| 1 | MODULE aeropacity_mod |
|---|
| 2 | |
|---|
| 3 | IMPLICIT NONE |
|---|
| 4 | |
|---|
| 5 | INTEGER :: iddist ! flag for vertical dust ditribution type (when imposed) |
|---|
| 6 | ! 0: Pollack90, 1: top set by "topdustref" |
|---|
| 7 | ! 2: Viking scenario; =3 MGS scenario |
|---|
| 8 | REAL :: topdustref ! Dust top altitude (km); only matters only if iddist=1) |
|---|
| 9 | CONTAINS |
|---|
| 10 | |
|---|
| 11 | SUBROUTINE aeropacity(ngrid,nlayer,nq,zday,pplay,pplev,ls, |
|---|
| 12 | & pq,pt,tauscaling,dust_rad_adjust,IRtoVIScoef,tau_pref_scenario, |
|---|
| 13 | & tau_pref_gcm,tau,taucloudtes,aerosol,dsodust,reffrad, |
|---|
| 14 | & QREFvis3d,QREFir3d,omegaREFir3d, |
|---|
| 15 | & totstormfract,clearatm,dsords,dsotop, |
|---|
| 16 | & nohmons, |
|---|
| 17 | & clearsky,totcloudfrac) |
|---|
| 18 | |
|---|
| 19 | use ioipsl_getin_p_mod, only: getin_p |
|---|
| 20 | use tracer_mod, only: noms, igcm_h2o_ice, igcm_dust_mass, |
|---|
| 21 | & igcm_dust_submicron, rho_dust, rho_ice, |
|---|
| 22 | & nqdust, igcm_stormdust_mass, |
|---|
| 23 | & igcm_topdust_mass, igcm_co2_ice |
|---|
| 24 | use geometry_mod, only: latitude ! grid point latitudes (rad) |
|---|
| 25 | use comgeomfi_h, only: sinlat ! sines of grid point latitudes |
|---|
| 26 | #ifdef DUSTSTORM |
|---|
| 27 | use geometry_mod, only: longitude |
|---|
| 28 | use tracer_mod, only: r3n_q, ref_r0, igcm_dust_number |
|---|
| 29 | #endif |
|---|
| 30 | use comcstfi_h, only: g, pi |
|---|
| 31 | use dimradmars_mod, only: naerkind, name_iaer, |
|---|
| 32 | & iaerdust,tauvis, |
|---|
| 33 | & iaer_dust_conrath,iaer_dust_doubleq, |
|---|
| 34 | & iaer_dust_submicron,iaer_h2o_ice, |
|---|
| 35 | & iaer_stormdust_doubleq, |
|---|
| 36 | & iaer_topdust_doubleq |
|---|
| 37 | use dust_param_mod, only: odpref, freedust, |
|---|
| 38 | & reff_driven_IRtoVIS_scenario |
|---|
| 39 | use dust_scaling_mod, only: compute_dustscaling |
|---|
| 40 | use density_co2_ice_mod, only: density_co2_ice |
|---|
| 41 | use surfdat_h,only: alpha_hmons,contains_mons |
|---|
| 42 | use read_dust_scenario_mod, only: read_dust_scenario |
|---|
| 43 | use callkeys_mod, only: co2clouds, activeco2ice, |
|---|
| 44 | & water, activice, CLFvarying, |
|---|
| 45 | & CLFvaryingCO2, iaervar, |
|---|
| 46 | & rdstorm, topflows |
|---|
| 47 | |
|---|
| 48 | IMPLICIT NONE |
|---|
| 49 | c======================================================================= |
|---|
| 50 | c subject: |
|---|
| 51 | c -------- |
|---|
| 52 | c Computing aerosol optical depth in each gridbox. |
|---|
| 53 | c |
|---|
| 54 | c author: F.Forget |
|---|
| 55 | c ------ |
|---|
| 56 | c update F. Montmessin (water ice scheme) |
|---|
| 57 | c and S. Lebonnois (12/06/2003) compatibility dust/ice/chemistry |
|---|
| 58 | c update J.-B. Madeleine 2008-2009: |
|---|
| 59 | c - added 3D scattering by aerosols; |
|---|
| 60 | c - dustopacity transferred from physiq.F to callradite.F, |
|---|
| 61 | c and renamed into aeropacity.F; |
|---|
| 62 | c update E. Millour, march 2012: |
|---|
| 63 | c - reference pressure is now set to 610Pa (not 700Pa) |
|---|
| 64 | c |
|---|
| 65 | c======================================================================= |
|---|
| 66 | |
|---|
| 67 | c----------------------------------------------------------------------- |
|---|
| 68 | c |
|---|
| 69 | c Declarations : |
|---|
| 70 | c -------------- |
|---|
| 71 | c |
|---|
| 72 | c Input/Output |
|---|
| 73 | c ------------ |
|---|
| 74 | INTEGER,INTENT(IN) :: ngrid ! number of atmospheric columns |
|---|
| 75 | INTEGER,INTENT(IN) :: nlayer ! number of atmospheric layers |
|---|
| 76 | INTEGER,INTENT(IN) :: nq ! number of tracers |
|---|
| 77 | REAL,INTENT(IN) :: ls ! Solar Longitude (rad) |
|---|
| 78 | REAL,INTENT(IN) :: zday ! date (in martian sols) since Ls=0 |
|---|
| 79 | REAL,INTENT(IN) :: pplay(ngrid,nlayer) ! pressure (Pa) in the middle of |
|---|
| 80 | ! each atmospheric layer |
|---|
| 81 | REAL,INTENT(IN) :: pplev(ngrid,nlayer+1) ! pressure (Pa) at the boundaries |
|---|
| 82 | ! of the atmospheric layers |
|---|
| 83 | REAL,INTENT(IN) :: pq(ngrid,nlayer,nq) ! tracers |
|---|
| 84 | REAL,INTENT(IN) :: pt(ngrid,nlayer) !temperature |
|---|
| 85 | REAL,INTENT(OUT) :: tau_pref_scenario(ngrid) ! prescribed dust column |
|---|
| 86 | ! visible opacity at odpref from scenario |
|---|
| 87 | REAL,INTENT(OUT) :: tau_pref_gcm(ngrid) ! computed dust column |
|---|
| 88 | ! visible opacity at odpref in the GCM |
|---|
| 89 | REAL,INTENT(OUT) :: tau(ngrid,naerkind) ! column total visible |
|---|
| 90 | ! optical depth of each aerosol |
|---|
| 91 | REAL,INTENT(OUT) :: taucloudtes(ngrid)! Water ice cloud opacity at |
|---|
| 92 | ! infrared reference wavelength using |
|---|
| 93 | ! Qabs instead of Qext |
|---|
| 94 | ! (for direct comparison with TES) |
|---|
| 95 | REAL, INTENT(OUT) :: aerosol(ngrid,nlayer,naerkind) ! optical |
|---|
| 96 | ! depth of each aerosol in each layer |
|---|
| 97 | REAL, INTENT(OUT) :: dsodust(ngrid,nlayer) ! density scaled opacity |
|---|
| 98 | ! of (background) dust |
|---|
| 99 | REAL, INTENT(OUT) :: dsords(ngrid,nlayer) !dso of stormdust |
|---|
| 100 | REAL, INTENT(OUT) :: dsotop(ngrid,nlayer) !dso of topdust |
|---|
| 101 | REAL, INTENT(INOUT) :: reffrad(ngrid,nlayer,naerkind) ! effective radius |
|---|
| 102 | ! of the aerosols in the grid boxes |
|---|
| 103 | REAL, INTENT(IN) :: QREFvis3d(ngrid,nlayer,naerkind) ! 3D extinction |
|---|
| 104 | ! coefficients (in the visible) of aerosols |
|---|
| 105 | REAL, INTENT(IN) :: QREFir3d(ngrid,nlayer,naerkind) ! 3D extinction |
|---|
| 106 | ! coefficients (in the infra-red) of aerosols |
|---|
| 107 | REAL, INTENT(IN) :: omegaREFir3d(ngrid,nlayer,naerkind) ! at the |
|---|
| 108 | ! reference wavelengths |
|---|
| 109 | LOGICAL, INTENT(IN) :: clearatm ! true to compute RT without stormdust |
