1 | SUBROUTINE aeropacity(ngrid,nlayer,nq,zday,pplay,pplev,ls, |
---|
2 | & pq,ccn,tauref,tau,aerosol,reffrad,nueffrad, |
---|
3 | & QREFvis3d,QREFir3d,omegaREFvis3d,omegaREFir3d) |
---|
4 | |
---|
5 | ! to use 'getin' |
---|
6 | USE ioipsl_getincom |
---|
7 | IMPLICIT NONE |
---|
8 | c======================================================================= |
---|
9 | c subject: |
---|
10 | c -------- |
---|
11 | c Computing aerosol optical depth in each gridbox. |
---|
12 | c |
---|
13 | c author: F.Forget |
---|
14 | c ------ |
---|
15 | c update F. Montmessin (water ice scheme) |
---|
16 | c and S. Lebonnois (12/06/2003) compatibility dust/ice/chemistry |
---|
17 | c update J.-B. Madeleine 2008-2009: |
---|
18 | c - added 3D scattering by aerosols; |
---|
19 | c - dustopacity transferred from physiq.F to callradite.F, |
---|
20 | c and renamed into aeropacity.F; |
---|
21 | c |
---|
22 | c input: |
---|
23 | c ----- |
---|
24 | c ngrid Number of gridpoint of horizontal grid |
---|
25 | c nlayer Number of layer |
---|
26 | c nq Number of tracer |
---|
27 | c zday Date (time since Ls=0, in martian days) |
---|
28 | c ls Solar longitude (Ls) , radian |
---|
29 | c pplay,pplev pressure (Pa) in the middle and boundary of each layer |
---|
30 | c pq Dust mixing ratio (used if tracer =T and active=T). |
---|
31 | c reffrad(ngrid,nlayer,naerkind) Aerosol effective radius |
---|
32 | c QREFvis3d(ngridmx,nlayermx,naerkind) \ 3d extinction coefficients |
---|
33 | c QREFir3d(ngridmx,nlayermx,naerkind) / at reference wavelengths; |
---|
34 | c omegaREFvis3d(ngridmx,nlayermx,naerkind) \ 3d single scat. albedo |
---|
35 | c omegaREFir3d(ngridmx,nlayermx,naerkind) / at reference wavelengths; |
---|
36 | c |
---|
37 | c output: |
---|
38 | c ------- |
---|
39 | c tauref Prescribed mean column optical depth at 700 Pa |
---|
40 | c tau Column total visible dust optical depth at each point |
---|
41 | c aerosol aerosol(ig,l,1) is the dust optical |
---|
42 | c depth in layer l, grid point ig |
---|
43 | |
---|
44 | c |
---|
45 | c======================================================================= |
---|
46 | #include "dimensions.h" |
---|
47 | #include "dimphys.h" |
---|
48 | #include "callkeys.h" |
---|
49 | #include "comcstfi.h" |
---|
50 | #include "comgeomfi.h" |
---|
51 | #include "dimradmars.h" |
---|
52 | #include "yomaer.h" |
---|
53 | #include "tracer.h" |
---|
54 | #include "planete.h" |
---|
55 | #include "aerkind.h" |
---|
56 | |
---|
57 | c----------------------------------------------------------------------- |
---|
58 | c |
---|
59 | c Declarations : |
---|
60 | c -------------- |
---|
61 | c |
---|
62 | c Input/Output |
---|
63 | c ------------ |
---|
64 | INTEGER ngrid,nlayer,nq |
---|
65 | |
---|
66 | REAL ls,zday,expfactor |
---|
67 | REAL pplev(ngrid,nlayer+1),pplay(ngrid,nlayer) |
---|
68 | REAL pq(ngrid,nlayer,nq) |
---|
