1 | MODULE moldiff_MPF_mod |
---|
2 | |
---|
3 | real*8,parameter :: Pdiff=15. ! pressure (Pa) below which diffusion is computed |
---|
4 | real*8,parameter :: tdiffmin=5d0 |
---|
5 | real*8,parameter :: dzres=2d0 ! grid resolution (km) for diffusion |
---|
6 | |
---|
7 | CONTAINS |
---|
8 | |
---|
9 | subroutine moldiff_MPF(ngrid,nlayer,nq,pplay,pplev,pt,pdt,pq,pdq,& |
---|
10 | ptimestep,zzlay,pdteuv,pdtconduc,pdqdiff,& |
---|
11 | PhiEscH,PhiEscH2,PhiEscD) |
---|
12 | |
---|
13 | use tracer_mod, only: noms, mmol |
---|
14 | use geometry_mod, only: cell_area |
---|
15 | use planetwide_mod, only: planetwide_sumval |
---|
16 | USE mod_phys_lmdz_para, only: is_master,bcast |
---|
17 | use moldiffcoeff_red_mod, only: moldiffcoeff_red |
---|
18 | |
---|
19 | |
---|
20 | implicit none |
---|
21 | |
---|
22 | ! July 2014 JYC ADD BALISTIC Transport coupling to compute wup for H and H2 |
---|
23 | ! June 2023 JYC New method based on the modified pass flow (Parshev et al. 1987) |
---|
24 | |
---|
25 | |
---|
26 | ! |
---|
27 | ! Input/Output |
---|
28 | ! |
---|
29 | integer,intent(in) :: ngrid ! number of atmospheric columns |
---|
30 | integer,intent(in) :: nlayer ! number of atmospheric layers |
---|
31 | integer,intent(in) :: nq ! number of advected tracers |
---|
32 | real ptimestep |
---|
33 | real pplay(ngrid,nlayer) |
---|
34 | real zzlay(ngrid,nlayer) |
---|
35 | real pplev(ngrid,nlayer+1) |
---|
36 | real pq(ngrid,nlayer,nq) |
---|
37 | real pdq(ngrid,nlayer,nq) |
---|
38 | real pt(ngrid,nlayer) |
---|
39 | real pdt(ngrid,nlayer) |
---|
40 | real pdteuv(ngrid,nlayer) |
---|
41 | real pdtconduc(ngrid,nlayer) |
---|
42 | real pdqdiff(ngrid,nlayer,nq) |
---|
43 | real*8 PhiEscH,PhiEscH2,PhiEscD |
---|
44 | ! |
---|
45 | ! Local |
---|
46 | ! |
---|
47 | |
---|
48 | |
---|
49 | ! real hco2(ncompdiff),ho |
---|
50 | |
---|
51 | integer,dimension(nq) :: indic_diff |
---|
52 | integer ig,iq,nz,l,k,n,nn,p,ij0 |
---|
53 | integer istep,il,gcn,ntime,nlraf |
---|
54 | real*8 masse |
---|
55 | real*8 masseU,kBolt,RgazP,Rmars,Grav,Mmars |
---|
56 | real*8 rho0,D0,T0,H0,time0,dZ,time,dZraf,tdiff,Zmin,Zmax,K0,Pk |
---|
57 | real*8 FacEsc,invsgmu,Ueff,alphaTnn |
---|
58 | real*8 PhiauxH(ngrid),PhiauxH2(ngrid),PhiauxD(ngrid) |
---|
59 | real*8 hp(nlayer) |
---|
60 | real*8 pp(nlayer) |
---|
61 | real*8 pint(nlayer) |
---|
62 | real*8 tt(nlayer),tnew(nlayer),tint(nlayer) |
---|
63 | real*8 zz(nlayer) |
---|
64 | real*8,dimension(:,:),allocatable,save :: qq,qnew,qint,FacMass |
---|
65 | real*8,dimension(:,:),allocatable,save :: rhoK,rhokinit |
---|
66 | real*8 rhoT(nlayer) |
---|
67 | real*8 dmmeandz(nlayer) |
---|