|---|
| 110 | ! and false to compute RT in rocket dust storms |
|---|
| 111 | REAL, INTENT(IN) :: totstormfract(ngrid) ! mesh fraction with a rocket |
|---|
| 112 | ! dust storm |
|---|
| 113 | LOGICAL, INTENT(IN) :: nohmons ! true to compute RT without topdust, |
|---|
| 114 | ! false to compute RT in the topdust |
|---|
| 115 | REAL,INTENT(OUT) :: tauscaling(ngrid) ! Scaling factor for qdust and Ndust |
|---|
| 116 | REAL,INTENT(INOUT) :: dust_rad_adjust(ngrid) ! Radiative adjustment |
|---|
| 117 | ! factor for dust |
|---|
| 118 | REAL,INTENT(INOUT) :: IRtoVIScoef(ngrid) ! conversion coefficient to apply on |
|---|
| 119 | ! scenario absorption IR (9.3um) CDOD |
|---|
| 120 | ! = tau_pref_gcm_VIS / tau_pref_gcm_IR |
|---|
| 121 | REAL,INTENT(IN) :: totcloudfrac(ngrid) ! total water ice cloud fraction |
|---|
| 122 | LOGICAL,INTENT(IN) :: clearsky ! true to compute RT without water ice clouds |
|---|
| 123 | ! false to compute RT with clouds (total or sub-grid clouds) |
|---|
| 124 | c |
|---|
| 125 | c Local variables : |
|---|
| 126 | c ----------------- |
|---|
| 127 | REAL CLFtot ! total cloud fraction |
|---|
| 128 | real expfactor |
|---|
| 129 | INTEGER l,ig,iq,i,j |
|---|
| 130 | INTEGER iaer ! Aerosol index |
|---|
| 131 | real topdust(ngrid) |
|---|
| 132 | real zlsconst, zp |
|---|
| 133 | real taueq,tauS,tauN |
|---|
| 134 | c Mean Qext(vis)/Qext(ir) profile |
|---|
| 135 | real msolsir(nlayer,naerkind) |
|---|
| 136 | c Mean Qext(ir)/Qabs(ir) profile |
|---|
| 137 | real mqextsqabs(nlayer,naerkind) |
|---|
| 138 | c Variables used when multiple particle sizes are used |
|---|
| 139 | c for dust or water ice particles in the radiative transfer |
|---|
| 140 | c (see callradite.F for more information). |
|---|
| 141 | REAL taucloudvis(ngrid)! Cloud opacity at visible |
|---|
| 142 | ! reference wavelength |
|---|
| 143 | REAL topdust0(ngrid) |
|---|
| 144 | |
|---|
| 145 | REAL aerosol_IRabs(ngrid,nlayer) |
|---|
| 146 | REAL taudust_IRabs(ngrid) |
|---|
| 147 | REAL taudust_VISext(ngrid) |
|---|
| 148 | |
|---|
| 149 | ! -- CO2 clouds |
|---|
| 150 | real CLFtotco2 |
|---|
| 151 | real taucloudco2vis(ngrid) |
|---|
| 152 | real taucloudco2tes(ngrid) |
|---|
| 153 | real totcloudco2frac(ngrid) ! a mettre en (in) [CM] |
|---|
| 154 | double precision :: rho_ice_co2 |
|---|
| 155 | #ifdef DUSTSTORM |
|---|
| 156 | !! Local dust storms |
|---|
| 157 | logical localstorm ! =true to create a local dust storm |
|---|
| 158 | real taulocref,ztoploc,radloc,lonloc,latloc ! local dust storm parameters |
|---|
| 159 | real reffstorm, yeah |
|---|
| 160 | REAL ray(ngrid) ! distance from dust storm center |
|---|
| 161 | REAL tauuser(ngrid) ! opacity perturbation due to dust storm |
|---|
| 162 | REAL more_dust(ngrid,nlayer,2) ! Mass mixing ratio perturbation due to the dust storm |
|---|
| 163 | REAL int_factor(ngrid) ! useful factor to compute mmr perturbation |
|---|
| 164 | real l_top ! layer of the storm's top |
|---|
| 165 | REAL zalt(ngrid, nlayer) ! useful factor to compute l_top |
|---|
| 166 | #endif |
|---|
| 167 | |
|---|
| 168 | c local saved variables |
|---|
| 169 | c --------------------- |
|---|
| 170 | |
|---|
| 171 | c Level under which the dust mixing ratio is held constant |
|---|
| 172 | c when computing the dust opacity in each layer |
|---|
| 173 | c (this applies when doubleq and active are true) |
|---|
| 174 | INTEGER, PARAMETER :: cstdustlevel0 = 7 |
|---|
| 175 | INTEGER, SAVE :: cstdustlevel |
|---|
| 176 | |
|---|
| 177 | LOGICAL,SAVE :: firstcall=.true. |
|---|
| 178 | |
|---|
| 179 | ! indexes of water ice and dust tracers: |
|---|
| 180 | INTEGER,SAVE :: i_ice=0 ! water ice |
|---|
| 181 | CHARACTER(LEN=20) :: txt ! to temporarly store text |
|---|
| 182 | CHARACTER(LEN=1) :: txt2 ! to temporarly store text |
|---|
| 183 | ! indexes of co2 ice : |
|---|
| 184 | INTEGER,SAVE :: i_co2ice=0 ! co2 ice |
|---|
| 185 | ! indexes of dust scatterers: |
|---|
| 186 | INTEGER,SAVE :: naerdust ! number of dust scatterers |
|---|
| 187 | |
|---|
| 188 | !$OMP THREADPRIVATE(cstdustlevel,firstcall,i_ice, |
|---|
| 189 | !$OMP& i_co2ice,naerdust) |
|---|
| 190 | |
|---|
| 191 | ! initializations |
|---|
| 192 | tau(1:ngrid,1:naerkind)=0 |
|---|
| 193 | |
|---|
| 194 | ! identify tracers |
|---|
| 195 | |
|---|
| 196 | !! AS: firstcall OK absolute |
|---|
| 197 | IF (firstcall) THEN |
|---|
| 198 | ! identify scatterers that are dust |
|---|
| 199 | naerdust=0 |
|---|
| 200 | iaerdust(1:naerkind) = 0 |
|---|
| 201 | nqdust(1:nq) = 0 |
|---|
| 202 | DO iaer=1,naerkind |
|---|
| 203 | txt=name_iaer(iaer) |
|---|
| 204 | ! CW17: choice tauscaling for stormdust or not |
|---|
| 205 | IF ((txt(1:4).eq."dust").OR.(txt(1:5).eq."storm") |
|---|
| 206 | & .OR.(txt(1:3).eq."top")) THEN !MV19: topdust tracer |
|---|
| 207 | naerdust=naerdust+1 |
|---|
| 208 | iaerdust(naerdust)=iaer |
|---|
| 209 | ENDIF |
|---|
| 210 | ENDDO |
|---|
| 211 | ! identify tracers which are dust |
|---|
| 212 | i=0 |
|---|
| 213 | DO iq=1,nq |
|---|
| 214 | txt=noms(iq) |
|---|
| 215 | IF (txt(1:4).eq."dust") THEN |
|---|
| 216 | i=i+1 |
|---|
| 217 | nqdust(i)=iq |
|---|
| 218 | ENDIF |
|---|
| 219 | ENDDO |
|---|
| 220 | IF (water.AND.activice) THEN |
|---|
| 221 | i_ice=igcm_h2o_ice |
|---|
| 222 | write(*,*) "aeropacity: i_ice=",i_ice |
|---|
| 223 | ENDIF |
|---|
| 224 | |
|---|
| 225 | IF (co2clouds.AND.activeco2ice) THEN |
|---|
| 226 | i_co2ice=igcm_co2_ice |
|---|
| 227 | write(*,*) "aeropacity: i_co2ice =",i_co2ice |
|---|
| 228 | ENDIF |
|---|
| 229 | |
|---|
| 230 | c typical profile of solsir and (1-w)^(-1): |
|---|
| 231 | c --- purely for diagnostics and printing |
|---|
| 232 | msolsir(1:nlayer,1:naerkind)=0 |
|---|
| 233 | mqextsqabs(1:nlayer,1:naerkind)=0 |
|---|
| 234 | WRITE(*,*) "Typical profiles of Qext(vis)/Qext(IR)" |