69 | REAL tauref(ngrid), tau(ngrid,naerkind) |
---|
70 | REAL aerosol(ngrid,nlayer,naerkind) |
---|
71 | REAL dsodust(ngridmx,nlayermx) |
---|
72 | REAL reffrad(ngrid,nlayer,naerkind) |
---|
73 | REAL nueffrad(ngrid,nlayer,naerkind) |
---|
74 | REAL QREFvis3d(ngridmx,nlayermx,naerkind) |
---|
75 | REAL QREFir3d(ngridmx,nlayermx,naerkind) |
---|
76 | REAL omegaREFvis3d(ngridmx,nlayermx,naerkind) |
---|
77 | REAL omegaREFir3d(ngridmx,nlayermx,naerkind) |
---|
78 | c |
---|
79 | c Local variables : |
---|
80 | c ----------------- |
---|
81 | INTEGER l,ig,iq,i,j |
---|
82 | INTEGER iaer ! Aerosol index |
---|
83 | real topdust(ngridmx) |
---|
84 | real zlsconst, zp |
---|
85 | real taueq,tauS,tauN |
---|
86 | c Mean Qext(vis)/Qext(ir) profile |
---|
87 | real msolsir(nlayermx,naerkind) |
---|
88 | c Mean Qext(ir)/Qabs(ir) profile |
---|
89 | real mqextsqabs(nlayermx,naerkind) |
---|
90 | c Variables used when multiple particle sizes are used |
---|
91 | c for dust or water ice particles in the radiative transfer |
---|
92 | c (see callradite.F for more information). |
---|
93 | REAL taudusttmp(ngridmx)! Temporary dust opacity |
---|
94 | ! used before scaling |
---|
95 | REAL taudustvis(ngridmx) ! Dust opacity after scaling |
---|
96 | REAL taudusttes(ngridmx) ! Dust opacity at IR ref. wav. as |
---|
97 | ! "seen" by the GCM. |
---|
98 | REAL taucloudvis(ngridmx)! Cloud opacity at visible |
---|
99 | ! reference wavelength |
---|
100 | REAL taucloudtes(ngridmx)! Cloud opacity at infrared |
---|
101 | ! reference wavelength using |
---|
102 | ! Qabs instead of Qext |
---|
103 | ! (direct comparison with TES) |
---|
104 | REAL qdust(ngridmx,nlayermx) ! True dust mass mixing ratio |
---|
105 | REAL ccn(ngridmx,nlayermx) ! Cloud condensation nuclei |
---|
106 | ! (particules kg-1) |
---|
107 | REAL qtot(ngridmx) ! Dust column (kg m-2) |
---|
108 | |
---|
109 | c CCN reduction factor |
---|
110 | REAL, PARAMETER :: ccn_factor = 4.5 !! comme TESTS_JB // 1. avant |
---|
111 | |
---|
112 | c |
---|
113 | c local saved variables |
---|
114 | c --------------------- |
---|
115 | |
---|
116 | REAL topdust0(ngridmx) |
---|
117 | SAVE topdust0 |
---|
118 | c Level under which the dust mixing ratio is held constant |
---|
119 | c when computing the dust opacity in each layer |
---|
120 | c (this applies when doubleq and active are true) |
---|
121 | INTEGER, PARAMETER :: cstdustlevel = 7 |
---|
122 | |
---|
123 | LOGICAL firstcall |
---|
124 | DATA firstcall/.true./ |
---|
125 | SAVE firstcall |
---|
126 | |
---|
127 | ! indexes of water ice and dust tracers: |
---|
128 | INTEGER,SAVE :: nqdust(nqmx) ! to store the indexes of dust tracers |
---|
129 | INTEGER,SAVE :: i_ice=0 ! water ice |
---|
130 | CHARACTER(LEN=20) :: txt ! to temporarly store text |
---|
131 | CHARACTER(LEN=1) :: txt2 ! to temporarly store text |
---|
132 | ! indexes of dust scatterers: |
