[1711] | 1 | MODULE aeropacity_mod |
---|
| 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
[2409] | 5 | INTEGER :: iddist ! flag for vertical dust ditribution type (when imposed) |
---|
| 6 | ! 0: Pollack90, 1: top set by "topdustref" |
---|
| 7 | ! 2: Viking scenario; =3 MGS scenario |
---|
| 8 | REAL :: topdustref ! Dust top altitude (km); only matters only if iddist=1) |
---|
[1711] | 9 | CONTAINS |
---|
| 10 | |
---|
[38] | 11 | SUBROUTINE aeropacity(ngrid,nlayer,nq,zday,pplay,pplev,ls, |
---|
[2494] | 12 | & pq,pt,tauscaling,dust_rad_adjust,tau_pref_scenario, |
---|
| 13 | & tau_pref_gcm,tau,taucloudtes,aerosol,dsodust,reffrad, |
---|
[1974] | 14 | & QREFvis3d,QREFir3d,omegaREFir3d, |
---|
[2246] | 15 | & totstormfract,clearatm,dsords,dsotop, |
---|
[2199] | 16 | & alpha_hmons,nohmons, |
---|
[1711] | 17 | & clearsky,totcloudfrac) |
---|
[1974] | 18 | |
---|
[2304] | 19 | use ioipsl_getin_p_mod, only: getin_p |
---|
[1036] | 20 | use tracer_mod, only: noms, igcm_h2o_ice, igcm_dust_mass, |
---|
[1224] | 21 | & igcm_dust_submicron, rho_dust, rho_ice, |
---|
[2199] | 22 | & nqdust, igcm_stormdust_mass, |
---|
[2447] | 23 | & igcm_topdust_mass, igcm_co2_ice |
---|
[1543] | 24 | use geometry_mod, only: latitude ! grid point latitudes (rad) |
---|
[1541] | 25 | use comgeomfi_h, only: sinlat ! sines of grid point latitudes |
---|
[1375] | 26 | #ifdef DUSTSTORM |
---|
[1543] | 27 | use geometry_mod, only: longitude |
---|
[1375] | 28 | use tracer_mod, only: r3n_q, ref_r0, igcm_dust_number |
---|
| 29 | #endif |
---|
[2304] | 30 | use comcstfi_h, only: g, pi |
---|
[1246] | 31 | use dimradmars_mod, only: naerkind, name_iaer, |
---|
| 32 | & iaerdust,tauvis, |
---|
| 33 | & iaer_dust_conrath,iaer_dust_doubleq, |
---|
[1974] | 34 | & iaer_dust_submicron,iaer_h2o_ice, |
---|
[2199] | 35 | & iaer_stormdust_doubleq, |
---|
| 36 | & iaer_topdust_doubleq |
---|
[2409] | 37 | use dust_param_mod, only: odpref, freedust |
---|
[2417] | 38 | use dust_scaling_mod, only: compute_dustscaling |
---|
[2494] | 39 | use density_co2_ice_mod, only: density_co2_ice |
---|
[38] | 40 | IMPLICIT NONE |
---|
| 41 | c======================================================================= |
---|
| 42 | c subject: |
---|
| 43 | c -------- |
---|
| 44 | c Computing aerosol optical depth in each gridbox. |
---|
| 45 | c |
---|
| 46 | c author: F.Forget |
---|
| 47 | c ------ |
---|
| 48 | c update F. Montmessin (water ice scheme) |
---|
| 49 | c and S. Lebonnois (12/06/2003) compatibility dust/ice/chemistry |
---|
| 50 | c update J.-B. Madeleine 2008-2009: |
---|
| 51 | c - added 3D scattering by aerosols; |
---|
| 52 | c - dustopacity transferred from physiq.F to callradite.F, |
---|
| 53 | c and renamed into aeropacity.F; |
---|
[607] | 54 | c update E. Millour, march 2012: |
---|
| 55 | c - reference pressure is now set to 610Pa (not 700Pa) |
---|
[38] | 56 | c |
---|
| 57 | c======================================================================= |
---|
[1974] | 58 | include "callkeys.h" |
---|
[38] | 59 | |
---|
| 60 | c----------------------------------------------------------------------- |
---|
| 61 | c |
---|
| 62 | c Declarations : |
---|
| 63 | c -------------- |
---|
| 64 | c |
---|
| 65 | c Input/Output |
---|
| 66 | c ------------ |
---|
[2415] | 67 | INTEGER,INTENT(IN) :: ngrid ! number of atmospheric columns |
---|
| 68 | INTEGER,INTENT(IN) :: nlayer ! number of atmospheric layers |
---|
| 69 | INTEGER,INTENT(IN) :: nq ! number of tracers |
---|
| 70 | REAL,INTENT(IN) :: ls ! Solar Longitude (rad) |
---|
| 71 | REAL,INTENT(IN) :: zday ! date (in martian sols) since Ls=0 |
---|
| 72 | REAL,INTENT(IN) :: pplay(ngrid,nlayer) ! pressure (Pa) in the middle of |
---|
| 73 | ! each atmospheric layer |
---|
| 74 | REAL,INTENT(IN) :: pplev(ngrid,nlayer+1) ! pressure (Pa) at the boundaries |
---|
| 75 | ! of the atmospheric layers |
---|
| 76 | REAL,INTENT(IN) :: pq(ngrid,nlayer,nq) ! tracers |
---|
[2494] | 77 | REAL,INTENT(IN) :: pt(ngrid,nlayer) !temperature |
---|
[2415] | 78 | REAL,INTENT(OUT) :: tau_pref_scenario(ngrid) ! prescribed dust column |
---|
| 79 | ! visible opacity at odpref from scenario |
---|
| 80 | REAL,INTENT(OUT) :: tau_pref_gcm(ngrid) ! computed dust column |
---|
| 81 | ! visible opacity at odpref in the GCM |
---|
| 82 | REAL,INTENT(OUT) :: tau(ngrid,naerkind) ! column total visible |
---|
| 83 | ! optical depth of each aerosol |
---|
| 84 | REAL,INTENT(OUT) :: taucloudtes(ngrid)! Water ice cloud opacity at |
---|
| 85 | ! infrared reference wavelength using |
---|
| 86 | ! Qabs instead of Qext |
---|
| 87 | ! (for direct comparison with TES) |
---|
| 88 | REAL, INTENT(OUT) :: aerosol(ngrid,nlayer,naerkind) ! optical |
---|
| 89 | ! depth of each aerosl in each layer |
---|
| 90 | REAL, INTENT(OUT) :: dsodust(ngrid,nlayer) ! density scaled opacity |
---|
| 91 | ! of (background) dust |
---|
[2413] | 92 | REAL, INTENT(OUT) :: dsords(ngrid,nlayer) !dso of stormdust |
---|
| 93 | REAL, INTENT(OUT) :: dsotop(ngrid,nlayer) !dso of topdust |
---|
[2415] | 94 | REAL, INTENT(INOUT) :: reffrad(ngrid,nlayer,naerkind) ! effective radius |
---|
| 95 | ! of the aerosols in the grid boxes |
---|
| 96 | REAL, INTENT(IN) :: QREFvis3d(ngrid,nlayer,naerkind) ! 3D extinction |
---|
| 97 | ! coefficients (in the visible) of aerosols |
---|
| 98 | REAL, INTENT(IN) :: QREFir3d(ngrid,nlayer,naerkind) ! 3D extinction |
