| 1 | subroutine albedocaps(zls,ngrid,piceco2,psolaralb,emisref) |
|---|
| 2 | |
|---|
| 3 | ! routine which changes the albedo (and emissivity) of the surface |
|---|
| 4 | ! depending on the presence of CO2 ice on the surface |
|---|
| 5 | |
|---|
| 6 | ! to use the 'getin' routine |
|---|
| 7 | use ioipsl_getincom |
|---|
| 8 | |
|---|
| 9 | implicit none |
|---|
| 10 | |
|---|
| 11 | #include"dimensions.h" |
|---|
| 12 | #include"dimphys.h" |
|---|
| 13 | #include"surfdat.h" |
|---|
| 14 | #include"callkeys.h" |
|---|
| 15 | |
|---|
| 16 | ! arguments: |
|---|
| 17 | real,intent(in) :: zls ! solar longitude (rad) |
|---|
| 18 | integer,intent(in) :: ngrid |
|---|
| 19 | real,intent(in) :: piceco2(ngrid) ! amount of CO2 ice on the surface (kg/m2) |
|---|
| 20 | real,intent(out) :: psolaralb(ngrid,2) ! albedo of the surface |
|---|
| 21 | real,intent(out) :: emisref(ngrid) ! emissivity of the surface |
|---|
| 22 | |
|---|
| 23 | |
|---|
| 24 | ! local variables: |
|---|
| 25 | logical,save :: firstcall=.true. |
|---|
| 26 | integer :: ig,icap |
|---|
| 27 | |
|---|
| 28 | ! 1. Initializations |
|---|
| 29 | if (firstcall) then |
|---|
| 30 | ! find out if user wants to use TES cap albedoes or not |
|---|
| 31 | TESicealbedo=.false. ! default value |
|---|
| 32 | write(*,*)" albedocaps: Use TES Cap albedoes ?" |
|---|
| 33 | call getin("TESicealbedo",TESicealbedo) |
|---|
| 34 | write(*,*)" albedocaps: TESicealbedo = ",TESicealbedo |
|---|
| 35 | |
|---|
| 36 | ! if using TES albedoes, load coeffcients |
|---|
| 37 | if (TESicealbedo) then |
|---|
| 38 | write(*,*)" albedocaps: Coefficient for Northern Cap ?" |
|---|
| 39 | TESice_Ncoef=1.0 ! default value |
|---|
| 40 | call getin("TESice_Ncoef",TESice_Ncoef) |
|---|
| 41 | write(*,*)" albedocaps: TESice_Ncoef = ",TESice_Ncoef |
|---|
| 42 | |
|---|
| 43 | write(*,*)" albedocaps: Coefficient for Southern Cap ?" |
|---|
| 44 | TESice_Scoef=1.0 ! default value |
|---|
| 45 | call getin("TESice_Scoef",TESice_Scoef) |
|---|
| 46 | write(*,*)" albedocaps: TESice_Scoef = ",TESice_Scoef |
|---|
| 47 | endif |
|---|
| 48 | |
|---|
| 49 | firstcall=.false. |
|---|
| 50 | endif ! of if (firstcall) |
|---|
| 51 | |
|---|
| 52 | do ig=1,ngrid |
|---|
| 53 | if (ig.gt.ngrid/2+1) then |
|---|
| 54 | icap=2 ! Southern hemisphere |
|---|
| 55 | else |
|---|
| 56 | icap=1 ! Northern hemisphere |
|---|
| 57 | endif |
|---|
| 58 | |
|---|
| 59 | if (piceco2(ig).gt.0) then |
|---|
| 60 | ! set emissivity of surface to be the ice emissivity |
|---|
| 61 | emisref(ig)=emisice(icap) |
|---|
| 62 | ! set the surface albedo to be the ice albedo |
|---|
| 63 | if (TESicealbedo) then |
|---|
| 64 | ! write(*,*) "albedocaps: call TES_icecap_albedo" |
|---|
| 65 | ! write(*,*) "albedocaps: zls=",zls," ig=",ig |
|---|
| 66 | call TES_icecap_albedo(zls,ig,psolaralb(ig,1)) |