---|
133 | INTEGER,SAVE :: iaerdust(naerkind) |
---|
134 | INTEGER,SAVE :: naerdust ! number of dust scatterers |
---|
135 | |
---|
136 | tau(1:ngrid,1:naerkind)=0 |
---|
137 | |
---|
138 | ! identify tracers |
---|
139 | |
---|
140 | IF (firstcall) THEN |
---|
141 | ! identify scatterers that are dust |
---|
142 | naerdust=0 |
---|
143 | DO iaer=1,naerkind |
---|
144 | txt=name_iaer(iaer) |
---|
145 | IF (txt(1:4).eq."dust") THEN |
---|
146 | naerdust=naerdust+1 |
---|
147 | iaerdust(naerdust)=iaer |
---|
148 | ENDIF |
---|
149 | ENDDO |
---|
150 | ! identify tracers which are dust |
---|
151 | i=0 |
---|
152 | DO iq=1,nq |
---|
153 | txt=noms(iq) |
---|
154 | IF (txt(1:4).eq."dust") THEN |
---|
155 | i=i+1 |
---|
156 | nqdust(i)=iq |
---|
157 | ENDIF |
---|
158 | ENDDO |
---|
159 | |
---|
160 | IF (water.AND.activice) THEN |
---|
161 | i_ice=igcm_h2o_ice |
---|
162 | write(*,*) "aeropacity: i_ice=",i_ice |
---|
163 | ENDIF |
---|
164 | |
---|
165 | c altitude of the top of the aerosol layer (km) at Ls=2.76rad: |
---|
166 | c in the Viking year scenario |
---|
167 | DO ig=1,ngrid |
---|
168 | topdust0(ig)=60. -22.*SIN(lati(ig))**2 |
---|
169 | END DO |
---|
170 | |
---|
171 | c typical profile of solsir and (1-w)^(-1): |
---|
172 | msolsir(1:nlayer,1:naerkind)=0 |
---|
173 | mqextsqabs(1:nlayer,1:naerkind)=0 |
---|
174 | WRITE(*,*) "Typical profiles of Qext(vis)/Qext(IR)" |
---|
175 | WRITE(*,*) " and Qext(IR)/Qabs(IR):" |
---|
176 | DO iaer = 1, naerkind ! Loop on aerosol kind |
---|
177 | WRITE(*,*) "Aerosol # ",iaer |
---|
178 | DO l=1,nlayer |
---|
179 | DO ig=1,ngridmx |
---|
180 | msolsir(l,iaer)=msolsir(l,iaer)+ |
---|
181 | & QREFvis3d(ig,l,iaer)/ |
---|
182 | & QREFir3d(ig,l,iaer) |
---|
183 | mqextsqabs(l,iaer)=mqextsqabs(l,iaer)+ |
---|
184 | & (1.E0-omegaREFir3d(ig,l,iaer))**(-1) |
---|
185 | ENDDO |
---|
186 | msolsir(l,iaer)=msolsir(l,iaer)/REAL(ngridmx) |
---|
187 | mqextsqabs(l,iaer)=mqextsqabs(l,iaer)/REAL(ngridmx) |
---|
188 | ENDDO |
---|
189 | WRITE(*,*) "solsir: ",msolsir(:,iaer) |
---|
190 | WRITE(*,*) "Qext/Qabs(IR): ",mqextsqabs(:,iaer) |
---|
191 | ENDDO |
---|
192 | |
---|
193 | ! load value of tauvis from callphys.def (if given there, |
---|
194 | ! otherwise default value read from starfi.nc file will be used) |
---|
195 | call getin("tauvis",tauvis) |
---|
196 | |
---|
197 | ! Some information about the water cycle |
---|
198 | IF (water) THEN |
---|
199 | write(*,*) "water_param CCN reduc. fac. ", ccn_factor |
---|
200 | ENDIF |
---|
201 | |
---|
202 | firstcall=.false. |
---|
203 | |
---|
204 | END IF |
---|
205 | |
---|
206 | c Vertical column optical depth at 700.Pa |
---|
207 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
208 | IF(iaervar.eq.1) THEN |
---|
209 | do ig=1, ngridmx |
---|
210 | tauref(ig)=max(tauvis,1.e-9) ! tauvis=cste (set in callphys.def |
---|
211 | ! or read in starfi |
