1 | MODULE aeropacity_mod |
---|
2 | |
---|
3 | IMPLICIT NONE |
---|
4 | |
---|
5 | INTEGER :: iddist ! flag for vertical dust ditribution type (when imposed) |
---|
6 | ! 0: Pollack90, 1: top set by "topdustref" |
---|
7 | ! 2: Viking scenario; =3 MGS scenario |
---|
8 | REAL :: topdustref ! Dust top altitude (km); only matters only if iddist=1) |
---|
9 | CONTAINS |
---|
10 | |
---|
11 | SUBROUTINE aeropacity(ngrid,nlayer,nq,zday,pplay,pplev,ls, |
---|
12 | & pq,pt,tauscaling,dust_rad_adjust,IRtoVIScoef,tau_pref_scenario, |
---|
13 | & tau_pref_gcm,tau,taucloudtes,aerosol,dsodust,reffrad, |
---|
14 | & QREFvis3d,QREFir3d,omegaREFir3d, |
---|
15 | & totstormfract,clearatm,dsords,dsotop, |
---|
16 | & nohmons, |
---|
17 | & clearsky,totcloudfrac) |
---|
18 | |
---|
19 | use ioipsl_getin_p_mod, only: getin_p |
---|
20 | use tracer_mod, only: noms, igcm_h2o_ice, igcm_dust_mass, |
---|
21 | & igcm_dust_submicron, rho_dust, rho_ice, |
---|
22 | & nqdust, igcm_stormdust_mass, |
---|
23 | & igcm_topdust_mass, igcm_co2_ice |
---|
24 | use geometry_mod, only: latitude ! grid point latitudes (rad) |
---|
25 | use comgeomfi_h, only: sinlat ! sines of grid point latitudes |
---|
26 | #ifdef DUSTSTORM |
---|
27 | use geometry_mod, only: longitude |
---|
28 | use tracer_mod, only: r3n_q, ref_r0, igcm_dust_number |
---|
29 | #endif |
---|
30 | use comcstfi_h, only: g, pi |
---|
31 | use dimradmars_mod, only: naerkind, name_iaer, |
---|
32 | & iaerdust,tauvis, |
---|
33 | & iaer_dust_conrath,iaer_dust_doubleq, |
---|
34 | & iaer_dust_submicron,iaer_h2o_ice, |
---|
35 | & iaer_stormdust_doubleq, |
---|
36 | & iaer_topdust_doubleq |
---|
37 | use dust_param_mod, only: odpref, freedust, |
---|
38 | & reff_driven_IRtoVIS_scenario |
---|
39 | use dust_scaling_mod, only: compute_dustscaling |
---|
40 | use density_co2_ice_mod, only: density_co2_ice |
---|
41 | use surfdat_h,only: alpha_hmons,contains_mons |
---|
42 | use read_dust_scenario_mod, only: read_dust_scenario |
---|
43 | |
---|
44 | IMPLICIT NONE |
---|
45 | c======================================================================= |
---|
46 | c subject: |
---|
47 | c -------- |
---|
48 | c Computing aerosol optical depth in each gridbox. |
---|
49 | c |
---|
50 | c author: F.Forget |
---|
51 | c ------ |
---|
52 | c update F. Montmessin (water ice scheme) |
---|
53 | c and S. Lebonnois (12/06/2003) compatibility dust/ice/chemistry |
---|
54 | c update J.-B. Madeleine 2008-2009: |
---|
55 | c - added 3D scattering by aerosols; |
---|
56 | c - dustopacity transferred from physiq.F to callradite.F, |
---|
57 | c and renamed into aeropacity.F; |
---|
58 | c update E. Millour, march 2012: |
---|
59 | c - reference pressure is now set to 610Pa (not 700Pa) |
---|
60 | c |
---|
61 | c======================================================================= |
---|
62 | include "callkeys.h" |
---|
63 | |
---|
64 | c----------------------------------------------------------------------- |
---|
65 | c |
---|
66 | c Declarations : |
---|
67 | c -------------- |
---|
68 | c |
---|
69 | c Input/Output |
---|
70 | c ------------ |
---|
71 | INTEGER,INTENT(IN) :: ngrid ! number of atmospheric columns |
---|
72 | INTEGER,INTENT(IN) :: nlayer ! number of atmospheric layers |
---|
73 | INTEGER,INTENT(IN) :: nq ! number of tracers |
---|
74 | REAL,INTENT(IN) :: ls ! Solar Longitude (rad) |
---|
75 | REAL,INTENT(IN) :: zday ! date (in martian sols) since Ls=0 |
---|
76 | REAL,INTENT(IN) :: pplay(ngrid,nlayer) ! pressure (Pa) in the middle of |
---|
77 | ! each atmospheric layer |
---|
78 | REAL,INTENT(IN) :: pplev(ngrid,nlayer+1) ! pressure (Pa) at the boundaries |
---|
79 | ! of the atmospheric layers |
---|
80 | REAL,INTENT(IN) :: pq(ngrid,nlayer,nq) ! tracers |
---|
81 | REAL,INTENT(IN) :: pt(ngrid,nlayer) !temperature |
---|
82 | REAL,INTENT(OUT) :: tau_pref_scenario(ngrid) ! prescribed dust column |
---|
83 | ! visible opacity at odpref from scenario |
---|
84 | REAL,INTENT(OUT) :: tau_pref_gcm(ngrid) ! computed dust column |
---|
85 | ! visible opacity at odpref in the GCM |
---|
86 | REAL,INTENT(OUT) :: tau(ngrid,naerkind) ! column total visible |
---|
87 | ! optical depth of each aerosol |
---|
88 | REAL,INTENT(OUT) :: taucloudtes(ngrid)! Water ice cloud opacity at |
---|
89 | ! infrared reference wavelength using |
---|
90 | ! Qabs instead of Qext |
---|
91 | ! (for direct comparison with TES) |
---|
92 | REAL, INTENT(OUT) :: aerosol(ngrid,nlayer,naerkind) ! optical |
---|
93 | ! depth of each aerosol in each layer |
---|
94 | REAL, INTENT(OUT) :: dsodust(ngrid,nlayer) ! density scaled opacity |
---|
95 | ! of (background) dust |
---|
96 | REAL, INTENT(OUT) :: dsords(ngrid,nlayer) !dso of stormdust |
---|
97 | REAL, INTENT(OUT) :: dsotop(ngrid,nlayer) !dso of topdust |
---|
98 | REAL, INTENT(INOUT) :: reffrad(ngrid,nlayer,naerkind) ! effective radius |
---|
99 | ! of the aerosols in the grid boxes |
---|
100 | REAL, INTENT(IN) :: QREFvis3d(ngrid,nlayer,naerkind) ! 3D extinction |
---|
101 | ! coefficients (in the visible) of aerosols |
---|
102 | REAL, INTENT(IN) :: QREFir3d(ngrid,nlayer,naerkind) ! 3D extinction |
---|
103 | ! coefficients (in the infra-red) of aerosols |
---|
104 | REAL, INTENT(IN) :: omegaREFir3d(ngrid,nlayer,naerkind) ! at the |
---|
105 | ! reference wavelengths |
---|
106 | LOGICAL, INTENT(IN) :: clearatm ! true to compute RT without stormdust |