|---|
| 235 | WRITE(*,*) " and Qext(IR)/Qabs(IR):" |
|---|
| 236 | DO iaer = 1, naerkind ! Loop on aerosol kind |
|---|
| 237 | WRITE(*,*) "Aerosol # ",iaer |
|---|
| 238 | DO l=1,nlayer |
|---|
| 239 | DO ig=1,ngrid |
|---|
| 240 | msolsir(l,iaer)=msolsir(l,iaer)+ |
|---|
| 241 | & QREFvis3d(ig,l,iaer)/ |
|---|
| 242 | & QREFir3d(ig,l,iaer) |
|---|
| 243 | mqextsqabs(l,iaer)=mqextsqabs(l,iaer)+ |
|---|
| 244 | & (1.E0-omegaREFir3d(ig,l,iaer))**(-1) |
|---|
| 245 | ENDDO |
|---|
| 246 | msolsir(l,iaer)=msolsir(l,iaer)/REAL(ngrid) |
|---|
| 247 | mqextsqabs(l,iaer)=mqextsqabs(l,iaer)/REAL(ngrid) |
|---|
| 248 | ENDDO |
|---|
| 249 | WRITE(*,*) "solsir: ",msolsir(:,iaer) |
|---|
| 250 | WRITE(*,*) "Qext/Qabs(IR): ",mqextsqabs(:,iaer) |
|---|
| 251 | ENDDO |
|---|
| 252 | |
|---|
| 253 | ! load value of tauvis from callphys.def (if given there, |
|---|
| 254 | ! otherwise default value read from starfi.nc file will be used) |
|---|
| 255 | call getin_p("tauvis",tauvis) |
|---|
| 256 | |
|---|
| 257 | IF (freedust.or.rdstorm) THEN ! if rdstorm no need to held opacity constant at the first levels |
|---|
| 258 | cstdustlevel = 1 |
|---|
| 259 | ELSE |
|---|
| 260 | cstdustlevel = cstdustlevel0 !Opacity in the first levels is held constant to |
|---|
| 261 | !avoid unrealistic values due to constant lifting |
|---|
| 262 | ENDIF |
|---|
| 263 | |
|---|
| 264 | #ifndef DUSTSTORM |
|---|
| 265 | firstcall=.false. |
|---|
| 266 | #endif |
|---|
| 267 | |
|---|
| 268 | END IF ! end of if firstcall |
|---|
| 269 | |
|---|
| 270 | ! 1. Get prescribed tau_pref_scenario, Dust column optical depth at "odpref" Pa |
|---|
| 271 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 272 | |
|---|
| 273 | IF(iaervar.eq.1) THEN |
|---|
| 274 | do ig=1, ngrid |
|---|
| 275 | tau_pref_scenario(ig)=max(tauvis,1.e-9) ! tauvis=cste (set in callphys.def |
|---|
| 276 | ! or read in starfi |
|---|
| 277 | end do |
|---|
| 278 | ELSE IF (iaervar.eq.2) THEN ! << "Viking" Scenario>> |
|---|
| 279 | |
|---|
| 280 | tau_pref_scenario(1) = 0.7+.3*cos(ls+80.*pi/180.) ! like seen by VL1 |
|---|
| 281 | do ig=2,ngrid |
|---|
| 282 | tau_pref_scenario(ig) = tau_pref_scenario(1) |
|---|
| 283 | end do |
|---|
| 284 | |
|---|
| 285 | ELSE IF (iaervar.eq.3) THEN ! << "MGS" scenario >> |
|---|
| 286 | |
|---|
| 287 | taueq= 0.2 +(0.5-0.2) *(cos(0.5*(ls-4.363)))**14 |
|---|
| 288 | tauS= 0.1 +(0.5-0.1) *(cos(0.5*(ls-4.363)))**14 |
|---|
| 289 | tauN = 0.1 |
|---|
| 290 | do ig=1,ngrid |
|---|
| 291 | if (latitude(ig).ge.0) then |
|---|
| 292 | ! Northern hemisphere |
|---|
| 293 | tau_pref_scenario(ig)= tauN + |
|---|
| 294 | & (taueq-tauN)*0.5*(1+tanh((45-latitude(ig)*180./pi)*6/60)) |
|---|
| 295 | else |
|---|
| 296 | ! Southern hemisphere |
|---|
| 297 | tau_pref_scenario(ig)= tauS + |
|---|
| 298 | & (taueq-tauS)*0.5*(1+tanh((45+latitude(ig)*180./pi)*6/60)) |
|---|
| 299 | endif |
|---|
| 300 | enddo ! of do ig=1,ngrid |
|---|
| 301 | ELSE IF (iaervar.eq.5) THEN ! << Escalier Scenario>> |
|---|
| 302 | tau_pref_scenario(1) = 2.5 |
|---|
| 303 | if ((ls.ge.30.*pi/180.).and.(ls.le.150.*pi/180.)) |
|---|
| 304 | & tau_pref_scenario(1) = .2 |
|---|
| 305 | |
|---|
| 306 | do ig=2,ngrid |
|---|
| 307 | tau_pref_scenario(ig) = tau_pref_scenario(1) |
|---|
| 308 | end do |
|---|
| 309 | !!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 310 | ! NB: here, IRtoVIScoef=2.6 |
|---|
| 311 | ! ( useful to be here only if iddist=0 (Pollack90 vertical distribution) ) |
|---|
| 312 | ELSE IF ((iaervar.ge.6).and.(iaervar.le.8)) THEN |
|---|
| 313 | ! clim, cold or warm synthetic scenarios |
|---|
| 314 | call read_dust_scenario(ngrid,nlayer,zday,pplev, |
|---|
| 315 | & IRtoVIScoef,tau_pref_scenario) |
|---|
| 316 | ELSE IF ((iaervar.ge.24).and.(iaervar.le.37)) |
|---|
| 317 | & THEN ! << MY... dust scenarios >> |
|---|
| 318 | call read_dust_scenario(ngrid,nlayer,zday,pplev, |
|---|
| 319 | & IRtoVIScoef,tau_pref_scenario) |
|---|
| 320 | ELSE IF ((iaervar.eq.4).or. |
|---|
| 321 | & ((iaervar.ge.124).and.(iaervar.le.126))) THEN |
|---|
| 322 | ! "old" TES assimation dust scenario (values at 700Pa in files!) |
|---|
| 323 | call read_dust_scenario(ngrid,nlayer,zday,pplev, |
|---|
| 324 | & IRtoVIScoef,tau_pref_scenario) |
|---|
| 325 | !!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 326 | ELSE |
|---|
| 327 | call abort_physic("aeropacity","wrong value for iaervar",1) |
|---|
| 328 | ENDIF |
|---|
| 329 | |
|---|
| 330 | ! ----------------------------------------------------------------- |
|---|
| 331 | ! 2. Compute/set the opacity of each aerosol in each layer |
|---|
| 332 | ! ----------------------------------------------------------------- |
|---|
| 333 | |
|---|
| 334 | DO iaer = 1, naerkind ! Loop on all aerosols |
|---|
| 335 | c -------------------------------------------- |
|---|
| 336 | aerkind: SELECT CASE (name_iaer(iaer)) |
|---|
| 337 | c================================================================== |
|---|
| 338 | CASE("dust_conrath") aerkind ! Typical dust profile |
|---|
| 339 | c================================================================== |
|---|
| 340 | |
|---|
| 341 | c Altitude of the top of the dust layer |
|---|
| 342 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 343 | zlsconst=SIN(ls-2.76) |
|---|
| 344 | if (iddist.eq.1) then |
|---|
| 345 | do ig=1,ngrid |
|---|
| 346 | topdust(ig)=topdustref ! constant dust layer top |
|---|
| 347 | end do |
|---|
| 348 | |
|---|
| 349 | else if (iddist.eq.2) then ! "Viking" scenario |
|---|
| 350 | do ig=1,ngrid |
|---|
| 351 | ! altitude of the top of the aerosol layer (km) at Ls=2.76rad: |
|---|
| 352 | ! in the Viking year scenario |
|---|
| 353 | topdust0(ig)=60. -22.*sinlat(ig)**2 |
|---|
| 354 | topdust(ig)=topdust0(ig)+18.*zlsconst |
|---|
| 355 | end do |
