[38] | 1 | SUBROUTINE callradite(icount,ngrid,nlayer,nq,zday,ls,pq,albedo, |
---|
| 2 | $ emis,mu0,pplev,pplay,pt,tsurf,fract,dist_sol,igout, |
---|
| 3 | $ dtlw,dtsw,fluxsurf_lw,fluxsurf_sw,fluxtop_lw,fluxtop_sw, |
---|
[520] | 4 | & tauref,tau,aerosol,tauscaling,taucloudtes,rdust,rice, |
---|
| 5 | & nuice,co2ice) |
---|
[38] | 6 | |
---|
[1047] | 7 | use dimradmars_mod, only: ndomainsz, nflev, nsun, nir |
---|
| 8 | use yomlw_h, only: gcp, nlaylte |
---|
[1226] | 9 | USE comcstfi_h |
---|
[1047] | 10 | IMPLICIT NONE |
---|
[38] | 11 | c======================================================================= |
---|
| 12 | c subject: |
---|
| 13 | c -------- |
---|
| 14 | c Subroutine designed to call the main canonic |
---|
| 15 | c radiative transfer subroutine "lwmain" et "swmain" |
---|
| 16 | c to compute radiative heating and cooling rate and |
---|
| 17 | c radiative fluxes to the surface. |
---|
| 18 | c |
---|
| 19 | c These calculations are only valid on the part of the atmosphere |
---|
| 20 | c where Local Thermal Equilibrium (NLTE) is verified. In practice |
---|
| 21 | c The calculations are only performed for the first "nlaylte" |
---|
| 22 | c parameters (nlaylte is calculated by subroutine "nlthermeq" |
---|
[1047] | 23 | c and stored in module "yomlw_h"). |
---|
[38] | 24 | c |
---|
| 25 | c The purpose of this subroutine is to: |
---|
| 26 | c 1) Make some initial calculation at first call |
---|
| 27 | c 2) Split the calculation in several sub-grid |
---|
| 28 | c ("sub-domain") to save memory and |
---|
| 29 | c be able run on a workstation at high resolution |
---|
[1047] | 30 | c The sub-grid size is defined in dimradmars_mod |
---|
[38] | 31 | c 3) Compute the 3D scattering parameters depending on the |
---|
| 32 | c size distribution of the different tracers (added by JBM) |
---|
| 33 | c 4) call "lwmain" and "swmain" |
---|
| 34 | c |
---|
| 35 | c |
---|
| 36 | c authors: |
---|
| 37 | c ------ |
---|
| 38 | c Francois Forget / Christophe Hourdin / J.-B. Madeleine (2009) |
---|
| 39 | c |
---|
| 40 | c |
---|
| 41 | c 3D scattering scheme user's guide (J.-B. Madeleine) |
---|
| 42 | c --------------------------------- |
---|
| 43 | c |
---|
| 44 | c This routine has been modified to take into account 3D, time |
---|
| 45 | c dependent scattering properties of the aerosols. |
---|
| 46 | c---- The look-up tables that contain the scattering parameters |
---|
| 47 | c of a given tracer, for different sizes, are read by SUAER.F90. |
---|
| 48 | c The names of the corresponding ASCII files have to be set in |
---|
| 49 | c this subroutine (file_id variable), and files must be in the |
---|
| 50 | c directory specified in datafile.h. Please make sure that the |
---|
| 51 | c ASCII files are correctly written, and that the range |
---|
| 52 | c of particle sizes is consistent with what you would expect. |
---|
| 53 | c---- SUAER.F90 is in charge of reading the ASCII files and averaging |
---|
| 54 | c the scattering parameters in each GCM channel, using the three last |
---|
| 55 | c equations of Forget et al. 1998 (GRL 25, No.7, p.1105-1108). |
---|
| 56 | c---- These look-up tables, loaded during the firstcall, are then |
---|
| 57 | c constantly used by the subroutine "aeroptproperties.F" to compute, |