---|
107 | ! and false to compute RT in rocket dust storms |
---|
108 | REAL, INTENT(IN) :: totstormfract(ngrid) ! mesh fraction with a rocket |
---|
109 | ! dust storm |
---|
110 | LOGICAL, INTENT(IN) :: nohmons ! true to compute RT without topdust, |
---|
111 | ! false to compute RT in the topdust |
---|
112 | REAL,INTENT(OUT) :: tauscaling(ngrid) ! Scaling factor for qdust and Ndust |
---|
113 | REAL,INTENT(INOUT) :: dust_rad_adjust(ngrid) ! Radiative adjustment |
---|
114 | ! factor for dust |
---|
115 | REAL,INTENT(INOUT) :: IRtoVIScoef(ngrid) ! conversion coefficient to apply on |
---|
116 | ! scenario absorption IR (9.3um) CDOD |
---|
117 | ! = tau_pref_gcm_VIS / tau_pref_gcm_IR |
---|
118 | REAL,INTENT(IN) :: totcloudfrac(ngrid) ! total water ice cloud fraction |
---|
119 | LOGICAL,INTENT(IN) :: clearsky ! true to compute RT without water ice clouds |
---|
120 | ! false to compute RT with clouds (total or sub-grid clouds) |
---|
121 | c |
---|
122 | c Local variables : |
---|
123 | c ----------------- |
---|
124 | REAL CLFtot ! total cloud fraction |
---|
125 | real expfactor |
---|
126 | INTEGER l,ig,iq,i,j |
---|
127 | INTEGER iaer ! Aerosol index |
---|
128 | real topdust(ngrid) |
---|
129 | real zlsconst, zp |
---|
130 | real taueq,tauS,tauN |
---|
131 | c Mean Qext(vis)/Qext(ir) profile |
---|
132 | real msolsir(nlayer,naerkind) |
---|
133 | c Mean Qext(ir)/Qabs(ir) profile |
---|
134 | real mqextsqabs(nlayer,naerkind) |
---|
135 | c Variables used when multiple particle sizes are used |
---|
136 | c for dust or water ice particles in the radiative transfer |
---|
137 | c (see callradite.F for more information). |
---|
138 | REAL taucloudvis(ngrid)! Cloud opacity at visible |
---|
139 | ! reference wavelength |
---|
140 | REAL topdust0(ngrid) |
---|
141 | |
---|
142 | REAL aerosol_IRabs(ngrid,nlayer) |
---|
143 | REAL taudust_IRabs(ngrid) |
---|
144 | REAL taudust_VISext(ngrid) |
---|
145 | |
---|
146 | ! -- CO2 clouds |
---|
147 | real CLFtotco2 |
---|
148 | real taucloudco2vis(ngrid) |
---|
149 | real taucloudco2tes(ngrid) |
---|
150 | real totcloudco2frac(ngrid) ! a mettre en (in) [CM] |
---|
151 | double precision :: rho_ice_co2 |
---|
152 | #ifdef DUSTSTORM |
---|
153 | !! Local dust storms |
---|
154 | logical localstorm ! =true to create a local dust storm |
---|
155 | real taulocref,ztoploc,radloc,lonloc,latloc ! local dust storm parameters |
---|
156 | real reffstorm, yeah |
---|
157 | REAL ray(ngrid) ! distance from dust storm center |
---|
158 | REAL tauuser(ngrid) ! opacity perturbation due to dust storm |
---|
159 | REAL more_dust(ngrid,nlayer,2) ! Mass mixing ratio perturbation due to the dust storm |
---|
160 | REAL int_factor(ngrid) ! useful factor to compute mmr perturbation |
---|
161 | real l_top ! layer of the storm's top |
---|
162 | REAL zalt(ngrid, nlayer) ! useful factor to compute l_top |
---|
163 | #endif |
---|
164 | |
---|
165 | c local saved variables |
---|
166 | c --------------------- |
---|
167 | |
---|
168 | c Level under which the dust mixing ratio is held constant |
---|
169 | c when computing the dust opacity in each layer |
---|
170 | c (this applies when doubleq and active are true) |
---|
171 | INTEGER, PARAMETER :: cstdustlevel0 = 7 |
---|
172 | INTEGER, SAVE :: cstdustlevel |
---|
173 | |
---|
174 | LOGICAL,SAVE :: firstcall=.true. |
---|
175 | |
---|
176 | ! indexes of water ice and dust tracers: |
---|
177 | INTEGER,SAVE :: i_ice=0 ! water ice |
---|
178 | CHARACTER(LEN=20) :: txt ! to temporarly store text |
---|
179 | CHARACTER(LEN=1) :: txt2 ! to temporarly store text |
---|
180 | ! indexes of co2 ice : |
---|
181 | INTEGER,SAVE :: i_co2ice=0 ! co2 ice |
---|
182 | ! indexes of dust scatterers: |
---|
183 | INTEGER,SAVE :: naerdust ! number of dust scatterers |
---|
184 | |
---|
185 | !$OMP THREADPRIVATE(cstdustlevel,firstcall,i_ice, |
---|
186 | !$OMP& i_co2ice,naerdust) |
---|
187 | |
---|
188 | ! initializations |
---|
189 | tau(1:ngrid,1:naerkind)=0 |
---|
190 | |
---|
191 | ! identify tracers |
---|
192 | |
---|
193 | !! AS: firstcall OK absolute |
---|
194 | IF (firstcall) THEN |
---|
195 | ! identify scatterers that are dust |
---|
196 | naerdust=0 |
---|
197 | iaerdust(1:naerkind) = 0 |
---|
198 | nqdust(1:nq) = 0 |
---|
199 | DO iaer=1,naerkind |
---|
200 | txt=name_iaer(iaer) |
---|
201 | ! CW17: choice tauscaling for stormdust or not |
---|
202 | IF ((txt(1:4).eq."dust").OR.(txt(1:5).eq."storm") |
---|
203 | & .OR.(txt(1:3).eq."top")) THEN !MV19: topdust tracer |
---|
204 | naerdust=naerdust+1 |
---|
205 | iaerdust(naerdust)=iaer |
---|
206 | ENDIF |
---|
207 | ENDDO |
---|
208 | ! identify tracers which are dust |
---|
209 | i=0 |
---|
210 | DO iq=1,nq |
---|
211 | txt=noms(iq) |
---|
212 | IF (txt(1:4).eq."dust") THEN |
---|
213 | i=i+1 |
---|
214 | nqdust(i)=iq |
---|
215 | ENDIF |
---|
216 | ENDDO |
---|
217 | IF (water.AND.activice) THEN |
---|
218 | i_ice=igcm_h2o_ice |
---|
219 | write(*,*) "aeropacity: i_ice=",i_ice |
---|
220 | ENDIF |
---|
221 | |
---|
222 | IF (co2clouds.AND.activeco2ice) THEN |
---|
223 | i_co2ice=igcm_co2_ice |
---|
224 | write(*,*) "aeropacity: i_co2ice =",i_co2ice |
---|
225 | ENDIF |
---|
226 | |
---|
227 | c typical profile of solsir and (1-w)^(-1): |
---|
228 | c --- purely for diagnostics and printing |
---|