68 | real*8 massemoy(nlayer) |
---|
69 | real*8,dimension(:),allocatable :: Praf,Traf,Rraf,Mraf,Nraf,Draf,Kraf,Hraf,Wraf |
---|
70 | real*8,dimension(:),allocatable :: Zraf,Tdiffraf |
---|
71 | real*8,dimension(:),allocatable :: Prafold,Mrafold |
---|
72 | real*8,dimension(:,:),allocatable :: Qraf,Rrafk,Nrafk |
---|
73 | real*8,dimension(:,:),allocatable :: Rrafkold |
---|
74 | real*8,dimension(:,:),allocatable :: Drafmol,Hrafmol,Wrafmol,Tdiffrafmol |
---|
75 | real*8,dimension(:),allocatable :: Atri,Btri,Ctri,Dtri,Xtri,Tad,Dad,Zad,rhoad,Kad |
---|
76 | real*8,dimension(:),allocatable :: alpha,beta,delta,ksi,eps,zeta,prod,loss |
---|
77 | real*8,dimension(:),allocatable,save :: wi,Wad,Uthermal,Lambdaexo,Hspecie,alphaT |
---|
78 | real*8,dimension(:),allocatable,save :: Mtot1,Mtot2,Mraf1,Mraf2 |
---|
79 | integer,parameter :: ListeDiffNb=16 |
---|
80 | character(len=20),dimension(ListeDiffNb) :: ListeDiff |
---|
81 | real*8,parameter :: pi=3.141592653 |
---|
82 | real*8,parameter :: g=3.72d0 |
---|
83 | !ccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
84 | ! tracer numbering in the molecular diffusion |
---|
85 | !ccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
86 | ! We need the index of escaping species |
---|
87 | |
---|
88 | integer,save :: i_h2 |
---|
89 | integer,save :: i_h |
---|
90 | integer,save :: i_d |
---|
91 | integer,save :: i_hd |
---|
92 | ! vertical index limit for the molecular diffusion |
---|
93 | integer,save :: il0 |
---|
94 | |
---|
95 | !$OMP THREADPRIVATE(qq,qnew,qint,FacMass,rhoK,rhokinit,wi,Wad,Uthermal,Lambdaexo,Hspecie,Mtot1,Mtot2,Mraf1,Mraf2,i_h2,i_h,i_d,il0) |
---|
96 | |
---|
97 | ! Tracer indexes in the GCM: |
---|
98 | ! integer,save :: g_co2=0 |
---|
99 | ! integer,save :: g_co=0 |
---|
100 | ! integer,save :: g_o=0 |
---|
101 | ! integer,save :: g_o1d=0 |
---|
102 | ! integer,save :: g_o2=0 |
---|
103 | ! integer,save :: g_o3=0 |
---|
104 | ! integer,save :: g_h=0 |
---|
105 | ! integer,save :: g_h2=0 |
---|
106 | ! integer,save :: g_oh=0 |
---|
107 | ! integer,save :: g_ho2=0 |
---|
108 | ! integer,save :: g_h2o2=0 |
---|
109 | ! integer,save :: g_n2=0 |
---|
110 | ! integer,save :: g_ar=0 |
---|
111 | ! integer,save :: g_h2o=0 |
---|
112 | ! integer,save :: g_n=0 |
---|
113 | ! integer,save :: g_no=0 |
---|
114 | ! integer,save :: g_no2=0 |
---|
115 | ! integer,save :: g_n2d=0 |
---|
116 | ! integer,save :: g_oplus=0 |
---|
117 | ! integer,save :: g_hplus=0 |
---|
118 | |
---|
119 | integer,save :: ncompdiff |
---|
120 | integer,dimension(:),allocatable,save :: gcmind ! array of GCM indexes |
---|
121 | integer ierr,compteur |
---|
122 | |
---|