---|
| 58 | c online, the 3D scattering parameters, based on the size distribution |
---|
| 59 | c (reffrad and nueffrad) of the different tracers, in each grid box. |
---|
| 60 | c These 3D size distributions are loaded by the "updatereffrad.F" |
---|
| 61 | c subroutine. A log-normal distribution is then assumed in |
---|
| 62 | c "aeroptproperties.F", along with a Gauss-Legendre integration. |
---|
| 63 | c---- The optical depth at the visible reference wavelength (set in |
---|
| 64 | c SUAER.F90, after the file_id variable) is then computed by |
---|
| 65 | c the subroutine "aeropacity.F", by using the size and spatial |
---|
| 66 | c distribution of the corresponding tracer. This connection has to |
---|
| 67 | c be implemented in "aeropacity.F" when adding a new tracer. To do so, |
---|
| 68 | c one can use equation 2 of Forget et al. 1998 (Icarus 131, p.302-316). |
---|
| 69 | c---- The resulting variables "aerosol", "QVISsQREF3d", "omegaVIS3d" and |
---|
| 70 | c "gVIS3d" (same in the infrared) are finally used by lwmain.F and |
---|
| 71 | c swmain.F to solve the radiative transfer equation. |
---|
| 72 | c |
---|
| 73 | c changes: |
---|
| 74 | c ------- |
---|
| 75 | c |
---|
| 76 | c > SRL 7/2000 |
---|
| 77 | c |
---|
| 78 | c This version has been modified to only calculate radiative tendencies |
---|
[1047] | 79 | c over layers 1..NFLEV (set in dimradmars_mod). Returns zero for higher |
---|
[38] | 80 | c layers, if any. |
---|
| 81 | c In other routines, nlayermx -> nflev. |
---|
| 82 | c Routines affected: lwflux, lwi, lwmain, lwxb, lwxd, lwxn. |
---|
| 83 | c |
---|
| 84 | c > J.-B. Madeleine 10W12 |
---|
| 85 | c This version uses the variable's splitting, which can be usefull |
---|
| 86 | c when performing very high resolution simulation like LES. |
---|
| 87 | c |
---|
| 88 | c ---------- |
---|
| 89 | c Here, solar band#1 is spectral interval between "long1vis" and "long2vis" |
---|
[1047] | 90 | c set in dimradmars_mod |
---|
[38] | 91 | c Here, solar band#2 is spectral interval between "long2vis" and "long3vis" |
---|
[1047] | 92 | c set in dimradmars_mod |
---|
[38] | 93 | c |
---|
| 94 | c input: |
---|
| 95 | c ----- |
---|
| 96 | c icount counter of call to subroutine physic by gcm |
---|
| 97 | c ngrid number of gridpoint of horizontal grid |
---|
| 98 | c nlayer Number of layer |
---|
| 99 | c nq Number of tracer |
---|
| 100 | c ls Solar longitude (Ls) , radian |
---|
| 101 | c zday Date (time since Ls=0, in martian days) |
---|
| 102 | c pq(ngrid,nlayer,nq) Advected fields |
---|
| 103 | c |
---|
| 104 | c albedo (ngrid,2) hemispheric surface albedo |
---|
| 105 | c albedo (i,1) : mean albedo for solar band#1 |
---|
| 106 | c (see below) |
---|
| 107 | c albedo (i,2) : mean albedo for solar band#2 |
---|
| 108 | c (see below) |
---|
| 109 | c emis Thermal IR surface emissivity (no unit) |
---|
[1047] | 110 | c mu0(ngrid) cos of solar zenith angle |
---|
[38] | 111 | c (=1 when sun at zenith) |
---|
| 112 | c pplay(ngrid,nlayer) pressure (Pa) in the middle of each layer |
---|
| 113 | c pplev(ngrid,nlayer+1) pressure (Pa) at boundaries of each layer |
---|
| 114 | c pt(ngrid,nlayer) atmospheric temperature in each layer (K) |
---|
| 115 | c tsurf(ngrid) surface temperature (K) |