229 | msolsir(1:nlayer,1:naerkind)=0 |
---|
230 | mqextsqabs(1:nlayer,1:naerkind)=0 |
---|
231 | WRITE(*,*) "Typical profiles of Qext(vis)/Qext(IR)" |
---|
232 | WRITE(*,*) " and Qext(IR)/Qabs(IR):" |
---|
233 | DO iaer = 1, naerkind ! Loop on aerosol kind |
---|
234 | WRITE(*,*) "Aerosol # ",iaer |
---|
235 | DO l=1,nlayer |
---|
236 | DO ig=1,ngrid |
---|
237 | msolsir(l,iaer)=msolsir(l,iaer)+ |
---|
238 | & QREFvis3d(ig,l,iaer)/ |
---|
239 | & QREFir3d(ig,l,iaer) |
---|
240 | mqextsqabs(l,iaer)=mqextsqabs(l,iaer)+ |
---|
241 | & (1.E0-omegaREFir3d(ig,l,iaer))**(-1) |
---|
242 | ENDDO |
---|
243 | msolsir(l,iaer)=msolsir(l,iaer)/REAL(ngrid) |
---|
244 | mqextsqabs(l,iaer)=mqextsqabs(l,iaer)/REAL(ngrid) |
---|
245 | ENDDO |
---|
246 | WRITE(*,*) "solsir: ",msolsir(:,iaer) |
---|
247 | WRITE(*,*) "Qext/Qabs(IR): ",mqextsqabs(:,iaer) |
---|
248 | ENDDO |
---|
249 | |
---|
250 | ! load value of tauvis from callphys.def (if given there, |
---|
251 | ! otherwise default value read from starfi.nc file will be used) |
---|
252 | call getin_p("tauvis",tauvis) |
---|
253 | |
---|
254 | IF (freedust.or.rdstorm) THEN ! if rdstorm no need to held opacity constant at the first levels |
---|
255 | cstdustlevel = 1 |
---|
256 | ELSE |
---|
257 | cstdustlevel = cstdustlevel0 !Opacity in the first levels is held constant to |
---|
258 | !avoid unrealistic values due to constant lifting |
---|
259 | ENDIF |
---|
260 | |
---|
261 | #ifndef DUSTSTORM |
---|
262 | firstcall=.false. |
---|
263 | #endif |
---|
264 | |
---|
265 | END IF ! end of if firstcall |
---|
266 | |
---|
267 | ! 1. Get prescribed tau_pref_scenario, Dust column optical depth at "odpref" Pa |
---|
268 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
269 | |
---|
270 | IF(iaervar.eq.1) THEN |
---|
271 | do ig=1, ngrid |
---|
272 | tau_pref_scenario(ig)=max(tauvis,1.e-9) ! tauvis=cste (set in callphys.def |
---|
273 | ! or read in starfi |
---|
274 | end do |
---|
275 | ELSE IF (iaervar.eq.2) THEN ! << "Viking" Scenario>> |
---|
276 | |
---|
277 | tau_pref_scenario(1) = 0.7+.3*cos(ls+80.*pi/180.) ! like seen by VL1 |
---|
278 | do ig=2,ngrid |
---|
279 | tau_pref_scenario(ig) = tau_pref_scenario(1) |
---|
280 | end do |
---|
281 | |
---|
282 | ELSE IF (iaervar.eq.3) THEN ! << "MGS" scenario >> |
---|
283 | |
---|
284 | taueq= 0.2 +(0.5-0.2) *(cos(0.5*(ls-4.363)))**14 |
---|
285 | tauS= 0.1 +(0.5-0.1) *(cos(0.5*(ls-4.363)))**14 |
---|
286 | tauN = 0.1 |
---|
287 | do ig=1,ngrid |
---|
288 | if (latitude(ig).ge.0) then |
---|
289 | ! Northern hemisphere |
---|
290 | tau_pref_scenario(ig)= tauN + |
---|
291 | & (taueq-tauN)*0.5*(1+tanh((45-latitude(ig)*180./pi)*6/60)) |
---|
292 | else |
---|
293 | ! Southern hemisphere |
---|
294 | tau_pref_scenario(ig)= tauS + |
---|
295 | & (taueq-tauS)*0.5*(1+tanh((45+latitude(ig)*180./pi)*6/60)) |
---|
296 | endif |
---|
297 | enddo ! of do ig=1,ngrid |
---|
298 | ELSE IF (iaervar.eq.5) THEN ! << Escalier Scenario>> |
---|
299 | tau_pref_scenario(1) = 2.5 |
---|
300 | if ((ls.ge.30.*pi/180.).and.(ls.le.150.*pi/180.)) |
---|
301 | & tau_pref_scenario(1) = .2 |
---|
302 | |
---|
303 | do ig=2,ngrid |
---|
304 | tau_pref_scenario(ig) = tau_pref_scenario(1) |
---|
305 | end do |
---|
306 | !!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
307 | ! NB: here, IRtoVIScoef=2.6 |
---|
308 | ! ( useful to be here only if iddist=0 (Pollack90 vertical distribution) ) |
---|
309 | ELSE IF ((iaervar.ge.6).and.(iaervar.le.8)) THEN |
---|
310 | ! clim, cold or warm synthetic scenarios |
---|
311 | call read_dust_scenario(ngrid,nlayer,zday,pplev, |
---|
312 | & IRtoVIScoef,tau_pref_scenario) |
---|
313 | ELSE IF ((iaervar.ge.24).and.(iaervar.le.35)) |
---|
314 | & THEN ! << MY... dust scenarios >> |
---|
315 | call read_dust_scenario(ngrid,nlayer,zday,pplev, |
---|
316 | & IRtoVIScoef,tau_pref_scenario) |
---|
317 | ELSE IF ((iaervar.eq.4).or. |
---|
318 | & ((iaervar.ge.124).and.(iaervar.le.126))) THEN |
---|
319 | ! "old" TES assimation dust scenario (values at 700Pa in files!) |
---|
320 | call read_dust_scenario(ngrid,nlayer,zday,pplev, |
---|
321 | & IRtoVIScoef,tau_pref_scenario) |
---|
322 | !!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
323 | ELSE |
---|
324 | call abort_physic("aeropacity","wrong value for iaervar",1) |
---|
325 | ENDIF |
---|
326 | |
---|
327 | ! ----------------------------------------------------------------- |
---|
328 | ! 2. Compute/set the opacity of each aerosol in each layer |
---|
329 | ! ----------------------------------------------------------------- |
---|
330 | |
---|
331 | DO iaer = 1, naerkind ! Loop on all aerosols |
---|
332 | c -------------------------------------------- |
---|
333 | aerkind: SELECT CASE (name_iaer(iaer)) |
---|
334 | c================================================================== |
---|
335 | CASE("dust_conrath") aerkind ! Typical dust profile |
---|
336 | c================================================================== |
---|
337 | |
---|
338 | c Altitude of the top of the dust layer |
---|
339 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
340 | zlsconst=SIN(ls-2.76) |
---|
341 | if (iddist.eq.1) then |
---|
342 | do ig=1,ngrid |
---|
343 | topdust(ig)=topdustref ! constant dust layer top |
---|
344 | end do |
---|
345 | |
---|
346 | else if (iddist.eq.2) then ! "Viking" scenario |
---|
347 | do ig=1,ngrid |