---|
| 99 | ! coefficients (in the infra-red) of aerosols |
---|
| 100 | REAL, INTENT(IN) :: omegaREFir3d(ngrid,nlayer,naerkind) ! at the |
---|
| 101 | ! reference wavelengths |
---|
| 102 | LOGICAL, INTENT(IN) :: clearatm ! true to compute RT without stormdust |
---|
| 103 | ! and false to compute RT in rocket dust storms |
---|
| 104 | REAL, INTENT(IN) :: totstormfract(ngrid) ! mesh fraction with a rocket |
---|
| 105 | ! dust storm |
---|
| 106 | LOGICAL, INTENT(IN) :: nohmons ! true to compute RT without slope wind |
---|
| 107 | ! topdust, false to compute RT in the topdust |
---|
[2199] | 108 | REAL, INTENT(IN) :: alpha_hmons(ngrid) |
---|
[2417] | 109 | REAL,INTENT(OUT) :: tauscaling(ngrid) ! Scaling factor for qdust and Ndust |
---|
| 110 | REAL,INTENT(OUT) :: dust_rad_adjust(ngrid) ! Radiative adjustment |
---|
| 111 | ! factor for dust |
---|
[2415] | 112 | REAL,INTENT(IN) :: totcloudfrac(ngrid) ! total water ice cloud fraction |
---|
| 113 | LOGICAL,INTENT(IN) :: clearsky ! true to compute RT without water ice clouds |
---|
| 114 | ! false to compute RT with clouds (total or sub-grid clouds) |
---|
[38] | 115 | c |
---|
| 116 | c Local variables : |
---|
| 117 | c ----------------- |
---|
[1974] | 118 | REAL CLFtot ! total cloud fraction |
---|
| 119 | real expfactor |
---|
[38] | 120 | INTEGER l,ig,iq,i,j |
---|
| 121 | INTEGER iaer ! Aerosol index |
---|
[1047] | 122 | real topdust(ngrid) |
---|
[38] | 123 | real zlsconst, zp |
---|
| 124 | real taueq,tauS,tauN |
---|
| 125 | c Mean Qext(vis)/Qext(ir) profile |
---|
[1047] | 126 | real msolsir(nlayer,naerkind) |
---|
[38] | 127 | c Mean Qext(ir)/Qabs(ir) profile |
---|
[1047] | 128 | real mqextsqabs(nlayer,naerkind) |
---|
[38] | 129 | c Variables used when multiple particle sizes are used |
---|
| 130 | c for dust or water ice particles in the radiative transfer |
---|
| 131 | c (see callradite.F for more information). |
---|
[1047] | 132 | REAL taucloudvis(ngrid)! Cloud opacity at visible |
---|
[38] | 133 | ! reference wavelength |
---|
[1224] | 134 | REAL topdust0(ngrid) |
---|
[83] | 135 | |
---|
[2494] | 136 | ! -- CO2 clouds |
---|
| 137 | real CLFtotco2 |
---|
| 138 | real taucloudco2vis(ngrid) |
---|
| 139 | real taucloudco2tes(ngrid) |
---|
| 140 | real totcloudco2frac(ngrid) ! a mettre en (in) [CM] |
---|
| 141 | double precision :: rho_ice_co2 |
---|
[1375] | 142 | #ifdef DUSTSTORM |
---|
| 143 | !! Local dust storms |
---|
| 144 | logical localstorm ! =true to create a local dust storm |
---|
| 145 | real taulocref,ztoploc,radloc,lonloc,latloc ! local dust storm parameters |
---|
| 146 | real reffstorm, yeah |
---|
| 147 | REAL ray(ngrid) ! distance from dust storm center |
---|
| 148 | REAL tauuser(ngrid) ! opacity perturbation due to dust storm |
---|
| 149 | REAL more_dust(ngrid,nlayer,2) ! Mass mixing ratio perturbation due to the dust storm |
---|
| 150 | REAL int_factor(ngrid) ! useful factor to compute mmr perturbation |
---|
| 151 | real l_top ! layer of the storm's top |
---|
| 152 | REAL zalt(ngrid, nlayer) ! useful factor to compute l_top |
---|
| 153 | #endif |
---|
| 154 | |
---|
[38] | 155 | c local saved variables |
---|
| 156 | c --------------------- |
---|
| 157 | |
---|
| 158 | c Level under which the dust mixing ratio is held constant |
---|
| 159 | c when computing the dust opacity in each layer |
---|
| 160 | c (this applies when doubleq and active are true) |
---|
[1208] | 161 | INTEGER, PARAMETER :: cstdustlevel0 = 7 |
---|
| 162 | INTEGER, SAVE :: cstdustlevel |
---|
[38] | 163 | |
---|
[607] | 164 | LOGICAL,SAVE :: firstcall=.true. |
---|
[38] | 165 | |
---|
| 166 | ! indexes of water ice and dust tracers: |
---|
| 167 | INTEGER,SAVE :: i_ice=0 ! water ice |
---|
| 168 | CHARACTER(LEN=20) :: txt ! to temporarly store text |
---|
| 169 | CHARACTER(LEN=1) :: txt2 ! to temporarly store text |
---|
[2447] | 170 | ! indexes of co2 ice : |
---|
| 171 | INTEGER,SAVE :: i_co2ice=0 ! co2 ice |
---|
[38] | 172 | ! indexes of dust scatterers: |
---|
| 173 | INTEGER,SAVE :: naerdust ! number of dust scatterers |
---|
| 174 | |
---|
[2252] | 175 | ! initializations |
---|
[38] | 176 | tau(1:ngrid,1:naerkind)=0 |
---|
| 177 | |
---|
| 178 | ! identify tracers |
---|
| 179 | |
---|
[1775] | 180 | !! AS: firstcall OK absolute |
---|
[38] | 181 | IF (firstcall) THEN |
---|
| 182 | ! identify scatterers that are dust |
---|
| 183 | naerdust=0 |
---|
[2494] | 184 | iaerdust(1:naerkind) = 0 |
---|
| 185 | nqdust(1:nq) = 0 |
---|
[38] | 186 | DO iaer=1,naerkind |
---|
| 187 | txt=name_iaer(iaer) |
---|
[1974] | 188 | ! CW17: choice tauscaling for stormdust or not |
---|
[2199] | 189 | IF ((txt(1:4).eq."dust").OR.(txt(1:5).eq."storm") |
---|
| 190 | & .OR.(txt(1:3).eq."top")) THEN !MV19: topdust tracer |
---|
[38] | 191 | naerdust=naerdust+1 |
---|
| 192 | iaerdust(naerdust)=iaer |
---|
| 193 | ENDIF |
---|
| 194 | ENDDO |
---|
| 195 | ! identify tracers which are dust |
---|
| 196 | i=0 |
---|
| 197 | DO iq=1,nq |
---|
| 198 | txt=noms(iq) |
---|
| 199 | IF (txt(1:4).eq."dust") THEN |
---|
| 200 | i=i+1 |
---|
| 201 | nqdust(i)=iq |
---|
| 202 | ENDIF |
---|
| 203 | ENDDO |
---|
| 204 | IF (water.AND.activice) THEN |
---|
| 205 | i_ice=igcm_h2o_ice |
---|
| 206 | write(*,*) "aeropacity: i_ice=",i_ice |
---|
| 207 | ENDIF |
---|
| 208 | |
---|