123 | logical,save :: firstcall=.true. |
---|
124 | ! real abfac(ncompdiff) |
---|
125 | real,dimension(:,:),allocatable,save :: dij |
---|
126 | real,save :: step |
---|
127 | |
---|
128 | !$OMP THREADPRIVATE(ncompdiff,gcmind,firstcall,dij,step) |
---|
129 | |
---|
130 | ! Initializations at first call |
---|
131 | if (firstcall) then |
---|
132 | |
---|
133 | ! Liste des especes qui sont diffuses si elles sont presentes |
---|
134 | ! ListeDiff=['co2','o','n2','ar','co','h2','h','d2','d','hd','o2','oh','ho2','h2o_vap','h2o2','o1d','n','no','no2'] |
---|
135 | ListeDiff(1)='co2' |
---|
136 | ListeDiff(2)='o' |
---|
137 | ListeDiff(3)='n2' |
---|
138 | ListeDiff(4)='ar' |
---|
139 | ListeDiff(5)='co' |
---|
140 | ListeDiff(6)='h2' |
---|
141 | ListeDiff(7)='h' |
---|
142 | ListeDiff(8)='d2' |
---|
143 | ListeDiff(9)='hd' |
---|
144 | ListeDiff(10)='d' |
---|
145 | ListeDiff(11)='o2' |
---|
146 | ListeDiff(12)='h2o_vap' |
---|
147 | ListeDiff(13)='o3' |
---|
148 | ListeDiff(14)='n' |
---|
149 | ListeDiff(15)='he' |
---|
150 | ListeDiff(16)='hdo_vap' |
---|
151 | i_h=1000 |
---|
152 | i_h2=1000 |
---|
153 | i_d=1000 |
---|
154 | i_hd=1000 |
---|
155 | ! On regarde quelles especes diffusables sont presentes |
---|
156 | |
---|
157 | ncompdiff=0 |
---|
158 | indic_diff(1:nq)=0 |
---|
159 | |
---|
160 | do nn=1,nq |
---|
161 | do n=1,ListeDiffNb |
---|
162 | if (ListeDiff(n) .eq. noms(nn)) then |
---|
163 | indic_diff(nn)=1 |
---|
164 | ! if (noms(nn) .eq. 'h') i_h=n |
---|
165 | ! if (noms(nn) .eq. 'h2') i_h2=n |
---|
166 | endif |
---|
167 | |
---|
168 | enddo |
---|
169 | if (indic_diff(nn) .eq. 1) then |
---|
170 | print*,'specie ', noms(nn), 'diffused in moldiff_MPF' |
---|
171 | ncompdiff=ncompdiff+1 |
---|
172 | endif |
---|
173 | enddo |
---|
174 | print*,'number of diffused species:',ncompdiff |
---|
175 | allocate(gcmind(ncompdiff)) |
---|
176 | |
---|
177 | ! Store gcm indexes in gcmind |
---|
178 | n=0 |
---|
179 | do nn=1,nq |
---|
180 | if (indic_diff(nn) .eq. 1) then |
---|
181 | n=n+1 |
---|
182 | gcmind(n)=nn |
---|
183 | if (noms(nn) .eq. 'h') i_h=n |
---|
184 | if (noms(nn) .eq. 'h2') i_h2=n |
---|
185 | if (noms(nn) .eq. 'd') i_d=n |
---|
186 | if (noms(nn) .eq. 'hd') i_hd=n |
---|
187 | endif |
---|
188 | enddo |
---|
189 | |
---|
190 | ! print*,'gcmind',gcmind,i_h,i_h2 |
---|
191 | |
---|
192 | ! find vertical index above which diffusion is computed |
---|
193 | if(is_master) then |
---|
194 | do l=1,nlayer |
---|
195 | if (pplay(1,l) .gt. Pdiff) then |
---|
196 | il0=l |
---|
197 | endif |
---|
198 | enddo |
---|
199 | il0=il0+1 |
---|
200 | endif ! (is_master) |
---|
201 | CALL bcast(il0) |
---|