---|
[1047] | 116 | c fract(ngrid) day fraction of the time interval |
---|
[38] | 117 | c =1 during the full day ; =0 during the night |
---|
| 118 | c declin latitude of subsolar point |
---|
| 119 | c dist_sol sun-Mars distance (AU) |
---|
| 120 | c igout coordinate of analysed point for debugging |
---|
| 121 | c reffrad(ngrid,nlayer,naerkind) Aerosol effective radius |
---|
| 122 | c nueffrad(ngrid,nlayer,naerkind) Aerosol effective variance |
---|
| 123 | |
---|
| 124 | c |
---|
| 125 | c output: |
---|
| 126 | c ------- |
---|
| 127 | c dtlw (ngrid,nlayer) longwave (IR) heating rate (K/s) |
---|
| 128 | c dtsw(ngrid,nlayer) shortwave (Solar) heating rate (K/s) |
---|
| 129 | c fluxsurf_lw(ngrid) surface downward flux tota LW (thermal IR) (W.m-2) |
---|
| 130 | c fluxsurf_sw(ngrid,1) surface downward flux SW for solar band#1 (W.m-2) |
---|
| 131 | c fluxsurf_sw(ngrid,2) surface downward flux SW for solar band#2 (W.m-2) |
---|
| 132 | c |
---|
| 133 | c fluxtop_lw(ngrid) outgoing upward flux tota LW (thermal IR) (W.m-2) |
---|
| 134 | c fluxtop_sw(ngrid,1) outgoing upward flux SW for solar band#1 (W.m-2) |
---|
| 135 | c fluxtop_sw(ngrid,2) outgoing upward flux SW for solar band#2 (W.m-2) |
---|
| 136 | |
---|
[627] | 137 | c tauref Prescribed mean column optical depth at 610 Pa |
---|
[38] | 138 | c tau Column total visible dust optical depth at each point |
---|
| 139 | c aerosol(ngrid,nlayer,naerkind) aerosol extinction optical depth |
---|
| 140 | c at reference wavelength "longrefvis" set |
---|
[1047] | 141 | c in dimradmars_h , in each layer, for one of |
---|
[38] | 142 | c the "naerkind" kind of aerosol optical |
---|
| 143 | c properties. |
---|
| 144 | |
---|
| 145 | c======================================================================= |
---|
| 146 | c |
---|
| 147 | c Declarations : |
---|
| 148 | c ------------- |
---|
| 149 | c |
---|
[1047] | 150 | !#include "dimensions.h" |
---|
| 151 | !#include "dimphys.h" |
---|
| 152 | !#include "dimradmars.h" |
---|
[38] | 153 | #include "callkeys.h" |
---|
[1047] | 154 | !#include "yomlw.h" |
---|
| 155 | ! naerkind is set in scatterers.h (built when compiling with makegcm -s #) |
---|
| 156 | #include"scatterers.h" |
---|
[38] | 157 | #include "aerkind.h" |
---|
| 158 | |
---|
| 159 | c----------------------------------------------------------------------- |
---|
| 160 | c Input/Output |
---|
| 161 | c ------------ |
---|
[1047] | 162 | INTEGER,INTENT(IN) :: icount |
---|
| 163 | INTEGER,INTENT(IN) :: ngrid,nlayer,nq |
---|
| 164 | INTEGER,INTENT(IN) :: igout |
---|
[38] | 165 | |
---|
[1047] | 166 | REAL,INTENT(IN) :: pq(ngrid,nlayer,nq) |
---|
| 167 | REAL,INTENT(IN) :: tauscaling(ngrid) ! Conversion factor for |
---|
[358] | 168 | ! qdust and Ndust |
---|
[1047] | 169 | REAL,INTENT(IN) :: albedo(ngrid,2),emis(ngrid) |
---|
| 170 | REAL,INTENT(IN) :: ls,zday |
---|
[38] | 171 | |
---|
[1047] | 172 | REAL,INTENT(IN) :: pplev(ngrid,nlayer+1),pplay(ngrid,nlayer) |
---|
| 173 | REAL,INTENT(IN) :: pt(ngrid,nlayer) |
---|
| 174 | REAL,INTENT(IN) :: tsurf(ngrid) |
---|
| 175 | REAL,INTENT(IN) :: dist_sol,mu0(ngrid),fract(ngrid) |
---|
| 176 | REAL,INTENT(OUT) :: dtlw(ngrid,nlayer),dtsw(ngrid,nlayer) |
---|
| 177 | REAL,INTENT(OUT) :: fluxsurf_lw(ngrid), fluxtop_lw(ngrid) |