[2447] | 209 | IF (co2clouds.AND.activeco2ice) THEN |
---|
| 210 | i_co2ice=igcm_co2_ice |
---|
| 211 | write(*,*) "aeropacity: i_co2ice =",i_co2ice |
---|
| 212 | ENDIF |
---|
| 213 | |
---|
[38] | 214 | c typical profile of solsir and (1-w)^(-1): |
---|
[1775] | 215 | c --- purely for diagnostics and printing |
---|
[38] | 216 | msolsir(1:nlayer,1:naerkind)=0 |
---|
| 217 | mqextsqabs(1:nlayer,1:naerkind)=0 |
---|
[222] | 218 | WRITE(*,*) "Typical profiles of Qext(vis)/Qext(IR)" |
---|
| 219 | WRITE(*,*) " and Qext(IR)/Qabs(IR):" |
---|
[38] | 220 | DO iaer = 1, naerkind ! Loop on aerosol kind |
---|
| 221 | WRITE(*,*) "Aerosol # ",iaer |
---|
| 222 | DO l=1,nlayer |
---|
[1047] | 223 | DO ig=1,ngrid |
---|
[38] | 224 | msolsir(l,iaer)=msolsir(l,iaer)+ |
---|
| 225 | & QREFvis3d(ig,l,iaer)/ |
---|
| 226 | & QREFir3d(ig,l,iaer) |
---|
| 227 | mqextsqabs(l,iaer)=mqextsqabs(l,iaer)+ |
---|
| 228 | & (1.E0-omegaREFir3d(ig,l,iaer))**(-1) |
---|
| 229 | ENDDO |
---|
[1047] | 230 | msolsir(l,iaer)=msolsir(l,iaer)/REAL(ngrid) |
---|
| 231 | mqextsqabs(l,iaer)=mqextsqabs(l,iaer)/REAL(ngrid) |
---|
[38] | 232 | ENDDO |
---|
| 233 | WRITE(*,*) "solsir: ",msolsir(:,iaer) |
---|
| 234 | WRITE(*,*) "Qext/Qabs(IR): ",mqextsqabs(:,iaer) |
---|
| 235 | ENDDO |
---|
| 236 | |
---|
| 237 | ! load value of tauvis from callphys.def (if given there, |
---|
| 238 | ! otherwise default value read from starfi.nc file will be used) |
---|
[2304] | 239 | call getin_p("tauvis",tauvis) |
---|
[38] | 240 | |
---|
[1974] | 241 | IF (freedust.or.rdstorm) THEN ! if rdstorm no need to held opacity constant at the first levels |
---|
[1208] | 242 | cstdustlevel = 1 |
---|
| 243 | ELSE |
---|
[1974] | 244 | cstdustlevel = cstdustlevel0 !Opacity in the first levels is held constant to |
---|
| 245 | !avoid unrealistic values due to constant lifting |
---|
[1208] | 246 | ENDIF |
---|
| 247 | |
---|
[1375] | 248 | #ifndef DUSTSTORM |
---|
[38] | 249 | firstcall=.false. |
---|
[1375] | 250 | #endif |
---|
[38] | 251 | |
---|
[2252] | 252 | END IF ! end of if firstcall |
---|
[38] | 253 | |
---|
[2415] | 254 | ! 1. Get prescribed tau_pref_scenario, Dust column optical depth at "odpref" Pa |
---|
| 255 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[1088] | 256 | |
---|
[2415] | 257 | IF(iaervar.eq.1) THEN |
---|
[1047] | 258 | do ig=1, ngrid |
---|
[2415] | 259 | tau_pref_scenario(ig)=max(tauvis,1.e-9) ! tauvis=cste (set in callphys.def |
---|
[38] | 260 | ! or read in starfi |
---|
| 261 | end do |
---|
| 262 | ELSE IF (iaervar.eq.2) THEN ! << "Viking" Scenario>> |
---|
| 263 | |
---|
[2415] | 264 | tau_pref_scenario(1) = 0.7+.3*cos(ls+80.*pi/180.) ! like seen by VL1 |
---|
[38] | 265 | do ig=2,ngrid |
---|
[2415] | 266 | tau_pref_scenario(ig) = tau_pref_scenario(1) |
---|
[38] | 267 | end do |
---|
| 268 | |
---|
| 269 | ELSE IF (iaervar.eq.3) THEN ! << "MGS" scenario >> |
---|
| 270 | |
---|
| 271 | taueq= 0.2 +(0.5-0.2) *(cos(0.5*(ls-4.363)))**14 |
---|
| 272 | tauS= 0.1 +(0.5-0.1) *(cos(0.5*(ls-4.363)))**14 |
---|
| 273 | tauN = 0.1 |
---|
[1047] | 274 | do ig=1,ngrid |
---|
[1541] | 275 | if (latitude(ig).ge.0) then |
---|
[1047] | 276 | ! Northern hemisphere |
---|
[2415] | 277 | tau_pref_scenario(ig)= tauN + |
---|
[1541] | 278 | & (taueq-tauN)*0.5*(1+tanh((45-latitude(ig)*180./pi)*6/60)) |
---|
[1047] | 279 | else |
---|
| 280 | ! Southern hemisphere |
---|
[2415] | 281 | tau_pref_scenario(ig)= tauS + |
---|
[1541] | 282 | & (taueq-tauS)*0.5*(1+tanh((45+latitude(ig)*180./pi)*6/60)) |
---|
[1047] | 283 | endif |
---|
| 284 | enddo ! of do ig=1,ngrid |
---|
[38] | 285 | ELSE IF (iaervar.eq.5) THEN ! << Escalier Scenario>> |
---|
[2415] | 286 | tau_pref_scenario(1) = 2.5 |
---|
[38] | 287 | if ((ls.ge.30.*pi/180.).and.(ls.le.150.*pi/180.)) |
---|
[2415] | 288 | & tau_pref_scenario(1) = .2 |
---|
[38] | 289 | |
---|
| 290 | do ig=2,ngrid |
---|
[2415] | 291 | tau_pref_scenario(ig) = tau_pref_scenario(1) |
---|
[38] | 292 | end do |
---|
[1278] | 293 | ELSE IF ((iaervar.ge.6).and.(iaervar.le.8)) THEN |
---|
| 294 | ! clim, cold or warm synthetic scenarios |
---|
[2415] | 295 | call read_dust_scenario(ngrid,nlayer,zday,pplev, |
---|
| 296 | & tau_pref_scenario) |
---|
[2449] | 297 | ELSE IF ((iaervar.ge.24).and.(iaervar.le.35)) |
---|
[607] | 298 | & THEN ! << MY... dust scenarios >> |
---|
[2415] | 299 | call read_dust_scenario(ngrid,nlayer,zday,pplev, |
---|
| 300 | & tau_pref_scenario) |
---|
[607] | 301 | ELSE IF ((iaervar.eq.4).or. |
---|
| 302 | & ((iaervar.ge.124).and.(iaervar.le.126))) THEN |
---|
| 303 | ! "old" TES assimation dust scenario (values at 700Pa in files!) |
---|
[2415] | 304 | call read_dust_scenario(ngrid,nlayer,zday,pplev, |
---|
| 305 | & tau_pref_scenario) |
---|
[38] | 306 | ELSE |
---|
[2304] | 307 | call abort_physic("aeropacity","wrong value for iaervar",1) |
---|
[38] | 308 | ENDIF |
---|
| 309 | |
---|
[2413] | 310 | ! ----------------------------------------------------------------- |
---|
| 311 | ! 2. Compute/set the opacity of each aerosol in each layer |
---|
| 312 | ! ----------------------------------------------------------------- |
---|
[38] | 313 | |
---|
[2413] | 314 | DO iaer = 1, naerkind ! Loop on all aerosols |
---|
[38] | 315 | c -------------------------------------------- |
---|
| 316 | aerkind: SELECT CASE (name_iaer(iaer)) |
---|