202 | print*,'vertical index for diffusion',il0,pplay(1,il0) |
---|
203 | |
---|
204 | allocate(dij(ncompdiff,ncompdiff)) |
---|
205 | |
---|
206 | call moldiffcoeff_red(dij,indic_diff,gcmind,ncompdiff) |
---|
207 | print*,'MOLDIFF EXO' |
---|
208 | |
---|
209 | ! allocatation des tableaux dependants du nombre d especes diffusees |
---|
210 | allocate(qq(nlayer,ncompdiff)) |
---|
211 | allocate(qnew(nlayer,ncompdiff)) |
---|
212 | allocate(qint(nlayer,ncompdiff)) |
---|
213 | allocate(FacMass(nlayer,ncompdiff)) |
---|
214 | allocate(rhok(nlayer,ncompdiff)) |
---|
215 | allocate(rhokinit(nlayer,ncompdiff)) |
---|
216 | |
---|
217 | allocate(wi(ncompdiff)) |
---|
218 | allocate(wad(ncompdiff)) |
---|
219 | allocate(alphaT(ncompdiff)) |
---|
220 | allocate(uthermal(ncompdiff)) |
---|
221 | allocate(lambdaexo(ncompdiff)) |
---|
222 | allocate(Hspecie(ncompdiff)) |
---|
223 | allocate(Mtot1(ncompdiff)) |
---|
224 | allocate(Mtot2(ncompdiff)) |
---|
225 | allocate(Mraf1(ncompdiff)) |
---|
226 | allocate(Mraf2(ncompdiff)) |
---|
227 | |
---|
228 | firstcall= .false. |
---|
229 | step=1 |
---|
230 | endif ! of if (firstcall) |
---|
231 | |
---|
232 | ! |
---|
233 | !ccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
234 | |
---|
235 | masseU=1.660538782d-27 |
---|
236 | kbolt=1.3806504d-23 |
---|
237 | RgazP=8.314472 |
---|
238 | ! PI =3.141592653 |
---|
239 | ! g=3.72d0 |
---|
240 | Rmars=3390000d0 ! Used to compute escape parameter no need to be more accurate |
---|
241 | Grav=6.67d-11 |
---|
242 | Mmars=6.4d23 |
---|
243 | ij0=6000 ! For test |
---|
244 | invsgmu=1d0/g/masseU |
---|
245 | K0=1.2d11 ! coefficient for eddy diffusion (using n in m-3 and K in m2/s so diff from Krasno2002) |
---|
246 | ! K0=2.4d11 |
---|
247 | ! K0=6.0d10 |
---|
248 | ! K0=2.4d10 |
---|
249 | ! K0=6.0d11 |
---|
250 | ! K0=1.2d10 |
---|
251 | ! K0=1.2d12 |
---|
252 | ! Pk=0.1 ! If P > Pk K = 0 (Pk in Pa) |
---|
253 | |
---|
254 | ! Compute the wup(ig) for H and H2 using the balistic code from R Yelle |
---|
255 | |
---|
256 | PhiEscH=0D0 |
---|
257 | PhiEscH2=0D0 |
---|
258 | PhiEscD=0D0 |
---|
259 | |
---|
260 | do ig=1,ngrid |
---|
261 | pp=dble(pplay(ig,:)) |
---|
262 | |
---|
263 | ! Update the temperature |
---|
264 | |
---|
265 | ! CALL TMNEW(pt(ig,:),pdt(ig,:),pdtconduc(ig,:),pdteuv(ig,:) & |
---|
266 | ! & ,tt,ptimestep,nlayer,ig) |
---|
267 | do l=1,nlayer |
---|
268 | tt(l)=pt(ig,l)*1D0+(pdt(ig,l)*dble(ptimestep)+ & |
---|
269 | pdtconduc(ig,l)*dble(ptimestep)+ & |
---|
270 | pdteuv(ig,l)*dble(ptimestep)) |
---|
271 | ! to cach Nans... |
---|
272 | if (tt(l).ne.tt(l)) then |
---|
273 | print*,'Err TMNEW',ig,l,tt(l),pt(ig,l), & |
---|