|---|
| 67 | ! write(*,*) "albedocaps: psolaralb(ig,1)=",psolaralb(ig,1) |
|---|
| 68 | psolaralb(ig,2)=psolaralb(ig,1) |
|---|
| 69 | else |
|---|
| 70 | psolaralb(ig,1)=albedice(icap) |
|---|
| 71 | psolaralb(ig,2)=albedice(icap) |
|---|
| 72 | endif |
|---|
| 73 | else if (watercaptag(ig) .and. water) then |
|---|
| 74 | ! there is a water ice cap: set the surface albedo to the water ice one |
|---|
| 75 | ! to do : emissivity |
|---|
| 76 | !write(*,*) "watercaptag in albedocaps:",ig |
|---|
| 77 | emisref(ig) = 1 |
|---|
| 78 | psolaralb(ig,1)=albedo_h2o_ice |
|---|
| 79 | psolaralb(ig,2)=albedo_h2o_ice |
|---|
| 80 | else |
|---|
| 81 | ! set emissivity of surface to be bare ground emissivity |
|---|
| 82 | emisref(ig)=emissiv |
|---|
| 83 | ! set the surface albedo to bare ground albedo |
|---|
| 84 | psolaralb(ig,1)=albedodat(ig) |
|---|
| 85 | psolaralb(ig,2)=albedodat(ig) |
|---|
| 86 | endif ! of if (piceco2(ig).gt.0) |
|---|
| 87 | enddo ! of ig=1,ngrid |
|---|
| 88 | end subroutine albedocaps |
|---|
| 89 | |
|---|
| 90 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 91 | subroutine TES_icecap_albedo(zls,ig,alb) |
|---|
| 92 | |
|---|
| 93 | implicit none |
|---|
| 94 | #include"dimensions.h" |
|---|
| 95 | #include"dimphys.h" |
|---|
| 96 | #include"surfdat.h" |
|---|
| 97 | #include"comgeomfi.h" |
|---|
| 98 | #include"netcdf.inc" |
|---|
| 99 | #include"datafile.h" |
|---|
| 100 | |
|---|
| 101 | ! arguments: |
|---|
| 102 | real,intent(in) :: zls ! solar longitude (rad) |
|---|
| 103 | integer,intent(in) :: ig ! grid point index |
|---|
| 104 | real,intent(out) :: alb ! (interpolated) TES ice albedo at that grid point |
|---|
| 105 | |
|---|
| 106 | ! local variables: |
|---|
| 107 | logical,save :: firstcall=.true. |
|---|
| 108 | real,save :: zls_old ! value of zls from a previous call |
|---|
| 109 | integer,save :: tinf,tsup ! encompassing time indexes of TES data |
|---|
| 110 | real,save :: reltime ! relative position in-between time indexes (in [0;1]) |
|---|
| 111 | integer :: latinf,latsup ! encompassing latitude indexes of TES data |
|---|
| 112 | real :: rellat ! relative position in-between latitude indexes (in[0;1]) |
|---|
| 113 | integer :: loninf,lonsup ! encompassing longitude indexes of TES data |
|---|
| 114 | real :: rellon !relative position in-between longitude indexes (in[0;1]) |
|---|
| 115 | real,save :: pi,radeg ! to convert radians to degrees |
|---|
| 116 | real :: zlsd ! solar longitude, in degrees |
|---|
| 117 | real :: latd ! latitude, in degrees |
|---|
| 118 | real :: lond ! longitude, in degrees |
|---|
| 119 | integer :: i |
|---|
| 120 | integer :: icap ! =1: Northern hemisphere =2: Southern hemisphere |
|---|
| 121 | |
|---|
| 122 | ! TES datasets: (hard coded fixed length/sizes; for now) |
|---|
| 123 | integer,parameter :: TESlonsize=72 |