---|
348 | ! altitude of the top of the aerosol layer (km) at Ls=2.76rad: |
---|
349 | ! in the Viking year scenario |
---|
350 | topdust0(ig)=60. -22.*sinlat(ig)**2 |
---|
351 | topdust(ig)=topdust0(ig)+18.*zlsconst |
---|
352 | end do |
---|
353 | |
---|
354 | else if(iddist.eq.3) then !"MGS" scenario |
---|
355 | do ig=1,ngrid |
---|
356 | topdust(ig)=60.+18.*zlsconst |
---|
357 | & -(32+18*zlsconst)*sin(latitude(ig))**4 |
---|
358 | & - 8*zlsconst*(sin(latitude(ig)))**5 |
---|
359 | end do |
---|
360 | endif |
---|
361 | |
---|
362 | c Optical depth in each layer : |
---|
363 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
364 | if(iddist.ge.1) then |
---|
365 | |
---|
366 | expfactor=0. |
---|
367 | DO l=1,nlayer |
---|
368 | DO ig=1,ngrid |
---|
369 | c Typical mixing ratio profile |
---|
370 | if(pplay(ig,l).gt.odpref |
---|
371 | $ /(988.**(topdust(ig)/70.))) then |
---|
372 | zp=(odpref/pplay(ig,l))**(70./topdust(ig)) |
---|
373 | expfactor=max(exp(0.007*(1.-max(zp,1.))),1.e-3) |
---|
374 | else |
---|
375 | expfactor=1.e-3 |
---|
376 | endif |
---|
377 | c Vertical scaling function |
---|
378 | aerosol(ig,l,iaer)= (pplev(ig,l)-pplev(ig,l+1)) * |
---|
379 | & expfactor * |
---|
380 | & QREFvis3d(ig,l,iaer) / QREFvis3d(ig,1,iaer) |
---|
381 | ENDDO |
---|
382 | ENDDO |
---|
383 | |
---|
384 | else if(iddist.eq.0) then |
---|
385 | c old dust vertical distribution function (pollack90) |
---|
386 | DO l=1,nlayer |
---|
387 | DO ig=1,ngrid |
---|
388 | zp=odpref/pplay(ig,l) |
---|
389 | aerosol(ig,l,1)= tau_pref_scenario(ig)/odpref * |
---|
390 | s (pplev(ig,l)-pplev(ig,l+1)) |
---|
391 | s *max( exp(.03*(1.-max(zp,1.))) , 1.E-3 ) |
---|
392 | ENDDO |
---|
393 | ENDDO |
---|
394 | end if |
---|
395 | |
---|
396 | c================================================================== |
---|
397 | CASE("dust_doubleq") aerkind! Two-moment scheme for background dust |
---|
398 | c (transport of mass and number mixing ratio) |
---|
399 | c================================================================== |
---|
400 | ! Some initialisations for the IRtoVIScoef |
---|
401 | aerosol_IRabs(:,:)=0. |
---|
402 | taudust_IRabs(:)=0. |
---|
403 | taudust_VISext(:)=0. |
---|
404 | |
---|
405 | DO l=1,nlayer |
---|
406 | IF (l.LE.cstdustlevel) THEN |
---|
407 | c Opacity in the first levels is held constant to |
---|
408 | c avoid unrealistic values due to constant lifting: |
---|
409 | DO ig=1,ngrid |
---|
410 | ! OPTICAL DEPTH used in the radiative transfer |
---|
411 | ! => visible wavelength |
---|
412 | aerosol(ig,l,iaer) = |
---|
413 | & ( 0.75 * QREFvis3d(ig,cstdustlevel,iaer) / |
---|
414 | & ( rho_dust * reffrad(ig,cstdustlevel,iaer) ) ) * |
---|
415 | & pq(ig,cstdustlevel,igcm_dust_mass) * |
---|
416 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
417 | ! DENSITY SCALED OPACITY : |
---|
418 | ! Diagnostic output to be compared with observations |
---|
419 | ! => infrared wavelength |
---|
420 | dsodust(ig,l) = |
---|
421 | & ( 0.75 * QREFir3d(ig,cstdustlevel,iaer) / |
---|
422 | & ( rho_dust * reffrad(ig,cstdustlevel,iaer) ) ) * |
---|
423 | & pq(ig,cstdustlevel,igcm_dust_mass) |
---|
424 | |
---|
425 | if (reff_driven_IRtoVIS_scenario) then |
---|
426 | if ((clearatm).and.(nohmons)) then ! the IRtoVIScoef is computed only during the first call to the RT |
---|
427 | ! OPTICAL DEPTH in IR absorption to compute the IRtoVIScoef |
---|
428 | aerosol_IRabs(ig,l) = |
---|
429 | & ( 0.75 * QREFir3d(ig,cstdustlevel,iaer) / |
---|
430 | & ( rho_dust * reffrad(ig,cstdustlevel,iaer) ) ) * |
---|
431 | & ( 1. - omegaREFir3d(ig,cstdustlevel,iaer) ) * |
---|
432 | & pq(ig,cstdustlevel,igcm_dust_mass) * |
---|
433 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
434 | endif |
---|
435 | endif |
---|
436 | ENDDO |
---|
437 | ELSE |
---|
438 | DO ig=1,ngrid |
---|
439 | ! OPTICAL DEPTH used in the radiative transfer |
---|
440 | ! => visible wavelength |
---|
441 | aerosol(ig,l,iaer) = |
---|
442 | & ( 0.75 * QREFvis3d(ig,l,iaer) / |
---|
443 | & ( rho_dust * reffrad(ig,l,iaer) ) ) * |
---|
444 | & pq(ig,l,igcm_dust_mass) * |
---|
445 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
446 | ! DENSITY SCALED OPACITY : |
---|
447 | ! Diagnostic output to be compared with observations |
---|
448 | ! => infrared wavelength |
---|
449 | dsodust(ig,l) = |
---|
450 | & ( 0.75 * QREFir3d(ig,l,iaer) / |
---|
451 | & ( rho_dust * reffrad(ig,l,iaer) ) ) * |
---|
452 | & pq(ig,l,igcm_dust_mass) |
---|
453 | |
---|
454 | if (reff_driven_IRtoVIS_scenario) then |
---|
455 | if ((clearatm).and.(nohmons)) then ! the IRtoVIScoef is computed only during the first call to the RT |
---|
456 | ! OPTICAL DEPTH in IR absorption to compute the IRtoVIScoef |
---|
457 | aerosol_IRabs(ig,l) = |
---|
458 | & ( 0.75 * QREFir3d(ig,l,iaer) / |
---|
459 | & ( rho_dust * reffrad(ig,l,iaer) ) ) * |
---|
460 | & ( 1. - omegaREFir3d(ig,l,iaer) ) * |
---|
461 | & pq(ig,l,igcm_dust_mass) * |
---|
462 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
463 | endif |
---|
464 | endif |
---|
465 | ENDDO |
---|
466 | ENDIF |
---|
467 | if (reff_driven_IRtoVIS_scenario) then |
---|
468 | if ((clearatm).and.(nohmons)) then ! the IRtoVIScoef is computed only during the first call to the RT |
---|
469 | taudust_VISext(:) = taudust_VISext(:) + aerosol(:,l,iaer) |
---|