---|
| 178 | REAL,INTENT(OUT) :: fluxsurf_sw(ngrid,2), fluxtop_sw(ngrid,2) |
---|
[38] | 179 | |
---|
[1047] | 180 | REAL,INTENT(OUT) :: tauref(ngrid), tau(ngrid,naerkind) |
---|
| 181 | REAL,INTENT(OUT) :: taucloudtes(ngrid)! Cloud opacity at infrared |
---|
[520] | 182 | ! reference wavelength using |
---|
| 183 | ! Qabs instead of Qext |
---|
| 184 | ! (direct comparison with TES) |
---|
[1047] | 185 | REAL,INTENT(OUT) :: aerosol(ngrid,nlayer,naerkind) |
---|
| 186 | REAL,INTENT(OUT) :: rdust(ngrid,nlayer) ! Dust geometric mean radius (m) |
---|
| 187 | REAL,INTENT(OUT) :: rice(ngrid,nlayer) ! Ice geometric mean radius (m) |
---|
| 188 | REAL,INTENT(OUT) :: nuice(ngrid,nlayer) ! Estimated effective variance |
---|
| 189 | REAL,INTENT(IN) :: co2ice(ngrid) ! co2 ice surface layer (kg.m-2) |
---|
[353] | 190 | |
---|
[38] | 191 | c |
---|
| 192 | c Local variables : |
---|
| 193 | c ----------------- |
---|
| 194 | |
---|
| 195 | INTEGER j,l,ig,n,ich |
---|
| 196 | INTEGER aer_count,iaer |
---|
| 197 | INTEGER jd,ig0,nd |
---|
| 198 | |
---|
| 199 | real cste_mars ! solar constant on Mars (Wm-2) |
---|
[1047] | 200 | REAL ptlev(ngrid,nlayer+1) |
---|
[38] | 201 | |
---|
[1047] | 202 | INTEGER,SAVE :: ndomain |
---|
[38] | 203 | |
---|
| 204 | c Thermal IR net radiative budget (W m-2) |
---|
| 205 | |
---|
| 206 | real znetrad(ndomainsz,nflev) |
---|
| 207 | |
---|
| 208 | real zfluxd_sw(ndomainsz,nflev+1,2) |
---|
| 209 | real zfluxu_sw(ndomainsz,nflev+1,2) |
---|
| 210 | |
---|
| 211 | REAL zplev(ndomainsz,nflev+1) |
---|
| 212 | REAL zztlev(ndomainsz,nflev+1) |
---|
| 213 | REAL zplay(ndomainsz,nflev) |
---|
| 214 | REAL zt(ndomainsz,nflev) |
---|
| 215 | REAL zaerosol(ndomainsz,nflev,naerkind) |
---|
| 216 | REAL zalbedo(ndomainsz,2) |
---|
| 217 | REAL zdp(ndomainsz,nflev) |
---|
| 218 | REAL zdt0(ndomainsz) |
---|
| 219 | |
---|
| 220 | REAL zzdtlw(ndomainsz,nflev) |
---|
| 221 | REAL zzdtsw(ndomainsz,nflev) |
---|
| 222 | REAL zzflux(ndomainsz,6) |
---|
| 223 | real zrmuz |
---|
| 224 | |
---|
| 225 | REAL :: zQVISsQREF3d(ndomainsz,nflev,nsun,naerkind) |
---|
| 226 | REAL :: zomegaVIS3d(ndomainsz,nflev,nsun,naerkind) |
---|
| 227 | REAL :: zgVIS3d(ndomainsz,nflev,nsun,naerkind) |
---|
| 228 | |
---|
| 229 | REAL :: zQIRsQREF3d(ndomainsz,nflev,nir,naerkind) |
---|
| 230 | REAL :: zomegaIR3d(ndomainsz,nflev,nir,naerkind) |
---|
| 231 | REAL :: zgIR3d(ndomainsz,nflev,nir,naerkind) |
---|
| 232 | |
---|
| 233 | c Aerosol size distribution |
---|
| 234 | REAL :: reffrad(ngrid,nlayer,naerkind) |
---|
| 235 | REAL :: nueffrad(ngrid,nlayer,naerkind) |
---|
| 236 | c Aerosol optical properties |
---|
[1047] | 237 | REAL :: QVISsQREF3d(ngrid,nlayer,nsun,naerkind) |
---|
| 238 | REAL :: omegaVIS3d(ngrid,nlayer,nsun,naerkind) |
---|
| 239 | REAL :: gVIS3d(ngrid,nlayer,nsun,naerkind) |
---|
[38] | 240 | |
---|
[1047] | 241 | REAL :: QIRsQREF3d(ngrid,nlayer,nir,naerkind) |
---|
| 242 | REAL :: omegaIR3d(ngrid,nlayer,nir,naerkind) |
---|
| 243 | REAL :: gIR3d(ngrid,nlayer,nir,naerkind) |
---|
[38] | 244 | |
---|
[1047] | 245 | REAL :: QREFvis3d(ngrid,nlayer,naerkind) |
---|
| 246 | REAL :: QREFir3d(ngrid,nlayer,naerkind) |
---|
[38] | 247 | |
---|
[1047] | 248 | REAL :: omegaREFvis3d(ngrid,nlayer,naerkind) |