| 317 | c================================================================== |
---|
| 318 | CASE("dust_conrath") aerkind ! Typical dust profile |
---|
| 319 | c================================================================== |
---|
| 320 | |
---|
| 321 | c Altitude of the top of the dust layer |
---|
| 322 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 323 | zlsconst=SIN(ls-2.76) |
---|
| 324 | if (iddist.eq.1) then |
---|
| 325 | do ig=1,ngrid |
---|
| 326 | topdust(ig)=topdustref ! constant dust layer top |
---|
| 327 | end do |
---|
| 328 | |
---|
| 329 | else if (iddist.eq.2) then ! "Viking" scenario |
---|
| 330 | do ig=1,ngrid |
---|
[1224] | 331 | ! altitude of the top of the aerosol layer (km) at Ls=2.76rad: |
---|
| 332 | ! in the Viking year scenario |
---|
| 333 | topdust0(ig)=60. -22.*sinlat(ig)**2 |
---|
[38] | 334 | topdust(ig)=topdust0(ig)+18.*zlsconst |
---|
| 335 | end do |
---|
| 336 | |
---|
| 337 | else if(iddist.eq.3) then !"MGS" scenario |
---|
| 338 | do ig=1,ngrid |
---|
| 339 | topdust(ig)=60.+18.*zlsconst |
---|
[1541] | 340 | & -(32+18*zlsconst)*sin(latitude(ig))**4 |
---|
| 341 | & - 8*zlsconst*(sin(latitude(ig)))**5 |
---|
[38] | 342 | end do |
---|
| 343 | endif |
---|
| 344 | |
---|
| 345 | c Optical depth in each layer : |
---|
| 346 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 347 | if(iddist.ge.1) then |
---|
| 348 | |
---|
| 349 | expfactor=0. |
---|
| 350 | DO l=1,nlayer |
---|
| 351 | DO ig=1,ngrid |
---|
| 352 | c Typical mixing ratio profile |
---|
[607] | 353 | if(pplay(ig,l).gt.odpref |
---|
[38] | 354 | $ /(988.**(topdust(ig)/70.))) then |
---|
[607] | 355 | zp=(odpref/pplay(ig,l))**(70./topdust(ig)) |
---|
[38] | 356 | expfactor=max(exp(0.007*(1.-max(zp,1.))),1.e-3) |
---|
| 357 | else |
---|
| 358 | expfactor=1.e-3 |
---|
| 359 | endif |
---|
| 360 | c Vertical scaling function |
---|
| 361 | aerosol(ig,l,iaer)= (pplev(ig,l)-pplev(ig,l+1)) * |
---|
| 362 | & expfactor * |
---|
| 363 | & QREFvis3d(ig,l,iaer) / QREFvis3d(ig,1,iaer) |
---|
| 364 | ENDDO |
---|
| 365 | ENDDO |
---|
| 366 | |
---|
| 367 | else if(iddist.eq.0) then |
---|
| 368 | c old dust vertical distribution function (pollack90) |
---|
| 369 | DO l=1,nlayer |
---|
| 370 | DO ig=1,ngrid |
---|
[607] | 371 | zp=odpref/pplay(ig,l) |
---|
[2415] | 372 | aerosol(ig,l,1)= tau_pref_scenario(ig)/odpref * |
---|
[38] | 373 | s (pplev(ig,l)-pplev(ig,l+1)) |
---|
| 374 | s *max( exp(.03*(1.-max(zp,1.))) , 1.E-3 ) |
---|
| 375 | ENDDO |
---|
| 376 | ENDDO |
---|
| 377 | end if |
---|
| 378 | |
---|
| 379 | c================================================================== |
---|
[2246] | 380 | CASE("dust_doubleq") aerkind! Two-moment scheme for background dust |
---|
[38] | 381 | c (transport of mass and number mixing ratio) |
---|
| 382 | c================================================================== |
---|
| 383 | |
---|
| 384 | DO l=1,nlayer |
---|
| 385 | IF (l.LE.cstdustlevel) THEN |
---|
| 386 | c Opacity in the first levels is held constant to |
---|
| 387 | c avoid unrealistic values due to constant lifting: |
---|
| 388 | DO ig=1,ngrid |
---|
[2414] | 389 | ! OPTICAL DEPTH used in the radiative transfer |
---|
[2246] | 390 | ! => visible wavelength |
---|
[38] | 391 | aerosol(ig,l,iaer) = |
---|
| 392 | & ( 0.75 * QREFvis3d(ig,cstdustlevel,iaer) / |
---|
| 393 | & ( rho_dust * reffrad(ig,cstdustlevel,iaer) ) ) * |
---|
| 394 | & pq(ig,cstdustlevel,igcm_dust_mass) * |
---|
| 395 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
[2246] | 396 | ! DENSITY SCALED OPACITY : |
---|
[2414] | 397 | ! Diagnostic output to be compared with observations |
---|
[2246] | 398 | ! => infrared wavelength |
---|
[2161] | 399 | dsodust(ig,l) = |
---|
| 400 | & ( 0.75 * QREFir3d(ig,cstdustlevel,iaer) / |
---|
| 401 | & ( rho_dust * reffrad(ig,cstdustlevel,iaer) ) ) * |
---|
| 402 | & pq(ig,cstdustlevel,igcm_dust_mass) |
---|
[38] | 403 | ENDDO |
---|
| 404 | ELSE |
---|
| 405 | DO ig=1,ngrid |
---|
[2414] | 406 | ! OPTICAL DEPTH used in the radiative transfer |
---|
[2246] | 407 | ! => visible wavelength |
---|
| 408 | aerosol(ig,l,iaer) = |
---|
[38] | 409 | & ( 0.75 * QREFvis3d(ig,l,iaer) / |
---|
| 410 | & ( rho_dust * reffrad(ig,l,iaer) ) ) * |
---|
| 411 | & pq(ig,l,igcm_dust_mass) * |
---|
| 412 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
[2246] | 413 | ! DENSITY SCALED OPACITY : |
---|
[2414] | 414 | ! Diagnostic output to be compared with observations |
---|
[2246] | 415 | ! => infrared wavelength |
---|
[2161] | 416 | dsodust(ig,l) = |
---|
| 417 | & ( 0.75 * QREFir3d(ig,l,iaer) / |
---|
| 418 | & ( rho_dust * reffrad(ig,l,iaer) ) ) * |
---|
| 419 | & pq(ig,l,igcm_dust_mass) |
---|
[38] | 420 | ENDDO |
---|
| 421 | ENDIF |
---|
| 422 | ENDDO |
---|
| 423 | |
---|
| 424 | c================================================================== |
---|
| 425 | CASE("dust_submicron") aerkind ! Small dust population |
---|
| 426 | c================================================================== |
---|
| 427 | |
---|
| 428 | DO l=1,nlayer |
---|
| 429 | IF (l.LE.cstdustlevel) THEN |
---|
| 430 | c Opacity in the first levels is held constant to |
---|
| 431 | c avoid unrealistic values due to constant lifting: |
---|
| 432 | DO ig=1,ngrid |
---|
| 433 | aerosol(ig,l,iaer) = |
---|
| 434 | & ( 0.75 * QREFvis3d(ig,cstdustlevel,iaer) / |
---|