---|
212 | end do |
---|
213 | ELSE IF (iaervar.eq.2) THEN ! << "Viking" Scenario>> |
---|
214 | |
---|
215 | tauref(1) = 0.7+.3*cos(ls+80.*pi/180.) ! like seen by VL1 |
---|
216 | do ig=2,ngrid |
---|
217 | tauref(ig) = tauref(1) |
---|
218 | end do |
---|
219 | |
---|
220 | ELSE IF (iaervar.eq.3) THEN ! << "MGS" scenario >> |
---|
221 | |
---|
222 | taueq= 0.2 +(0.5-0.2) *(cos(0.5*(ls-4.363)))**14 |
---|
223 | tauS= 0.1 +(0.5-0.1) *(cos(0.5*(ls-4.363)))**14 |
---|
224 | tauN = 0.1 |
---|
225 | c if (peri_day.eq.150) then |
---|
226 | c tauS=0.1 |
---|
227 | c tauN=0.1 +(0.5-0.1) *(cos(0.5*(ls+pi-4.363)))**14 |
---|
228 | c taueq= 0.2 +(0.5-0.2) *(cos(0.5*(ls+pi-4.363)))**14 |
---|
229 | c endif |
---|
230 | do ig=1,ngrid/2 ! Northern hemisphere |
---|
231 | tauref(ig)= tauN + |
---|
232 | & (taueq-tauN)*0.5*(1+tanh((45-lati(ig)*180./pi)*6/60)) |
---|
233 | end do |
---|
234 | do ig=ngrid/2+1, ngridmx ! Southern hemisphere |
---|
235 | tauref(ig)= tauS + |
---|
236 | & (taueq-tauS)*0.5*(1+tanh((45+lati(ig)*180./pi)*6/60)) |
---|
237 | end do |
---|
238 | ELSE IF ((iaervar.eq.4).or. |
---|
239 | & ((iaervar.ge.24).and.(iaervar.le.26))) |
---|
240 | & THEN ! << "TES assimilated dust scenarios >> |
---|
241 | call readtesassim(ngrid,nlayer,zday,pplev,tauref) |
---|
242 | |
---|
243 | ELSE IF (iaervar.eq.5) THEN ! << Escalier Scenario>> |
---|
244 | c tauref(1) = 0.2 |
---|
245 | c if ((ls.ge.210.*pi/180.).and.(ls.le.330.*pi/180.)) |
---|
246 | c & tauref(1) = 2.5 |
---|
247 | tauref(1) = 2.5 |
---|
248 | if ((ls.ge.30.*pi/180.).and.(ls.le.150.*pi/180.)) |
---|
249 | & tauref(1) = .2 |
---|
250 | |
---|
251 | do ig=2,ngrid |
---|
252 | tauref(ig) = tauref(1) |
---|
253 | end do |
---|
254 | ELSE |
---|
255 | stop 'problem with iaervar in aeropacity.F' |
---|
256 | ENDIF |
---|
257 | |
---|
258 | c ----------------------------------------------------------------- |
---|
259 | c Computing the opacity in each layer |
---|
260 | c ----------------------------------------------------------------- |
---|
261 | |
---|
262 | DO iaer = 1, naerkind ! Loop on aerosol kind |
---|
263 | c -------------------------------------------- |
---|
264 | aerkind: SELECT CASE (name_iaer(iaer)) |
---|
265 | c================================================================== |
---|
266 | CASE("dust_conrath") aerkind ! Typical dust profile |
---|
267 | c================================================================== |
---|
268 | |
---|
269 | c Altitude of the top of the dust layer |
---|
270 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
271 | zlsconst=SIN(ls-2.76) |
---|
272 | if (iddist.eq.1) then |
---|
273 | do ig=1,ngrid |
---|
274 | topdust(ig)=topdustref ! constant dust layer top |
---|
275 | end do |
---|
276 | |
---|
277 | else if (iddist.eq.2) then ! "Viking" scenario |
---|
278 | do ig=1,ngrid |
---|
279 | topdust(ig)=topdust0(ig)+18.*zlsconst |