---|
| 249 | REAL :: omegaREFir3d(ngrid,nlayer,naerkind) |
---|
[38] | 250 | |
---|
| 251 | c local saved variables |
---|
| 252 | c --------------------- |
---|
| 253 | |
---|
[1047] | 254 | real,save,allocatable :: pview(:) |
---|
[38] | 255 | |
---|
| 256 | real zco2 ! volume fraction of CO2 in Mars atmosphere |
---|
| 257 | DATA zco2/0.95/ |
---|
| 258 | SAVE zco2 |
---|
| 259 | |
---|
| 260 | LOGICAL firstcall |
---|
| 261 | DATA firstcall/.true./ |
---|
| 262 | SAVE firstcall |
---|
| 263 | |
---|
| 264 | c---------------------------------------------------------------------- |
---|
| 265 | |
---|
| 266 | c Initialisation |
---|
| 267 | c -------------- |
---|
| 268 | |
---|
| 269 | IF (firstcall) THEN |
---|
[1047] | 270 | ! compute ndomain and allocate local saved arrays |
---|
| 271 | ndomain= (ngrid-1) / ndomainsz + 1 |
---|
| 272 | allocate(pview(ngrid)) |
---|
[38] | 273 | |
---|
| 274 | c Please name the different scatterers here ---------------- |
---|
| 275 | c PLEASE MAKE SURE that you set up the right number of |
---|
[1047] | 276 | c scatterers in scatterers.h (naerkind); |
---|
[131] | 277 | name_iaer(1) = "dust_conrath" !! default choice is good old Conrath profile |
---|
| 278 | IF (doubleq.AND.active) name_iaer(1) = "dust_doubleq" !! two-moment scheme |
---|
[1036] | 279 | if (nq.gt.1) then |
---|
[172] | 280 | ! trick to avoid problems compiling with 1 tracer |
---|
| 281 | ! and picky compilers who know name_iaer(2) is out of bounds |
---|
| 282 | j=2 |
---|
| 283 | IF (water.AND.activice) name_iaer(j) = "h2o_ice" !! radiatively-active clouds |
---|
| 284 | IF (submicron.AND.active) name_iaer(j) = "dust_submicron" !! JBM experimental stuff |
---|
[1036] | 285 | endif ! of if (nq.gt.1) |
---|
[38] | 286 | c ---------------------------------------------------------- |
---|
| 287 | |
---|
| 288 | c Assign a number to the different scatterers |
---|
| 289 | c ------------------------------------------- |
---|
| 290 | |
---|
| 291 | iaer_dust_conrath=0 |
---|
| 292 | iaer_dust_doubleq=0 |
---|
| 293 | iaer_dust_submicron=0 |
---|
| 294 | iaer_h2o_ice=0 |
---|
| 295 | |
---|
| 296 | aer_count=0 |
---|
| 297 | if (.NOT.active) then |
---|
| 298 | do iaer=1,naerkind |
---|
| 299 | if (name_iaer(iaer).eq."dust_conrath") then |
---|
| 300 | iaer_dust_conrath = iaer |
---|
| 301 | aer_count = aer_count + 1 |
---|
| 302 | endif |
---|
| 303 | enddo |
---|
| 304 | endif |
---|
| 305 | if (doubleq.AND.active) then |
---|
| 306 | do iaer=1,naerkind |
---|
| 307 | if (name_iaer(iaer).eq."dust_doubleq") then |
---|
| 308 | iaer_dust_doubleq = iaer |
---|
| 309 | aer_count = aer_count + 1 |
---|
| 310 | endif |
---|
| 311 | enddo |
---|
| 312 | endif |
---|
| 313 | if (submicron.AND.active) then |
---|
| 314 | do iaer=1,naerkind |
---|
| 315 | if (name_iaer(iaer).eq."dust_submicron") then |
---|
| 316 | iaer_dust_submicron = iaer |
---|
| 317 | aer_count = aer_count + 1 |
---|
| 318 | endif |
---|
| 319 | enddo |
---|
| 320 | endif |
---|
| 321 | if (water.AND.activice) then |
---|
| 322 | do iaer=1,naerkind |
---|
| 323 | if (name_iaer(iaer).eq."h2o_ice") then |
---|
| 324 | iaer_h2o_ice = iaer |
---|
| 325 | aer_count = aer_count + 1 |
---|
| 326 | endif |
---|
| 327 | enddo |
---|
| 328 | endif |
---|
| 329 | |