274 | pdt(ig,l),pdtconduc(ig,l),pdteuv(ig,l),dble(ptimestep) |
---|
275 | endif |
---|
276 | enddo ! of do l=1,nlayer |
---|
277 | |
---|
278 | ! Update the mass mixing ratios modified by other processes |
---|
279 | |
---|
280 | ! CALL QMNEW(pq(ig,:,:),pdq(ig,:,:),qq,ptimestep,nlayer, & |
---|
281 | ! & ncompdiff,gcmind,ig) |
---|
282 | do iq=1,ncompdiff |
---|
283 | do l=1,nlayer |
---|
284 | qq(l,iq)=pq(ig,l,gcmind(iq))*1D0+( & |
---|
285 | pdq(ig,l,gcmind(iq))*dble(ptimestep)) |
---|
286 | qq(l,iq)=max(qq(l,iq),1d-30) |
---|
287 | enddo ! of do l=1,nlayer |
---|
288 | enddo ! of do iq=1,ncompdiff |
---|
289 | |
---|
290 | ! Compute the Pressure scale height |
---|
291 | |
---|
292 | CALL HSCALE(pp,hp,nlayer) |
---|
293 | |
---|
294 | ! Compute the atmospheric mass (in Dalton) |
---|
295 | |
---|
296 | CALL MMOY(massemoy,mmol,qq,gcmind,nlayer,ncompdiff) |
---|
297 | |
---|
298 | ! Compute the vertical gradient of atmospheric mass |
---|
299 | |
---|
300 | CALL DMMOY(massemoy,hp,dmmeandz,nlayer) |
---|
301 | |
---|
302 | ! Compute the altitude of each layer |
---|
303 | |
---|
304 | CALL ZVERT(pp,tt,massemoy,zz,nlayer,ig) |
---|
305 | |
---|
306 | ! Compute the total mass density (kg/m3) |
---|
307 | |
---|
308 | CALL RHOTOT(pp,tt,massemoy,qq,RHOT,RHOK,nlayer,ncompdiff) |
---|
309 | RHOKINIT=RHOK |
---|
310 | |
---|
311 | ! Compute total mass of each specie before new grid |
---|
312 | ! For conservation tests |
---|
313 | ! The conservation is not always fulfilled especially |
---|
314 | ! for species very far from diffusion equilibrium "photochemical species" |
---|
315 | ! e.g. OH, O(1D) |
---|
316 | |
---|
317 | Mtot1(1:ncompdiff)=0d0 |
---|
318 | |
---|
319 | do l=il0,nlayer |
---|
320 | do nn=1,ncompdiff |
---|
321 | Mtot1(nn)=Mtot1(nn)+1d0/g*qq(l,nn)* & |
---|
322 | & (dble(pplev(ig,l))-dble(pplev(ig,l+1))) |
---|
323 | enddo |
---|
324 | enddo |
---|
325 | |
---|
326 | Zmin=zz(il0) |
---|
327 | Zmax=zz(nlayer) |
---|
328 | |
---|
329 | |
---|
330 | ! If Zmax > 4000 km there is a problem / stop |
---|
331 | |
---|
332 | if (Zmax .gt. 4000000.) then |
---|
333 | Print*,'Zmax too high',ig,zmax,zmin |
---|
334 | do l=1,nlayer |
---|
335 | print*,'old',zz(l),pt(ig,l),pdteuv(ig,l),pdq(ig,l,:) |
---|
336 | print*,'l',l,rhot(l),tt(l),pp(l),massemoy(l),qq(l,:) |
---|
337 | enddo |
---|
338 | stop |
---|
339 | endif |
---|
340 | |
---|
341 | ! The number of diffusion layers is variable |
---|
342 | ! and fixed by the resolution (dzres) specified in diffusion.h |
---|
343 | ! I fix a minimum number of layers 40 |
---|
344 | |
---|
345 | nlraf=int((Zmax-Zmin)/1000./dzres)+1 |
---|
346 | if (nlraf .le. 40) nlraf=40 |