470 | taudust_IRabs(:) = taudust_IRabs(:) + aerosol_IRabs(:,l) |
---|
471 | endif |
---|
472 | endif |
---|
473 | ENDDO |
---|
474 | |
---|
475 | if (reff_driven_IRtoVIS_scenario) then |
---|
476 | if ((clearatm).and.(nohmons)) then ! the IRtoVIScoef is computed only during the first call to the RT |
---|
477 | IRtoVIScoef(:) = taudust_VISext(:) / taudust_IRabs(:) |
---|
478 | endif |
---|
479 | endif |
---|
480 | |
---|
481 | c================================================================== |
---|
482 | CASE("dust_submicron") aerkind ! Small dust population |
---|
483 | c================================================================== |
---|
484 | |
---|
485 | DO l=1,nlayer |
---|
486 | IF (l.LE.cstdustlevel) THEN |
---|
487 | c Opacity in the first levels is held constant to |
---|
488 | c avoid unrealistic values due to constant lifting: |
---|
489 | DO ig=1,ngrid |
---|
490 | aerosol(ig,l,iaer) = |
---|
491 | & ( 0.75 * QREFvis3d(ig,cstdustlevel,iaer) / |
---|
492 | & ( rho_dust * reffrad(ig,cstdustlevel,iaer) ) ) * |
---|
493 | & pq(ig,cstdustlevel,igcm_dust_submicron) * |
---|
494 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
495 | ENDDO |
---|
496 | ELSE |
---|
497 | DO ig=1,ngrid |
---|
498 | aerosol(ig,l,iaer) = |
---|
499 | & ( 0.75 * QREFvis3d(ig,l,iaer) / |
---|
500 | & ( rho_dust * reffrad(ig,l,iaer) ) ) * |
---|
501 | & pq(ig,l,igcm_dust_submicron) * |
---|
502 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
503 | ENDDO |
---|
504 | ENDIF |
---|
505 | ENDDO |
---|
506 | |
---|
507 | c================================================================== |
---|
508 | CASE("h2o_ice") aerkind ! Water ice crystals |
---|
509 | c================================================================== |
---|
510 | |
---|
511 | c 1. Initialization |
---|
512 | aerosol(1:ngrid,1:nlayer,iaer) = 0. |
---|
513 | taucloudvis(1:ngrid) = 0. |
---|
514 | taucloudtes(1:ngrid) = 0. |
---|
515 | c 2. Opacity calculation |
---|
516 | ! NO CLOUDS |
---|
517 | IF (clearsky) THEN |
---|
518 | aerosol(1:ngrid,1:nlayer,iaer) =1.e-9 |
---|
519 | ! CLOUDSs |
---|
520 | ELSE ! else (clearsky) |
---|
521 | DO ig=1, ngrid |
---|
522 | DO l=1,nlayer |
---|
523 | aerosol(ig,l,iaer) = max(1E-20, |
---|
524 | & ( 0.75 * QREFvis3d(ig,l,iaer) / |
---|
525 | & ( rho_ice * reffrad(ig,l,iaer) ) ) * |
---|
526 | & pq(ig,l,i_ice) * |
---|
527 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
528 | & ) |
---|
529 | taucloudvis(ig) = taucloudvis(ig) + aerosol(ig,l,iaer) |
---|
530 | taucloudtes(ig) = taucloudtes(ig) + aerosol(ig,l,iaer)* |
---|
531 | & QREFir3d(ig,l,iaer) / QREFvis3d(ig,l,iaer) * |
---|
532 | & ( 1.E0 - omegaREFir3d(ig,l,iaer) ) |
---|
533 | ENDDO |
---|
534 | ENDDO |
---|
535 | ! SUB-GRID SCALE CLOUDS |
---|
536 | IF (CLFvarying) THEN |
---|
537 | DO ig=1, ngrid |
---|
538 | DO l=1,nlayer-1 |
---|
539 | CLFtot = max(totcloudfrac(ig),0.01) |
---|
540 | aerosol(ig,l,iaer)= |
---|
541 | & aerosol(ig,l,iaer)/CLFtot |
---|
542 | aerosol(ig,l,iaer) = |
---|
543 | & max(aerosol(ig,l,iaer),1.e-9) |
---|
544 | ENDDO |
---|
545 | ENDDO |
---|
546 | ENDIF ! end (CLFvarying) |
---|
547 | ENDIF ! end (clearsky) |
---|
548 | |
---|
549 | c================================================================== |
---|
550 | CASE("co2_ice") aerkind ! CO2 ice crystals |
---|
551 | c================================================================== |
---|
552 | |
---|
553 | c 1. Initialization |
---|
554 | aerosol(1:ngrid,1:nlayer,iaer) = 0. |
---|
555 | taucloudco2vis(1:ngrid) = 0. |
---|
556 | taucloudco2tes(1:ngrid) = 0. |
---|
557 | c 2. Opacity calculation |
---|
558 | ! NO CLOUDS |
---|
559 | IF (clearsky) THEN |
---|
560 | aerosol(1:ngrid,1:nlayer,iaer) = 1.e-9 |
---|
561 | ! CLOUDSs |
---|
562 | ELSE ! else (clearsky) |
---|
563 | DO ig = 1, ngrid |
---|
564 | DO l = 1, nlayer |
---|
565 | call density_co2_ice(dble(pt(ig,l)), rho_ice_co2) |
---|
566 | |
---|
567 | aerosol(ig,l,iaer) = max(1E-20, |
---|
568 | & ( 0.75 * QREFvis3d(ig,l,iaer) / |
---|
569 | & ( rho_ice_co2 * reffrad(ig,l,iaer) ) ) * |
---|
570 | & pq(ig,l,i_co2ice) * |
---|
571 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
572 | & ) |
---|
573 | taucloudco2vis(ig) = taucloudco2vis(ig) |
---|
574 | & + aerosol(ig,l,iaer) |
---|
575 | taucloudco2tes(ig) = taucloudco2tes(ig) |
---|
576 | & + aerosol(ig,l,iaer) * |
---|
577 | & QREFir3d(ig,l,iaer) / QREFvis3d(ig,l,iaer) * |
---|
578 | & ( 1.E0 - omegaREFir3d(ig,l,iaer) ) |
---|
579 | ENDDO |
---|
580 | ENDDO |
---|
581 | ! SUB-GRID SCALE CLOUDS |
---|
582 | IF (CLFvaryingCO2) THEN |
---|
583 | DO ig=1, ngrid |
---|
584 | DO l= 1, nlayer-1 |
---|
585 | CLFtotco2 = max(totcloudco2frac(ig),0.01) |
---|
586 | aerosol(ig,l,iaer)= |
---|
587 | & aerosol(ig,l,iaer)/CLFtotco2 |
---|
588 | aerosol(ig,l,iaer) = |
---|
589 | & max(aerosol(ig,l,iaer),1.e-9) |
---|
590 | ENDDO |
---|
591 | ENDDO |
---|
592 | ENDIF ! end (CLFvaryingCO2) |
---|
593 | ENDIF ! end (clearsky) |
---|
594 | |
---|
595 | c================================================================== |
---|
596 | CASE("stormdust_doubleq") aerkind ! CW17 : Two-moment scheme for |
---|
597 | c stormdust (transport of mass and number mixing ratio) |
---|
598 | c================================================================== |
---|
599 | c aerosol is calculated twice : once within the dust storm (clearatm=false) |
---|