---|
| 330 | c Check that we identified all tracers: |
---|
| 331 | if (aer_count.ne.naerkind) then |
---|
| 332 | write(*,*) "callradite: found only ",aer_count," scatterers" |
---|
| 333 | write(*,*) " expected ",naerkind |
---|
| 334 | write(*,*) "please make sure that the number of" |
---|
[1047] | 335 | write(*,*) "scatterers in scatterers.h, the names" |
---|
[38] | 336 | write(*,*) "in callradite.F, and the flags in" |
---|
| 337 | write(*,*) "callphys.def are all consistent!" |
---|
| 338 | do iaer=1,naerkind |
---|
| 339 | write(*,*)' ',iaer,' ',trim(name_iaer(iaer)) |
---|
| 340 | enddo |
---|
| 341 | stop |
---|
| 342 | else |
---|
| 343 | write(*,*) "callradite: found all scatterers, namely:" |
---|
| 344 | do iaer=1,naerkind |
---|
| 345 | write(*,*)' ',iaer,' ',trim(name_iaer(iaer)) |
---|
| 346 | enddo |
---|
| 347 | endif |
---|
| 348 | c ------------------------------------------- |
---|
| 349 | |
---|
| 350 | DO ig=1,ngrid |
---|
| 351 | pview(ig)=1.66 ! cosecant of viewing angle |
---|
| 352 | ENDDO |
---|
| 353 | gcp = g/cpp |
---|
| 354 | |
---|
| 355 | c Logical tests for radiatively active water-ice clouds: |
---|
| 356 | IF ( (activice.AND.(.NOT.water)).OR. |
---|
| 357 | & (activice.AND.(naerkind.LT.2)) ) THEN |
---|
| 358 | WRITE(*,*) 'If activice is TRUE, water has to be set' |
---|
| 359 | WRITE(*,*) 'to TRUE, and "naerkind" must be at least' |
---|
[1047] | 360 | WRITE(*,*) 'equal to 2 in scatterers.h.' |
---|
[38] | 361 | CALL ABORT |
---|
| 362 | ELSE IF ( (.NOT.activice).AND.(naerkind.GT.1) ) THEN |
---|
| 363 | WRITE(*,*) 'naerkind is greater than unity, but' |
---|
| 364 | WRITE(*,*) 'activice has not been set to .true.' |
---|
| 365 | WRITE(*,*) 'in callphys.def; this is not logical!' |
---|
| 366 | CALL ABORT |
---|
| 367 | ENDIF |
---|
| 368 | |
---|
| 369 | c Loading the optical properties in external look-up tables: |
---|
| 370 | CALL SUAER |
---|
[1047] | 371 | ! CALL SULW ! this step is now done in ini_yomlw_h |
---|
[38] | 372 | |
---|
| 373 | write(*,*) 'Splitting radiative calculations: ', |
---|
[1047] | 374 | $ ' ngrid,ndomainsz,ndomain', |
---|
| 375 | $ ngrid,ndomainsz,ndomain |
---|
| 376 | if (ngrid .EQ. 1) then |
---|
[38] | 377 | if (ndomainsz .NE. 1) then |
---|
| 378 | print* |
---|
| 379 | print*,'ATTENTION !!!' |
---|
| 380 | print*,'pour tourner en 1D, ' |
---|
[1047] | 381 | print*,'fixer ndomainsz=1 dans phymars/dimradmars_h' |
---|
[38] | 382 | print* |
---|
| 383 | call exit(1) |
---|
| 384 | endif |
---|
| 385 | endif |
---|
| 386 | firstcall=.false. |
---|
| 387 | END IF |
---|
| 388 | |
---|
| 389 | c Computing aerosol optical properties and opacity |
---|
| 390 | c ------------------------------------------------ |
---|
| 391 | |
---|
| 392 | c Updating aerosol size distributions: |
---|
| 393 | CALL updatereffrad(ngrid,nlayer, |
---|
| 394 | & rdust,rice,nuice, |
---|
| 395 | & reffrad,nueffrad, |
---|
[740] | 396 | & pq,tauscaling,tau,pplay) |
---|
[38] | 397 | |
---|
| 398 | c Computing 3D scattering parameters: |
---|
| 399 | CALL aeroptproperties(ngrid,nlayer,reffrad,nueffrad, |
---|
| 400 | & QVISsQREF3d,omegaVIS3d,gVIS3d, |
---|
| 401 | & QIRsQREF3d,omegaIR3d,gIR3d, |
---|
| 402 | & QREFvis3d,QREFir3d, |
---|
| 403 | & omegaREFvis3d,omegaREFir3d) |