---|
280 | end do |
---|
281 | |
---|
282 | else if(iddist.eq.3) then !"MGS" scenario |
---|
283 | do ig=1,ngrid |
---|
284 | topdust(ig)=60.+18.*zlsconst |
---|
285 | & -(32+18*zlsconst)*sin(lati(ig))**4 |
---|
286 | & - 8*zlsconst*(sin(lati(ig)))**5 |
---|
287 | end do |
---|
288 | endif |
---|
289 | |
---|
290 | c Optical depth in each layer : |
---|
291 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
292 | if(iddist.ge.1) then |
---|
293 | |
---|
294 | expfactor=0. |
---|
295 | DO l=1,nlayer |
---|
296 | DO ig=1,ngrid |
---|
297 | c Typical mixing ratio profile |
---|
298 | if(pplay(ig,l).gt.700. |
---|
299 | $ /(988.**(topdust(ig)/70.))) then |
---|
300 | zp=(700./pplay(ig,l))**(70./topdust(ig)) |
---|
301 | expfactor=max(exp(0.007*(1.-max(zp,1.))),1.e-3) |
---|
302 | else |
---|
303 | expfactor=1.e-3 |
---|
304 | endif |
---|
305 | c Vertical scaling function |
---|
306 | aerosol(ig,l,iaer)= (pplev(ig,l)-pplev(ig,l+1)) * |
---|
307 | & expfactor * |
---|
308 | & QREFvis3d(ig,l,iaer) / QREFvis3d(ig,1,iaer) |
---|
309 | ENDDO |
---|
310 | ENDDO |
---|
311 | |
---|
312 | else if(iddist.eq.0) then |
---|
313 | c old dust vertical distribution function (pollack90) |
---|
314 | DO l=1,nlayer |
---|
315 | DO ig=1,ngrid |
---|
316 | zp=700./pplay(ig,l) |
---|
317 | aerosol(ig,l,1)= tauref(ig)/700. * |
---|
318 | s (pplev(ig,l)-pplev(ig,l+1)) |
---|
319 | s *max( exp(.03*(1.-max(zp,1.))) , 1.E-3 ) |
---|
320 | ENDDO |
---|
321 | ENDDO |
---|
322 | end if |
---|
323 | |
---|
324 | c================================================================== |
---|
325 | CASE("dust_doubleq") aerkind! Two-moment scheme for dust |
---|
326 | c (transport of mass and number mixing ratio) |
---|
327 | c================================================================== |
---|
328 | |
---|
329 | DO l=1,nlayer |
---|
330 | IF (l.LE.cstdustlevel) THEN |
---|
331 | c Opacity in the first levels is held constant to |
---|
332 | c avoid unrealistic values due to constant lifting: |
---|
333 | DO ig=1,ngrid |
---|
334 | aerosol(ig,l,iaer) = |
---|
335 | & ( 0.75 * QREFvis3d(ig,cstdustlevel,iaer) / |
---|
336 | & ( rho_dust * reffrad(ig,cstdustlevel,iaer) ) ) * |
---|
337 | & pq(ig,cstdustlevel,igcm_dust_mass) * |
---|
338 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
339 | ENDDO |
---|
340 | ELSE |
---|
341 | DO ig=1,ngrid |
---|
342 | aerosol(ig,l,iaer) = |
---|
343 | & ( 0.75 * QREFvis3d(ig,l,iaer) / |
---|
344 | & ( rho_dust * reffrad(ig,l,iaer) ) ) * |
---|
345 | & pq(ig,l,igcm_dust_mass) * |
---|
346 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
347 | ENDDO |
---|
348 | ENDIF |
---|
349 | ENDDO |
---|
350 | |
---|
351 | c================================================================== |
---|
352 | CASE("dust_submicron") aerkind ! Small dust population |
---|
353 | c================================================================== |