| 435 | & ( rho_dust * reffrad(ig,cstdustlevel,iaer) ) ) * |
---|
| 436 | & pq(ig,cstdustlevel,igcm_dust_submicron) * |
---|
| 437 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
| 438 | ENDDO |
---|
| 439 | ELSE |
---|
| 440 | DO ig=1,ngrid |
---|
| 441 | aerosol(ig,l,iaer) = |
---|
| 442 | & ( 0.75 * QREFvis3d(ig,l,iaer) / |
---|
| 443 | & ( rho_dust * reffrad(ig,l,iaer) ) ) * |
---|
| 444 | & pq(ig,l,igcm_dust_submicron) * |
---|
| 445 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
| 446 | ENDDO |
---|
| 447 | ENDIF |
---|
| 448 | ENDDO |
---|
| 449 | |
---|
| 450 | c================================================================== |
---|
| 451 | CASE("h2o_ice") aerkind ! Water ice crystals |
---|
| 452 | c================================================================== |
---|
| 453 | |
---|
| 454 | c 1. Initialization |
---|
| 455 | aerosol(1:ngrid,1:nlayer,iaer) = 0. |
---|
| 456 | taucloudvis(1:ngrid) = 0. |
---|
| 457 | taucloudtes(1:ngrid) = 0. |
---|
| 458 | c 2. Opacity calculation |
---|
[1711] | 459 | ! NO CLOUDS |
---|
| 460 | IF (clearsky) THEN |
---|
| 461 | aerosol(1:ngrid,1:nlayer,iaer) =1.e-9 |
---|
| 462 | ! CLOUDSs |
---|
| 463 | ELSE ! else (clearsky) |
---|
| 464 | DO ig=1, ngrid |
---|
| 465 | DO l=1,nlayer |
---|
| 466 | aerosol(ig,l,iaer) = max(1E-20, |
---|
| 467 | & ( 0.75 * QREFvis3d(ig,l,iaer) / |
---|
| 468 | & ( rho_ice * reffrad(ig,l,iaer) ) ) * |
---|
| 469 | & pq(ig,l,i_ice) * |
---|
| 470 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
[38] | 471 | & ) |
---|
[1711] | 472 | taucloudvis(ig) = taucloudvis(ig) + aerosol(ig,l,iaer) |
---|
| 473 | taucloudtes(ig) = taucloudtes(ig) + aerosol(ig,l,iaer)* |
---|
| 474 | & QREFir3d(ig,l,iaer) / QREFvis3d(ig,l,iaer) * |
---|
| 475 | & ( 1.E0 - omegaREFir3d(ig,l,iaer) ) |
---|
| 476 | ENDDO |
---|
[38] | 477 | ENDDO |
---|
[1711] | 478 | ! SUB-GRID SCALE CLOUDS |
---|
| 479 | IF (CLFvarying) THEN |
---|
| 480 | DO ig=1, ngrid |
---|
| 481 | DO l=1,nlayer-1 |
---|
| 482 | CLFtot = max(totcloudfrac(ig),0.01) |
---|
| 483 | aerosol(ig,l,iaer)= |
---|
| 484 | & aerosol(ig,l,iaer)/CLFtot |
---|
| 485 | aerosol(ig,l,iaer) = |
---|
| 486 | & max(aerosol(ig,l,iaer),1.e-9) |
---|
| 487 | ENDDO |
---|
| 488 | ENDDO |
---|
| 489 | ENDIF ! end (CLFvarying) |
---|
| 490 | ENDIF ! end (clearsky) |
---|
| 491 | |
---|
[38] | 492 | c================================================================== |
---|
[2447] | 493 | CASE("co2_ice") aerkind ! CO2 ice crystals |
---|
| 494 | c================================================================== |
---|
| 495 | |
---|
| 496 | c 1. Initialization |
---|
| 497 | aerosol(1:ngrid,1:nlayer,iaer) = 0. |
---|
[2494] | 498 | taucloudco2vis(1:ngrid) = 0. |
---|
| 499 | taucloudco2tes(1:ngrid) = 0. |
---|
[2447] | 500 | c 2. Opacity calculation |
---|
| 501 | ! NO CLOUDS |
---|
| 502 | IF (clearsky) THEN |
---|
[2494] | 503 | aerosol(1:ngrid,1:nlayer,iaer) = 1.e-9 |
---|
[2447] | 504 | ! CLOUDSs |
---|
| 505 | ELSE ! else (clearsky) |
---|
[2494] | 506 | DO ig = 1, ngrid |
---|
| 507 | DO l = 1, nlayer |
---|
| 508 | call density_co2_ice(dble(pt(ig,l)), rho_ice_co2) |
---|
| 509 | |
---|
[2447] | 510 | aerosol(ig,l,iaer) = max(1E-20, |
---|
| 511 | & ( 0.75 * QREFvis3d(ig,l,iaer) / |
---|
[2494] | 512 | & ( rho_ice_co2 * reffrad(ig,l,iaer) ) ) * |
---|
[2447] | 513 | & pq(ig,l,i_co2ice) * |
---|
| 514 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
| 515 | & ) |
---|
[2494] | 516 | taucloudco2vis(ig) = taucloudco2vis(ig) |
---|
| 517 | & + aerosol(ig,l,iaer) |
---|
| 518 | taucloudco2tes(ig) = taucloudco2tes(ig) |
---|
| 519 | & + aerosol(ig,l,iaer) * |
---|
[2447] | 520 | & QREFir3d(ig,l,iaer) / QREFvis3d(ig,l,iaer) * |
---|
| 521 | & ( 1.E0 - omegaREFir3d(ig,l,iaer) ) |
---|
| 522 | ENDDO |
---|
| 523 | ENDDO |
---|
| 524 | ! SUB-GRID SCALE CLOUDS |
---|
[2494] | 525 | IF (CLFvaryingCO2) THEN |
---|
[2447] | 526 | DO ig=1, ngrid |
---|
[2494] | 527 | DO l= 1, nlayer-1 |
---|
| 528 | CLFtotco2 = max(totcloudco2frac(ig),0.01) |
---|
[2447] | 529 | aerosol(ig,l,iaer)= |
---|
[2494] | 530 | & aerosol(ig,l,iaer)/CLFtotco2 |
---|
[2447] | 531 | aerosol(ig,l,iaer) = |
---|
| 532 | & max(aerosol(ig,l,iaer),1.e-9) |
---|
| 533 | ENDDO |
---|
| 534 | ENDDO |
---|
[2494] | 535 | ENDIF ! end (CLFvaryingCO2) |
---|
[2447] | 536 | ENDIF ! end (clearsky) |
---|
| 537 | |
---|
| 538 | c================================================================== |
---|
[1974] | 539 | CASE("stormdust_doubleq") aerkind ! CW17 : Two-moment scheme for |
---|
| 540 | c stormdust (transport of mass and number mixing ratio) |
---|
| 541 | c================================================================== |
---|
| 542 | c aerosol is calculated twice : once within the dust storm (clearatm=false) |
---|
| 543 | c and once in the part of the mesh without dust storm (clearatm=true) |
---|
| 544 | aerosol(1:ngrid,1:nlayer,iaer) = 0. |
---|
| 545 | IF (clearatm) THEN ! considering part of the mesh without storm |
---|
| 546 | aerosol(1:ngrid,1:nlayer,iaer)=1.e-25 |
---|
| 547 | ELSE ! part of the mesh with concentred dust storm |
---|
| 548 | DO l=1,nlayer |
---|
| 549 | IF (l.LE.cstdustlevel) THEN |
---|
| 550 | c Opacity in the first levels is held constant to |
---|
| 551 | c avoid unrealistic values due to constant lifting: |
---|
| 552 | DO ig=1,ngrid |
---|
[2414] | 553 | ! OPTICAL DEPTH used in the radiative transfer |