|---|
| 356 | |
|---|
| 357 | else if(iddist.eq.3) then !"MGS" scenario |
|---|
| 358 | do ig=1,ngrid |
|---|
| 359 | topdust(ig)=60.+18.*zlsconst |
|---|
| 360 | & -(32+18*zlsconst)*sin(latitude(ig))**4 |
|---|
| 361 | & - 8*zlsconst*(sin(latitude(ig)))**5 |
|---|
| 362 | end do |
|---|
| 363 | endif |
|---|
| 364 | |
|---|
| 365 | c Optical depth in each layer : |
|---|
| 366 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 367 | if(iddist.ge.1) then |
|---|
| 368 | |
|---|
| 369 | expfactor=0. |
|---|
| 370 | DO l=1,nlayer |
|---|
| 371 | DO ig=1,ngrid |
|---|
| 372 | c Typical mixing ratio profile |
|---|
| 373 | if(pplay(ig,l).gt.odpref |
|---|
| 374 | $ /(988.**(topdust(ig)/70.))) then |
|---|
| 375 | zp=(odpref/pplay(ig,l))**(70./topdust(ig)) |
|---|
| 376 | expfactor=max(exp(0.007*(1.-max(zp,1.))),1.e-3) |
|---|
| 377 | else |
|---|
| 378 | expfactor=1.e-3 |
|---|
| 379 | endif |
|---|
| 380 | c Vertical scaling function |
|---|
| 381 | aerosol(ig,l,iaer)= (pplev(ig,l)-pplev(ig,l+1)) * |
|---|
| 382 | & expfactor * |
|---|
| 383 | & QREFvis3d(ig,l,iaer) / QREFvis3d(ig,1,iaer) |
|---|
| 384 | ENDDO |
|---|
| 385 | ENDDO |
|---|
| 386 | |
|---|
| 387 | else if(iddist.eq.0) then |
|---|
| 388 | c old dust vertical distribution function (pollack90) |
|---|
| 389 | DO l=1,nlayer |
|---|
| 390 | DO ig=1,ngrid |
|---|
| 391 | zp=odpref/pplay(ig,l) |
|---|
| 392 | aerosol(ig,l,1)= tau_pref_scenario(ig)/odpref * |
|---|
| 393 | s (pplev(ig,l)-pplev(ig,l+1)) |
|---|
| 394 | s *max( exp(.03*(1.-max(zp,1.))) , 1.E-3 ) |
|---|
| 395 | ENDDO |
|---|
| 396 | ENDDO |
|---|
| 397 | end if |
|---|
| 398 | |
|---|
| 399 | c================================================================== |
|---|
| 400 | CASE("dust_doubleq") aerkind! Two-moment scheme for background dust |
|---|
| 401 | c (transport of mass and number mixing ratio) |
|---|
| 402 | c================================================================== |
|---|
| 403 | ! Some initialisations for the IRtoVIScoef |
|---|
| 404 | aerosol_IRabs(:,:)=0. |
|---|
| 405 | taudust_IRabs(:)=0. |
|---|
| 406 | taudust_VISext(:)=0. |
|---|
| 407 | |
|---|
| 408 | DO l=1,nlayer |
|---|
| 409 | IF (l.LE.cstdustlevel) THEN |
|---|
| 410 | c Opacity in the first levels is held constant to |
|---|
| 411 | c avoid unrealistic values due to constant lifting: |
|---|
| 412 | DO ig=1,ngrid |
|---|
| 413 | ! OPTICAL DEPTH used in the radiative transfer |
|---|
| 414 | ! => visible wavelength |
|---|
| 415 | aerosol(ig,l,iaer) = |
|---|
| 416 | & ( 0.75 * QREFvis3d(ig,cstdustlevel,iaer) / |
|---|
| 417 | & ( rho_dust * reffrad(ig,cstdustlevel,iaer) ) ) * |
|---|
| 418 | & pq(ig,cstdustlevel,igcm_dust_mass) * |
|---|
| 419 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
|---|
| 420 | ! DENSITY SCALED OPACITY : |
|---|
| 421 | ! Diagnostic output to be compared with observations |
|---|
| 422 | ! => infrared wavelength |
|---|
| 423 | dsodust(ig,l) = |
|---|
| 424 | & ( 0.75 * QREFir3d(ig,cstdustlevel,iaer) / |
|---|
| 425 | & ( rho_dust * reffrad(ig,cstdustlevel,iaer) ) ) * |
|---|
| 426 | & pq(ig,cstdustlevel,igcm_dust_mass) |
|---|
| 427 | |
|---|
| 428 | if (reff_driven_IRtoVIS_scenario) then |
|---|
| 429 | if ((clearatm).and.(nohmons)) then ! the IRtoVIScoef is computed only during the first call to the RT |
|---|
| 430 | ! OPTICAL DEPTH in IR absorption to compute the IRtoVIScoef |
|---|
| 431 | aerosol_IRabs(ig,l) = |
|---|
| 432 | & ( 0.75 * QREFir3d(ig,cstdustlevel,iaer) / |
|---|
| 433 | & ( rho_dust * reffrad(ig,cstdustlevel,iaer) ) ) * |
|---|
| 434 | & ( 1. - omegaREFir3d(ig,cstdustlevel,iaer) ) * |
|---|
| 435 | & pq(ig,cstdustlevel,igcm_dust_mass) * |
|---|
| 436 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
|---|
| 437 | endif |
|---|
| 438 | endif |
|---|
| 439 | ENDDO |
|---|
| 440 | ELSE |
|---|
| 441 | DO ig=1,ngrid |
|---|
| 442 | ! OPTICAL DEPTH used in the radiative transfer |
|---|
| 443 | ! => visible wavelength |
|---|
| 444 | aerosol(ig,l,iaer) = |
|---|
| 445 | & ( 0.75 * QREFvis3d(ig,l,iaer) / |
|---|
| 446 | & ( rho_dust * reffrad(ig,l,iaer) ) ) * |
|---|
| 447 | & pq(ig,l,igcm_dust_mass) * |
|---|
| 448 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
|---|
| 449 | ! DENSITY SCALED OPACITY : |
|---|
| 450 | ! Diagnostic output to be compared with observations |
|---|
| 451 | ! => infrared wavelength |
|---|
| 452 | dsodust(ig,l) = |
|---|
| 453 | & ( 0.75 * QREFir3d(ig,l,iaer) / |
|---|
| 454 | & ( rho_dust * reffrad(ig,l,iaer) ) ) * |
|---|
| 455 | & pq(ig,l,igcm_dust_mass) |
|---|
| 456 | |
|---|
| 457 | if (reff_driven_IRtoVIS_scenario) then |
|---|
| 458 | if ((clearatm).and.(nohmons)) then ! the IRtoVIScoef is computed only during the first call to the RT |
|---|
| 459 | ! OPTICAL DEPTH in IR absorption to compute the IRtoVIScoef |
|---|
| 460 | aerosol_IRabs(ig,l) = |
|---|
| 461 | & ( 0.75 * QREFir3d(ig,l,iaer) / |
|---|
| 462 | & ( rho_dust * reffrad(ig,l,iaer) ) ) * |
|---|
| 463 | & ( 1. - omegaREFir3d(ig,l,iaer) ) * |
|---|
| 464 | & pq(ig,l,igcm_dust_mass) * |
|---|
| 465 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
|---|
| 466 | endif |
|---|
| 467 | endif |
|---|
| 468 | ENDDO |
|---|
| 469 | ENDIF |
|---|
| 470 | if (reff_driven_IRtoVIS_scenario) then |
|---|
| 471 | if ((clearatm).and.(nohmons)) then ! the IRtoVIScoef is computed only during the first call to the RT |
|---|
| 472 | taudust_VISext(:) = taudust_VISext(:) + aerosol(:,l,iaer) |
|---|
| 473 | taudust_IRabs(:) = taudust_IRabs(:) + aerosol_IRabs(:,l) |
|---|
| 474 | endif |
|---|
| 475 | endif |
|---|
| 476 | ENDDO |
|---|
| 477 | |
|---|
| 478 | if (reff_driven_IRtoVIS_scenario) then |
|---|
| 479 | if ((clearatm).and.(nohmons)) then ! the IRtoVIScoef is computed only during the first call to the RT |
|---|
| 480 | IRtoVIScoef(:) = taudust_VISext(:) / taudust_IRabs(:) |
