[2027] | 1 | !============================================================================== |
---|
| 2 | |
---|
[2028] | 3 | subroutine photolysis_online(nlayer, alt, press, temp, |
---|
[2027] | 4 | $ zmmean, i_co2, i_co, i_o, i_o1d, i_o2, i_o3, i_h, |
---|
| 5 | $ i_h2, i_oh, i_ho2, i_h2o2, i_h2o, |
---|
| 6 | $ i_n, i_n2d, i_no, i_no2, i_n2, nesp, rm, |
---|
| 7 | $ tau, sza, dist_sol, v_phot) |
---|
| 8 | |
---|
[2029] | 9 | use photolysis_mod |
---|
| 10 | |
---|
[2027] | 11 | implicit none |
---|
| 12 | |
---|
| 13 | ! input |
---|
| 14 | |
---|
[2029] | 15 | integer, intent(in) :: nesp ! total number of chemical species |
---|
| 16 | integer, intent(in) :: nlayer |
---|
| 17 | integer, intent(in) :: i_co2, i_co, i_o, i_o1d, i_o2, i_o3, i_h, |
---|
| 18 | $ i_h2, i_oh, i_ho2, i_h2o2, i_h2o, |
---|
| 19 | $ i_n, i_n2d, i_no, i_no2, i_n2 |
---|
[2027] | 20 | |
---|
[2029] | 21 | real, dimension(nlayer), intent(in) :: press, temp, zmmean ! pressure (hpa)/temperature (k)/mean molecular mass (g.mol-1) |
---|
| 22 | real, dimension(nlayer), intent(in) :: alt ! altitude (km) |
---|
| 23 | real, dimension(nlayer,nesp), intent(in) :: rm ! mixing ratios |
---|
| 24 | real, intent(in) :: tau ! integrated aerosol optical depth at the surface |
---|
| 25 | real, intent(in) :: sza ! solar zenith angle (degrees) |
---|
| 26 | real, intent(in) :: dist_sol ! solar distance (au) |
---|
[2027] | 27 | |
---|
| 28 | ! output |
---|
| 29 | |
---|
| 30 | real (kind = 8), dimension(nlayer,nb_phot_max) :: v_phot ! photolysis rates (s-1) |
---|
| 31 | |
---|
[2029] | 32 | ! solar flux at mars |
---|
[2027] | 33 | |
---|
[2029] | 34 | real, dimension(nw) :: fmars ! solar flux (w.m-2.nm-1) |
---|
[2027] | 35 | real :: factor |
---|
| 36 | |
---|
[2029] | 37 | ! cross-sections |
---|
[2027] | 38 | |
---|
[2028] | 39 | real, dimension(nlayer,nw,nphot) :: sj ! general cross-section array (cm2) |
---|
[2027] | 40 | |
---|
| 41 | ! atmosphere |
---|
| 42 | |
---|
| 43 | real, dimension(nlayer) :: colinc ! air column increment (molecule.cm-2) |
---|
| 44 | real, dimension(nlayer,nw) :: dtrl ! rayleigh optical depth |
---|
| 45 | real, dimension(nlayer,nw) :: dtaer ! aerosol optical depth |
---|
| 46 | real, dimension(nlayer,nw) :: omaer ! aerosol single scattering albedo |
---|
| 47 | real, dimension(nlayer,nw) :: gaer ! aerosol asymmetry parameter |
---|
| 48 | real, dimension(nlayer,nw) :: dtcld ! cloud optical depth |
---|
| 49 | real, dimension(nlayer,nw) :: omcld ! cloud single scattering albedo |
---|
| 50 | real, dimension(nlayer,nw) :: gcld ! cloud asymmetry parameter |
---|
| 51 | real, dimension(nlayer,nw,nabs) :: dtgas ! optical depth for each gas |
---|
| 52 | real, dimension(nlayer,nw) :: dagas ! total gas optical depth |
---|
| 53 | real, dimension(nlayer) :: edir, edn, eup ! normalised irradiances |
---|
| 54 | real, dimension(nlayer) :: fdir, fdn, fup ! normalised actinic fluxes |
---|
| 55 | real, dimension(nlayer) :: saflux ! total actinic flux |
---|
| 56 | |
---|
| 57 | integer, dimension(0:nlayer) :: nid |
---|
| 58 | real, dimension(0:nlayer,nlayer) :: dsdh |
---|
| 59 | |
---|
| 60 | integer :: j_o2_o, j_o2_o1d, j_co2_o, j_co2_o1d, j_o3_o1d, j_o3_o, |
---|
| 61 | $ j_h2o, j_h2o2, j_ho2, j_h2, j_no, j_no2, j_n2 |
---|
| 62 | |
---|
| 63 | integer :: a_o2, a_co2, a_o3, a_h2o, a_h2o2, a_ho2, a_h2, a_no, |
---|
| 64 | $ a_no2, a_n2 |
---|
[2028] | 65 | integer :: i, ilay, iw, ialt |
---|
[2027] | 66 | real :: deltaj |
---|
| 67 | |
---|
| 68 | ! absorbing gas numbering |
---|
| 69 | |
---|
| 70 | a_o2 = 1 ! o2 |
---|
| 71 | a_co2 = 2 ! co2 |
---|
| 72 | a_o3 = 3 ! o3 |
---|
| 73 | a_h2o = 4 ! h2o |
---|
| 74 | a_h2o2 = 5 ! h2o2 |
---|
| 75 | a_ho2 = 6 ! ho2 |
---|
| 76 | a_h2 = 7 ! h2 |
---|
| 77 | a_no = 8 ! no |
---|
| 78 | a_no2 = 9 ! no2 |
---|
| 79 | a_n2 = 10 ! no2 |
---|
| 80 | |
---|
[2028] | 81 | ! photodissociation rates numbering. |
---|
| 82 | ! photodissociations must be ordered the same way in subroutine "indice" |
---|
[2027] | 83 | |
---|
| 84 | j_o2_o = 1 ! o2 + hv -> o + o |
---|
| 85 | j_o2_o1d = 2 ! o2 + hv -> o + o(1d) |
---|
| 86 | j_co2_o = 3 ! co2 + hv -> co + o |
---|
| 87 | j_co2_o1d = 4 ! co2 + hv -> co + o(1d) |
---|
| 88 | j_o3_o1d = 5 ! o3 + hv -> o2 + o(1d) |
---|
| 89 | j_o3_o = 6 ! o3 + hv -> o2 + o |
---|
| 90 | j_h2o = 7 ! h2o + hv -> h + oh |
---|
| 91 | j_h2o2 = 8 ! h2o2 + hv -> oh + oh |
---|
| 92 | j_ho2 = 9 ! ho2 + hv -> oh + o |
---|
| 93 | j_h2 = 10 ! h2 + hv -> h + h |
---|
| 94 | j_no = 11 ! no + hv -> n + o |
---|
| 95 | j_no2 = 12 ! no2 + hv -> no + o |
---|
| 96 | j_n2 = 13 ! n2 + hv -> n + n |
---|
| 97 | |
---|
| 98 | !==== air column increments and rayleigh optical depth |
---|
| 99 | |
---|
| 100 | call setair(nlayer, nw, wl, wc, press, temp, zmmean, colinc, dtrl) |
---|
| 101 | |
---|
| 102 | !==== set temperature-dependent cross-sections and optical depths |
---|
| 103 | |
---|
| 104 | ! o2: |
---|
| 105 | |
---|
[2028] | 106 | call seto2(nphot, nlayer, nw, wc, mopt, temp, xso2_150, xso2_200, |
---|
[2027] | 107 | $ xso2_250, xso2_300, yieldo2, j_o2_o, j_o2_o1d, |
---|
| 108 | $ colinc, rm(:,i_o2), dtgas(:,:,a_o2), sj) |
---|
| 109 | |
---|
| 110 | ! co2: |
---|
| 111 | |
---|
[2028] | 112 | call setco2(nphot, nlayer, nw, wc, temp, xsco2_195, xsco2_295, |
---|
[2027] | 113 | $ xsco2_370, yieldco2, j_co2_o, j_co2_o1d, |
---|
| 114 | $ colinc, rm(:,i_co2), dtgas(:,:,a_co2), sj) |
---|
| 115 | |
---|
| 116 | ! o3: |
---|
| 117 | |
---|
[2028] | 118 | call seto3(nphot, nlayer, nw, wc, temp, xso3_218, xso3_298, |
---|
[2027] | 119 | $ j_o3_o, j_o3_o1d, |
---|
| 120 | $ colinc, rm(:,i_o3), dtgas(:,:,a_o3), sj) |
---|
| 121 | |
---|
| 122 | ! h2o2: |
---|
| 123 | |
---|
[2028] | 124 | call seth2o2(nphot, nlayer, nw, wc, temp, xsh2o2, j_h2o2, |
---|
[2027] | 125 | $ colinc, rm(:,i_h2o2), dtgas(:,:,a_h2o2), sj) |
---|
| 126 | |
---|
| 127 | ! no2: |
---|
| 128 | |
---|
[2028] | 129 | call setno2(nphot, nlayer, nw, wc, temp, xsno2, xsno2_220, |
---|
[2027] | 130 | $ xsno2_294, yldno2_248, yldno2_298, j_no2, |
---|
| 131 | $ colinc, rm(:,i_no2), dtgas(:,:,a_no2), sj) |
---|
| 132 | |
---|
| 133 | !==== temperature independent optical depths and cross-sections |
---|
| 134 | |
---|
| 135 | ! optical depths |
---|
| 136 | |
---|
| 137 | do ilay = 1,nlayer |
---|
| 138 | do iw = 1,nw-1 |
---|
| 139 | dtgas(ilay,iw,a_h2o) = colinc(ilay)*rm(ilay,i_h2o)*xsh2o(iw) |
---|
| 140 | dtgas(ilay,iw,a_ho2) = colinc(ilay)*rm(ilay,i_ho2)*xsho2(iw) |
---|
| 141 | dtgas(ilay,iw,a_h2) = colinc(ilay)*rm(ilay,i_h2)*xsh2(iw) |
---|
| 142 | dtgas(ilay,iw,a_no) = colinc(ilay)*rm(ilay,i_no)*xsno(iw) |
---|
| 143 | dtgas(ilay,iw,a_n2) = colinc(ilay)*rm(ilay,i_n2)*xsn2(iw) |
---|
| 144 | end do |
---|
| 145 | end do |
---|
| 146 | |
---|
| 147 | ! total gas optical depth |
---|
| 148 | |
---|
| 149 | dagas(:,:) = 0. |
---|
| 150 | |
---|
| 151 | do ilay = 1,nlayer |
---|
| 152 | do iw = 1,nw-1 |
---|
| 153 | do i = 1,nabs |
---|
| 154 | dagas(ilay,iw) = dagas(ilay,iw) + dtgas(ilay,iw,i) |
---|
| 155 | end do |
---|
| 156 | end do |
---|
| 157 | end do |
---|
| 158 | |
---|
| 159 | ! cross-sections |
---|
| 160 | |
---|
| 161 | do ilay = 1,nlayer |
---|
| 162 | do iw = 1,nw-1 |
---|
| 163 | sj(ilay,iw,j_h2o) = xsh2o(iw) ! h2o |
---|
| 164 | sj(ilay,iw,j_ho2) = xsho2(iw) ! ho2 |
---|
| 165 | sj(ilay,iw,j_h2) = xsh2(iw)*yieldh2(iw) ! h2 |
---|
| 166 | sj(ilay,iw,j_no) = xsno(iw)*yieldno(iw) ! no |
---|
| 167 | sj(ilay,iw,j_n2) = xsn2(iw)*yieldn2(iw) ! n2 |
---|
| 168 | end do |
---|
| 169 | end do |
---|
| 170 | |
---|
| 171 | !==== set aerosol properties and optical depth |
---|
| 172 | |
---|
| 173 | call setaer(nlayer,alt,tau,nw,dtaer,omaer,gaer) |
---|
| 174 | |
---|
| 175 | !==== set cloud properties and optical depth |
---|
| 176 | |
---|
| 177 | call setcld(nlayer,nw,dtcld,omcld,gcld) |
---|
| 178 | |
---|
| 179 | !==== slant path lengths in spherical geometry |