---|
| 404 | |
---|
| 405 | c Computing aerosol optical depth in each layer: |
---|
| 406 | CALL aeropacity(ngrid,nlayer,nq,zday,pplay,pplev,ls, |
---|
[520] | 407 | & pq,tauscaling,tauref,tau,taucloudtes,aerosol,reffrad, |
---|
| 408 | & nueffrad,QREFvis3d,QREFir3d,omegaREFvis3d,omegaREFir3d) |
---|
[38] | 409 | |
---|
| 410 | c Starting loop on sub-domain |
---|
| 411 | c ---------------------------- |
---|
| 412 | |
---|
| 413 | DO jd=1,ndomain |
---|
| 414 | ig0=(jd-1)*ndomainsz |
---|
| 415 | if (jd.eq.ndomain) then |
---|
[1047] | 416 | nd=ngrid-ig0 |
---|
[38] | 417 | else |
---|
| 418 | nd=ndomainsz |
---|
| 419 | endif |
---|
| 420 | |
---|
| 421 | c Spliting input variable in sub-domain input variables |
---|
| 422 | c --------------------------------------------------- |
---|
| 423 | |
---|
| 424 | do l=1,nlaylte |
---|
| 425 | do ig = 1,nd |
---|
| 426 | do iaer = 1, naerkind |
---|
| 427 | do ich = 1, nsun |
---|
| 428 | zQVISsQREF3d(ig,l,ich,iaer) = |
---|
| 429 | & QVISsQREF3d(ig0+ig,l,ich,iaer) |
---|
| 430 | zomegaVIS3d(ig,l,ich,iaer) = |
---|
| 431 | & omegaVIS3d(ig0+ig,l,ich,iaer) |
---|
| 432 | zgVIS3d(ig,l,ich,iaer) = |
---|
| 433 | & gVIS3d(ig0+ig,l,ich,iaer) |
---|
| 434 | enddo |
---|
| 435 | do ich = 1, nir |
---|
| 436 | zQIRsQREF3d(ig,l,ich,iaer) = |
---|
| 437 | & QIRsQREF3d(ig0+ig,l,ich,iaer) |
---|
| 438 | zomegaIR3d(ig,l,ich,iaer) = |
---|
| 439 | & omegaIR3d(ig0+ig,l,ich,iaer) |
---|
| 440 | zgIR3d(ig,l,ich,iaer) = |
---|
| 441 | & gIR3d(ig0+ig,l,ich,iaer) |
---|
| 442 | enddo |
---|
| 443 | enddo |
---|
| 444 | enddo |
---|
| 445 | enddo |
---|
| 446 | |
---|
| 447 | do l=1,nlaylte+1 |
---|
| 448 | do ig = 1,nd |
---|
| 449 | zplev(ig,l) = pplev(ig0+ig,l) |
---|
| 450 | enddo |
---|
| 451 | enddo |
---|
| 452 | |
---|
| 453 | do l=1,nlaylte |
---|
| 454 | do ig = 1,nd |
---|
| 455 | zplay(ig,l) = pplay(ig0+ig,l) |
---|
| 456 | zt(ig,l) = pt(ig0+ig,l) |
---|
| 457 | c Thickness of each layer (Pa) : |
---|
| 458 | zdp(ig,l)= pplev(ig0+ig,l) - pplev(ig0+ig,l+1) |
---|
| 459 | enddo |
---|
| 460 | enddo |
---|
| 461 | |
---|
| 462 | do n=1,naerkind |
---|
| 463 | do l=1,nlaylte |
---|
| 464 | do ig=1,nd |
---|
| 465 | zaerosol(ig,l,n) = aerosol(ig0+ig,l,n) |
---|
| 466 | enddo |
---|
| 467 | enddo |
---|
| 468 | enddo |
---|
| 469 | |
---|
| 470 | do j=1,2 |
---|
| 471 | do ig = 1,nd |
---|
| 472 | zalbedo(ig,j) = albedo(ig0+ig,j) |
---|
| 473 | enddo |
---|
| 474 | enddo |
---|
| 475 | |
---|
| 476 | c Intermediate levels: (computing tlev) |
---|
| 477 | c --------------------------------------- |
---|
| 478 | c Extrapolation for the air temperature above the surface |
---|
| 479 | DO ig=1,nd |
---|
| 480 | zztlev(ig,1)=zt(ig,1)+ |
---|
| 481 | s (zplev(ig,1)-zplay(ig,1))* |
---|
| 482 | s (zt(ig,1)-zt(ig,2))/(zplay(ig,1)-zplay(ig,2)) |
---|
| 483 | |
---|
| 484 | zdt0(ig) = tsurf(ig0+ig) - zztlev(ig,1) |
---|
| 485 | ENDDO |
---|
| 486 | |
---|
| 487 | DO l=2,nlaylte |
---|
| 488 | DO ig=1, nd |
---|
| 489 | zztlev(ig,l)=0.5*(zt(ig,l-1)+zt(ig,l)) |
---|
| 490 | ENDDO |
---|
| 491 | ENDDO |
---|
| 492 | |
---|
| 493 | DO ig=1, nd |
---|
| 494 | zztlev(ig,nlaylte+1)=zt(ig,nlaylte) |
---|
| 495 | ENDDO |
---|
| 496 | |
---|
| 497 | |
---|
| 498 | c Longwave ("lw") radiative transfer (= thermal infrared) |