|---|
| 481 | endif |
|---|
| 482 | endif |
|---|
| 483 | |
|---|
| 484 | c================================================================== |
|---|
| 485 | CASE("dust_submicron") aerkind ! Small dust population |
|---|
| 486 | c================================================================== |
|---|
| 487 | |
|---|
| 488 | DO l=1,nlayer |
|---|
| 489 | IF (l.LE.cstdustlevel) THEN |
|---|
| 490 | c Opacity in the first levels is held constant to |
|---|
| 491 | c avoid unrealistic values due to constant lifting: |
|---|
| 492 | DO ig=1,ngrid |
|---|
| 493 | aerosol(ig,l,iaer) = |
|---|
| 494 | & ( 0.75 * QREFvis3d(ig,cstdustlevel,iaer) / |
|---|
| 495 | & ( rho_dust * reffrad(ig,cstdustlevel,iaer) ) ) * |
|---|
| 496 | & pq(ig,cstdustlevel,igcm_dust_submicron) * |
|---|
| 497 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
|---|
| 498 | ENDDO |
|---|
| 499 | ELSE |
|---|
| 500 | DO ig=1,ngrid |
|---|
| 501 | aerosol(ig,l,iaer) = |
|---|
| 502 | & ( 0.75 * QREFvis3d(ig,l,iaer) / |
|---|
| 503 | & ( rho_dust * reffrad(ig,l,iaer) ) ) * |
|---|
| 504 | & pq(ig,l,igcm_dust_submicron) * |
|---|
| 505 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
|---|
| 506 | ENDDO |
|---|
| 507 | ENDIF |
|---|
| 508 | ENDDO |
|---|
| 509 | |
|---|
| 510 | c================================================================== |
|---|
| 511 | CASE("h2o_ice") aerkind ! Water ice crystals |
|---|
| 512 | c================================================================== |
|---|
| 513 | |
|---|
| 514 | c 1. Initialization |
|---|
| 515 | aerosol(1:ngrid,1:nlayer,iaer) = 0. |
|---|
| 516 | taucloudvis(1:ngrid) = 0. |
|---|
| 517 | taucloudtes(1:ngrid) = 0. |
|---|
| 518 | c 2. Opacity calculation |
|---|
| 519 | ! NO CLOUDS |
|---|
| 520 | IF (clearsky) THEN |
|---|
| 521 | aerosol(1:ngrid,1:nlayer,iaer) =1.e-9 |
|---|
| 522 | ! CLOUDSs |
|---|
| 523 | ELSE ! else (clearsky) |
|---|
| 524 | DO ig=1, ngrid |
|---|
| 525 | DO l=1,nlayer |
|---|
| 526 | aerosol(ig,l,iaer) = max(1E-20, |
|---|
| 527 | & ( 0.75 * QREFvis3d(ig,l,iaer) / |
|---|
| 528 | & ( rho_ice * reffrad(ig,l,iaer) ) ) * |
|---|
| 529 | & pq(ig,l,i_ice) * |
|---|
| 530 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
|---|
| 531 | & ) |
|---|
| 532 | taucloudvis(ig) = taucloudvis(ig) + aerosol(ig,l,iaer) |
|---|
| 533 | taucloudtes(ig) = taucloudtes(ig) + aerosol(ig,l,iaer)* |
|---|
| 534 | & QREFir3d(ig,l,iaer) / QREFvis3d(ig,l,iaer) * |
|---|
| 535 | & ( 1.E0 - omegaREFir3d(ig,l,iaer) ) |
|---|
| 536 | ENDDO |
|---|
| 537 | ENDDO |
|---|
| 538 | ! SUB-GRID SCALE CLOUDS |
|---|
| 539 | IF (CLFvarying) THEN |
|---|
| 540 | DO ig=1, ngrid |
|---|
| 541 | DO l=1,nlayer-1 |
|---|
| 542 | CLFtot = max(totcloudfrac(ig),0.01) |
|---|
| 543 | aerosol(ig,l,iaer)= |
|---|
| 544 | & aerosol(ig,l,iaer)/CLFtot |
|---|
| 545 | aerosol(ig,l,iaer) = |
|---|
| 546 | & max(aerosol(ig,l,iaer),1.e-9) |
|---|
| 547 | ENDDO |
|---|
| 548 | ENDDO |
|---|
| 549 | ENDIF ! end (CLFvarying) |
|---|
| 550 | ENDIF ! end (clearsky) |
|---|
| 551 | |
|---|
| 552 | c================================================================== |
|---|
| 553 | CASE("co2_ice") aerkind ! CO2 ice crystals |
|---|
| 554 | c================================================================== |
|---|
| 555 | |
|---|
| 556 | c 1. Initialization |
|---|
| 557 | aerosol(1:ngrid,1:nlayer,iaer) = 0. |
|---|
| 558 | taucloudco2vis(1:ngrid) = 0. |
|---|
| 559 | taucloudco2tes(1:ngrid) = 0. |
|---|
| 560 | c 2. Opacity calculation |
|---|
| 561 | ! NO CLOUDS |
|---|
| 562 | IF (clearsky) THEN |
|---|
| 563 | aerosol(1:ngrid,1:nlayer,iaer) = 1.e-9 |
|---|
| 564 | ! CLOUDSs |
|---|
| 565 | ELSE ! else (clearsky) |
|---|
| 566 | DO ig = 1, ngrid |
|---|
| 567 | DO l = 1, nlayer |
|---|
| 568 | call density_co2_ice(dble(pt(ig,l)), rho_ice_co2) |
|---|
| 569 | |
|---|
| 570 | aerosol(ig,l,iaer) = max(1E-20, |
|---|
| 571 | & ( 0.75 * QREFvis3d(ig,l,iaer) / |
|---|
| 572 | & ( rho_ice_co2 * reffrad(ig,l,iaer) ) ) * |
|---|
| 573 | & pq(ig,l,i_co2ice) * |
|---|
| 574 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
|---|
| 575 | & ) |
|---|
| 576 | taucloudco2vis(ig) = taucloudco2vis(ig) |
|---|
| 577 | & + aerosol(ig,l,iaer) |
|---|
| 578 | taucloudco2tes(ig) = taucloudco2tes(ig) |
|---|
| 579 | & + aerosol(ig,l,iaer) * |
|---|
| 580 | & QREFir3d(ig,l,iaer) / QREFvis3d(ig,l,iaer) * |
|---|
| 581 | & ( 1.E0 - omegaREFir3d(ig,l,iaer) ) |
|---|
| 582 | ENDDO |
|---|
| 583 | ENDDO |
|---|
| 584 | ! SUB-GRID SCALE CLOUDS |
|---|
| 585 | IF (CLFvaryingCO2) THEN |
|---|
| 586 | DO ig=1, ngrid |
|---|
| 587 | DO l= 1, nlayer-1 |
|---|
| 588 | CLFtotco2 = max(totcloudco2frac(ig),0.01) |
|---|
| 589 | aerosol(ig,l,iaer)= |
|---|
| 590 | & aerosol(ig,l,iaer)/CLFtotco2 |
|---|
| 591 | aerosol(ig,l,iaer) = |
|---|
| 592 | & max(aerosol(ig,l,iaer),1.e-9) |
|---|
| 593 | ENDDO |
|---|
| 594 | ENDDO |
|---|
| 595 | ENDIF ! end (CLFvaryingCO2) |
|---|
| 596 | ENDIF ! end (clearsky) |
|---|
| 597 | |
|---|
| 598 | c================================================================== |
|---|
| 599 | CASE("stormdust_doubleq") aerkind ! CW17 : Two-moment scheme for |
|---|
| 600 | c stormdust (transport of mass and number mixing ratio) |
|---|
| 601 | c================================================================== |
|---|
| 602 | c aerosol is calculated twice : once within the dust storm (clearatm=false) |
|---|
| 603 | c and once in the part of the mesh without dust storm (clearatm=true) |
|---|
| 604 | aerosol(1:ngrid,1:nlayer,iaer) = 0. |
|---|
| 605 | IF (clearatm) THEN ! considering part of the mesh without storm |
|---|
| 606 | aerosol(1:ngrid,1:nlayer,iaer)=1.e-25 |
|---|
| 607 | ELSE ! part of the mesh with concentred dust storm |
|---|
| 608 | DO l=1,nlayer |
|---|
| 609 | IF (l.LE.cstdustlevel) THEN |
|---|