---|
| 180 | |
---|
[2029] | 181 | call sphers(nlayer,alt,sza,dsdh,nid) |
---|
[2027] | 182 | |
---|
| 183 | !==== solar flux at mars |
---|
| 184 | |
---|
| 185 | factor = (1./dist_sol)**2. |
---|
| 186 | do iw = 1,nw-1 |
---|
[2029] | 187 | fmars(iw) = f(iw)*factor |
---|
[2027] | 188 | end do |
---|
| 189 | |
---|
| 190 | !==== initialise photolysis rates |
---|
| 191 | |
---|
[2028] | 192 | v_phot(:,1:nphot) = 0. |
---|
[2027] | 193 | |
---|
| 194 | !==== start of wavelength lopp |
---|
| 195 | |
---|
| 196 | do iw = 1,nw-1 |
---|
| 197 | |
---|
| 198 | ! monochromatic radiative transfer. outputs are: |
---|
| 199 | ! normalized irradiances edir(nlayer), edn(nlayer), eup(nlayer) |
---|
| 200 | ! normalized actinic fluxes fdir(nlayer), fdn(nlayer), fup(nlayer) |
---|
| 201 | ! where |
---|
| 202 | ! dir = direct beam, dn = down-welling diffuse, up = up-welling diffuse |
---|
| 203 | |
---|
| 204 | call rtlink(nlayer, nw, iw, albedo(iw), sza, dsdh, nid, dtrl, |
---|
| 205 | $ dagas, dtcld, omcld, gcld, dtaer, omaer, gaer, |
---|
| 206 | $ edir, edn, eup, fdir, fdn, fup) |
---|
| 207 | |
---|
| 208 | |
---|
| 209 | ! spherical actinic flux |
---|
| 210 | |
---|
[2028] | 211 | do ilay = 1,nlayer |
---|
[2029] | 212 | saflux(ilay) = fmars(iw)*(fdir(ilay) + fdn(ilay) + fup(ilay)) |
---|
[2027] | 213 | end do |
---|
| 214 | |
---|
| 215 | ! photolysis rate integration |
---|
| 216 | |
---|
[2028] | 217 | do i = 1,nphot |
---|
| 218 | do ilay = 1,nlayer |
---|
[2027] | 219 | deltaj = saflux(ilay)*sj(ilay,iw,i) |
---|
| 220 | v_phot(ilay,i) = v_phot(ilay,i) + deltaj*(wu(iw)-wl(iw)) |
---|
| 221 | end do |
---|
| 222 | end do |
---|
| 223 | |
---|
| 224 | ! eliminate small values |
---|
| 225 | |
---|
[2028] | 226 | where (v_phot(:,1:nphot) < 1.e-30) |
---|
| 227 | v_phot(:,1:nphot) = 0. |
---|
[2027] | 228 | end where |
---|
| 229 | |
---|
| 230 | end do ! iw |
---|
| 231 | |
---|
[2029] | 232 | contains |
---|
[2027] | 233 | |
---|
| 234 | !============================================================================== |
---|
| 235 | |
---|
| 236 | subroutine setair(nlev, nw, wl, wc, press, temp, zmmean, |
---|
| 237 | $ colinc, dtrl) |
---|
| 238 | |
---|
| 239 | *-----------------------------------------------------------------------------* |
---|
| 240 | *= PURPOSE: =* |
---|
| 241 | *= computes air column increments and rayleigh optical depth =* |
---|
| 242 | *-----------------------------------------------------------------------------* |
---|
| 243 | |
---|
| 244 | implicit none |
---|
| 245 | |
---|
| 246 | ! input: |
---|
| 247 | |
---|
| 248 | integer :: nlev, nw |
---|
| 249 | |
---|
| 250 | real, dimension(nw) :: wl, wc ! lower and central wavelength grid (nm) |
---|
| 251 | real, dimension(nlev) :: press, temp, zmmean ! pressure (hpa), temperature (k), molecular mass (g.mol-1) |
---|
| 252 | |
---|
| 253 | ! output: |
---|
| 254 | |
---|
| 255 | real, dimension(nlev) :: colinc ! air column increments (molecule.cm-2) |
---|
| 256 | real, dimension(nlev,nw) :: dtrl ! rayleigh optical depth |
---|
| 257 | |
---|
| 258 | ! local: |
---|
| 259 | |
---|
| 260 | real, parameter :: avo = 6.022e23 |
---|
| 261 | real, parameter :: g = 3.72 |
---|
[2041] | 262 | real :: dp, nu |
---|
[2027] | 263 | real, dimension(nw) :: srayl |
---|
| 264 | integer :: ilev, iw |
---|
| 265 | |
---|
[2029] | 266 | ! compute column increments |
---|
[2027] | 267 | |
---|
| 268 | do ilev = 1, nlev-1 |
---|
| 269 | dp = (press(ilev) - press(ilev+1))*100. |
---|
| 270 | colinc(ilev) = avo*0.1*dp/(zmmean(ilev)*g) |
---|
| 271 | end do |
---|
| 272 | colinc(nlev) = avo*0.1*press(nlev)*100./(zmmean(nlev)*g) |
---|
| 273 | |
---|
| 274 | do iw = 1, nw - 1 |
---|
| 275 | |
---|
[2041] | 276 | ! co2 rayleigh cross-section |
---|
| 277 | ! ityaksov et al., chem. phys. lett., 462, 31-34, 2008 |
---|
[2027] | 278 | |
---|
[2041] | 279 | nu = 1./(wc(iw)*1.e-7) |
---|
| 280 | srayl(iw) = 1.78e-26*nu**(4. + 0.625) |
---|
| 281 | srayl(iw) = srayl(iw)*1.e-20 ! cm2 |
---|
[2027] | 282 | |
---|
| 283 | do ilev = 1, nlev |
---|
[2041] | 284 | dtrl(ilev,iw) = colinc(ilev)*srayl(iw) ! cm2 |
---|
[2027] | 285 | end do |
---|
| 286 | end do |
---|
| 287 | |
---|
[2029] | 288 | end subroutine setair |
---|
[2027] | 289 | |
---|
| 290 | !============================================================================== |
---|
| 291 | |
---|
| 292 | subroutine setco2(nd, nlayer, nw, wc, tlay, xsco2_195, xsco2_295, |
---|
| 293 | $ xsco2_370, yieldco2, j_co2_o, j_co2_o1d, |
---|
| 294 | $ colinc, rm, dt, sj) |
---|
| 295 | |
---|
[2029] | 296 | !-----------------------------------------------------------------------------* |
---|
| 297 | != PURPOSE: =* |
---|
| 298 | != Set up the CO2 temperature-dependent cross-sections and optical depth =* |
---|
| 299 | !-----------------------------------------------------------------------------* |
---|
[2027] | 300 | |
---|
| 301 | implicit none |
---|
| 302 | |
---|
| 303 | ! input: |
---|
| 304 | |
---|
| 305 | integer :: nd ! number of photolysis rates |
---|
| 306 | integer :: nlayer ! number of vertical layers |
---|
| 307 | integer :: nw ! number of wavelength grid points |
---|
| 308 | integer :: j_co2_o, j_co2_o1d ! photolysis indexes |
---|
| 309 | real, dimension(nw) :: wc ! central wavelength for each interval |
---|
| 310 | real, dimension(nw) :: xsco2_195, xsco2_295, xsco2_370 ! co2 cross-sections (cm2) |
---|
| 311 | real, dimension(nw) :: yieldco2 ! co2 photodissociation yield |
---|
| 312 | real, dimension(nlayer) :: tlay ! temperature (k) |
---|
| 313 | real, dimension(nlayer) :: rm ! co2 mixing ratio |
---|
| 314 | real, dimension(nlayer) :: colinc ! air column increment (molecule.cm-2) |
---|
| 315 | |
---|
| 316 | ! output: |
---|
| 317 | |
---|
| 318 | real, dimension(nlayer,nw) :: dt ! optical depth |
---|
| 319 | real, dimension(nlayer,nw,nd) :: sj ! cross-section array (cm2) |
---|
| 320 | |
---|
| 321 | ! local: |
---|
| 322 | |
---|
| 323 | integer :: extrapol |
---|
| 324 | integer :: i, l |
---|
| 325 | real :: temp, sco2 |
---|
| 326 | |
---|
| 327 | ! extrapol = 0 no extrapolation below 195 k |
---|
| 328 | ! extrapol = 1 extrapolation below 195 k |
---|
| 329 | |
---|
| 330 | extrapol = 0 |
---|
| 331 | |
---|
| 332 | do i = 1, nlayer |
---|
| 333 | if (extrapol == 1) then |
---|
| 334 | temp = tlay(i) |
---|
| 335 | else |
---|
| 336 | temp = max(tlay(i), 195.) |
---|
| 337 | end if |
---|
| 338 | temp = min(temp, 370.) |
---|
| 339 | do l = 1, nw-1 |
---|
| 340 | if (temp <= 295.) then |
---|
| 341 | if (xsco2_195(l) /= 0. .and. xsco2_295(l) /= 0.) then |
---|
| 342 | sco2 = alog(xsco2_195(l)) |
---|
| 343 | $ + (alog(xsco2_295(l)) - alog(xsco2_195(l))) |
---|
| 344 | $ /(295. - 195.)*(temp - 195.) |
---|
| 345 | sco2 = exp(sco2) |
---|
| 346 | else |
---|
| 347 | sco2 = 0. |
---|
| 348 | end if |
---|
| 349 | else |
---|
| 350 | if (xsco2_295(l) /= 0. .and. xsco2_370(l) /= 0.) then |
---|
| 351 | sco2 = alog(xsco2_295(l)) |
---|
| 352 | $ + (alog(xsco2_370(l)) - alog(xsco2_295(l))) |
---|
| 353 | $ /(370. - 295.)*(temp - 295.) |
---|
| 354 | sco2 = exp(sco2) |
---|
| 355 | else |
---|
| 356 | sco2 = 0. |
---|
| 357 | end if |
---|
| 358 | end if |
---|
| 359 | |
---|
| 360 | ! optical depth |
---|
| 361 | |
---|
| 362 | dt(i,l) = colinc(i)*rm(i)*sco2 |
---|
| 363 | |
---|
| 364 | ! production of o(1d) for wavelengths shorter than 167 nm |
---|
| 365 | |
---|
| 366 | if (wc(l) >= 167.) then |
---|
| 367 | sj(i,l,j_co2_o) = sco2*yieldco2(l) |
---|
| 368 | sj(i,l,j_co2_o1d) = 0. |
---|
| 369 | else |
---|
| 370 | sj(i,l,j_co2_o) = 0. |
---|
| 371 | sj(i,l,j_co2_o1d) = sco2*yieldco2(l) |
---|
| 372 | end if |
---|
| 373 | end do |
---|
| 374 | end do |
---|
| 375 | |
---|
| 376 | end subroutine setco2 |
---|
| 377 | |
---|
| 378 | !============================================================================== |
---|
| 379 | |