---|
| 499 | c ------------------------------------------------------- |
---|
| 500 | call lwmain (ig0,icount,nd,nflev |
---|
| 501 | . ,zdp,zdt0,emis(ig0+1),zplev,zztlev,zt |
---|
| 502 | . ,zaerosol,zzdtlw |
---|
| 503 | . ,fluxsurf_lw(ig0+1),fluxtop_lw(ig0+1) |
---|
| 504 | . ,znetrad |
---|
[353] | 505 | & ,zQIRsQREF3d,zomegaIR3d,zgIR3d |
---|
| 506 | & ,co2ice(ig0+1)) |
---|
[38] | 507 | |
---|
| 508 | c Shortwave ("sw") radiative transfer (= solar radiation) |
---|
| 509 | c ------------------------------------------------------- |
---|
| 510 | c Mars solar constant (W m-2) |
---|
| 511 | c 1370 W.m-2 is the solar constant at 1 AU. |
---|
| 512 | cste_mars=1370./(dist_sol*dist_sol) |
---|
| 513 | |
---|
| 514 | call swmain ( nd, nflev, |
---|
| 515 | S cste_mars, zalbedo, |
---|
| 516 | S mu0(ig0+1), zdp, zplev, zaerosol, fract(ig0+1), |
---|
| 517 | S zzdtsw, zfluxd_sw, zfluxu_sw, |
---|
| 518 | & zQVISsQREF3d,zomegaVIS3d,zgVIS3d) |
---|
| 519 | |
---|
| 520 | c ------------------------------------------------------------ |
---|
| 521 | c Un-spliting output variable from sub-domain input variables |
---|
| 522 | c ------------------------------------------------------------ |
---|
| 523 | |
---|
| 524 | do l=1,nlaylte |
---|
| 525 | do ig = 1,nd |
---|
| 526 | dtlw(ig0+ig,l) = zzdtlw(ig,l) |
---|
| 527 | dtsw(ig0+ig,l) = zzdtsw(ig,l) |
---|
| 528 | enddo |
---|
| 529 | enddo |
---|
| 530 | |
---|
| 531 | do l=1,nlaylte+1 |
---|
| 532 | do ig = 1,nd |
---|
| 533 | ptlev(ig0+ig,l) = zztlev(ig,l) |
---|
| 534 | enddo |
---|
| 535 | enddo |
---|
| 536 | |
---|
| 537 | do ig = 1,nd |
---|
| 538 | fluxsurf_sw(ig0+ig,1) = zfluxd_sw(ig,1,1) |
---|
| 539 | fluxsurf_sw(ig0+ig,2) = zfluxd_sw(ig,1,2) |
---|
| 540 | fluxtop_sw(ig0+ig,1) = zfluxu_sw(ig,nlaylte+1,1) |
---|
| 541 | fluxtop_sw(ig0+ig,2) = zfluxu_sw(ig,nlaylte+1,2) |
---|
| 542 | enddo |
---|
| 543 | |
---|
| 544 | ENDDO ! (boucle jd=1, ndomain) |
---|
| 545 | |
---|
| 546 | c Zero tendencies for any remaining layers between nlaylte and nlayer |
---|
| 547 | if (nlayer.gt.nlaylte) then |
---|
| 548 | do l = nlaylte+1, nlayer |
---|
| 549 | do ig = 1, ngrid |
---|
| 550 | dtlw(ig, l) = 0. |
---|
| 551 | dtsw(ig, l) = 0. |
---|
| 552 | enddo |
---|
| 553 | enddo |
---|
| 554 | endif |
---|
| 555 | |
---|
| 556 | c Output for debugging if lwrite=T |
---|
| 557 | c -------------------------------- |
---|
| 558 | c Write all nlayer layers, even though only nlaylte layers may have |
---|
| 559 | c non-zero tendencies. |
---|
| 560 | |
---|
| 561 | IF(lwrite) THEN |
---|
| 562 | PRINT*,'Diagnotique for the radiation' |
---|
| 563 | PRINT*,'albedo, emissiv, mu0,fract,fluxsurf_lw,fluxsurf_sw' |
---|
| 564 | PRINT*,albedo(igout,1),emis(igout),mu0(igout), |
---|
| 565 | s fract(igout), fluxsurf_lw(igout), |
---|
| 566 | $ fluxsurf_sw(igout,1)+fluxsurf_sw(igout,2) |
---|
| 567 | PRINT*,'Tlay Tlev Play Plev dT/dt SW dT/dt LW (K/s)' |
---|
| 568 | PRINT*,'daysec',daysec |
---|
| 569 | DO l=1,nlayer |
---|
| 570 | PRINT*,pt(igout,l),ptlev(igout,l), |
---|
| 571 | s pplay(igout,l),pplev(igout,l), |
---|
| 572 | s dtsw(igout,l),dtlw(igout,l) |
---|
| 573 | ENDDO |
---|
| 574 | ENDIF |
---|
| 575 | |
---|
| 576 | |
---|
| 577 | return |
---|
| 578 | end |
---|