| 610 | c Opacity in the first levels is held constant to |
|---|
| 611 | c avoid unrealistic values due to constant lifting: |
|---|
| 612 | DO ig=1,ngrid |
|---|
| 613 | ! OPTICAL DEPTH used in the radiative transfer |
|---|
| 614 | ! => visible wavelength |
|---|
| 615 | aerosol(ig,l,iaer) = |
|---|
| 616 | & ( 0.75 * QREFvis3d(ig,cstdustlevel,iaer) / |
|---|
| 617 | & ( rho_dust * reffrad(ig,cstdustlevel,iaer) ) ) * |
|---|
| 618 | & pq(ig,cstdustlevel,igcm_stormdust_mass) * |
|---|
| 619 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
|---|
| 620 | ! DENSITY SCALED OPACITY : |
|---|
| 621 | ! Diagnostic output to be compared with observations |
|---|
| 622 | ! => infrared wavelength |
|---|
| 623 | dsords(ig,l) = |
|---|
| 624 | & ( 0.75 * QREFir3d(ig,cstdustlevel,iaer) / |
|---|
| 625 | & ( rho_dust * reffrad(ig,cstdustlevel,iaer) ) ) * |
|---|
| 626 | & pq(ig,cstdustlevel,igcm_stormdust_mass) |
|---|
| 627 | ENDDO |
|---|
| 628 | ELSE |
|---|
| 629 | DO ig=1,ngrid |
|---|
| 630 | ! OPTICAL DEPTH used in the radiative transfer |
|---|
| 631 | ! => visible wavelength |
|---|
| 632 | aerosol(ig,l,iaer) = |
|---|
| 633 | & ( 0.75 * QREFvis3d(ig,l,iaer) / |
|---|
| 634 | & ( rho_dust * reffrad(ig,l,iaer) ) ) * |
|---|
| 635 | & pq(ig,l,igcm_stormdust_mass) * |
|---|
| 636 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
|---|
| 637 | ! DENSITY SCALED OPACITY : |
|---|
| 638 | ! Diagnostic output to be compared with observations |
|---|
| 639 | ! => infrared wavelength |
|---|
| 640 | dsords(ig,l) = |
|---|
| 641 | & ( 0.75 * QREFir3d(ig,l,iaer) / |
|---|
| 642 | & ( rho_dust * reffrad(ig,l,iaer) ) ) * |
|---|
| 643 | & pq(ig,l,igcm_stormdust_mass) |
|---|
| 644 | ENDDO |
|---|
| 645 | ENDIF |
|---|
| 646 | ENDDO |
|---|
| 647 | ENDIF |
|---|
| 648 | c================================================================== |
|---|
| 649 | CASE("topdust_doubleq") aerkind ! MV18 : Two-moment scheme for |
|---|
| 650 | c topdust (transport of mass and number mixing ratio) |
|---|
| 651 | c================================================================== |
|---|
| 652 | c aerosol is calculated twice : once "above" the sub-grid mountain (nohmons=false) |
|---|
| 653 | c and once in the part of the mesh without the sub-grid mountain (nohmons=true) |
|---|
| 654 | aerosol(1:ngrid,1:nlayer,iaer) = 0. |
|---|
| 655 | IF (nohmons) THEN ! considering part of the mesh without top dust flows |
|---|
| 656 | aerosol(1:ngrid,1:nlayer,iaer)=1.e-25 |
|---|
| 657 | ELSE ! part of the mesh with concentrated dust flows |
|---|
| 658 | DO l=1,nlayer |
|---|
| 659 | IF (l.LE.cstdustlevel) THEN |
|---|
| 660 | c Opacity in the first levels is held constant to |
|---|
| 661 | c avoid unrealistic values due to constant lifting: |
|---|
| 662 | DO ig=1,ngrid |
|---|
| 663 | ! OPTICAL DEPTH used in the radiative transfer |
|---|
| 664 | ! => visible wavelength |
|---|
| 665 | aerosol(ig,l,iaer) = |
|---|
| 666 | & ( 0.75 * QREFvis3d(ig,cstdustlevel,iaer) / |
|---|
| 667 | & ( rho_dust * reffrad(ig,cstdustlevel,iaer) ) ) * |
|---|
| 668 | & pq(ig,cstdustlevel,igcm_topdust_mass) * |
|---|
| 669 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
|---|
| 670 | ! DENSITY SCALED OPACITY : |
|---|
| 671 | ! Diagnostic output to be compared with observations |
|---|
| 672 | ! => infrared wavelength |
|---|
| 673 | dsotop(ig,l) = |
|---|
| 674 | & ( 0.75 * QREFir3d(ig,cstdustlevel,iaer) / |
|---|
| 675 | & ( rho_dust * reffrad(ig,cstdustlevel,iaer) ) ) * |
|---|
| 676 | & pq(ig,cstdustlevel,igcm_topdust_mass) |
|---|
| 677 | ENDDO |
|---|
| 678 | ELSE |
|---|
| 679 | DO ig=1,ngrid |
|---|
| 680 | ! OPTICAL DEPTH used in the radiative transfer |
|---|
| 681 | ! => visible wavelength |
|---|
| 682 | aerosol(ig,l,iaer) = |
|---|
| 683 | & ( 0.75 * QREFvis3d(ig,l,iaer) / |
|---|
| 684 | & ( rho_dust * reffrad(ig,l,iaer) ) ) * |
|---|
| 685 | & pq(ig,l,igcm_topdust_mass) * |
|---|
| 686 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
|---|
| 687 | ! DENSITY SCALED OPACITY : |
|---|
| 688 | ! Diagnostic output to be compared with observations |
|---|
| 689 | ! => infrared wavelength |
|---|
| 690 | dsotop(ig,l) = |
|---|
| 691 | & ( 0.75 * QREFir3d(ig,l,iaer) / |
|---|
| 692 | & ( rho_dust * reffrad(ig,l,iaer) ) ) * |
|---|
| 693 | & pq(ig,l,igcm_topdust_mass) |
|---|
| 694 | ENDDO |
|---|
| 695 | ENDIF |
|---|
| 696 | ENDDO |
|---|
| 697 | ENDIF |
|---|
| 698 | c================================================================== |
|---|
| 699 | END SELECT aerkind |
|---|
| 700 | c ----------------------------------- |
|---|
| 701 | ENDDO ! iaer (loop on aerosol kind) |
|---|
| 702 | |
|---|
| 703 | ! 3. Specific treatments for the dust aerosols |
|---|
| 704 | |
|---|
| 705 | ! here IRtoVIScoef has been updated, we can call again read_dust_scenario |
|---|
| 706 | if (reff_driven_IRtoVIS_scenario) then |
|---|
| 707 | IF ((iaervar.ge.6).and.(iaervar.le.8)) THEN |
|---|
| 708 | ! clim, cold or warm synthetic scenarios |
|---|
| 709 | call read_dust_scenario(ngrid,nlayer,zday,pplev, |
|---|
| 710 | & IRtoVIScoef,tau_pref_scenario) |
|---|
| 711 | ELSE IF ((iaervar.ge.24).and.(iaervar.le.36)) |
|---|
| 712 | & THEN ! << MY... dust scenarios >> |
|---|
| 713 | call read_dust_scenario(ngrid,nlayer,zday,pplev, |
|---|
| 714 | & IRtoVIScoef,tau_pref_scenario) |
|---|
| 715 | ELSE IF ((iaervar.eq.4).or. |
|---|
| 716 | & ((iaervar.ge.124).and.(iaervar.le.126))) THEN |
|---|
| 717 | ! "old" TES assimation dust scenario (values at 700Pa in files!) |
|---|
| 718 | call read_dust_scenario(ngrid,nlayer,zday,pplev, |
|---|
| 719 | & IRtoVIScoef,tau_pref_scenario) |
|---|
| 720 | ENDIF |
|---|
| 721 | endif |
|---|
| 722 | |
|---|
| 723 | #ifdef DUSTSTORM |
|---|
| 724 | c ----------------------------------------------------------------- |
|---|
| 725 | ! Calculate reference opacity without perturbation |