|---|
| 124 | real,parameter :: TESdeltalon=5.0 ! step in longitude in TES files |
|---|
| 125 | ! longitudes, in TES files, in degrees, from TESlon(1)=-177.5 to TESlon(72)=177.5 |
|---|
| 126 | real,save :: TESlon(TESlonsize) |
|---|
| 127 | integer,parameter :: TESlatsize=30 |
|---|
| 128 | real,parameter :: TESdeltalat=2.0 ! step in latitude in TES files |
|---|
| 129 | ! latitudes (north hemisphere file), in degrees, from TESlatn(1)=31, |
|---|
| 130 | ! to TESlatn(30)=89 ; TESlatn(8)=45 |
|---|
| 131 | real,parameter :: TESlatnmin=45. ! minimum TES latitude (North hemisphere) |
|---|
| 132 | real,parameter :: TESlatsmax=-45. ! maximum TES latitude (South hemisphere) |
|---|
| 133 | real,save :: TESlatn(TESlatsize) |
|---|
| 134 | ! latitudes (south hemisphere file), in degrees, from TESlats(1)=-89, |
|---|
| 135 | ! to TESlats(30)=-31 ; TESlats(23)=-45 |
|---|
| 136 | real,save :: TESlats(TESlatsize) |
|---|
| 137 | integer,parameter :: TESlssize=72 |
|---|
| 138 | real,parameter :: TESdeltals=5.0 ! step in solar longitude in TES files |
|---|
| 139 | ! Solar longitude in TES files, TESls(1)=2.5 to TESls(72)=357.5 |
|---|
| 140 | real,save :: TESls(TESlssize) |
|---|
| 141 | ! TES North albedo (=-1 for missing values) |
|---|
| 142 | real,save :: TESalbn(TESlonsize,TESlatsize,TESlssize) |
|---|
| 143 | ! TES South albedo (=-1 for missing values) |
|---|
| 144 | real,save :: TESalbs(TESlonsize,TESlatsize,TESlssize) |
|---|
| 145 | ! encompassing nodes arranged as follow : 4 3 |
|---|
| 146 | real :: val(4) ! 1 2 |
|---|
| 147 | |
|---|
| 148 | !NetCDF variables: |
|---|
| 149 | integer :: ierr ! NetCDF status |
|---|
| 150 | integer :: nid ! NetCDF file ID |
|---|
| 151 | integer :: nvarid ! NetCDF variable ID |
|---|
| 152 | |
|---|
| 153 | ! 0. Preliminary stuff |
|---|
| 154 | if (firstcall) then |
|---|
| 155 | ! Load TES albedoes for Northern Hemisphere |
|---|
| 156 | ! Note: datafile() is defined in "datafile.h" |
|---|
| 157 | ierr=NF_OPEN(trim(datafile)//"/npsc_albedo.nc",NF_NOWRITE,nid) |
|---|
| 158 | IF (ierr.NE.NF_NOERR) THEN |
|---|
| 159 | write(*,*)'Problem opening npsc_albedo.nc (phymars/albedocaps.F90)' |
|---|
| 160 | write(*,*)'It should be in :',trim(datafile),'/' |
|---|
| 161 | write(*,*)'1) You can change this directory address in ' |
|---|
| 162 | write(*,*)' file phymars/datafile.h' |
|---|
| 163 | write(*,*)'2) If necessary, npsc_albedo.nc (and other datafiles)' |
|---|
| 164 | write(*,*)' can be obtained online on:' |
|---|
| 165 | write(*,*)' http://www.lmd.jussieu.fr/~forget/datagcm/datafile' |
|---|
| 166 | CALL ABORT |
|---|
| 167 | ENDIF |
|---|
| 168 | |
|---|
| 169 | ierr=NF_INQ_VARID(nid,"longitude",nvarid) |
|---|
| 170 | if (ierr.ne.NF_NOERR) then |
|---|
| 171 | write(*,*) "Failed to find longitude in file!" |
|---|
| 172 | else |
|---|
