,albedo(igout,1),emis(igout),mu0(igout), |
---|
| 619 | s fract(igout), fluxsurf_lw(igout), |
---|
[2685] | 620 | $ fluxsurf_dn_sw(igout,1)+fluxsurf_dn_sw(igout,2) |
---|
[38] | 621 | PRINT*,'Tlay Tlev Play Plev dT/dt SW dT/dt LW (K/s)' |
---|
| 622 | PRINT*,'daysec',daysec |
---|
| 623 | DO l=1,nlayer |
---|
| 624 | PRINT*,pt(igout,l),ptlev(igout,l), |
---|
| 625 | s pplay(igout,l),pplev(igout,l), |
---|
| 626 | s dtsw(igout,l),dtlw(igout,l) |
---|
| 627 | ENDDO |
---|
| 628 | ENDIF |
---|
| 629 | |
---|
| 630 | |
---|
[1711] | 631 | END SUBROUTINE callradite |
---|
| 632 | |
---|
| 633 | END MODULE callradite_mod |
---|