---|
[2246] | 554 | ! => visible wavelength |
---|
| 555 | aerosol(ig,l,iaer) = |
---|
[1974] | 556 | & ( 0.75 * QREFvis3d(ig,cstdustlevel,iaer) / |
---|
| 557 | & ( rho_dust * reffrad(ig,cstdustlevel,iaer) ) ) * |
---|
| 558 | & pq(ig,cstdustlevel,igcm_stormdust_mass) * |
---|
| 559 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
[2246] | 560 | ! DENSITY SCALED OPACITY : |
---|
[2414] | 561 | ! Diagnostic output to be compared with observations |
---|
[2246] | 562 | ! => infrared wavelength |
---|
| 563 | dsords(ig,l) = |
---|
| 564 | & ( 0.75 * QREFir3d(ig,cstdustlevel,iaer) / |
---|
| 565 | & ( rho_dust * reffrad(ig,cstdustlevel,iaer) ) ) * |
---|
| 566 | & pq(ig,cstdustlevel,igcm_stormdust_mass) |
---|
[1974] | 567 | ENDDO |
---|
| 568 | ELSE |
---|
[2246] | 569 | DO ig=1,ngrid |
---|
[2414] | 570 | ! OPTICAL DEPTH used in the radiative transfer |
---|
[2246] | 571 | ! => visible wavelength |
---|
[1974] | 572 | aerosol(ig,l,iaer) = |
---|
| 573 | & ( 0.75 * QREFvis3d(ig,l,iaer) / |
---|
| 574 | & ( rho_dust * reffrad(ig,l,iaer) ) ) * |
---|
| 575 | & pq(ig,l,igcm_stormdust_mass) * |
---|
| 576 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
[2246] | 577 | ! DENSITY SCALED OPACITY : |
---|
[2414] | 578 | ! Diagnostic output to be compared with observations |
---|
[2246] | 579 | ! => infrared wavelength |
---|
| 580 | dsords(ig,l) = |
---|
| 581 | & ( 0.75 * QREFir3d(ig,l,iaer) / |
---|
| 582 | & ( rho_dust * reffrad(ig,l,iaer) ) ) * |
---|
| 583 | & pq(ig,l,igcm_stormdust_mass) |
---|
| 584 | ENDDO |
---|
[1974] | 585 | ENDIF |
---|
| 586 | ENDDO |
---|
| 587 | ENDIF |
---|
| 588 | c================================================================== |
---|
[2199] | 589 | CASE("topdust_doubleq") aerkind ! MV18 : Two-moment scheme for |
---|
| 590 | c topdust (transport of mass and number mixing ratio) |
---|
| 591 | c================================================================== |
---|
| 592 | c aerosol is calculated twice : once "above" the sub-grid mountain (nohmons=false) |
---|
| 593 | c and once in the part of the mesh without the sub-grid mountain (nohmons=true) |
---|
| 594 | aerosol(1:ngrid,1:nlayer,iaer) = 0. |
---|
| 595 | IF (nohmons) THEN ! considering part of the mesh without storm |
---|
| 596 | aerosol(1:ngrid,1:nlayer,iaer)=1.e-25 |
---|
| 597 | ELSE ! part of the mesh with concentred dust storm |
---|
| 598 | DO l=1,nlayer |
---|
[2246] | 599 | IF (l.LE.cstdustlevel) THEN |
---|
| 600 | c Opacity in the first levels is held constant to |
---|
| 601 | c avoid unrealistic values due to constant lifting: |
---|
| 602 | DO ig=1,ngrid |
---|
[2414] | 603 | ! OPTICAL DEPTH used in the radiative transfer |
---|
| 604 | ! => visible wavelength |
---|
[2246] | 605 | aerosol(ig,l,iaer) = |
---|
| 606 | & ( 0.75 * QREFvis3d(ig,cstdustlevel,iaer) / |
---|
| 607 | & ( rho_dust * reffrad(ig,cstdustlevel,iaer) ) ) * |
---|
| 608 | & pq(ig,cstdustlevel,igcm_topdust_mass) * |
---|
| 609 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
| 610 | ! DENSITY SCALED OPACITY : |
---|
[2414] | 611 | ! Diagnostic output to be compared with observations |
---|
[2246] | 612 | ! => infrared wavelength |
---|
| 613 | dsotop(ig,l) = |
---|
| 614 | & ( 0.75 * QREFir3d(ig,cstdustlevel,iaer) / |
---|
| 615 | & ( rho_dust * reffrad(ig,cstdustlevel,iaer) ) ) * |
---|
| 616 | & pq(ig,cstdustlevel,igcm_topdust_mass) |
---|
| 617 | ENDDO |
---|
| 618 | ELSE |
---|
| 619 | DO ig=1,ngrid |
---|
[2414] | 620 | ! OPTICAL DEPTH used in the radiative transfer |
---|
[2246] | 621 | ! => visible wavelength |
---|
| 622 | aerosol(ig,l,iaer) = |
---|
[2199] | 623 | & ( 0.75 * QREFvis3d(ig,l,iaer) / |
---|
| 624 | & ( rho_dust * reffrad(ig,l,iaer) ) ) * |
---|
| 625 | & pq(ig,l,igcm_topdust_mass) * |
---|
| 626 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
[2246] | 627 | ! DENSITY SCALED OPACITY : |
---|
[2414] | 628 | ! Diagnostic output to be compared with observations |
---|
[2246] | 629 | ! => infrared wavelength |
---|
| 630 | dsotop(ig,l) = |
---|
| 631 | & ( 0.75 * QREFir3d(ig,l,iaer) / |
---|
| 632 | & ( rho_dust * reffrad(ig,l,iaer) ) ) * |
---|
| 633 | & pq(ig,l,igcm_topdust_mass) |
---|
| 634 | ENDDO |
---|
| 635 | ENDIF |
---|
[2199] | 636 | ENDDO |
---|
| 637 | ENDIF |
---|
| 638 | c================================================================== |
---|
[38] | 639 | END SELECT aerkind |
---|
| 640 | c ----------------------------------- |
---|
| 641 | ENDDO ! iaer (loop on aerosol kind) |
---|
| 642 | |
---|
[2413] | 643 | ! 3. Specific treatments for the dust aerosols |
---|
[38] | 644 | |
---|
[1375] | 645 | #ifdef DUSTSTORM |
---|
| 646 | c ----------------------------------------------------------------- |
---|
[1410] | 647 | ! Calculate reference opacity without perturbation |
---|
[1375] | 648 | c ----------------------------------------------------------------- |
---|
| 649 | IF (firstcall) THEN |
---|
| 650 | DO iaer=1,naerdust |
---|
| 651 | DO l=1,nlayer |
---|
| 652 | DO ig=1,ngrid |
---|
[2415] | 653 | tau_pref_gcm(ig) = tau_pref_gcm(ig) + |
---|
[1375] | 654 | & aerosol(ig,l,iaerdust(iaer)) |
---|
| 655 | ENDDO |
---|
| 656 | ENDDO |
---|
| 657 | ENDDO |
---|
[2415] | 658 | tau_pref_gcm(:) = tau_pref_gcm(:) * odpref / pplev(:,1) |
---|
[1410] | 659 | |
---|
[1375] | 660 | c-------------------------------------------------- |