---|
| 380 | subroutine seto2(nd, nlayer, nw, wc, mopt, tlay, xso2_150, |
---|
| 381 | $ xso2_200, xso2_250, xso2_300, yieldo2, j_o2_o, |
---|
| 382 | $ j_o2_o1d, colinc, rm, dt, sj) |
---|
| 383 | |
---|
[2029] | 384 | !-----------------------------------------------------------------------------* |
---|
| 385 | != PURPOSE: =* |
---|
| 386 | != Set up the O2 temperature-dependent cross-sections and optical depth =* |
---|
| 387 | !-----------------------------------------------------------------------------* |
---|
[2027] | 388 | |
---|
| 389 | implicit none |
---|
| 390 | |
---|
| 391 | ! input: |
---|
| 392 | |
---|
| 393 | integer :: nd ! number of photolysis rates |
---|
| 394 | integer :: nlayer ! number of vertical layers |
---|
| 395 | integer :: nw ! number of wavelength grid points |
---|
| 396 | integer :: mopt ! high-res/low-res switch |
---|
| 397 | integer :: j_o2_o, j_o2_o1d ! photolysis indexes |
---|
| 398 | real, dimension(nw) :: wc ! central wavelength for each interval |
---|
| 399 | real, dimension(nw) :: xso2_150, xso2_200, xso2_250, ! o2 cross-sections (cm2) |
---|
| 400 | $ xso2_300 |
---|
| 401 | real, dimension(nw) :: yieldo2 ! o2 photodissociation yield |
---|
| 402 | real, dimension(nlayer) :: tlay ! temperature (k) |
---|
| 403 | real, dimension(nlayer) :: rm ! o2 mixing ratio |
---|
| 404 | real, dimension(nlayer) :: colinc ! air column increment (molecule.cm-2) |
---|
| 405 | |
---|
| 406 | ! output: |
---|
| 407 | |
---|
| 408 | real, dimension(nlayer,nw) :: dt ! optical depth |
---|
| 409 | real, dimension(nlayer,nw,nd) :: sj ! cross-section array (cm2) |
---|
| 410 | |
---|
| 411 | ! local: |
---|
| 412 | |
---|
| 413 | integer :: ilev, iw |
---|
| 414 | real :: temp |
---|
| 415 | real :: xso2, factor |
---|
| 416 | |
---|
| 417 | ! correction by factor if low-resolution in schumann-runge bands |
---|
| 418 | |
---|
| 419 | if (mopt == 1) then |
---|
| 420 | factor = 1. |
---|
| 421 | else if (mopt == 2) then |
---|
| 422 | factor = 0.8 |
---|
| 423 | end if |
---|
| 424 | |
---|
| 425 | ! calculate temperature dependance |
---|
| 426 | |
---|
| 427 | do ilev = 1,nlayer |
---|
| 428 | temp = max(tlay(ilev),150.) |
---|
| 429 | temp = min(temp, 300.) |
---|
| 430 | do iw = 1, nw-1 |
---|
| 431 | if (tlay(ilev) > 250.) then |
---|
| 432 | xso2 = xso2_250(iw) + (xso2_300(iw) - xso2_250(iw)) |
---|
| 433 | $ /(300. - 250.)*(temp - 250.) |
---|
| 434 | else if (tlay(ilev) > 200.) then |
---|
| 435 | xso2 = xso2_200(iw) + (xso2_250(iw) - xso2_200(iw)) |
---|
| 436 | $ /(250. - 200.)*(temp - 200.) |
---|
| 437 | else |
---|
| 438 | xso2 = xso2_150(iw) + (xso2_200(iw) - xso2_150(iw)) |
---|
| 439 | $ /(200. - 150.)*(temp - 150.) |
---|
| 440 | end if |
---|
| 441 | |
---|
| 442 | if (wc(iw) > 180. .and. wc(iw) < 200.) then |
---|
| 443 | xso2 = xso2*factor |
---|
| 444 | end if |
---|
| 445 | |
---|
| 446 | ! optical depth |
---|
| 447 | |
---|
| 448 | dt(ilev,iw) = colinc(ilev)*rm(ilev)*xso2 |
---|
| 449 | |
---|
| 450 | ! production of o(1d) for wavelengths shorter than 175 nm |
---|
| 451 | |
---|
| 452 | if (wc(iw) >= 175.) then |
---|
| 453 | sj(ilev,iw,j_o2_o) = xso2*yieldo2(iw) |
---|
| 454 | sj(ilev,iw,j_o2_o1d) = 0. |
---|
| 455 | else |
---|
| 456 | sj(ilev,iw,j_o2_o) = 0. |
---|
| 457 | sj(ilev,iw,j_o2_o1d) = xso2*yieldo2(iw) |
---|
| 458 | end if |
---|
| 459 | |
---|
| 460 | end do |
---|
| 461 | end do |
---|
| 462 | |
---|
| 463 | end subroutine seto2 |
---|
| 464 | |
---|
| 465 | !============================================================================== |
---|
| 466 | |
---|
| 467 | subroutine seto3(nd, nlayer, nw, wc, tlay, xso3_218, xso3_298, |
---|
| 468 | $ j_o3_o, j_o3_o1d, |
---|
| 469 | $ colinc, rm, dt, sj) |
---|
| 470 | |
---|
[2029] | 471 | !-----------------------------------------------------------------------------* |
---|
| 472 | != PURPOSE: =* |
---|
| 473 | != Set up the O3 temperature dependent cross-sections and optical depth =* |
---|
| 474 | !-----------------------------------------------------------------------------* |
---|
[2027] | 475 | |
---|
| 476 | implicit none |
---|
| 477 | |
---|
| 478 | ! input: |
---|
| 479 | |
---|
| 480 | integer :: nd ! number of photolysis rates |
---|
| 481 | integer :: nlayer ! number of vertical layers |
---|
| 482 | integer :: nw ! number of wavelength grid points |
---|
| 483 | integer :: j_o3_o, j_o3_o1d ! photolysis indexes |
---|
| 484 | real, dimension(nw) :: wc ! central wavelength for each interval |
---|
| 485 | real, dimension(nw) :: xso3_218, xso3_298 ! o3 cross-sections (cm2) |
---|
| 486 | real, dimension(nlayer) :: tlay ! temperature (k) |
---|
| 487 | real, dimension(nlayer) :: rm ! o3 mixing ratio |
---|
| 488 | real, dimension(nlayer) :: colinc ! air column increment (molecule.cm-2) |
---|
| 489 | |
---|
| 490 | ! output: |
---|
| 491 | |
---|
| 492 | real, dimension(nlayer,nw) :: dt ! optical depth |
---|
| 493 | real, dimension(nlayer,nw,nd) :: sj ! cross-section array (cm2) |
---|
| 494 | |
---|
| 495 | ! local: |
---|
| 496 | ! |
---|
| 497 | integer :: ilev, iw |
---|
| 498 | real :: temp |
---|
| 499 | real, dimension(nw) :: xso3(nw) |
---|
| 500 | real, dimension(nw) :: qy1d ! quantum yield for o(1d) production |
---|
| 501 | real :: q1, q2, a1, a2, a3 |
---|
| 502 | |
---|
| 503 | do ilev = 1, nlayer |
---|
| 504 | temp = max(tlay(ilev), 218.) |
---|
| 505 | temp = min(temp,298.) |
---|
| 506 | do iw = 1, nw-1 |
---|
| 507 | xso3(iw) = xso3_218(iw) + (xso3_298(iw) - xso3_218(iw)) |
---|
| 508 | $ /(298. - 218.) *(temp - 218.) |
---|
| 509 | |
---|
| 510 | ! optical depth |
---|
| 511 | |
---|
| 512 | dt(ilev,iw) = colinc(ilev)*rm(ilev)*xso3(iw) |
---|
| 513 | |
---|
| 514 | end do |
---|
| 515 | |
---|
| 516 | ! calculate quantum yield for o(1d) production (jpl 2006) |
---|
| 517 | |
---|
| 518 | temp = max(tlay(ilev),200.) |
---|
| 519 | temp = min(temp,320.) |
---|
| 520 | do iw = 1, nw-1 |
---|
| 521 | if (wc(iw) <= 306.) then |
---|
| 522 | qy1d(iw) = 0.90 |
---|
| 523 | else if (wc(iw) > 306. .and. wc(iw) < 328.) then |
---|
| 524 | q1 = 1. |
---|
| 525 | q2 = exp(-825.518/(0.695*temp)) |
---|
| 526 | a1 = (304.225 - wc(iw))/5.576 |
---|
| 527 | a2 = (314.957 - wc(iw))/6.601 |
---|
| 528 | a3 = (310.737 - wc(iw))/2.187 |
---|
| 529 | qy1d(iw) = (q1/(q1 + q2))*0.8036*exp(-(a1*a1*a1*a1)) |
---|
| 530 | $ + (q2/(q1 + q2))*8.9061*(temp/300.)**2. |
---|
| 531 | $ *exp(-(a2*a2)) |
---|
| 532 | $ + 0.1192*(temp/300.)**1.5*exp(-(a3*a3)) |
---|
| 533 | $ + 0.0765 |
---|
| 534 | else if (wc(iw) >= 328. .and. wc(iw) <= 340.) then |
---|
| 535 | qy1d(iw) = 0.08 |
---|
| 536 | else |
---|
| 537 | qy1d(iw) = 0. |
---|
| 538 | endif |
---|
| 539 | end do |
---|
| 540 | do iw = 1, nw-1 |
---|
| 541 | sj(ilev,iw,j_o3_o) = xso3(iw)*(1. - qy1d(iw)) |
---|
| 542 | sj(ilev,iw,j_o3_o1d) = xso3(iw)*qy1d(iw) |
---|
| 543 | end do |
---|
| 544 | end do |
---|
| 545 | |
---|
| 546 | end subroutine seto3 |
---|
| 547 | |
---|
| 548 | !============================================================================== |
---|
| 549 | |
---|
| 550 | subroutine seth2o2(nd, nlayer, nw, wc, tlay, xsh2o2, j_h2o2, |
---|
| 551 | $ colinc, rm, dt, sj) |
---|
| 552 | |
---|
[2029] | 553 | !-----------------------------------------------------------------------------* |
---|
| 554 | != PURPOSE: =* |
---|
| 555 | != Set up the h2o2 temperature dependent cross-sections and optical depth =* |
---|
| 556 | !-----------------------------------------------------------------------------* |
---|
[2027] | 557 | |
---|
| 558 | implicit none |
---|
| 559 | |
---|
| 560 | ! input: |
---|
| 561 | |
---|
| 562 | integer :: nd ! number of photolysis rates |
---|
| 563 | integer :: nlayer ! number of vertical layers |
---|
| 564 | integer :: nw ! number of wavelength grid points |
---|
| 565 | integer :: j_h2o2 ! photolysis index |
---|
| 566 | real, dimension(nw) :: wc ! central wavelength for each interval |