600 | c and once in the part of the mesh without dust storm (clearatm=true) |
---|
601 | aerosol(1:ngrid,1:nlayer,iaer) = 0. |
---|
602 | IF (clearatm) THEN ! considering part of the mesh without storm |
---|
603 | aerosol(1:ngrid,1:nlayer,iaer)=1.e-25 |
---|
604 | ELSE ! part of the mesh with concentred dust storm |
---|
605 | DO l=1,nlayer |
---|
606 | IF (l.LE.cstdustlevel) THEN |
---|
607 | c Opacity in the first levels is held constant to |
---|
608 | c avoid unrealistic values due to constant lifting: |
---|
609 | DO ig=1,ngrid |
---|
610 | ! OPTICAL DEPTH used in the radiative transfer |
---|
611 | ! => visible wavelength |
---|
612 | aerosol(ig,l,iaer) = |
---|
613 | & ( 0.75 * QREFvis3d(ig,cstdustlevel,iaer) / |
---|
614 | & ( rho_dust * reffrad(ig,cstdustlevel,iaer) ) ) * |
---|
615 | & pq(ig,cstdustlevel,igcm_stormdust_mass) * |
---|
616 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
617 | ! DENSITY SCALED OPACITY : |
---|
618 | ! Diagnostic output to be compared with observations |
---|
619 | ! => infrared wavelength |
---|
620 | dsords(ig,l) = |
---|
621 | & ( 0.75 * QREFir3d(ig,cstdustlevel,iaer) / |
---|
622 | & ( rho_dust * reffrad(ig,cstdustlevel,iaer) ) ) * |
---|
623 | & pq(ig,cstdustlevel,igcm_stormdust_mass) |
---|
624 | ENDDO |
---|
625 | ELSE |
---|
626 | DO ig=1,ngrid |
---|
627 | ! OPTICAL DEPTH used in the radiative transfer |
---|
628 | ! => visible wavelength |
---|
629 | aerosol(ig,l,iaer) = |
---|
630 | & ( 0.75 * QREFvis3d(ig,l,iaer) / |
---|
631 | & ( rho_dust * reffrad(ig,l,iaer) ) ) * |
---|
632 | & pq(ig,l,igcm_stormdust_mass) * |
---|
633 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
634 | ! DENSITY SCALED OPACITY : |
---|
635 | ! Diagnostic output to be compared with observations |
---|
636 | ! => infrared wavelength |
---|
637 | dsords(ig,l) = |
---|
638 | & ( 0.75 * QREFir3d(ig,l,iaer) / |
---|
639 | & ( rho_dust * reffrad(ig,l,iaer) ) ) * |
---|
640 | & pq(ig,l,igcm_stormdust_mass) |
---|
641 | ENDDO |
---|
642 | ENDIF |
---|
643 | ENDDO |
---|
644 | ENDIF |
---|
645 | c================================================================== |
---|
646 | CASE("topdust_doubleq") aerkind ! MV18 : Two-moment scheme for |
---|
647 | c topdust (transport of mass and number mixing ratio) |
---|
648 | c================================================================== |
---|
649 | c aerosol is calculated twice : once "above" the sub-grid mountain (nohmons=false) |
---|
650 | c and once in the part of the mesh without the sub-grid mountain (nohmons=true) |
---|
651 | aerosol(1:ngrid,1:nlayer,iaer) = 0. |
---|
652 | IF (nohmons) THEN ! considering part of the mesh without top dust flows |
---|
653 | aerosol(1:ngrid,1:nlayer,iaer)=1.e-25 |
---|
654 | ELSE ! part of the mesh with concentrated dust flows |
---|
655 | DO l=1,nlayer |
---|
656 | IF (l.LE.cstdustlevel) THEN |
---|
657 | c Opacity in the first levels is held constant to |
---|
658 | c avoid unrealistic values due to constant lifting: |
---|
659 | DO ig=1,ngrid |
---|
660 | ! OPTICAL DEPTH used in the radiative transfer |
---|
661 | ! => visible wavelength |
---|
662 | aerosol(ig,l,iaer) = |
---|
663 | & ( 0.75 * QREFvis3d(ig,cstdustlevel,iaer) / |
---|
664 | & ( rho_dust * reffrad(ig,cstdustlevel,iaer) ) ) * |
---|
665 | & pq(ig,cstdustlevel,igcm_topdust_mass) * |
---|
666 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
667 | ! DENSITY SCALED OPACITY : |
---|
668 | ! Diagnostic output to be compared with observations |
---|
669 | ! => infrared wavelength |
---|
670 | dsotop(ig,l) = |
---|
671 | & ( 0.75 * QREFir3d(ig,cstdustlevel,iaer) / |
---|
672 | & ( rho_dust * reffrad(ig,cstdustlevel,iaer) ) ) * |
---|
673 | & pq(ig,cstdustlevel,igcm_topdust_mass) |
---|
674 | ENDDO |
---|
675 | ELSE |
---|
676 | DO ig=1,ngrid |
---|
677 | ! OPTICAL DEPTH used in the radiative transfer |
---|
678 | ! => visible wavelength |
---|
679 | aerosol(ig,l,iaer) = |
---|
680 | & ( 0.75 * QREFvis3d(ig,l,iaer) / |
---|
681 | & ( rho_dust * reffrad(ig,l,iaer) ) ) * |
---|
682 | & pq(ig,l,igcm_topdust_mass) * |
---|
683 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
684 | ! DENSITY SCALED OPACITY : |
---|
685 | ! Diagnostic output to be compared with observations |
---|
686 | ! => infrared wavelength |
---|
687 | dsotop(ig,l) = |
---|
688 | & ( 0.75 * QREFir3d(ig,l,iaer) / |
---|
689 | & ( rho_dust * reffrad(ig,l,iaer) ) ) * |
---|
690 | & pq(ig,l,igcm_topdust_mass) |
---|
691 | ENDDO |
---|
692 | ENDIF |
---|
693 | ENDDO |
---|
694 | ENDIF |
---|
695 | c================================================================== |
---|
696 | END SELECT aerkind |
---|
697 | c ----------------------------------- |
---|
698 | ENDDO ! iaer (loop on aerosol kind) |
---|
699 | |
---|
700 | ! 3. Specific treatments for the dust aerosols |
---|
701 | |
---|
702 | ! here IRtoVIScoef has been updated, we can call again read_dust_scenario |
---|
703 | if (reff_driven_IRtoVIS_scenario) then |
---|
704 | IF ((iaervar.ge.6).and.(iaervar.le.8)) THEN |
---|
705 | ! clim, cold or warm synthetic scenarios |
---|
706 | call read_dust_scenario(ngrid,nlayer,zday,pplev, |
---|
707 | & IRtoVIScoef,tau_pref_scenario) |
---|
708 | ELSE IF ((iaervar.ge.24).and.(iaervar.le.35)) |
---|
709 | & THEN ! << MY... dust scenarios >> |
---|
710 | call read_dust_scenario(ngrid,nlayer,zday,pplev, |
---|