---|
354 | |
---|
355 | DO l=1,nlayer |
---|
356 | IF (l.LE.cstdustlevel) THEN |
---|
357 | c Opacity in the first levels is held constant to |
---|
358 | c avoid unrealistic values due to constant lifting: |
---|
359 | DO ig=1,ngrid |
---|
360 | aerosol(ig,l,iaer) = |
---|
361 | & ( 0.75 * QREFvis3d(ig,cstdustlevel,iaer) / |
---|
362 | & ( rho_dust * reffrad(ig,cstdustlevel,iaer) ) ) * |
---|
363 | & pq(ig,cstdustlevel,igcm_dust_submicron) * |
---|
364 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
365 | ENDDO |
---|
366 | ELSE |
---|
367 | DO ig=1,ngrid |
---|
368 | aerosol(ig,l,iaer) = |
---|
369 | & ( 0.75 * QREFvis3d(ig,l,iaer) / |
---|
370 | & ( rho_dust * reffrad(ig,l,iaer) ) ) * |
---|
371 | & pq(ig,l,igcm_dust_submicron) * |
---|
372 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
373 | ENDDO |
---|
374 | ENDIF |
---|
375 | ENDDO |
---|
376 | |
---|
377 | c================================================================== |
---|
378 | CASE("h2o_ice") aerkind ! Water ice crystals |
---|
379 | c================================================================== |
---|
380 | |
---|
381 | c 1. Initialization |
---|
382 | aerosol(1:ngrid,1:nlayer,iaer) = 0. |
---|
383 | taucloudvis(1:ngrid) = 0. |
---|
384 | taucloudtes(1:ngrid) = 0. |
---|
385 | c 2. Opacity calculation |
---|
386 | DO ig=1, ngrid |
---|
387 | DO l=1,nlayer |
---|
388 | aerosol(ig,l,iaer) = max(1E-20, |
---|
389 | & ( 0.75 * QREFvis3d(ig,l,iaer) / |
---|
390 | & ( rho_ice * reffrad(ig,l,iaer) ) ) * |
---|
391 | & pq(ig,l,i_ice) * |
---|
392 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
393 | & ) |
---|
394 | taucloudvis(ig) = taucloudvis(ig) + aerosol(ig,l,iaer) |
---|
395 | taucloudtes(ig) = taucloudtes(ig) + aerosol(ig,l,iaer)* |
---|
396 | & QREFir3d(ig,l,iaer) / QREFvis3d(ig,l,iaer) * |
---|
397 | & ( 1.E0 - omegaREFir3d(ig,l,iaer) ) |
---|
398 | ENDDO |
---|
399 | ENDDO |
---|
400 | c 3. Outputs |
---|
401 | IF (ngrid.NE.1) THEN |
---|
402 | CALL WRITEDIAGFI(ngridmx,'tauVIS','tauext VIS refwvl', |
---|
403 | & ' ',2,taucloudvis) |
---|
404 | CALL WRITEDIAGFI(ngridmx,'tauTES','tauabs IR refwvl', |
---|
405 | & ' ',2,taucloudtes) |
---|
406 | IF (callstats) THEN |
---|
407 | CALL wstats(ngridmx,'tauVIS','tauext VIS refwvl', |
---|
408 | & ' ',2,taucloudvis) |
---|
409 | CALL wstats(ngridmx,'tauTES','tauabs IR refwvl', |
---|
410 | & ' ',2,taucloudtes) |
---|
411 | ENDIF |
---|
412 | ELSE |
---|
413 | c CALL writeg1d(ngrid,1,taucloudtes,'tautes','NU') |
---|
414 | ENDIF |
---|
415 | c================================================================== |
---|
416 | END SELECT aerkind |
---|
417 | c ----------------------------------- |
---|
418 | ENDDO ! iaer (loop on aerosol kind) |
---|
419 | |
---|
420 | c ----------------------------------------------------------------- |
---|