|---|
| 726 | c ----------------------------------------------------------------- |
|---|
| 727 | IF (firstcall) THEN |
|---|
| 728 | DO iaer=1,naerdust |
|---|
| 729 | DO l=1,nlayer |
|---|
| 730 | DO ig=1,ngrid |
|---|
| 731 | tau_pref_gcm(ig) = tau_pref_gcm(ig) + |
|---|
| 732 | & aerosol(ig,l,iaerdust(iaer)) |
|---|
| 733 | ENDDO |
|---|
| 734 | ENDDO |
|---|
| 735 | ENDDO |
|---|
| 736 | tau_pref_gcm(:) = tau_pref_gcm(:) * odpref / pplev(:,1) |
|---|
| 737 | |
|---|
| 738 | c-------------------------------------------------- |
|---|
| 739 | c Get parameters of the opacity perturbation |
|---|
| 740 | c-------------------------------------------------- |
|---|
| 741 | iaer=1 ! just change dust |
|---|
| 742 | |
|---|
| 743 | write(*,*) "Add a local storm ?" |
|---|
| 744 | localstorm=.true. ! default value |
|---|
| 745 | call getin_p("localstorm",localstorm) |
|---|
| 746 | write(*,*) " localstorm = ",localstorm |
|---|
| 747 | |
|---|
| 748 | IF (localstorm) THEN |
|---|
| 749 | WRITE(*,*) "********************" |
|---|
| 750 | WRITE(*,*) "ADDING A LOCAL STORM" |
|---|
| 751 | WRITE(*,*) "********************" |
|---|
| 752 | |
|---|
| 753 | write(*,*) "ref opacity of local dust storm" |
|---|
| 754 | taulocref = 4.25 ! default value |
|---|
| 755 | call getin_p("taulocref",taulocref) |
|---|
| 756 | write(*,*) " taulocref = ",taulocref |
|---|
| 757 | |
|---|
| 758 | write(*,*) "target altitude of local storm (km)" |
|---|
| 759 | ztoploc = 10.0 ! default value |
|---|
| 760 | call getin_p("ztoploc",ztoploc) |
|---|
| 761 | write(*,*) " ztoploc = ",ztoploc |
|---|
| 762 | |
|---|
| 763 | write(*,*) "radius of dust storm (degree)" |
|---|
| 764 | radloc = 0.5 ! default value |
|---|
| 765 | call getin_p("radloc",radloc) |
|---|
| 766 | write(*,*) " radloc = ",radloc |
|---|
| 767 | |
|---|
| 768 | write(*,*) "center longitude of storm (deg)" |
|---|
| 769 | lonloc = 25.0 ! default value |
|---|
| 770 | call getin_p("lonloc",lonloc) |
|---|
| 771 | write(*,*) " lonloc = ",lonloc |
|---|
| 772 | |
|---|
| 773 | write(*,*) "center latitude of storm (deg)" |
|---|
| 774 | latloc = -2.5 ! default value |
|---|
| 775 | call getin_p("latloc",latloc) |
|---|
| 776 | write(*,*) " latloc = ",latloc |
|---|
| 777 | |
|---|
| 778 | write(*,*) "reff storm (mic) 0. for background" |
|---|
| 779 | reffstorm = 0.0 ! default value |
|---|
| 780 | call getin_p("reffstorm",reffstorm) |
|---|
| 781 | write(*,*) " reffstorm = ",reffstorm |
|---|
| 782 | |
|---|
| 783 | !! LOOP: modify opacity |
|---|
| 784 | DO ig=1,ngrid |
|---|
| 785 | |
|---|
| 786 | !! distance to the center: |
|---|
| 787 | ray(ig)=SQRT((latitude(ig)*180./pi-latloc)**2 + |
|---|
| 788 | & (longitude(ig)*180./pi -lonloc)**2) |
|---|
| 789 | |
|---|
| 790 | !! transition factor for storm |
|---|
| 791 | !! factor is hardcoded -- increase it to steepen |
|---|
| 792 | yeah = (TANH(2.+(radloc-ray(ig))*10.)+1.)/2. |
|---|
| 793 | |
|---|
| 794 | !! new opacity field |
|---|
| 795 | !! -- add an opacity set to taulocref |
|---|
| 796 | !! -- the additional reference opacity will |
|---|
| 797 | !! thus be taulocref*odpref/pplev |
|---|
| 798 | tauuser(ig)=max( tau_pref_gcm(ig) * pplev(ig,1) /odpref , |
|---|
| 799 | & taulocref * yeah ) |
|---|
| 800 | |
|---|
| 801 | !! compute l_top |
|---|
| 802 | DO l=1,nlayer |
|---|
| 803 | zalt(ig,l) = LOG( pplev(ig,1)/pplev(ig,l) ) |
|---|
| 804 | & / g / 44.01 |
|---|
| 805 | & * 8.31 * 210. |
|---|
| 806 | IF ( (ztoploc .lt. zalt(ig,l) ) |
|---|
| 807 | & .and. (ztoploc .gt. zalt(ig,l-1)) ) l_top=l-1 |
|---|
| 808 | ENDDO |
|---|
| 809 | |
|---|
| 810 | !! change reffrad if ever needed |
|---|
| 811 | IF (reffstorm .gt. 0.) THEN |
|---|
| 812 | DO l=1,nlayer |
|---|
| 813 | IF (l .lt. l_top+1) THEN |
|---|
| 814 | reffrad(ig,l,iaer) = max( reffrad(ig,l,iaer), reffstorm |
|---|
| 815 | & * 1.e-6 * yeah ) |
|---|
| 816 | ENDIF |
|---|
| 817 | ENDDO |
|---|
| 818 | ENDIF |
|---|
| 819 | |
|---|
| 820 | ENDDO |
|---|
| 821 | !! END LOOP |
|---|
| 822 | |
|---|
| 823 | !! compute perturbation in each layer (equation 8 in Spiga et al. JGR 2013) |
|---|
| 824 | DO ig=1,ngrid |
|---|
| 825 | int_factor(ig)=0. |
|---|
| 826 | DO l=1,nlayer |
|---|
| 827 | IF (l .lt. l_top+1) THEN |
|---|
| 828 | int_factor(ig) = |
|---|
| 829 | & int_factor(ig) + |
|---|
| 830 | & ( 0.75 * QREFvis3d(ig,l,iaer) / |
|---|
| 831 | & ( rho_dust * reffrad(ig,l,iaer) ) ) * |
|---|
| 832 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
|---|
| 833 | ENDIF |
|---|
| 834 | ENDDO |
|---|
| 835 | DO l=1, nlayer |
|---|
| 836 | !! Mass mixing ratio perturbation due to local dust storm in each layer |
|---|
| 837 | more_dust(ig,l,1)= |
|---|
| 838 | & (tauuser(ig)-(tau_pref_gcm(ig) |
|---|
| 839 | & * pplev(ig,1) /odpref)) / |
|---|
| 840 | & int_factor(ig) |
|---|
| 841 | more_dust(ig,l,2)= |
|---|
| 842 | & (tauuser(ig)-(tau_pref_gcm(ig) * |
|---|
| 843 | & pplev(ig,1) /odpref)) |
|---|
| 844 | & / int_factor(ig) * |
|---|
| 845 | & ((ref_r0/reffrad(ig,l,iaer))**3) |
|---|
| 846 | & * r3n_q |
|---|
| 847 | ENDDO |
|---|
| 848 | ENDDO |
|---|
| 849 | |
|---|
| 850 | !! quantity of dust for each layer with the addition of the perturbation |
|---|
| 851 | DO l=1, l_top |
|---|
| 852 | pq(:,l,igcm_dust_mass)= pq(:,l,igcm_dust_mass) |
|---|
| 853 | . + more_dust(:,l,1) |
|---|
| 854 | pq(:,l,igcm_dust_number)= pq(:,l,igcm_dust_number) |
|---|
| 855 | . + more_dust(:,l,2) |
|---|
| 856 | ENDDO |
|---|
| 857 | ENDIF !! IF (localstorm) |
|---|
| 858 | tau_pref_gcm(:)=0. |
|---|
| 859 | ENDIF !! IF (firstcall) |
|---|
| 860 | #endif |
|---|
| 861 | |
|---|
| 862 | ! |
|---|
| 863 | ! 3.1. Compute "tauscaling" and "dust_rad_adjust", the dust rescaling |
|---|
| 864 | ! coefficients and adjust aerosol() dust opacities accordingly |
|---|