---|
| 567 | real, dimension(nw) :: xsh2o2 ! h2o2 cross-sections (cm2) |
---|
| 568 | real, dimension(nlayer) :: tlay ! temperature (k) |
---|
| 569 | real, dimension(nlayer) :: rm ! h2o2 mixing ratio |
---|
| 570 | real, dimension(nlayer) :: colinc ! air column increment (molecule.cm-2) |
---|
| 571 | |
---|
| 572 | ! output: |
---|
| 573 | |
---|
| 574 | real, dimension(nlayer,nw) :: dt ! optical depth |
---|
| 575 | real, dimension(nlayer,nw,nd) :: sj ! cross-section array (cm2) |
---|
| 576 | |
---|
| 577 | ! local: |
---|
| 578 | |
---|
| 579 | integer :: ilev, iw |
---|
| 580 | real :: a0, a1, a2, a3, a4, a5, a6, a7 |
---|
| 581 | real :: b0, b1, b2, b3, b4 |
---|
| 582 | real :: lambda, suma, sumb, chi, temp, xs |
---|
| 583 | |
---|
| 584 | A0 = 6.4761E+04 |
---|
| 585 | A1 = -9.2170972E+02 |
---|
| 586 | A2 = 4.535649 |
---|
| 587 | A3 = -4.4589016E-03 |
---|
| 588 | A4 = -4.035101E-05 |
---|
| 589 | A5 = 1.6878206E-07 |
---|
| 590 | A6 = -2.652014E-10 |
---|
| 591 | A7 = 1.5534675E-13 |
---|
| 592 | |
---|
| 593 | B0 = 6.8123E+03 |
---|
| 594 | B1 = -5.1351E+01 |
---|
| 595 | B2 = 1.1522E-01 |
---|
| 596 | B3 = -3.0493E-05 |
---|
| 597 | B4 = -1.0924E-07 |
---|
| 598 | |
---|
| 599 | ! temperature dependance: jpl 2006 |
---|
| 600 | |
---|
| 601 | do ilev = 1,nlayer |
---|
| 602 | temp = min(max(tlay(ilev),200.),400.) |
---|
| 603 | chi = 1./(1. + exp(-1265./temp)) |
---|
| 604 | do iw = 1, nw-1 |
---|
| 605 | if ((wc(iw) >= 260.) .and. (wc(iw) < 350.)) then |
---|
| 606 | lambda = wc(iw) |
---|
| 607 | sumA = ((((((A7*lambda + A6)*lambda + A5)*lambda + |
---|
| 608 | $ A4)*lambda +A3)*lambda + A2)*lambda + |
---|
| 609 | $ A1)*lambda + A0 |
---|
| 610 | sumB = (((B4*lambda + B3)*lambda + B2)*lambda + |
---|
| 611 | $ B1)*lambda + B0 |
---|
| 612 | xs = (chi*sumA + (1. - chi)*sumB)*1.e-21 |
---|
| 613 | sj(ilev,iw,j_h2o2) = xs |
---|
| 614 | else |
---|
| 615 | sj(ilev,iw,j_h2o2) = xsh2o2(iw) |
---|
| 616 | end if |
---|
| 617 | |
---|
| 618 | ! optical depth |
---|
| 619 | |
---|
| 620 | dt(ilev,iw) = colinc(ilev)*rm(ilev)*sj(ilev,iw,j_h2o2) |
---|
| 621 | end do |
---|
| 622 | end do |
---|
| 623 | |
---|
| 624 | end subroutine seth2o2 |
---|
| 625 | |
---|
| 626 | !============================================================================== |
---|
| 627 | |
---|
| 628 | subroutine setno2(nd, nlayer, nw, wc, tlay, xsno2, xsno2_220, |
---|
| 629 | $ xsno2_294, yldno2_248, yldno2_298, j_no2, |
---|
| 630 | $ colinc, rm, dt, sj) |
---|
| 631 | |
---|
[2029] | 632 | !-----------------------------------------------------------------------------* |
---|
| 633 | != PURPOSE: =* |
---|
| 634 | != Set up the no2 temperature-dependent cross-sections and optical depth =* |
---|
| 635 | !-----------------------------------------------------------------------------* |
---|
[2027] | 636 | |
---|
| 637 | implicit none |
---|
| 638 | |
---|
| 639 | ! input: |
---|
| 640 | |
---|
| 641 | integer :: nd ! number of photolysis rates |
---|
| 642 | integer :: nlayer ! number of vertical layers |
---|
| 643 | integer :: nw ! number of wavelength grid points |
---|
| 644 | integer :: j_no2 ! photolysis index |
---|
| 645 | real, dimension(nw) :: wc ! central wavelength for each interval |
---|
| 646 | real, dimension(nw) :: xsno2, xsno2_220, xsno2_294 ! no2 absorption cross-section at 220-294 k (cm2) |
---|
| 647 | real, dimension(nw) :: yldno2_248, yldno2_298 ! no2 quantum yield at 248-298 k |
---|
| 648 | real, dimension(nlayer) :: tlay ! temperature (k) |
---|
| 649 | real, dimension(nlayer) :: rm ! no2 mixing ratio |
---|
| 650 | real, dimension(nlayer) :: colinc ! air column increment (molecule.cm-2) |
---|
| 651 | |
---|
| 652 | ! output: |
---|
| 653 | |
---|
| 654 | real, dimension(nlayer,nw) :: dt ! optical depth |
---|
| 655 | real, dimension(nlayer,nw,nd) :: sj ! cross-section array (cm2) |
---|
| 656 | |
---|
| 657 | ! local: |
---|
| 658 | |
---|
| 659 | integer :: ilev, iw |
---|
| 660 | real :: temp, qy |
---|
| 661 | |
---|
| 662 | ! temperature dependance: jpl 2006 |
---|
| 663 | |
---|
| 664 | do ilev = 1,nlayer |
---|
| 665 | temp = max(220.,min(tlay(ilev),294.)) |
---|
| 666 | do iw = 1, nw - 1 |
---|
| 667 | if (wc(iw) < 238.) then |
---|
| 668 | sj(ilev,iw,j_no2) = xsno2(iw) |
---|
| 669 | else |
---|
| 670 | sj(ilev,iw,j_no2) = xsno2_220(iw) |
---|
| 671 | $ + (xsno2_294(iw) - xsno2_220(iw)) |
---|
| 672 | $ /(294. - 220.)*(temp - 220.) |
---|
| 673 | end if |
---|
| 674 | |
---|
| 675 | ! optical depth |
---|
| 676 | |
---|
| 677 | dt(ilev,iw) = colinc(ilev)*rm(ilev)*sj(ilev,iw,j_no2) |
---|
| 678 | end do |
---|
| 679 | end do |
---|
| 680 | |
---|
| 681 | ! quantum yield: jpl 2006 |
---|
| 682 | |
---|
| 683 | do ilev = 1,nlayer |
---|
| 684 | temp = max(248.,min(tlay(ilev),298.)) |
---|
| 685 | do iw = 1, nw - 1 |
---|
| 686 | qy = yldno2_248(iw) + (yldno2_298(iw) - yldno2_248(iw)) |
---|
| 687 | $ /(298. - 248.)*(temp - 248.) |
---|
| 688 | sj(ilev,iw,j_no2) = sj(ilev,iw,j_no2)*qy |
---|
| 689 | end do |
---|
| 690 | end do |
---|
| 691 | |
---|
| 692 | end subroutine setno2 |
---|
| 693 | |
---|
| 694 | !============================================================================== |
---|
| 695 | |
---|
| 696 | subroutine setaer(nlayer,alt,tau,nw,dtaer,omaer,gaer) |
---|
| 697 | |
---|
[2029] | 698 | !-----------------------------------------------------------------------------* |
---|
| 699 | != PURPOSE: =* |
---|
| 700 | != Set aerosol properties for each specified altitude layer. Properties =* |
---|
| 701 | != may be wavelength dependent. =* |
---|
| 702 | !-----------------------------------------------------------------------------* |
---|
[2027] | 703 | |
---|
| 704 | implicit none |
---|
| 705 | |
---|
| 706 | ! input |
---|
| 707 | |
---|
| 708 | integer :: nlayer ! number of vertical layers |
---|
| 709 | integer :: nw ! number of wavelength grid points |
---|
| 710 | real, dimension(nlayer) :: alt ! altitude (km) |
---|
| 711 | real :: tau ! integrated aerosol optical depth at the surface |
---|
| 712 | |
---|
| 713 | ! output |
---|
| 714 | |
---|
| 715 | real, dimension(nlayer,nw) :: dtaer ! aerosol optical depth |
---|
| 716 | real, dimension(nlayer,nw) :: omaer ! aerosol single scattering albedo |
---|
| 717 | real, dimension(nlayer,nw) :: gaer ! aerosol asymmetry parameter |
---|
| 718 | |
---|
| 719 | ! local |
---|
| 720 | |
---|
| 721 | integer :: ilay, iw |
---|
| 722 | real, dimension(nlayer) :: aer ! dust extinction |
---|
| 723 | real :: omega, g, scaleh, gamma |
---|
| 724 | real :: dz, tautot, q0 |
---|
| 725 | |
---|
| 726 | omega = 0.622 ! single scattering albedo : wolff et al.(2010) at 258 nm |
---|
| 727 | g = 0.88 ! asymmetry factor : mateshvili et al. (2007) at 210 nm |
---|
| 728 | scaleh = 10. ! scale height (km) |
---|
| 729 | gamma = 0.03 ! conrath parameter |
---|
| 730 | |
---|
| 731 | dtaer(:,:) = 0. |
---|
| 732 | omaer(:,:) = 0. |
---|
| 733 | gaer(:,:) = 0. |
---|
| 734 | |
---|
| 735 | ! optical depth profile: |
---|
| 736 | |
---|
| 737 | tautot = 0. |
---|
| 738 | do ilay = 1, nlayer-1 |
---|
| 739 | dz = alt(ilay+1) - alt(ilay) |
---|
| 740 | tautot = tautot + exp(gamma*(1. - exp(alt(ilay)/scaleh)))*dz |
---|
| 741 | end do |
---|
| 742 | |
---|
| 743 | q0 = tau/tautot |
---|
| 744 | do ilay = 1, nlayer-1 |
---|
| 745 | dz = alt(ilay+1) - alt(ilay) |
---|
| 746 | dtaer(ilay,:) = q0*exp(gamma*(1. - exp(alt(ilay)/scaleh)))*dz |
---|
| 747 | omaer(ilay,:) = omega |
---|
| 748 | gaer(ilay,:) = g |
---|
| 749 | end do |
---|
| 750 | |
---|
| 751 | end subroutine setaer |
---|
| 752 | |
---|
| 753 | !============================================================================== |
---|
| 754 | |
---|
| 755 | subroutine setcld(nlayer,nw,dtcld,omcld,gcld) |
---|
| 756 | |
---|
[2029] | 757 | !-----------------------------------------------------------------------------* |