| 173 | ierr=NF_GET_VAR_REAL(nid,nvarid,TESlon) |
|---|
| 174 | endif |
|---|
| 175 | |
|---|
| 176 | ierr=NF_INQ_VARID(nid,"latitude",nvarid) |
|---|
| 177 | if (ierr.ne.NF_NOERR) then |
|---|
| 178 | write(*,*) "Failed to find latitude in file!" |
|---|
| 179 | else |
|---|
| 180 | ierr=NF_GET_VAR_REAL(nid,nvarid,TESlatn) |
|---|
| 181 | endif |
|---|
| 182 | |
|---|
| 183 | ierr=NF_INQ_VARID(nid,"time",nvarid) |
|---|
| 184 | if (ierr.ne.NF_NOERR) then |
|---|
| 185 | write(*,*) "Failed to find time in file!" |
|---|
| 186 | else |
|---|
| 187 | ierr=NF_GET_VAR_REAL(nid,nvarid,TESls) |
|---|
| 188 | endif |
|---|
| 189 | |
|---|
| 190 | ierr=NF_INQ_VARID(nid,"albedo",nvarid) |
|---|
| 191 | if (ierr.ne.NF_NOERR) then |
|---|
| 192 | write(*,*) "Failed to find albedo in file!" |
|---|
| 193 | else |
|---|
| 194 | ierr=NF_GET_VAR_REAL(nid,nvarid,TESalbn) |
|---|
| 195 | endif |
|---|
| 196 | |
|---|
| 197 | ! Load albedoes for Southern Hemisphere |
|---|
| 198 | ierr=NF_OPEN(trim(datafile)//"/spsc_albedo.nc",NF_NOWRITE,nid) |
|---|
| 199 | IF (ierr.NE.NF_NOERR) THEN |
|---|
| 200 | write(*,*)'Problem opening spsc_albedo.nc (phymars/albedocaps.F90)' |
|---|
| 201 | write(*,*)'It should be in :',trim(datafile),'/' |
|---|
| 202 | write(*,*)'1) You can change this directory address in ' |
|---|
| 203 | write(*,*)' file phymars/datafile.h' |
|---|
| 204 | write(*,*)'2) If necessary, spsc_albedo.nc (and other datafiles)' |
|---|
| 205 | write(*,*)' can be obtained online on:' |
|---|
| 206 | write(*,*)' http://www.lmd.jussieu.fr/~forget/datagcm/datafile' |
|---|
| 207 | CALL ABORT |
|---|
| 208 | ENDIF |
|---|
| 209 | |
|---|
| 210 | ierr=NF_INQ_VARID(nid,"latitude",nvarid) |
|---|
| 211 | if (ierr.ne.NF_NOERR) then |
|---|
| 212 | write(*,*) "Failed to find latitude in file!" |
|---|
| 213 | else |
|---|
| 214 | ierr=NF_GET_VAR_REAL(nid,nvarid,TESlats) |
|---|
| 215 | endif |
|---|
| 216 | |
|---|
| 217 | ierr=NF_INQ_VARID(nid,"albedo",nvarid) |
|---|
| 218 | if (ierr.ne.NF_NOERR) then |
|---|
| 219 | write(*,*) "Failed to find albedo in file!" |
|---|
| 220 | else |
|---|
| 221 | ierr=NF_GET_VAR_REAL(nid,nvarid,TESalbs) |
|---|
| 222 | endif |
|---|
| 223 | |
|---|
| 224 | ! constants: |
|---|
| 225 | pi=acos(-1.) |
|---|
| 226 | radeg=180/pi |
|---|
| 227 | |
|---|
| 228 | zls_old=-999 ! dummy initialization |
|---|
| 229 | |
|---|
| 230 | firstcall=.false. |
|---|
| 231 | endif ! of if firstcall |
|---|
| 232 | |
|---|
| 233 | ! 1. Identify hemisphere and encompassing latitudes |
|---|
| 234 | if (ig.GT.ngridmx/2+1) then |
|---|
| 235 | icap=2 ! Southern hemisphere |
|---|
| 236 | else |
|---|
| 237 | icap=1 ! Northern hemisphere |
|---|
| 238 | endif |
|---|
| 239 | |
|---|
| 240 | ! Check that latitude is such that there is TES data to use |
|---|
| 241 | ! (ie: latitude 45 deg and poleward) otherwise use 'default' albedoes |