711 | & IRtoVIScoef,tau_pref_scenario) |
---|
712 | ELSE IF ((iaervar.eq.4).or. |
---|
713 | & ((iaervar.ge.124).and.(iaervar.le.126))) THEN |
---|
714 | ! "old" TES assimation dust scenario (values at 700Pa in files!) |
---|
715 | call read_dust_scenario(ngrid,nlayer,zday,pplev, |
---|
716 | & IRtoVIScoef,tau_pref_scenario) |
---|
717 | ENDIF |
---|
718 | endif |
---|
719 | |
---|
720 | #ifdef DUSTSTORM |
---|
721 | c ----------------------------------------------------------------- |
---|
722 | ! Calculate reference opacity without perturbation |
---|
723 | c ----------------------------------------------------------------- |
---|
724 | IF (firstcall) THEN |
---|
725 | DO iaer=1,naerdust |
---|
726 | DO l=1,nlayer |
---|
727 | DO ig=1,ngrid |
---|
728 | tau_pref_gcm(ig) = tau_pref_gcm(ig) + |
---|
729 | & aerosol(ig,l,iaerdust(iaer)) |
---|
730 | ENDDO |
---|
731 | ENDDO |
---|
732 | ENDDO |
---|
733 | tau_pref_gcm(:) = tau_pref_gcm(:) * odpref / pplev(:,1) |
---|
734 | |
---|
735 | c-------------------------------------------------- |
---|
736 | c Get parameters of the opacity perturbation |
---|
737 | c-------------------------------------------------- |
---|
738 | iaer=1 ! just change dust |
---|
739 | |
---|
740 | write(*,*) "Add a local storm ?" |
---|
741 | localstorm=.true. ! default value |
---|
742 | call getin_p("localstorm",localstorm) |
---|
743 | write(*,*) " localstorm = ",localstorm |
---|
744 | |
---|
745 | IF (localstorm) THEN |
---|
746 | WRITE(*,*) "********************" |
---|
747 | WRITE(*,*) "ADDING A LOCAL STORM" |
---|
748 | WRITE(*,*) "********************" |
---|
749 | |
---|
750 | write(*,*) "ref opacity of local dust storm" |
---|
751 | taulocref = 4.25 ! default value |
---|
752 | call getin_p("taulocref",taulocref) |
---|
753 | write(*,*) " taulocref = ",taulocref |
---|
754 | |
---|
755 | write(*,*) "target altitude of local storm (km)" |
---|
756 | ztoploc = 10.0 ! default value |
---|
757 | call getin_p("ztoploc",ztoploc) |
---|
758 | write(*,*) " ztoploc = ",ztoploc |
---|
759 | |
---|
760 | write(*,*) "radius of dust storm (degree)" |
---|
761 | radloc = 0.5 ! default value |
---|
762 | call getin_p("radloc",radloc) |
---|
763 | write(*,*) " radloc = ",radloc |
---|
764 | |
---|
765 | write(*,*) "center longitude of storm (deg)" |
---|
766 | lonloc = 25.0 ! default value |
---|
767 | call getin_p("lonloc",lonloc) |
---|
768 | write(*,*) " lonloc = ",lonloc |
---|
769 | |
---|
770 | write(*,*) "center latitude of storm (deg)" |
---|
771 | latloc = -2.5 ! default value |
---|
772 | call getin_p("latloc",latloc) |
---|
773 | write(*,*) " latloc = ",latloc |
---|
774 | |
---|
775 | write(*,*) "reff storm (mic) 0. for background" |
---|
776 | reffstorm = 0.0 ! default value |
---|
777 | call getin_p("reffstorm",reffstorm) |
---|
778 | write(*,*) " reffstorm = ",reffstorm |
---|
779 | |
---|
780 | !! LOOP: modify opacity |
---|
781 | DO ig=1,ngrid |
---|
782 | |
---|
783 | !! distance to the center: |
---|
784 | ray(ig)=SQRT((latitude(ig)*180./pi-latloc)**2 + |
---|
785 | & (longitude(ig)*180./pi -lonloc)**2) |
---|
786 | |
---|
787 | !! transition factor for storm |
---|
788 | !! factor is hardcoded -- increase it to steepen |
---|
789 | yeah = (TANH(2.+(radloc-ray(ig))*10.)+1.)/2. |
---|
790 | |
---|
791 | !! new opacity field |
---|
792 | !! -- add an opacity set to taulocref |
---|
793 | !! -- the additional reference opacity will |
---|
794 | !! thus be taulocref*odpref/pplev |
---|
795 | tauuser(ig)=max( tau_pref_gcm(ig) * pplev(ig,1) /odpref , |
---|
796 | & taulocref * yeah ) |
---|
797 | |
---|
798 | !! compute l_top |
---|
799 | DO l=1,nlayer |
---|
800 | zalt(ig,l) = LOG( pplev(ig,1)/pplev(ig,l) ) |
---|
801 | & / g / 44.01 |
---|
802 | & * 8.31 * 210. |
---|
803 | IF ( (ztoploc .lt. zalt(ig,l) ) |
---|
804 | & .and. (ztoploc .gt. zalt(ig,l-1)) ) l_top=l-1 |
---|
805 | ENDDO |
---|
806 | |
---|
807 | !! change reffrad if ever needed |
---|
808 | IF (reffstorm .gt. 0.) THEN |
---|
809 | DO l=1,nlayer |
---|
810 | IF (l .lt. l_top+1) THEN |
---|
811 | reffrad(ig,l,iaer) = max( reffrad(ig,l,iaer), reffstorm |
---|
812 | & * 1.e-6 * yeah ) |
---|
813 | ENDIF |
---|
814 | ENDDO |
---|
815 | ENDIF |
---|
816 | |
---|
817 | ENDDO |
---|
818 | !! END LOOP |
---|
819 | |
---|
820 | !! compute perturbation in each layer (equation 8 in Spiga et al. JGR 2013) |
---|
821 | DO ig=1,ngrid |
---|
822 | int_factor(ig)=0. |
---|
823 | DO l=1,nlayer |
---|
824 | IF (l .lt. l_top+1) THEN |
---|
825 | int_factor(ig) = |
---|
826 | & int_factor(ig) + |
---|
827 | & ( 0.75 * QREFvis3d(ig,l,iaer) / |
---|
828 | & ( rho_dust * reffrad(ig,l,iaer) ) ) * |
---|
829 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
830 | ENDIF |
---|
831 | ENDDO |
---|
832 | DO l=1, nlayer |
---|
833 | !! Mass mixing ratio perturbation due to local dust storm in each layer |
---|
834 | more_dust(ig,l,1)= |
---|
835 | & (tauuser(ig)-(tau_pref_gcm(ig) |
---|
836 | & * pplev(ig,1) /odpref)) / |
---|
837 | & int_factor(ig) |
---|
838 | more_dust(ig,l,2)= |
---|
839 | & (tauuser(ig)-(tau_pref_gcm(ig) * |
---|
840 | & pplev(ig,1) /odpref)) |
---|
841 | & / int_factor(ig) * |
---|
842 | & ((ref_r0/reffrad(ig,l,iaer))**3) |
---|
843 | & * r3n_q |
---|
844 | ENDDO |
---|
845 | ENDDO |
---|
846 | |
---|
847 | !! quantity of dust for each layer with the addition of the perturbation |
---|