---|
[1410] | 661 | c Get parameters of the opacity perturbation |
---|
[1375] | 662 | c-------------------------------------------------- |
---|
[1410] | 663 | iaer=1 ! just change dust |
---|
[1375] | 664 | |
---|
| 665 | write(*,*) "Add a local storm ?" |
---|
| 666 | localstorm=.true. ! default value |
---|
[2304] | 667 | call getin_p("localstorm",localstorm) |
---|
[1375] | 668 | write(*,*) " localstorm = ",localstorm |
---|
| 669 | |
---|
| 670 | IF (localstorm) THEN |
---|
| 671 | WRITE(*,*) "********************" |
---|
| 672 | WRITE(*,*) "ADDING A LOCAL STORM" |
---|
| 673 | WRITE(*,*) "********************" |
---|
| 674 | |
---|
| 675 | write(*,*) "ref opacity of local dust storm" |
---|
| 676 | taulocref = 4.25 ! default value |
---|
[2304] | 677 | call getin_p("taulocref",taulocref) |
---|
[1375] | 678 | write(*,*) " taulocref = ",taulocref |
---|
| 679 | |
---|
| 680 | write(*,*) "target altitude of local storm (km)" |
---|
| 681 | ztoploc = 10.0 ! default value |
---|
[2304] | 682 | call getin_p("ztoploc",ztoploc) |
---|
[1375] | 683 | write(*,*) " ztoploc = ",ztoploc |
---|
| 684 | |
---|
| 685 | write(*,*) "radius of dust storm (degree)" |
---|
| 686 | radloc = 0.5 ! default value |
---|
[2304] | 687 | call getin_p("radloc",radloc) |
---|
[1375] | 688 | write(*,*) " radloc = ",radloc |
---|
| 689 | |
---|
| 690 | write(*,*) "center longitude of storm (deg)" |
---|
| 691 | lonloc = 25.0 ! default value |
---|
[2304] | 692 | call getin_p("lonloc",lonloc) |
---|
[1375] | 693 | write(*,*) " lonloc = ",lonloc |
---|
| 694 | |
---|
| 695 | write(*,*) "center latitude of storm (deg)" |
---|
| 696 | latloc = -2.5 ! default value |
---|
[2304] | 697 | call getin_p("latloc",latloc) |
---|
[1375] | 698 | write(*,*) " latloc = ",latloc |
---|
| 699 | |
---|
| 700 | write(*,*) "reff storm (mic) 0. for background" |
---|
| 701 | reffstorm = 0.0 ! default value |
---|
[2304] | 702 | call getin_p("reffstorm",reffstorm) |
---|
[1375] | 703 | write(*,*) " reffstorm = ",reffstorm |
---|
| 704 | |
---|
[1410] | 705 | !! LOOP: modify opacity |
---|
[1375] | 706 | DO ig=1,ngrid |
---|
| 707 | |
---|
[1410] | 708 | !! distance to the center: |
---|
[1541] | 709 | ray(ig)=SQRT((latitude(ig)*180./pi-latloc)**2 + |
---|
| 710 | & (longitude(ig)*180./pi -lonloc)**2) |
---|
[1375] | 711 | |
---|
| 712 | !! transition factor for storm |
---|
[1410] | 713 | !! factor is hardcoded -- increase it to steepen |
---|
[1375] | 714 | yeah = (TANH(2.+(radloc-ray(ig))*10.)+1.)/2. |
---|
| 715 | |
---|
[1410] | 716 | !! new opacity field |
---|
| 717 | !! -- add an opacity set to taulocref |
---|
| 718 | !! -- the additional reference opacity will |
---|
| 719 | !! thus be taulocref*odpref/pplev |
---|
[2415] | 720 | tauuser(ig)=max( tau_pref_gcm(ig) * pplev(ig,1) /odpref , |
---|
[1410] | 721 | & taulocref * yeah ) |
---|
[1375] | 722 | |
---|
[1410] | 723 | !! compute l_top |
---|
[1375] | 724 | DO l=1,nlayer |
---|
| 725 | zalt(ig,l) = LOG( pplev(ig,1)/pplev(ig,l) ) |
---|
| 726 | & / g / 44.01 |
---|
| 727 | & * 8.31 * 210. |
---|
| 728 | IF ( (ztoploc .lt. zalt(ig,l) ) |
---|
| 729 | & .and. (ztoploc .gt. zalt(ig,l-1)) ) l_top=l-1 |
---|
| 730 | ENDDO |
---|
| 731 | |
---|
[1410] | 732 | !! change reffrad if ever needed |
---|
[1375] | 733 | IF (reffstorm .gt. 0.) THEN |
---|
| 734 | DO l=1,nlayer |
---|
| 735 | IF (l .lt. l_top+1) THEN |
---|
| 736 | reffrad(ig,l,iaer) = max( reffrad(ig,l,iaer), reffstorm |
---|
| 737 | & * 1.e-6 * yeah ) |
---|
| 738 | ENDIF |
---|
| 739 | ENDDO |
---|
| 740 | ENDIF |
---|
| 741 | |
---|
[1410] | 742 | ENDDO |
---|
| 743 | !! END LOOP |
---|
[1375] | 744 | |
---|
[1410] | 745 | !! compute perturbation in each layer (equation 8 in Spiga et al. JGR 2013) |
---|
[1375] | 746 | DO ig=1,ngrid |
---|
| 747 | int_factor(ig)=0. |
---|
| 748 | DO l=1,nlayer |
---|
| 749 | IF (l .lt. l_top+1) THEN |
---|
| 750 | int_factor(ig) = |
---|
| 751 | & int_factor(ig) + |
---|
| 752 | & ( 0.75 * QREFvis3d(ig,l,iaer) / |
---|
| 753 | & ( rho_dust * reffrad(ig,l,iaer) ) ) * |
---|
| 754 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
| 755 | ENDIF |
---|
| 756 | ENDDO |
---|
| 757 | DO l=1, nlayer |
---|
[1410] | 758 | !! Mass mixing ratio perturbation due to local dust storm in each layer |
---|
[1375] | 759 | more_dust(ig,l,1)= |
---|
[2415] | 760 | & (tauuser(ig)-(tau_pref_gcm(ig) |
---|
[1375] | 761 | & * pplev(ig,1) /odpref)) / |
---|
| 762 | & int_factor(ig) |
---|
| 763 | more_dust(ig,l,2)= |
---|
[2415] | 764 | & (tauuser(ig)-(tau_pref_gcm(ig) * |
---|
[1375] | 765 | & pplev(ig,1) /odpref)) |
---|
| 766 | & / int_factor(ig) * |
---|
| 767 | & ((ref_r0/reffrad(ig,l,iaer))**3) |
---|
| 768 | & * r3n_q |
---|
| 769 | ENDDO |
---|
| 770 | ENDDO |
---|
| 771 | |
---|
[1410] | 772 | !! quantity of dust for each layer with the addition of the perturbation |
---|
| 773 | DO l=1, l_top |
---|
[1376] | 774 | pq(:,l,igcm_dust_mass)= pq(:,l,igcm_dust_mass) |
---|
[1410] | 775 | . + more_dust(:,l,1) |
---|
[1376] | 776 | pq(:,l,igcm_dust_number)= pq(:,l,igcm_dust_number) |
---|
[1410] | 777 | . + more_dust(:,l,2) |
---|
| 778 | ENDDO |
---|
| 779 | ENDIF !! IF (localstorm) |
---|
[2415] | 780 | tau_pref_gcm(:)=0. |
---|
[1410] | 781 | ENDIF !! IF (firstcall) |
---|
[1375] | 782 | #endif |
---|
| 783 | |
---|
[2413] | 784 | ! |
---|