421 | c Rescaling each layer to reproduce the choosen (or assimilated) |
---|
422 | c dust extinction opacity at visible reference wavelength, which |
---|
423 | c is originally scaled to an equivalent 700Pa pressure surface. |
---|
424 | c ----------------------------------------------------------------- |
---|
425 | |
---|
426 | taudusttmp(1:ngrid)=0. |
---|
427 | DO iaer=1,naerdust |
---|
428 | DO l=1,nlayer |
---|
429 | DO ig=1,ngrid |
---|
430 | c Scaling factor |
---|
431 | taudusttmp(ig) = taudusttmp(ig) + |
---|
432 | & aerosol(ig,l,iaerdust(iaer)) |
---|
433 | ENDDO |
---|
434 | ENDDO |
---|
435 | ENDDO |
---|
436 | DO iaer=1,naerdust |
---|
437 | DO l=1,nlayer |
---|
438 | DO ig=1,ngrid |
---|
439 | aerosol(ig,l,iaerdust(iaer)) = max(1E-20, |
---|
440 | & tauref(ig) * |
---|
441 | & pplev(ig,1) / 700.E0 * |
---|
442 | & aerosol(ig,l,iaerdust(iaer)) / |
---|
443 | & taudusttmp(ig) |
---|
444 | & ) |
---|
445 | ENDDO |
---|
446 | ENDDO |
---|
447 | ENDDO |
---|
448 | |
---|
449 | c ----------------------------------------------------------------- |
---|
450 | c Computing the number of condensation nuclei |
---|
451 | c ----------------------------------------------------------------- |
---|
452 | DO iaer = 1, naerkind ! Loop on aerosol kind |
---|
453 | c -------------------------------------------- |
---|
454 | aerkind2: SELECT CASE (name_iaer(iaer)) |
---|
455 | c================================================================== |
---|
456 | CASE("dust_conrath") aerkind2 ! Typical dust profile |
---|
457 | c================================================================== |
---|
458 | DO l=1,nlayer |
---|
459 | DO ig=1,ngrid |
---|
460 | ccn(ig,l) = max(aerosol(ig,l,iaer) / |
---|
461 | & pi / QREFvis3d(ig,l,iaer) * |
---|
462 | & (1.+nueffrad(ig,l,iaer))**3. / |
---|
463 | & reffrad(ig,l,iaer)**2. * g / |
---|
464 | & (pplev(ig,l)-pplev(ig,l+1)),1e-30) |
---|
465 | ENDDO |
---|
466 | ENDDO |
---|
467 | c================================================================== |
---|
468 | CASE("dust_doubleq") aerkind2!Two-moment scheme for dust |
---|
469 | c (transport of mass and number mixing ratio) |
---|
470 | c================================================================== |
---|
471 | qtot(1:ngridmx) = 0. |
---|
472 | DO l=1,nlayer |
---|
473 | DO ig=1,ngrid |
---|
474 | qdust(ig,l) = pq(ig,l,igcm_dust_mass) * tauref(ig) * |
---|
475 | & pplev(ig,1) / 700.E0 / taudusttmp(ig) |
---|
476 | qtot(ig) = qtot(ig) + qdust(ig,l) * |
---|
477 | & (pplev(ig,l)-pplev(ig,l+1)) / g |
---|
478 | ccn(ig,l) = max( ( ref_r0 / |
---|
479 | & reffrad(ig,l,iaer) )**3. * |
---|
480 | & r3n_q * qdust(ig,l) ,1e-30) |
---|
481 | ENDDO |
---|
482 | ENDDO |
---|
483 | c================================================================== |
---|
484 | END SELECT aerkind2 |
---|
485 | c ----------------------------------- |
---|
486 | ENDDO ! iaer (loop on aerosol kind) |
---|