848 | DO l=1, l_top |
---|
849 | pq(:,l,igcm_dust_mass)= pq(:,l,igcm_dust_mass) |
---|
850 | . + more_dust(:,l,1) |
---|
851 | pq(:,l,igcm_dust_number)= pq(:,l,igcm_dust_number) |
---|
852 | . + more_dust(:,l,2) |
---|
853 | ENDDO |
---|
854 | ENDIF !! IF (localstorm) |
---|
855 | tau_pref_gcm(:)=0. |
---|
856 | ENDIF !! IF (firstcall) |
---|
857 | #endif |
---|
858 | |
---|
859 | ! |
---|
860 | ! 3.1. Compute "tauscaling" and "dust_rad_adjust", the dust rescaling |
---|
861 | ! coefficients and adjust aerosol() dust opacities accordingly |
---|
862 | call compute_dustscaling(ngrid,nlayer,naerkind,naerdust,zday,pplev |
---|
863 | & ,tau_pref_scenario,IRtoVIScoef, |
---|
864 | & tauscaling,dust_rad_adjust,aerosol) |
---|
865 | |
---|
866 | ! 3.2. Recompute tau_pref_gcm, the reference dust opacity, based on dust tracer |
---|
867 | ! mixing ratios and their optical properties |
---|
868 | |
---|
869 | IF (freedust) THEN |
---|
870 | ! Initialisation : |
---|
871 | tau_pref_gcm(:)=0 |
---|
872 | DO iaer=1,naerdust |
---|
873 | DO l=1,nlayer |
---|
874 | DO ig=1,ngrid |
---|
875 | #ifdef DUSTSTORM |
---|
876 | !! recalculate opacity because storm perturbation has been added |
---|
877 | IF (firstcall) THEN |
---|
878 | aerosol(ig,l,iaer) = |
---|
879 | & ( 0.75 * QREFvis3d(ig,l,iaer) / |
---|
880 | & ( rho_dust * reffrad(ig,l,iaer) ) ) * |
---|
881 | & pq(ig,l,igcm_dust_mass) * |
---|
882 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
883 | ENDIF |
---|
884 | #endif |
---|
885 | c MV19: tau_pref_gcm must ALWAYS contain the opacity of all dust tracers |
---|
886 | ! GCM DUST OPTICAL DEPTH tau_pref_gcm is to be compared |
---|
887 | ! with the observation CDOD tau_pref_scenario |
---|
888 | ! => visible wavelength |
---|
889 | IF (name_iaer(iaerdust(iaer)).eq."dust_doubleq") THEN |
---|
890 | tau_pref_gcm(ig) = tau_pref_gcm(ig) + |
---|
891 | & ( 0.75 * QREFvis3d(ig,l,iaerdust(iaer)) / |
---|
892 | & ( rho_dust * reffrad(ig,l,iaerdust(iaer)) ) ) * |
---|
893 | & pq(ig,l,igcm_dust_mass) * |
---|
894 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
895 | ELSE IF (name_iaer(iaerdust(iaer)).eq."stormdust_doubleq") THEN |
---|
896 | tau_pref_gcm(ig) = tau_pref_gcm(ig) + |
---|
897 | & ( 0.75 * QREFvis3d(ig,l,iaerdust(iaer)) / |
---|
898 | & ( rho_dust * reffrad(ig,l,iaerdust(iaer)) ) ) * |
---|
899 | & pq(ig,l,igcm_stormdust_mass) * |
---|
900 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
901 | ELSE IF (name_iaer(iaerdust(iaer)).eq."topdust_doubleq") THEN |
---|
902 | tau_pref_gcm(ig) = tau_pref_gcm(ig) + |
---|
903 | & ( 0.75 * QREFvis3d(ig,l,iaerdust(iaer)) / |
---|
904 | & ( rho_dust * reffrad(ig,l,iaerdust(iaer)) ) ) * |
---|
905 | & pq(ig,l,igcm_topdust_mass) * |
---|
906 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
907 | ENDIF |
---|
908 | |
---|
909 | ENDDO |
---|
910 | ENDDO |
---|
911 | ENDDO |
---|
912 | tau_pref_gcm(:) = tau_pref_gcm(:) * odpref / pplev(:,1) |
---|
913 | ELSE |
---|
914 | ! dust opacity strictly follows what is imposed by the dust scenario |
---|
915 | tau_pref_gcm(:)=tau_pref_scenario(:) |
---|
916 | ENDIF ! of IF (freedust) |
---|
917 | |
---|
918 | ! ----------------------------------------------------------------- |
---|
919 | ! 4. Total integrated visible optical depth of aerosols in each column |
---|
920 | ! ----------------------------------------------------------------- |
---|
921 | DO iaer=1,naerkind |
---|
922 | do l=1,nlayer |
---|
923 | do ig=1,ngrid |
---|
924 | tau(ig,iaer) = tau(ig,iaer) + aerosol(ig,l,iaer) |
---|
925 | end do |
---|
926 | end do |
---|
927 | ENDDO |
---|
928 | |
---|
929 | |
---|
930 | #ifdef DUSTSTORM |
---|
931 | IF (firstcall) THEN |
---|
932 | firstcall=.false. |
---|
933 | ENDIF |
---|
934 | #endif |
---|
935 | |
---|
936 | ! |
---|
937 | ! 5. Adapt aerosol() for the radiative transfer (i.e. account for |
---|
938 | ! cases when it refers to a fraction of the global mesh) |
---|
939 | ! |
---|
940 | |
---|
941 | c ----------------------------------------------------------------- |
---|
942 | c aerosol/X for stormdust to prepare calculation of radiative transfer |
---|
943 | c ----------------------------------------------------------------- |
---|
944 | IF (rdstorm) THEN |
---|
945 | DO l=1,nlayer |
---|
946 | DO ig=1,ngrid |
---|
947 | ! stormdust: opacity relative to the storm fraction (stormdust/x) |
---|
948 | aerosol(ig,l,iaer_stormdust_doubleq) = |
---|
949 | & aerosol(ig,l,iaer_stormdust_doubleq)/totstormfract(ig) |
---|
950 | ENDDO |
---|
951 | ENDDO |
---|
952 | ENDIF |
---|
953 | |
---|
954 | c ----------------------------------------------------------------- |
---|
955 | c aerosol/X for topdust to prepare calculation of radiative transfer |
---|
956 | c ----------------------------------------------------------------- |
---|
957 | IF (topflows) THEN |
---|
958 | DO ig=1,ngrid |
---|
959 | IF (contains_mons(ig)) THEN ! contains_mons=True ensures that alpha_hmons>0 |
---|
960 | DO l=1,nlayer |
---|
961 | ! topdust: opacity relative to the mons fraction (topdust/x) |
---|
962 | aerosol(ig,l,iaer_topdust_doubleq) = |
---|
963 | & aerosol(ig,l,iaer_topdust_doubleq)/alpha_hmons(ig) |
---|
964 | ENDDO |
---|
965 | ENDIF |
---|
966 | ENDDO |
---|
967 | ENDIF |
---|
968 | |
---|
969 | END SUBROUTINE aeropacity |
---|
970 | |
---|
971 | END MODULE aeropacity_mod |
---|