|---|
| 242 | latd=lati(ig)*radeg ! latitude, in degrees |
|---|
| 243 | if (icap.eq.1) then |
|---|
| 244 | ! North hemisphere |
|---|
| 245 | if (latd.lt.TESlatnmin) then |
|---|
| 246 | alb=albedice(1) |
|---|
| 247 | ! the job is done; quit this routine |
|---|
| 248 | return |
|---|
| 249 | else |
|---|
| 250 | ! find encompassing latitudes |
|---|
| 251 | if (latd.ge.TESlatn(TESlatsize)) then |
|---|
| 252 | latinf=TESlatsize |
|---|
| 253 | latsup=TESlatsize |
|---|
| 254 | rellat=0. |
|---|
| 255 | else |
|---|
| 256 | do i=1,TESlatsize-1 |
|---|
| 257 | if ((latd.ge.TESlatn(i)).and.(latd.lt.TESlatn(i+1))) then |
|---|
| 258 | latinf=i |
|---|
| 259 | latsup=i+1 |
|---|
| 260 | rellat=(latd-TESlatn(i))/TESdeltalat |
|---|
| 261 | exit ! found encompassing indexes; quit loop |
|---|
| 262 | endif |
|---|
| 263 | enddo |
|---|
| 264 | endif |
|---|
| 265 | endif ! of if (latd.lt.TESlatnmin) |
|---|
| 266 | else ! icap=2 |
|---|
| 267 | ! South hemisphere |
|---|
| 268 | if (latd.gt.TESlatsmax) then |
|---|
| 269 | alb=albedice(2) |
|---|
| 270 | ! the job is done; quit this routine |
|---|
| 271 | return |
|---|
| 272 | else |
|---|
| 273 | ! find encompassing latitudes |
|---|
| 274 | if (latd.lt.TESlats(1)) then |
|---|
| 275 | latinf=1 |
|---|
| 276 | latsup=1 |
|---|
| 277 | rellat=0. |
|---|
| 278 | else |
|---|
| 279 | do i=1,TESlatsize-1 |
|---|
| 280 | if ((latd.ge.TESlats(i)).and.(latd.lt.TESlats(i+1))) then |
|---|
| 281 | latinf=i |
|---|
| 282 | latsup=i+1 |
|---|
| 283 | rellat=(latd-TESlats(i))/TESdeltalat |
|---|
| 284 | exit ! found encompassing indexes; quit loop |
|---|
| 285 | endif |
|---|
| 286 | enddo |
|---|
| 287 | endif |
|---|
| 288 | endif ! of if (latd.gt.-45.) |
|---|
| 289 | endif ! of if (icap.eq.1) |
|---|
| 290 | |
|---|
| 291 | ! 2. Identify encompassing time indexes |
|---|
| 292 | if (zls.ne.zls_old) then |
|---|
| 293 | zlsd=zls*radeg ! solar longitude, in degrees |
|---|
| 294 | |
|---|
| 295 | if (zlsd.lt.TESls(1)) then |
|---|
| 296 | tinf=TESlssize |
|---|
| 297 | tsup=1 |
|---|
| 298 | reltime=0.5+zlsd/TESdeltals |
|---|
| 299 | else |
|---|
| 300 | if (zlsd.ge.TESls(TESlssize)) then |
|---|
| 301 | tinf=TESlssize |
|---|
| 302 | tsup=1 |
|---|
| 303 | reltime=(360.-zlsd)/TESdeltals |
|---|
| 304 | else |
|---|
| 305 | ! look for encompassing indexes |
|---|
| 306 | do i=1,TESlssize-1 |
|---|
| 307 | if ((zlsd.ge.TESls(i)).and.(zlsd.lt.TESls(i+1))) then |
|---|
| 308 | tinf=i |
|---|
| 309 | tsup=i+1 |
|---|
| 310 | reltime=(zlsd-TESls(i))/TESdeltals |
|---|
| 311 | exit ! quit loop, we found the indexes |
|---|
| 312 | endif |
|---|
| 313 | enddo |
|---|
| 314 | endif |
|---|
| 315 | endif ! of if (zlsd.lt.TESls(1)) |
|---|
| 316 | |
|---|
| 317 | zls_old=zls ! store current zls |
|---|
| 318 | endif ! of if (zls.ne.zls_old) |