487 | |
---|
488 | |
---|
489 | c ----------------------------------------------------------------- |
---|
490 | c ----------------------------------------------------------------- |
---|
491 | c Reduce number of nuclei |
---|
492 | ! TEMPORAIRE : r�duction du nombre de nuclei FF 04/200 |
---|
493 | ! reduction facteur 3 |
---|
494 | ! ccn(ig,l) = ccn(ig,l) / 27. |
---|
495 | ! reduction facteur 2 |
---|
496 | ! ccn(ig,l) = ccn(ig,l) / 8. |
---|
497 | c ----------------------------------------------------------------- |
---|
498 | DO l=1,nlayer |
---|
499 | DO ig=1,ngrid |
---|
500 | ccn(ig,l) = ccn(ig,l) / ccn_factor |
---|
501 | ENDDO |
---|
502 | ENDDO |
---|
503 | c ----------------------------------------------------------------- |
---|
504 | c ----------------------------------------------------------------- |
---|
505 | |
---|
506 | |
---|
507 | c ----------------------------------------------------------------- |
---|
508 | c Column integrated visible optical depth in each point |
---|
509 | c ----------------------------------------------------------------- |
---|
510 | DO iaer=1,naerkind |
---|
511 | do l=1,nlayer |
---|
512 | do ig=1,ngrid |
---|
513 | tau(ig,iaer) = tau(ig,iaer) + aerosol(ig,l,iaer) |
---|
514 | end do |
---|
515 | end do |
---|
516 | ENDDO |
---|
517 | c ----------------------------------------------------------------- |
---|
518 | c Density scaled opacity and column opacity output |
---|
519 | c ----------------------------------------------------------------- |
---|
520 | dsodust(1:ngrid,1:nlayer) = 0. |
---|
521 | DO iaer=1,naerdust |
---|
522 | DO l=1,nlayermx |
---|
523 | DO ig=1,ngrid |
---|
524 | dsodust(ig,l) = dsodust(ig,l) + |
---|
525 | & aerosol(ig,l,iaerdust(iaer)) * g / |
---|
526 | & (pplev(ig,l) - pplev(ig,l+1)) |
---|
527 | ENDDO |
---|
528 | ENDDO |
---|
529 | IF (ngrid.NE.1) THEN |
---|
530 | write(txt2,'(i1.1)') iaer |
---|
531 | call WRITEDIAGFI(ngridmx,'taudust'//txt2, |
---|
532 | & 'Dust col opacity', |
---|
533 | & ' ',2,tau(1,iaerdust(iaer))) |
---|
534 | IF (callstats) THEN |
---|
535 | CALL wstats(ngridmx,'taudust'//txt2, |
---|
536 | & 'Dust col opacity', |
---|
537 | & ' ',2,tau(1,iaerdust(iaer))) |
---|
538 | ENDIF |
---|
539 | ENDIF |
---|
540 | ENDDO |
---|
541 | |
---|
542 | IF (ngrid.NE.1) THEN |
---|
543 | c CALL WRITEDIAGFI(ngridmx,'dsodust','tau*g/dp', |
---|
544 | c & 'm2.kg-1',3,dsodust) |
---|
545 | IF (callstats) THEN |
---|
546 | CALL wstats(ngridmx,'dsodust', |
---|
547 | & 'tau*g/dp', |
---|
548 | & 'm2.kg-1',3,dsodust) |
---|
549 | ENDIF |
---|
550 | c CALL WRITEDIAGFI(ngridmx,'ccn','Cond. nuclei', |
---|
551 | c & 'part kg-1',3,ccn) |
---|
552 | ELSE |
---|
553 | CALL writeg1d(ngrid,nlayer,dsodust,'dsodust','m2.kg-1') |
---|
554 | ENDIF |
---|
555 | c ----------------------------------------------------------------- |
---|
556 | return |
---|
557 | end |
---|