| 865 | call compute_dustscaling(ngrid,nlayer,naerkind,naerdust,zday,pplev |
|---|
| 866 | & ,tau_pref_scenario,IRtoVIScoef, |
|---|
| 867 | & tauscaling,dust_rad_adjust,aerosol) |
|---|
| 868 | |
|---|
| 869 | ! 3.2. Recompute tau_pref_gcm, the reference dust opacity, based on dust tracer |
|---|
| 870 | ! mixing ratios and their optical properties |
|---|
| 871 | |
|---|
| 872 | IF (freedust) THEN |
|---|
| 873 | ! Initialisation : |
|---|
| 874 | tau_pref_gcm(:)=0 |
|---|
| 875 | DO iaer=1,naerdust |
|---|
| 876 | DO l=1,nlayer |
|---|
| 877 | DO ig=1,ngrid |
|---|
| 878 | #ifdef DUSTSTORM |
|---|
| 879 | !! recalculate opacity because storm perturbation has been added |
|---|
| 880 | IF (firstcall) THEN |
|---|
| 881 | aerosol(ig,l,iaer) = |
|---|
| 882 | & ( 0.75 * QREFvis3d(ig,l,iaer) / |
|---|
| 883 | & ( rho_dust * reffrad(ig,l,iaer) ) ) * |
|---|
| 884 | & pq(ig,l,igcm_dust_mass) * |
|---|
| 885 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
|---|
| 886 | ENDIF |
|---|
| 887 | #endif |
|---|
| 888 | c MV19: tau_pref_gcm must ALWAYS contain the opacity of all dust tracers |
|---|
| 889 | ! GCM DUST OPTICAL DEPTH tau_pref_gcm is to be compared |
|---|
| 890 | ! with the observation CDOD tau_pref_scenario |
|---|
| 891 | ! => visible wavelength |
|---|
| 892 | IF (name_iaer(iaerdust(iaer)).eq."dust_doubleq") THEN |
|---|
| 893 | tau_pref_gcm(ig) = tau_pref_gcm(ig) + |
|---|
| 894 | & ( 0.75 * QREFvis3d(ig,l,iaerdust(iaer)) / |
|---|
| 895 | & ( rho_dust * reffrad(ig,l,iaerdust(iaer)) ) ) * |
|---|
| 896 | & pq(ig,l,igcm_dust_mass) * |
|---|
| 897 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
|---|
| 898 | ELSE IF (name_iaer(iaerdust(iaer)).eq."stormdust_doubleq") THEN |
|---|
| 899 | tau_pref_gcm(ig) = tau_pref_gcm(ig) + |
|---|
| 900 | & ( 0.75 * QREFvis3d(ig,l,iaerdust(iaer)) / |
|---|
| 901 | & ( rho_dust * reffrad(ig,l,iaerdust(iaer)) ) ) * |
|---|
| 902 | & pq(ig,l,igcm_stormdust_mass) * |
|---|
| 903 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
|---|
| 904 | ELSE IF (name_iaer(iaerdust(iaer)).eq."topdust_doubleq") THEN |
|---|
| 905 | tau_pref_gcm(ig) = tau_pref_gcm(ig) + |
|---|
| 906 | & ( 0.75 * QREFvis3d(ig,l,iaerdust(iaer)) / |
|---|
| 907 | & ( rho_dust * reffrad(ig,l,iaerdust(iaer)) ) ) * |
|---|
| 908 | & pq(ig,l,igcm_topdust_mass) * |
|---|
| 909 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
|---|
| 910 | ENDIF |
|---|
| 911 | |
|---|
| 912 | ENDDO |
|---|
| 913 | ENDDO |
|---|
| 914 | ENDDO |
|---|
| 915 | tau_pref_gcm(:) = tau_pref_gcm(:) * odpref / pplev(:,1) |
|---|
| 916 | |
|---|
| 917 | ! Sanity check : if tau_pref_gcm > 50 with no rescaling, there is probably an error somewhere |
|---|
| 918 | if (maxval(tau_pref_gcm(:)).gt.50) then |
|---|
| 919 | write(*,*) "Error in aeropacity: ", |
|---|
| 920 | & "tau_pref_gcm>50 while there is no rescaling to ", |
|---|
| 921 | & "the scenario (dustscaling_mode =/= 1). ", |
|---|
| 922 | & "Better stop here." |
|---|
| 923 | write(*,*) "If you want to run with non-rescaled dust (GCM6)", |
|---|
| 924 | & " be sure to have good dust fields in start.nc using newstart" |
|---|
| 925 | call abort_physic("aeropacity", |
|---|
| 926 | & "tau_pref_gcm>50 while no rescaling",1) |
|---|
| 927 | endif |
|---|
| 928 | |
|---|
| 929 | ELSE |
|---|
| 930 | ! dust opacity strictly follows what is imposed by the dust scenario |
|---|
| 931 | tau_pref_gcm(:)=tau_pref_scenario(:) |
|---|
| 932 | ENDIF ! of IF (freedust) |
|---|
| 933 | |
|---|
| 934 | ! ----------------------------------------------------------------- |
|---|
| 935 | ! 4. Total integrated visible optical depth of aerosols in each column |
|---|
| 936 | ! ----------------------------------------------------------------- |
|---|
| 937 | DO iaer=1,naerkind |
|---|
| 938 | do l=1,nlayer |
|---|
| 939 | do ig=1,ngrid |
|---|
| 940 | tau(ig,iaer) = tau(ig,iaer) + aerosol(ig,l,iaer) |
|---|
| 941 | end do |
|---|
| 942 | end do |
|---|
| 943 | ENDDO |
|---|
| 944 | |
|---|
| 945 | |
|---|
| 946 | #ifdef DUSTSTORM |
|---|
| 947 | IF (firstcall) THEN |
|---|
| 948 | firstcall=.false. |
|---|
| 949 | ENDIF |
|---|
| 950 | #endif |
|---|
| 951 | |
|---|
| 952 | ! |
|---|
| 953 | ! 5. Adapt aerosol() for the radiative transfer (i.e. account for |
|---|
| 954 | ! cases when it refers to a fraction of the global mesh) |
|---|
| 955 | ! |
|---|
| 956 | |
|---|
| 957 | c ----------------------------------------------------------------- |
|---|
| 958 | c aerosol/X for stormdust to prepare calculation of radiative transfer |
|---|
| 959 | c ----------------------------------------------------------------- |
|---|
| 960 | IF (rdstorm) THEN |
|---|
| 961 | DO l=1,nlayer |
|---|
| 962 | DO ig=1,ngrid |
|---|
| 963 | ! stormdust: opacity relative to the storm fraction (stormdust/x) |
|---|
| 964 | aerosol(ig,l,iaer_stormdust_doubleq) = |
|---|
| 965 | & aerosol(ig,l,iaer_stormdust_doubleq)/totstormfract(ig) |
|---|
| 966 | ENDDO |
|---|
| 967 | ENDDO |
|---|
| 968 | ENDIF |
|---|
| 969 | |
|---|
| 970 | c ----------------------------------------------------------------- |
|---|
| 971 | c aerosol/X for topdust to prepare calculation of radiative transfer |
|---|
| 972 | c ----------------------------------------------------------------- |
|---|
| 973 | IF (topflows) THEN |
|---|
| 974 | DO ig=1,ngrid |
|---|
| 975 | IF (contains_mons(ig)) THEN ! contains_mons=True ensures that alpha_hmons>0 |
|---|
| 976 | DO l=1,nlayer |
|---|
| 977 | ! topdust: opacity relative to the mons fraction (topdust/x) |
|---|
| 978 | aerosol(ig,l,iaer_topdust_doubleq) = |
|---|
| 979 | & aerosol(ig,l,iaer_topdust_doubleq)/alpha_hmons(ig) |
|---|
| 980 | ENDDO |
|---|
| 981 | ENDIF |
|---|
| 982 | ENDDO |
|---|
| 983 | ENDIF |
|---|
| 984 | |
|---|
| 985 | END SUBROUTINE aeropacity |
|---|
| 986 | |
|---|
| 987 | END MODULE aeropacity_mod |
|---|