[2417] | 785 | ! 3.1. Compute "tauscaling" and "dust_rad_adjust", the dust rescaling |
---|
| 786 | ! coefficients and adjust aerosol() dust opacities accordingly |
---|
| 787 | call compute_dustscaling(ngrid,nlayer,naerkind,naerdust,zday,pplev |
---|
| 788 | & ,tau_pref_scenario,tauscaling, |
---|
| 789 | & dust_rad_adjust,aerosol) |
---|
[358] | 790 | |
---|
[2415] | 791 | ! 3.2. Recompute tau_pref_gcm, the reference dust opacity, based on dust tracer |
---|
[2413] | 792 | ! mixing ratios and their optical properties |
---|
[358] | 793 | |
---|
[1088] | 794 | IF (freedust) THEN |
---|
[2415] | 795 | ! Initialisation : |
---|
| 796 | tau_pref_gcm(:)=0 |
---|
[1208] | 797 | DO iaer=1,naerdust |
---|
| 798 | DO l=1,nlayer |
---|
| 799 | DO ig=1,ngrid |
---|
[1410] | 800 | #ifdef DUSTSTORM |
---|
| 801 | !! recalculate opacity because storm perturbation has been added |
---|
| 802 | IF (firstcall) THEN |
---|
| 803 | aerosol(ig,l,iaer) = |
---|
| 804 | & ( 0.75 * QREFvis3d(ig,l,iaer) / |
---|
| 805 | & ( rho_dust * reffrad(ig,l,iaer) ) ) * |
---|
| 806 | & pq(ig,l,igcm_dust_mass) * |
---|
| 807 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
| 808 | ENDIF |
---|
| 809 | #endif |
---|
[2415] | 810 | c MV19: tau_pref_gcm must ALWAYS contain the opacity of all dust tracers |
---|
| 811 | ! GCM DUST OPTICAL DEPTH tau_pref_gcm is to be compared |
---|
| 812 | ! with the observation CDOD tau_pref_scenario |
---|
[2414] | 813 | ! => visible wavelength |
---|
[2199] | 814 | IF (name_iaer(iaerdust(iaer)).eq."dust_doubleq") THEN |
---|
[2415] | 815 | tau_pref_gcm(ig) = tau_pref_gcm(ig) + |
---|
[2199] | 816 | & ( 0.75 * QREFvis3d(ig,l,iaerdust(iaer)) / |
---|
| 817 | & ( rho_dust * reffrad(ig,l,iaerdust(iaer)) ) ) * |
---|
| 818 | & pq(ig,l,igcm_dust_mass) * |
---|
| 819 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
| 820 | ELSE IF (name_iaer(iaerdust(iaer)).eq."stormdust_doubleq") THEN |
---|
[2415] | 821 | tau_pref_gcm(ig) = tau_pref_gcm(ig) + |
---|
[2199] | 822 | & ( 0.75 * QREFvis3d(ig,l,iaerdust(iaer)) / |
---|
| 823 | & ( rho_dust * reffrad(ig,l,iaerdust(iaer)) ) ) * |
---|
| 824 | & pq(ig,l,igcm_stormdust_mass) * |
---|
| 825 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
| 826 | ELSE IF (name_iaer(iaerdust(iaer)).eq."topdust_doubleq") THEN |
---|
[2415] | 827 | tau_pref_gcm(ig) = tau_pref_gcm(ig) + |
---|
[2199] | 828 | & ( 0.75 * QREFvis3d(ig,l,iaerdust(iaer)) / |
---|
| 829 | & ( rho_dust * reffrad(ig,l,iaerdust(iaer)) ) ) * |
---|
| 830 | & pq(ig,l,igcm_topdust_mass) * |
---|
| 831 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
| 832 | ENDIF |
---|
| 833 | |
---|
[1208] | 834 | ENDDO |
---|
[1088] | 835 | ENDDO |
---|
| 836 | ENDDO |
---|
[2415] | 837 | tau_pref_gcm(:) = tau_pref_gcm(:) * odpref / pplev(:,1) |
---|
| 838 | ELSE |
---|
| 839 | ! dust opacity strictly follows what is imposed by the dust scenario |
---|
| 840 | tau_pref_gcm(:)=tau_pref_scenario(:) |
---|
[2413] | 841 | ENDIF ! of IF (freedust) |
---|
[1974] | 842 | |
---|
[2413] | 843 | ! ----------------------------------------------------------------- |
---|
| 844 | ! 4. Total integrated visible optical depth of aerosols in each column |
---|
| 845 | ! ----------------------------------------------------------------- |
---|
[38] | 846 | DO iaer=1,naerkind |
---|
| 847 | do l=1,nlayer |
---|
| 848 | do ig=1,ngrid |
---|
| 849 | tau(ig,iaer) = tau(ig,iaer) + aerosol(ig,l,iaer) |
---|
| 850 | end do |
---|
| 851 | end do |
---|
| 852 | ENDDO |
---|
[1375] | 853 | |
---|
[1974] | 854 | |
---|
[1375] | 855 | #ifdef DUSTSTORM |
---|
| 856 | IF (firstcall) THEN |
---|
| 857 | firstcall=.false. |
---|
| 858 | ENDIF |
---|
| 859 | #endif |
---|
| 860 | |
---|
[2413] | 861 | ! |
---|
| 862 | ! 5. Adapt aerosol() for the radiative transfer (i.e. account for |
---|
| 863 | ! cases when it refers to a fraction of the global mesh) |
---|
| 864 | ! |
---|
[38] | 865 | |
---|
| 866 | c ----------------------------------------------------------------- |
---|
[1974] | 867 | c aerosol/X for stormdust to prepare calculation of radiative transfer |
---|
| 868 | c ----------------------------------------------------------------- |
---|
[2199] | 869 | IF (rdstorm) THEN |
---|
[1974] | 870 | DO l=1,nlayer |
---|
| 871 | DO ig=1,ngrid |
---|
[2199] | 872 | ! stormdust: opacity relative to the storm fraction (stormdust/x) |
---|
[1974] | 873 | aerosol(ig,l,iaer_stormdust_doubleq) = |
---|
| 874 | & aerosol(ig,l,iaer_stormdust_doubleq)/totstormfract(ig) |
---|
| 875 | ENDDO |
---|
| 876 | ENDDO |
---|
[2199] | 877 | ENDIF |
---|
[1711] | 878 | |
---|
[2199] | 879 | c ----------------------------------------------------------------- |
---|
| 880 | c aerosol/X for topdust to prepare calculation of radiative transfer |
---|
| 881 | c ----------------------------------------------------------------- |
---|
| 882 | IF (slpwind) THEN |
---|
| 883 | DO ig=1,ngrid |
---|
| 884 | IF (alpha_hmons(ig) .gt. 0.) THEN |
---|
| 885 | DO l=1,nlayer |
---|
| 886 | ! topdust: opacity relative to the storm fraction (topdust/x) |
---|
| 887 | aerosol(ig,l,iaer_topdust_doubleq) = |
---|
| 888 | & aerosol(ig,l,iaer_topdust_doubleq)/alpha_hmons(ig) |
---|
| 889 | ENDDO |
---|
| 890 | ENDIF |
---|
| 891 | ENDDO |
---|
| 892 | ENDIF |
---|
[1974] | 893 | |
---|
[1711] | 894 | END SUBROUTINE aeropacity |
---|
| 895 | |
---|
| 896 | END MODULE aeropacity_mod |
---|