---|
| 758 | != PURPOSE: =* |
---|
| 759 | != Set cloud properties for each specified altitude layer. Properties =* |
---|
| 760 | != may be wavelength dependent. =* |
---|
| 761 | !-----------------------------------------------------------------------------* |
---|
[2027] | 762 | |
---|
| 763 | implicit none |
---|
| 764 | |
---|
| 765 | ! input |
---|
| 766 | |
---|
| 767 | integer :: nlayer ! number of vertical layers |
---|
| 768 | integer :: nw ! number of wavelength grid points |
---|
| 769 | |
---|
| 770 | ! output |
---|
| 771 | |
---|
| 772 | real, dimension(nlayer,nw) :: dtcld ! cloud optical depth |
---|
| 773 | real, dimension(nlayer,nw) :: omcld ! cloud single scattering albedo |
---|
| 774 | real, dimension(nlayer,nw) :: gcld ! cloud asymmetry parameter |
---|
| 775 | |
---|
| 776 | ! local |
---|
| 777 | |
---|
| 778 | integer :: ilay, iw |
---|
| 779 | |
---|
[2029] | 780 | ! dtcld : optical depth |
---|
| 781 | ! omcld : single scattering albedo |
---|
| 782 | ! gcld : asymmetry factor |
---|
[2027] | 783 | |
---|
| 784 | do ilay = 1, nlayer - 1 |
---|
| 785 | do iw = 1, nw - 1 |
---|
| 786 | dtcld(ilay,iw) = 0. ! no clouds for the moment |
---|
| 787 | omcld(ilay,iw) = 0.99 |
---|
| 788 | gcld(ilay,iw) = 0.85 |
---|
| 789 | end do |
---|
| 790 | end do |
---|
| 791 | |
---|
[2029] | 792 | end subroutine setcld |
---|
[2027] | 793 | |
---|
| 794 | !============================================================================== |
---|
| 795 | |
---|
| 796 | subroutine sphers(nlev, z, zen, dsdh, nid) |
---|
| 797 | |
---|
[2029] | 798 | !-----------------------------------------------------------------------------* |
---|
| 799 | != PURPOSE: =* |
---|
| 800 | != Calculate slant path over vertical depth ds/dh in spherical geometry. =* |
---|
| 801 | != Calculation is based on: A.Dahlback, and K.Stamnes, A new spheric model =* |
---|
| 802 | != for computing the radiation field available for photolysis and heating =* |
---|
| 803 | != at twilight, Planet.Space Sci., v39, n5, pp. 671-683, 1991 (Appendix B) =* |
---|
| 804 | !-----------------------------------------------------------------------------* |
---|
| 805 | != PARAMETERS: =* |
---|
| 806 | != NZ - INTEGER, number of specified altitude levels in the working (I)=* |
---|
| 807 | != grid =* |
---|
| 808 | != Z - REAL, specified altitude working grid (km) (I)=* |
---|
| 809 | != ZEN - REAL, solar zenith angle (degrees) (I)=* |
---|
| 810 | != DSDH - REAL, slant path of direct beam through each layer crossed (O)=* |
---|
| 811 | != when travelling from the top of the atmosphere to layer i; =* |
---|
| 812 | != DSDH(i,j), i = 0..NZ-1, j = 1..NZ-1 =* |
---|
| 813 | != NID - INTEGER, number of layers crossed by the direct beam when (O)=* |
---|
| 814 | != travelling from the top of the atmosphere to layer i; =* |
---|
| 815 | != NID(i), i = 0..NZ-1 =* |
---|
| 816 | !-----------------------------------------------------------------------------* |
---|
| 817 | |
---|
[2027] | 818 | implicit none |
---|
| 819 | |
---|
[2029] | 820 | ! input |
---|
[2027] | 821 | |
---|
[2029] | 822 | integer, intent(in) :: nlev |
---|
| 823 | real, dimension(nlev), intent(in) :: z |
---|
| 824 | real, intent(in) :: zen |
---|
| 825 | |
---|
| 826 | ! output |
---|
| 827 | |
---|
[2027] | 828 | INTEGER nid(0:nlev) |
---|
| 829 | REAL dsdh(0:nlev,nlev) |
---|
| 830 | |
---|
[2029] | 831 | ! more program constants |
---|
| 832 | |
---|
[2027] | 833 | REAL re, ze(nlev) |
---|
| 834 | REAL dr |
---|
| 835 | real radius |
---|
| 836 | parameter (radius = 3393.) |
---|
| 837 | |
---|
[2029] | 838 | ! local |
---|
[2027] | 839 | |
---|
[2029] | 840 | real :: pi, zenrad, rpsinz, rj, rjp1, dsj, dhj, ga, gb, sm |
---|
| 841 | integer :: i, j, k, id, nlay |
---|
[2027] | 842 | |
---|
| 843 | REAL zd(0:nlev-1) |
---|
| 844 | |
---|
[2029] | 845 | !----------------------------------------------------------------------------- |
---|
[2027] | 846 | |
---|
| 847 | pi = acos(-1.0) |
---|
| 848 | dr = pi/180. |
---|
| 849 | zenrad = zen*dr |
---|
| 850 | |
---|
[2029] | 851 | ! number of layers: |
---|
| 852 | |
---|
[2027] | 853 | nlay = nlev - 1 |
---|
| 854 | |
---|
[2029] | 855 | ! include the elevation above sea level to the radius of Mars: |
---|
| 856 | |
---|
[2027] | 857 | re = radius + z(1) |
---|
[2029] | 858 | |
---|
| 859 | ! correspondingly z changed to the elevation above Mars surface: |
---|
| 860 | |
---|
[2027] | 861 | DO k = 1, nlev |
---|
| 862 | ze(k) = z(k) - z(1) |
---|
| 863 | END DO |
---|
| 864 | |
---|
[2029] | 865 | ! inverse coordinate of z |
---|
| 866 | |
---|
[2027] | 867 | zd(0) = ze(nlev) |
---|
| 868 | DO k = 1, nlay |
---|
| 869 | zd(k) = ze(nlev - k) |
---|
| 870 | END DO |
---|
| 871 | |
---|
[2029] | 872 | ! initialise dsdh(i,j), nid(i) |
---|
[2027] | 873 | |
---|
[2029] | 874 | nid(:) = 0. |
---|
| 875 | dsdh(:,:) = 0. |
---|
[2027] | 876 | |
---|
[2029] | 877 | ! calculate ds/dh of every layer |
---|
| 878 | |
---|
| 879 | do i = 0,nlay |
---|
| 880 | rpsinz = (re + zd(i))*sin(zenrad) |
---|
[2027] | 881 | |
---|
| 882 | IF ( (zen .GT. 90.0) .AND. (rpsinz .LT. re) ) THEN |
---|
| 883 | nid(i) = -1 |
---|
| 884 | ELSE |
---|
| 885 | |
---|
[2029] | 886 | ! Find index of layer in which the screening height lies |
---|
| 887 | |
---|
[2027] | 888 | id = i |
---|
[2029] | 889 | if (zen > 90.) then |
---|
| 890 | do j = 1,nlay |
---|
[2027] | 891 | IF( (rpsinz .LT. ( zd(j-1) + re ) ) .AND. |
---|
| 892 | $ (rpsinz .GE. ( zd(j) + re )) ) id = j |
---|
[2029] | 893 | end do |
---|
| 894 | end if |
---|
[2027] | 895 | |
---|
[2029] | 896 | do j = 1,id |
---|
| 897 | sm = 1.0 |
---|
| 898 | IF (j .EQ. id .AND. id .EQ. i .AND. zen .GT. 90.0) |
---|
| 899 | $ sm = -1.0 |
---|
[2027] | 900 | |
---|
[2029] | 901 | rj = re + zd(j-1) |
---|
| 902 | rjp1 = re + zd(j) |
---|
[2027] | 903 | |
---|
[2029] | 904 | dhj = zd(j-1) - zd(j) |
---|
[2027] | 905 | |
---|
[2029] | 906 | ga = rj*rj - rpsinz*rpsinz |
---|
| 907 | gb = rjp1*rjp1 - rpsinz*rpsinz |
---|
[2027] | 908 | |
---|
[2030] | 909 | ga = max(ga, 0.) |
---|
| 910 | gb = max(gb, 0.) |
---|
[2027] | 911 | |
---|
[2029] | 912 | IF (id.GT.i .AND. j.EQ.id) THEN |
---|
| 913 | dsj = sqrt(ga) |
---|
| 914 | ELSE |
---|
| 915 | dsj = sqrt(ga) - sm*sqrt(gb) |
---|
| 916 | END IF |
---|
| 917 | dsdh(i,j) = dsj/dhj |
---|
| 918 | end do |
---|
| 919 | nid(i) = id |
---|
| 920 | end if |
---|
| 921 | end do ! i = 0,nlay |
---|
[2027] | 922 | |
---|
[2029] | 923 | end subroutine sphers |
---|
[2027] | 924 | |
---|
| 925 | !============================================================================== |
---|
| 926 | |
---|
| 927 | SUBROUTINE rtlink(nlev, nw, iw, ag, zen, dsdh, nid, dtrl, |
---|
| 928 | $ dagas, dtcld, omcld, gcld, dtaer, omaer, gaer, |
---|
| 929 | $ edir, edn, eup, fdir, fdn, fup) |
---|
| 930 | |
---|
| 931 | implicit none |
---|
| 932 | |
---|
[2029] | 933 | ! input |
---|
[2027] | 934 | |
---|
[2029] | 935 | integer, intent(in) :: nlev, nw, iw ! number of wavelength grid points |
---|
[2027] | 936 | REAL ag |
---|
| 937 | REAL zen |
---|
| 938 | REAL dsdh(0:nlev,nlev) |
---|
| 939 | INTEGER nid(0:nlev) |
---|
| 940 | |
---|
| 941 | REAL dtrl(nlev,nw) |
---|
| 942 | REAL dagas(nlev,nw) |
---|
| 943 | REAL dtcld(nlev,nw), omcld(nlev,nw), gcld(nlev,nw) |
---|
| 944 | REAL dtaer(nlev,nw), omaer(nlev,nw), gaer(nlev,nw) |
---|
| 945 | |
---|
[2029] | 946 | ! output |
---|
[2027] | 947 | |
---|
| 948 | REAL edir(nlev), edn(nlev), eup(nlev) |
---|
| 949 | REAL fdir(nlev), fdn(nlev), fup(nlev) |
---|
| 950 | |
---|
[2029] | 951 | ! local: |
---|
[2027] | 952 | |
---|
| 953 | REAL dt(nlev), om(nlev), g(nlev) |
---|
| 954 | REAL dtabs,dtsct,dscld,dsaer,dacld,daaer |
---|
| 955 | INTEGER i, ii |
---|
| 956 | real, parameter :: largest = 1.e+36 |
---|
| 957 | |
---|
[2029] | 958 | ! specific two ps2str |
---|
[2027] | 959 | |
---|
| 960 | REAL ediri(nlev), edni(nlev), eupi(nlev) |