|---|
| 319 | |
|---|
| 320 | ! 3. Identify encompassing longitudes |
|---|
| 321 | lond=long(ig)*radeg ! east longitude, in degrees |
|---|
| 322 | if (lond.lt.TESlon(1)) then |
|---|
| 323 | loninf=TESlonsize |
|---|
| 324 | lonsup=1 |
|---|
| 325 | rellon=0.5+(180.+lond)/TESdeltalon |
|---|
| 326 | else |
|---|
| 327 | if (lond.ge.TESlon(TESlonsize)) then |
|---|
| 328 | loninf=TESlonsize |
|---|
| 329 | lonsup=1 |
|---|
| 330 | rellon=(180-lond)/TESdeltalon |
|---|
| 331 | else |
|---|
| 332 | do i=1,TESlonsize-1 |
|---|
| 333 | if ((lond.ge.TESlon(i)).and.(lond.lt.TESlon(i+1))) then |
|---|
| 334 | loninf=i |
|---|
| 335 | lonsup=i+1 |
|---|
| 336 | rellon=(lond-TESlon(i))/TESdeltalon |
|---|
| 337 | exit ! quit loop, we found the indexes |
|---|
| 338 | endif |
|---|
| 339 | enddo |
|---|
| 340 | endif ! of if (lond.ge.TESlon(TESlonsize)) |
|---|
| 341 | endif ! of if (lond.lt.TESlon(1)) |
|---|
| 342 | |
|---|
| 343 | ! 4. Use linear interpolation in time to build encompassing nodal values |
|---|
| 344 | ! encompassing nodes are arranged as follow : 4 3 |
|---|
| 345 | ! 1 2 |
|---|
| 346 | if (icap.eq.1) then |
|---|
| 347 | ! Northern hemisphere |
|---|
| 348 | val(1)=(1.-reltime)*TESalbn(loninf,latinf,tinf) & |
|---|
| 349 | +reltime*TESalbn(loninf,latinf,tsup) |
|---|
| 350 | val(2)=(1.-reltime)*TESalbn(lonsup,latinf,tinf) & |
|---|
| 351 | +reltime*TESalbn(lonsup,latinf,tsup) |
|---|
| 352 | val(3)=(1.-reltime)*TESalbn(lonsup,latsup,tinf) & |
|---|
| 353 | +reltime*TESalbn(lonsup,latsup,tsup) |
|---|
| 354 | val(4)=(1.-reltime)*TESalbn(loninf,latsup,tinf) & |
|---|
| 355 | +reltime*TESalbn(loninf,latsup,tsup) |
|---|
| 356 | else |
|---|
| 357 | ! Southern hemisphere |
|---|
| 358 | val(1)=(1.-reltime)*TESalbs(loninf,latinf,tinf) & |
|---|
| 359 | +reltime*TESalbs(loninf,latinf,tsup) |
|---|
| 360 | val(2)=(1.-reltime)*TESalbs(lonsup,latinf,tinf) & |
|---|
| 361 | +reltime*TESalbs(lonsup,latinf,tsup) |
|---|
| 362 | val(3)=(1.-reltime)*TESalbs(lonsup,latsup,tinf) & |
|---|
| 363 | +reltime*TESalbs(lonsup,latsup,tsup) |
|---|
| 364 | val(4)=(1.-reltime)*TESalbs(loninf,latsup,tinf) & |
|---|
| 365 | +reltime*TESalbs(loninf,latsup,tsup) |
|---|
| 366 | endif ! of if (icap.eq.1) |
|---|
| 367 | |
|---|
| 368 | ! 5. Use bilinear interpolation to compute albedo |
|---|
| 369 | alb=(1.-rellon)*(1.-rellat)*val(1) & |
|---|
| 370 | +rellon*(1.-rellat)*val(2) & |
|---|
| 371 | +rellon*rellat*val(3) & |
|---|
| 372 | +(1.-rellon)*rellat*val(4) |
|---|
| 373 | |
|---|
| 374 | ! 6. Apply coefficient to interpolated TES albedo |
|---|
| 375 | if (icap.eq.1) then |
|---|
| 376 | alb=alb*TESice_Ncoef |
|---|
| 377 | else |
|---|
| 378 | alb=alb*TESice_Scoef |
|---|
| 379 | endif ! of if (icap.eq.1) |
|---|
| 380 | |
|---|
| 381 | end subroutine TES_icecap_albedo |
|---|
| 382 | |
|---|