---|
| 961 | REAL fdiri(nlev), fdni(nlev), fupi(nlev) |
---|
| 962 | |
---|
| 963 | logical, save :: delta = .true. |
---|
| 964 | |
---|
[2029] | 965 | !_______________________________________________________________________ |
---|
[2027] | 966 | |
---|
[2029] | 967 | ! initialize: |
---|
[2027] | 968 | |
---|
| 969 | do i = 1, nlev |
---|
| 970 | fdir(i) = 0. |
---|
| 971 | fup(i) = 0. |
---|
| 972 | fdn(i) = 0. |
---|
| 973 | edir(i) = 0. |
---|
| 974 | eup(i) = 0. |
---|
| 975 | edn(i) = 0. |
---|
| 976 | end do |
---|
[2029] | 977 | |
---|
[2027] | 978 | do i = 1, nlev - 1 |
---|
| 979 | dscld = dtcld(i,iw)*omcld(i,iw) |
---|
| 980 | dacld = dtcld(i,iw)*(1.-omcld(i,iw)) |
---|
[2029] | 981 | |
---|
[2027] | 982 | dsaer = dtaer(i,iw)*omaer(i,iw) |
---|
| 983 | daaer = dtaer(i,iw)*(1.-omaer(i,iw)) |
---|
[2029] | 984 | |
---|
[2027] | 985 | dtsct = dtrl(i,iw) + dscld + dsaer |
---|
| 986 | dtabs = dagas(i,iw) + dacld + daaer |
---|
[2029] | 987 | |
---|
[2027] | 988 | dtabs = amax1(dtabs,1./largest) |
---|
| 989 | dtsct = amax1(dtsct,1./largest) |
---|
[2029] | 990 | |
---|
| 991 | ! invert z-coordinate: |
---|
| 992 | |
---|
[2027] | 993 | ii = nlev - i |
---|
| 994 | dt(ii) = dtsct + dtabs |
---|
| 995 | om(ii) = dtsct/(dtsct + dtabs) |
---|
| 996 | IF(dtsct .EQ. 1./largest) om(ii) = 1./largest |
---|
| 997 | g(ii) = (gcld(i,iw)*dscld + |
---|
| 998 | $ gaer(i,iw)*dsaer)/dtsct |
---|
| 999 | end do |
---|
[2029] | 1000 | |
---|
| 1001 | ! call rt routine: |
---|
| 1002 | |
---|
[2027] | 1003 | call ps2str(nlev, zen, ag, dt, om, g, |
---|
| 1004 | $ dsdh, nid, delta, |
---|
| 1005 | $ fdiri, fupi, fdni, ediri, eupi, edni) |
---|
[2029] | 1006 | |
---|
| 1007 | ! output (invert z-coordinate) |
---|
| 1008 | |
---|
[2027] | 1009 | do i = 1, nlev |
---|
| 1010 | ii = nlev - i + 1 |
---|
| 1011 | fdir(i) = fdiri(ii) |
---|
| 1012 | fup(i) = fupi(ii) |
---|
| 1013 | fdn(i) = fdni(ii) |
---|
| 1014 | edir(i) = ediri(ii) |
---|
| 1015 | eup(i) = eupi(ii) |
---|
| 1016 | edn(i) = edni(ii) |
---|
| 1017 | end do |
---|
| 1018 | |
---|
[2029] | 1019 | end subroutine rtlink |
---|
| 1020 | |
---|
[2027] | 1021 | *=============================================================================* |
---|
| 1022 | |
---|
[2029] | 1023 | subroutine ps2str(nlev,zen,rsfc,tauu,omu,gu, |
---|
[2027] | 1024 | $ dsdh, nid, delta, |
---|
| 1025 | $ fdr, fup, fdn, edr, eup, edn) |
---|
| 1026 | |
---|
[2029] | 1027 | !-----------------------------------------------------------------------------* |
---|
| 1028 | != PURPOSE: =* |
---|
| 1029 | != Solve two-stream equations for multiple layers. The subroutine is based =* |
---|
| 1030 | != on equations from: Toon et al., J.Geophys.Res., v94 (D13), Nov 20, 1989.=* |
---|
| 1031 | != It contains 9 two-stream methods to choose from. A pseudo-spherical =* |
---|
| 1032 | != correction has also been added. =* |
---|
| 1033 | !-----------------------------------------------------------------------------* |
---|
| 1034 | != PARAMETERS: =* |
---|
| 1035 | != NLEVEL - INTEGER, number of specified altitude levels in the working (I)=* |
---|
| 1036 | != grid =* |
---|
| 1037 | != ZEN - REAL, solar zenith angle (degrees) (I)=* |
---|
| 1038 | != RSFC - REAL, surface albedo at current wavelength (I)=* |
---|
| 1039 | != TAUU - REAL, unscaled optical depth of each layer (I)=* |
---|
| 1040 | != OMU - REAL, unscaled single scattering albedo of each layer (I)=* |
---|
| 1041 | != GU - REAL, unscaled asymmetry parameter of each layer (I)=* |
---|
| 1042 | != DSDH - REAL, slant path of direct beam through each layer crossed (I)=* |
---|
| 1043 | != when travelling from the top of the atmosphere to layer i; =* |
---|
| 1044 | != DSDH(i,j), i = 0..NZ-1, j = 1..NZ-1 =* |
---|
| 1045 | != NID - INTEGER, number of layers crossed by the direct beam when (I)=* |
---|
| 1046 | != travelling from the top of the atmosphere to layer i; =* |
---|
| 1047 | != NID(i), i = 0..NZ-1 =* |
---|
| 1048 | != DELTA - LOGICAL, switch to use delta-scaling (I)=* |
---|
| 1049 | != .TRUE. -> apply delta-scaling =* |
---|
| 1050 | != .FALSE.-> do not apply delta-scaling =* |
---|
| 1051 | != FDR - REAL, contribution of the direct component to the total (O)=* |
---|
| 1052 | != actinic flux at each altitude level =* |
---|
| 1053 | != FUP - REAL, contribution of the diffuse upwelling component to (O)=* |
---|
| 1054 | != the total actinic flux at each altitude level =* |
---|
| 1055 | != FDN - REAL, contribution of the diffuse downwelling component to (O)=* |
---|
| 1056 | != the total actinic flux at each altitude level =* |
---|
| 1057 | != EDR - REAL, contribution of the direct component to the total (O)=* |
---|
| 1058 | != spectral irradiance at each altitude level =* |
---|
| 1059 | != EUP - REAL, contribution of the diffuse upwelling component to (O)=* |
---|
| 1060 | != the total spectral irradiance at each altitude level =* |
---|
| 1061 | != EDN - REAL, contribution of the diffuse downwelling component to (O)=* |
---|
[2027] | 1062 | *= the total spectral irradiance at each altitude level =* |
---|
[2029] | 1063 | !-----------------------------------------------------------------------------* |
---|
| 1064 | |
---|
[2027] | 1065 | implicit none |
---|
[2029] | 1066 | |
---|
| 1067 | ! input: |
---|
| 1068 | |
---|
[2027] | 1069 | INTEGER nlev |
---|
| 1070 | REAL zen, rsfc |
---|
| 1071 | REAL tauu(nlev), omu(nlev), gu(nlev) |
---|
| 1072 | REAL dsdh(0:nlev,nlev) |
---|
| 1073 | INTEGER nid(0:nlev) |
---|
| 1074 | LOGICAL delta |
---|
| 1075 | |
---|
[2029] | 1076 | ! output: |
---|
| 1077 | |
---|
[2027] | 1078 | REAL fup(nlev),fdn(nlev),fdr(nlev) |
---|
| 1079 | REAL eup(nlev),edn(nlev),edr(nlev) |
---|
| 1080 | |
---|
[2029] | 1081 | ! local: |
---|
| 1082 | |
---|
[2027] | 1083 | REAL tausla(0:nlev), tauc(0:nlev) |
---|
| 1084 | REAL mu2(0:nlev), mu, sum |
---|
| 1085 | |
---|
[2029] | 1086 | ! internal coefficients and matrix |
---|
| 1087 | |
---|
[2027] | 1088 | REAL lam(nlev),taun(nlev),bgam(nlev) |
---|
| 1089 | REAL e1(nlev),e2(nlev),e3(nlev),e4(nlev) |
---|
| 1090 | REAL cup(nlev),cdn(nlev),cuptn(nlev),cdntn(nlev) |
---|
| 1091 | REAL mu1(nlev) |
---|
| 1092 | INTEGER row |
---|
| 1093 | REAL a(2*nlev),b(2*nlev),d(2*nlev),e(2*nlev),y(2*nlev) |
---|
| 1094 | |
---|
[2029] | 1095 | ! other: |
---|
| 1096 | |
---|
[2027] | 1097 | REAL pifs, fdn0 |
---|
| 1098 | REAL gi(nlev), omi(nlev), tempg |
---|
| 1099 | REAL f, g, om |
---|
| 1100 | REAL gam1, gam2, gam3, gam4 |
---|
| 1101 | real, parameter :: largest = 1.e+36 |
---|
| 1102 | real, parameter :: precis = 1.e-7 |
---|
| 1103 | |
---|
[2029] | 1104 | ! For calculations of Associated Legendre Polynomials for GAMA1,2,3,4 |
---|
| 1105 | ! in delta-function, modified quadrature, hemispheric constant, |
---|
| 1106 | ! Hybrid modified Eddington-delta function metods, p633,Table1. |
---|
| 1107 | ! W.E.Meador and W.R.Weaver, GAS,1980,v37,p.630 |
---|
| 1108 | ! W.J.Wiscombe and G.W. Grams, GAS,1976,v33,p2440, |
---|
| 1109 | ! uncomment the following two lines and the appropriate statements further |
---|
| 1110 | ! down. |
---|
| 1111 | ! REAL YLM0, YLM2, YLM4, YLM6, YLM8, YLM10, YLM12, YLMS, BETA0, |
---|
| 1112 | ! > BETA1, BETAn, amu1, subd |
---|
[2027] | 1113 | |
---|
| 1114 | REAL expon, expon0, expon1, divisr, temp, up, dn |
---|
| 1115 | REAL ssfc |
---|
| 1116 | INTEGER nlayer, mrows, lev |
---|
| 1117 | |
---|
| 1118 | INTEGER i, j |
---|
| 1119 | |
---|
[2029] | 1120 | ! Some additional program constants: |
---|
[2027] | 1121 | |
---|
| 1122 | real pi, dr |
---|
| 1123 | REAL eps |
---|
| 1124 | PARAMETER (eps = 1.E-3) |
---|
[2029] | 1125 | !_______________________________________________________________________ |
---|
[2027] | 1126 | |
---|
[2029] | 1127 | ! MU = cosine of solar zenith angle |
---|
| 1128 | ! RSFC = surface albedo |
---|
| 1129 | ! TAUU = unscaled optical depth of each layer |
---|
| 1130 | ! OMU = unscaled single scattering albedo |
---|
| 1131 | ! GU = unscaled asymmetry factor |
---|
| 1132 | ! KLEV = max dimension of number of layers in atmosphere |
---|
| 1133 | ! NLAYER = number of layers in the atmosphere |
---|
| 1134 | ! NLEVEL = nlayer + 1 = number of levels |
---|
[2027] | 1135 | |
---|
[2029] | 1136 | ! initial conditions: pi*solar flux = 1; diffuse incidence = 0 |
---|
[2027] | 1137 | |
---|
| 1138 | pifs = 1. |
---|
| 1139 | fdn0 = 0. |
---|
| 1140 | |
---|
| 1141 | nlayer = nlev - 1 |
---|
| 1142 | |
---|
| 1143 | pi = acos(-1.) |
---|
| 1144 | dr = pi/180. |
---|
| 1145 | mu = COS(zen*dr) |
---|
| 1146 | |
---|
[2029] | 1147 | !************* compute coefficients for each layer: |
---|
| 1148 | ! GAM1 - GAM4 = 2-stream coefficients, different for different approximations |
---|
| 1149 | ! EXPON0 = calculation of e when TAU is zero |
---|
| 1150 | ! EXPON1 = calculation of e when TAU is TAUN |
---|
| 1151 | ! CUP and CDN = calculation when TAU is zero |
---|
| 1152 | ! CUPTN and CDNTN = calc. when TAU is TAUN |
---|
| 1153 | ! DIVISR = prevents division by zero |
---|
[2027] | 1154 | |
---|
| 1155 | do j = 0, nlev |
---|
| 1156 | tauc(j) = 0. |
---|
| 1157 | tausla(j) = 0. |
---|
| 1158 | mu2(j) = 1./SQRT(largest) |
---|
| 1159 | end do |
---|
[2029] | 1160 | |
---|
[2027] | 1161 | IF (.NOT. delta) THEN |
---|
| 1162 | DO i = 1, nlayer |
---|
| 1163 | gi(i) = gu(i) |
---|
| 1164 | omi(i) = omu(i) |
---|
| 1165 | taun(i) = tauu(i) |
---|
| 1166 | END DO |
---|
| 1167 | ELSE |
---|
| 1168 | |
---|
[2029] | 1169 | ! delta-scaling. Have to be done for delta-Eddington approximation, |
---|
| 1170 | ! delta discrete ordinate, Practical Improved Flux Method, delta function, |
---|
| 1171 | ! and Hybrid modified Eddington-delta function methods approximations |
---|
[2027] | 1172 | |
---|
| 1173 | DO i = 1, nlayer |
---|
| 1174 | f = gu(i)*gu(i) |
---|
| 1175 | gi(i) = (gu(i) - f)/(1 - f) |
---|
| 1176 | omi(i) = (1 - f)*omu(i)/(1 - omu(i)*f) |
---|
| 1177 | taun(i) = (1 - omu(i)*f)*tauu(i) |
---|
| 1178 | END DO |
---|
| 1179 | END IF |
---|
[2029] | 1180 | |
---|
| 1181 | ! calculate slant optical depth at the top of the atmosphere when zen>90. |
---|
| 1182 | ! in this case, higher altitude of the top layer is recommended. |
---|
| 1183 | |
---|
[2027] | 1184 | IF (zen .GT. 90.0) THEN |
---|
| 1185 | IF (nid(0) .LT. 0) THEN |
---|
| 1186 | tausla(0) = largest |
---|
| 1187 | ELSE |
---|
| 1188 | sum = 0.0 |
---|
| 1189 | DO j = 1, nid(0) |
---|
| 1190 | sum = sum + 2.*taun(j)*dsdh(0,j) |
---|
| 1191 | END DO |
---|
| 1192 | tausla(0) = sum |
---|
| 1193 | END IF |
---|
| 1194 | END IF |
---|
[2029] | 1195 | |
---|
[2027] | 1196 | DO 11, i = 1, nlayer |
---|
| 1197 | g = gi(i) |
---|
| 1198 | om = omi(i) |
---|
| 1199 | tauc(i) = tauc(i-1) + taun(i) |
---|
| 1200 | |
---|
[2029] | 1201 | ! stay away from 1 by precision. For g, also stay away from -1 |
---|
[2027] | 1202 | |
---|
| 1203 | tempg = AMIN1(abs(g),1. - precis) |
---|
| 1204 | g = SIGN(tempg,g) |
---|
| 1205 | om = AMIN1(om,1.-precis) |
---|
| 1206 | |
---|
[2029] | 1207 | ! calculate slant optical depth |
---|
| 1208 | |
---|
[2027] | 1209 | IF (nid(i) .LT. 0) THEN |
---|
| 1210 | tausla(i) = largest |
---|
| 1211 | ELSE |
---|
| 1212 | sum = 0.0 |
---|
| 1213 | DO j = 1, MIN(nid(i),i) |
---|
| 1214 | sum = sum + taun(j)*dsdh(i,j) |
---|
| 1215 | END DO |
---|
| 1216 | DO j = MIN(nid(i),i)+1,nid(i) |
---|
| 1217 | sum = sum + 2.*taun(j)*dsdh(i,j) |
---|
| 1218 | END DO |
---|
| 1219 | tausla(i) = sum |
---|
| 1220 | IF (tausla(i) .EQ. tausla(i-1)) THEN |
---|
| 1221 | mu2(i) = SQRT(largest) |
---|
| 1222 | ELSE |
---|
| 1223 | mu2(i) = (tauc(i)-tauc(i-1))/(tausla(i)-tausla(i-1)) |
---|
| 1224 | mu2(i) = SIGN( AMAX1(ABS(mu2(i)),1./SQRT(largest)), |
---|
| 1225 | $ mu2(i) ) |
---|
| 1226 | END IF |
---|
| 1227 | END IF |
---|
| 1228 | |
---|
[2029] | 1229 | !** the following gamma equations are from pg 16,289, Table 1 |
---|
| 1230 | !** save mu1 for each approx. for use in converting irradiance to actinic flux |
---|
[2027] | 1231 | |
---|
[2029] | 1232 | ! Eddington approximation(Joseph et al., 1976, JAS, 33, 2452): |
---|
| 1233 | |
---|
[2027] | 1234 | c gam1 = (7. - om*(4. + 3.*g))/4. |
---|
| 1235 | c gam2 = -(1. - om*(4. - 3.*g))/4. |
---|
| 1236 | c gam3 = (2. - 3.*g*mu)/4. |
---|
| 1237 | c gam4 = 1. - gam3 |
---|
| 1238 | c mu1(i) = 0.5 |
---|
| 1239 | |
---|
| 1240 | * quadrature (Liou, 1973, JAS, 30, 1303-1326; 1974, JAS, 31, 1473-1475): |
---|
| 1241 | |
---|
| 1242 | c gam1 = 1.7320508*(2. - om*(1. + g))/2. |
---|
| 1243 | c gam2 = 1.7320508*om*(1. - g)/2. |
---|
| 1244 | c gam3 = (1. - 1.7320508*g*mu)/2. |
---|
| 1245 | c gam4 = 1. - gam3 |
---|
| 1246 | c mu1(i) = 1./sqrt(3.) |
---|
| 1247 | |
---|
| 1248 | * hemispheric mean (Toon et al., 1089, JGR, 94, 16287): |
---|
| 1249 | |
---|
| 1250 | gam1 = 2. - om*(1. + g) |
---|
| 1251 | gam2 = om*(1. - g) |
---|
| 1252 | gam3 = (2. - g*mu)/4. |
---|
| 1253 | gam4 = 1. - gam3 |
---|
| 1254 | mu1(i) = 0.5 |
---|
| 1255 | |
---|
| 1256 | * PIFM (Zdunkovski et al.,1980, Conrib.Atmos.Phys., 53, 147-166): |
---|
| 1257 | c GAM1 = 0.25*(8. - OM*(5. + 3.*G)) |
---|
| 1258 | c GAM2 = 0.75*OM*(1.-G) |
---|
| 1259 | c GAM3 = 0.25*(2.-3.*G*MU) |
---|
| 1260 | c GAM4 = 1. - GAM3 |
---|
| 1261 | c mu1(i) = 0.5 |
---|
| 1262 | |
---|
| 1263 | * delta discrete ordinates (Schaller, 1979, Contrib.Atmos.Phys, 52, 17-26): |
---|
| 1264 | c GAM1 = 0.5*1.7320508*(2. - OM*(1. + G)) |
---|
| 1265 | c GAM2 = 0.5*1.7320508*OM*(1.-G) |
---|
| 1266 | c GAM3 = 0.5*(1.-1.7320508*G*MU) |
---|
| 1267 | c GAM4 = 1. - GAM3 |
---|
| 1268 | c mu1(i) = 1./sqrt(3.) |
---|
| 1269 | |
---|
| 1270 | * Calculations of Associated Legendre Polynomials for GAMA1,2,3,4 |
---|
| 1271 | * in delta-function, modified quadrature, hemispheric constant, |
---|
| 1272 | * Hybrid modified Eddington-delta function metods, p633,Table1. |
---|
| 1273 | * W.E.Meador and W.R.Weaver, GAS,1980,v37,p.630 |
---|
| 1274 | * W.J.Wiscombe and G.W. Grams, GAS,1976,v33,p2440 |
---|
| 1275 | c YLM0 = 2. |
---|
| 1276 | c YLM2 = -3.*G*MU |
---|
| 1277 | c YLM4 = 0.875*G**3*MU*(5.*MU**2-3.) |
---|
| 1278 | c YLM6=-0.171875*G**5*MU*(15.-70.*MU**2+63.*MU**4) |
---|
| 1279 | c YLM8=+0.073242*G**7*MU*(-35.+315.*MU**2-693.*MU**4 |
---|
| 1280 | c *+429.*MU**6) |
---|
| 1281 | c YLM10=-0.008118*G**9*MU*(315.-4620.*MU**2+18018.*MU**4 |
---|
| 1282 | c *-25740.*MU**6+12155.*MU**8) |
---|
| 1283 | c YLM12=0.003685*G**11*MU*(-693.+15015.*MU**2-90090.*MU**4 |
---|
| 1284 | c *+218790.*MU**6-230945.*MU**8+88179.*MU**10) |
---|
| 1285 | c YLMS=YLM0+YLM2+YLM4+YLM6+YLM8+YLM10+YLM12 |
---|
| 1286 | c YLMS=0.25*YLMS |
---|
| 1287 | c BETA0 = YLMS |
---|
| 1288 | c |
---|
| 1289 | c amu1=1./1.7320508 |
---|
| 1290 | c YLM0 = 2. |
---|
| 1291 | c YLM2 = -3.*G*amu1 |
---|
| 1292 | c YLM4 = 0.875*G**3*amu1*(5.*amu1**2-3.) |
---|
| 1293 | c YLM6=-0.171875*G**5*amu1*(15.-70.*amu1**2+63.*amu1**4) |
---|
| 1294 | c YLM8=+0.073242*G**7*amu1*(-35.+315.*amu1**2-693.*amu1**4 |
---|
| 1295 | c *+429.*amu1**6) |
---|
| 1296 | c YLM10=-0.008118*G**9*amu1*(315.-4620.*amu1**2+18018.*amu1**4 |
---|
| 1297 | c *-25740.*amu1**6+12155.*amu1**8) |
---|
| 1298 | c YLM12=0.003685*G**11*amu1*(-693.+15015.*amu1**2-90090.*amu1**4 |
---|
| 1299 | c *+218790.*amu1**6-230945.*amu1**8+88179.*amu1**10) |
---|
| 1300 | c YLMS=YLM0+YLM2+YLM4+YLM6+YLM8+YLM10+YLM12 |
---|
| 1301 | c YLMS=0.25*YLMS |
---|
| 1302 | c BETA1 = YLMS |
---|
| 1303 | c |
---|
| 1304 | c BETAn = 0.25*(2. - 1.5*G-0.21875*G**3-0.085938*G**5 |
---|
| 1305 | c *-0.045776*G**7) |
---|
| 1306 | |
---|
| 1307 | |
---|
| 1308 | * Hybrid modified Eddington-delta function(Meador and Weaver,1980,JAS,37,630): |
---|
| 1309 | c subd=4.*(1.-G*G*(1.-MU)) |
---|
| 1310 | c GAM1 = (7.-3.*G*G-OM*(4.+3.*G)+OM*G*G*(4.*BETA0+3.*G))/subd |
---|
| 1311 | c GAM2 =-(1.-G*G-OM*(4.-3.*G)-OM*G*G*(4.*BETA0+3.*G-4.))/subd |
---|
| 1312 | c GAM3 = BETA0 |
---|
| 1313 | c GAM4 = 1. - GAM3 |
---|
| 1314 | c mu1(i) = (1. - g*g*(1.- mu) )/(2. - g*g) |
---|
| 1315 | |
---|
| 1316 | ***** |
---|
| 1317 | * delta function (Meador, and Weaver, 1980, JAS, 37, 630): |
---|
| 1318 | c GAM1 = (1. - OM*(1. - beta0))/MU |
---|
| 1319 | c GAM2 = OM*BETA0/MU |
---|
| 1320 | c GAM3 = BETA0 |
---|
| 1321 | c GAM4 = 1. - GAM3 |
---|
| 1322 | c mu1(i) = mu |
---|
| 1323 | ***** |
---|
| 1324 | * modified quadrature (Meador, and Weaver, 1980, JAS, 37, 630): |
---|
| 1325 | c GAM1 = 1.7320508*(1. - OM*(1. - beta1)) |
---|
| 1326 | c GAM2 = 1.7320508*OM*beta1 |
---|
| 1327 | c GAM3 = BETA0 |
---|
| 1328 | c GAM4 = 1. - GAM3 |
---|
| 1329 | c mu1(i) = 1./sqrt(3.) |
---|
| 1330 | |
---|
| 1331 | * hemispheric constant (Toon et al., 1989, JGR, 94, 16287): |
---|
| 1332 | c GAM1 = 2.*(1. - OM*(1. - betan)) |
---|
| 1333 | c GAM2 = 2.*OM*BETAn |
---|
| 1334 | c GAM3 = BETA0 |
---|
| 1335 | c GAM4 = 1. - GAM3 |
---|
| 1336 | c mu1(i) = 0.5 |
---|
| 1337 | |
---|
| 1338 | ***** |
---|
| 1339 | |
---|
| 1340 | * lambda = pg 16,290 equation 21 |
---|
| 1341 | * big gamma = pg 16,290 equation 22 |
---|
| 1342 | * if gam2 = 0., then bgam = 0. |
---|
| 1343 | |
---|
| 1344 | lam(i) = sqrt(gam1*gam1 - gam2*gam2) |
---|
| 1345 | |
---|
| 1346 | IF (gam2 .NE. 0.) THEN |
---|
| 1347 | bgam(i) = (gam1 - lam(i))/gam2 |
---|
| 1348 | ELSE |
---|
| 1349 | bgam(i) = 0. |
---|
| 1350 | END IF |
---|
| 1351 | |
---|
| 1352 | expon = EXP(-lam(i)*taun(i)) |
---|
| 1353 | |
---|
| 1354 | * e1 - e4 = pg 16,292 equation 44 |
---|
| 1355 | |
---|
| 1356 | e1(i) = 1. + bgam(i)*expon |
---|
| 1357 | e2(i) = 1. - bgam(i)*expon |
---|
| 1358 | e3(i) = bgam(i) + expon |
---|
| 1359 | e4(i) = bgam(i) - expon |
---|
| 1360 | |
---|
| 1361 | * the following sets up for the C equations 23, and 24 |
---|
| 1362 | * found on page 16,290 |
---|
| 1363 | * prevent division by zero (if LAMBDA=1/MU, shift 1/MU^2 by EPS = 1.E-3 |
---|
| 1364 | * which is approx equiv to shifting MU by 0.5*EPS* (MU)**3 |
---|
| 1365 | |
---|
| 1366 | expon0 = EXP(-tausla(i-1)) |
---|
| 1367 | expon1 = EXP(-tausla(i)) |
---|
| 1368 | |
---|
| 1369 | divisr = lam(i)*lam(i) - 1./(mu2(i)*mu2(i)) |
---|
| 1370 | temp = AMAX1(eps,abs(divisr)) |
---|
| 1371 | divisr = SIGN(temp,divisr) |
---|
| 1372 | |
---|
| 1373 | up = om*pifs*((gam1 - 1./mu2(i))*gam3 + gam4*gam2)/divisr |
---|
| 1374 | dn = om*pifs*((gam1 + 1./mu2(i))*gam4 + gam2*gam3)/divisr |
---|
| 1375 | |
---|
| 1376 | * cup and cdn are when tau is equal to zero |
---|
| 1377 | * cuptn and cdntn are when tau is equal to taun |
---|
| 1378 | |
---|
| 1379 | cup(i) = up*expon0 |
---|
| 1380 | cdn(i) = dn*expon0 |
---|
| 1381 | cuptn(i) = up*expon1 |
---|
| 1382 | cdntn(i) = dn*expon1 |
---|
| 1383 | |
---|
| 1384 | 11 CONTINUE |
---|
| 1385 | |
---|
| 1386 | ***************** set up matrix ****** |
---|
| 1387 | * ssfc = pg 16,292 equation 37 where pi Fs is one (unity). |
---|
| 1388 | |
---|
| 1389 | ssfc = rsfc*mu*EXP(-tausla(nlayer))*pifs |
---|
| 1390 | |
---|
| 1391 | * MROWS = the number of rows in the matrix |
---|
| 1392 | |
---|
| 1393 | mrows = 2*nlayer |
---|
| 1394 | |
---|
| 1395 | * the following are from pg 16,292 equations 39 - 43. |
---|
| 1396 | * set up first row of matrix: |
---|
| 1397 | |
---|
| 1398 | i = 1 |
---|
| 1399 | a(1) = 0. |
---|
| 1400 | b(1) = e1(i) |
---|
| 1401 | d(1) = -e2(i) |
---|
| 1402 | e(1) = fdn0 - cdn(i) |
---|
| 1403 | |
---|
| 1404 | row=1 |
---|
| 1405 | |
---|
| 1406 | * set up odd rows 3 thru (MROWS - 1): |
---|
| 1407 | |
---|
| 1408 | i = 0 |
---|
| 1409 | DO 20, row = 3, mrows - 1, 2 |
---|
| 1410 | i = i + 1 |
---|
| 1411 | a(row) = e2(i)*e3(i) - e4(i)*e1(i) |
---|
| 1412 | b(row) = e1(i)*e1(i + 1) - e3(i)*e3(i + 1) |
---|
| 1413 | d(row) = e3(i)*e4(i + 1) - e1(i)*e2(i + 1) |
---|
| 1414 | e(row) = e3(i)*(cup(i + 1) - cuptn(i)) + |
---|
| 1415 | $ e1(i)*(cdntn(i) - cdn(i + 1)) |
---|
| 1416 | 20 CONTINUE |
---|
| 1417 | |
---|
| 1418 | * set up even rows 2 thru (MROWS - 2): |
---|
| 1419 | |
---|
| 1420 | i = 0 |
---|
| 1421 | DO 30, row = 2, mrows - 2, 2 |
---|
| 1422 | i = i + 1 |
---|
| 1423 | a(row) = e2(i + 1)*e1(i) - e3(i)*e4(i + 1) |
---|
| 1424 | b(row) = e2(i)*e2(i + 1) - e4(i)*e4(i + 1) |
---|
| 1425 | d(row) = e1(i + 1)*e4(i + 1) - e2(i + 1)*e3(i + 1) |
---|
| 1426 | e(row) = (cup(i + 1) - cuptn(i))*e2(i + 1) - |
---|
| 1427 | $ (cdn(i + 1) - cdntn(i))*e4(i + 1) |
---|
| 1428 | 30 CONTINUE |
---|
| 1429 | |
---|
| 1430 | * set up last row of matrix at MROWS: |
---|
| 1431 | |
---|
| 1432 | row = mrows |
---|
| 1433 | i = nlayer |
---|
| 1434 | |
---|
| 1435 | a(row) = e1(i) - rsfc*e3(i) |
---|
| 1436 | b(row) = e2(i) - rsfc*e4(i) |
---|
| 1437 | d(row) = 0. |
---|
| 1438 | e(row) = ssfc - cuptn(i) + rsfc*cdntn(i) |
---|
| 1439 | |
---|
| 1440 | * solve tri-diagonal matrix: |
---|
| 1441 | |
---|
| 1442 | CALL tridiag(a, b, d, e, y, mrows) |
---|
| 1443 | |
---|
| 1444 | **** unfold solution of matrix, compute output fluxes: |
---|
| 1445 | |
---|
| 1446 | row = 1 |
---|
| 1447 | lev = 1 |
---|
| 1448 | j = 1 |
---|
| 1449 | |
---|
| 1450 | * the following equations are from pg 16,291 equations 31 & 32 |
---|
| 1451 | |
---|
| 1452 | fdr(lev) = EXP( -tausla(0) ) |
---|
| 1453 | edr(lev) = mu * fdr(lev) |
---|
| 1454 | edn(lev) = fdn0 |
---|
| 1455 | eup(lev) = y(row)*e3(j) - y(row + 1)*e4(j) + cup(j) |
---|
| 1456 | fdn(lev) = edn(lev)/mu1(lev) |
---|
| 1457 | fup(lev) = eup(lev)/mu1(lev) |
---|
| 1458 | |
---|
| 1459 | DO 60, lev = 2, nlayer + 1 |
---|
| 1460 | fdr(lev) = EXP(-tausla(lev-1)) |
---|
| 1461 | edr(lev) = mu *fdr(lev) |
---|
| 1462 | edn(lev) = y(row)*e3(j) + y(row + 1)*e4(j) + cdntn(j) |
---|
| 1463 | eup(lev) = y(row)*e1(j) + y(row + 1)*e2(j) + cuptn(j) |
---|
| 1464 | fdn(lev) = edn(lev)/mu1(j) |
---|
| 1465 | fup(lev) = eup(lev)/mu1(j) |
---|
| 1466 | |
---|
| 1467 | row = row + 2 |
---|
| 1468 | j = j + 1 |
---|
| 1469 | 60 CONTINUE |
---|
| 1470 | |
---|
[2029] | 1471 | end subroutine ps2str |
---|
| 1472 | |
---|
[2027] | 1473 | *=============================================================================* |
---|
| 1474 | |
---|
[2029] | 1475 | subroutine tridiag(a,b,c,r,u,n) |
---|
[2027] | 1476 | |
---|
[2029] | 1477 | !_______________________________________________________________________ |
---|
| 1478 | ! solves tridiagonal system. From Numerical Recipies, p. 40 |
---|
| 1479 | !_______________________________________________________________________ |
---|
[2027] | 1480 | |
---|
| 1481 | IMPLICIT NONE |
---|
| 1482 | |
---|
[2029] | 1483 | ! input: |
---|
| 1484 | |
---|
[2027] | 1485 | INTEGER n |
---|
| 1486 | REAL a, b, c, r |
---|
| 1487 | DIMENSION a(n),b(n),c(n),r(n) |
---|
| 1488 | |
---|
[2029] | 1489 | ! output: |
---|
| 1490 | |
---|
[2027] | 1491 | REAL u |
---|
| 1492 | DIMENSION u(n) |
---|
| 1493 | |
---|
[2029] | 1494 | ! local: |
---|
| 1495 | |
---|
[2027] | 1496 | INTEGER j |
---|
| 1497 | |
---|
| 1498 | REAL bet, gam |
---|
| 1499 | DIMENSION gam(n) |
---|
[2029] | 1500 | !_______________________________________________________________________ |
---|
[2027] | 1501 | |
---|
| 1502 | IF (b(1) .EQ. 0.) STOP 1001 |
---|
| 1503 | bet = b(1) |
---|
| 1504 | u(1) = r(1)/bet |
---|
| 1505 | DO 11, j = 2, n |
---|
| 1506 | gam(j) = c(j - 1)/bet |
---|
| 1507 | bet = b(j) - a(j)*gam(j) |
---|
| 1508 | IF (bet .EQ. 0.) STOP 2002 |
---|
| 1509 | u(j) = (r(j) - a(j)*u(j - 1))/bet |
---|
| 1510 | 11 CONTINUE |
---|
| 1511 | DO 12, j = n - 1, 1, -1 |
---|
| 1512 | u(j) = u(j) - gam(j + 1)*u(j + 1) |
---|
| 1513 | 12 CONTINUE |
---|
[2029] | 1514 | !_______________________________________________________________________ |
---|
[2027] | 1515 | |
---|
[2029] | 1516 | end subroutine tridiag |
---|
| 1517 | |
---|
| 1518 | end subroutine photolysis_online |
---|