---|
347 | |
---|
348 | ! if (nlraf .ge. 200) print*,ig,nlraf,Zmin,Zmax |
---|
349 | |
---|
350 | ! allocate arrays: |
---|
351 | allocate(Praf(nlraf),Traf(nlraf),Rraf(nlraf),Mraf(nlraf)) |
---|
352 | allocate(Nraf(nlraf),Draf(nlraf),Hraf(nlraf),Wraf(nlraf)) |
---|
353 | allocate(Zraf(nlraf),Tdiffraf(nlraf),Kraf(nlraf)) |
---|
354 | allocate(Prafold(nlraf),Mrafold(nlraf)) |
---|
355 | allocate(Qraf(nlraf,ncompdiff),Rrafk(nlraf,ncompdiff),Nrafk(nlraf,ncompdiff)) |
---|
356 | allocate(Rrafkold(nlraf,ncompdiff)) |
---|
357 | allocate(Drafmol(nlraf,ncompdiff),Hrafmol(nlraf,ncompdiff)) |
---|
358 | allocate(Wrafmol(nlraf,ncompdiff),Tdiffrafmol(nlraf,ncompdiff)) |
---|
359 | allocate(Atri(nlraf),Btri(nlraf),Ctri(nlraf),Dtri(nlraf),Xtri(nlraf)) |
---|
360 | allocate(Tad(nlraf),Dad(nlraf),Zad(nlraf),rhoad(nlraf),Kad(nlraf)) |
---|
361 | allocate(alpha(nlraf),beta(nlraf),delta(nlraf),eps(nlraf),ksi(nlraf),zeta(nlraf)) |
---|
362 | allocate(prod(nlraf),loss(nlraf)) |
---|
363 | |
---|
364 | ! before beginning, I use a better vertical resolution above il0, |
---|
365 | ! altitude grid reinterpolation |
---|
366 | ! The diffusion is solved on an altitude grid with constant step dz |
---|
367 | |
---|
368 | CALL UPPER_RESOL(pp,tt,zz,massemoy,RHOT,RHOK, & |
---|
369 | & qq,mmol,gcmind,Praf,Traf,Qraf,Mraf,Zraf, & |
---|
370 | & Nraf,Nrafk,Rraf,Rrafk,il0,nlraf,ncompdiff,nlayer,ig) |
---|
371 | |
---|
372 | Prafold=Praf |
---|
373 | Rrafkold=Rrafk |
---|
374 | Mrafold=Mraf |
---|
375 | |
---|
376 | ! Eddy mixing profile from Krasnopolsky 2002 Kraf is in cm2/s |
---|
377 | do l=1,nlraf |
---|
378 | Kraf(l)=K0*sqrt(Traf(l)*Traf(nlraf)*kbolt/Praf(l)) |
---|
379 | ! if (Praf(l) .ge. Pk) Kraf(l)=0D0 |
---|
380 | ! print*,l,Praf(l),Traf(l),Kraf(l),Traf(nlraf) |
---|
381 | enddo |
---|
382 | |
---|
383 | ! We reddo interpolation of the gcm grid to estimate mass loss due to interpolation processes. |
---|
384 | |
---|
385 | CALL GCMGRID_P(Zraf,Praf,Qraf,Traf,Nrafk,Rrafk,qq,qint,tt,tint & |
---|
386 | & ,pp,mmol,gcmind,nlraf,ncompdiff,nlayer,ig) |
---|
387 | |
---|
388 | ! We compute the mass correction factor of each specie at each pressure level |
---|
389 | |
---|
390 | CALL CORRMASS(qq,qint,FacMass,nlayer,ncompdiff) |
---|
391 | |
---|
392 | ! Altitude step |
---|
393 | |
---|
394 | Dzraf=Zraf(2)-Zraf(1) |
---|
395 | |
---|
396 | ! Total mass computed on the altitude grid |
---|
397 | |
---|
398 | Mraf1(1:ncompdiff)=0d0 |
---|
399 | do nn=1,ncompdiff |
---|
400 | do l=1,nlraf |
---|
401 | Mraf1(nn)=Mraf1(nn)+Rrafk(l,nn)*Dzraf |
---|
402 | enddo |
---|
403 | enddo |
---|
404 | |
---|
405 | ! Reupdate values for mass conservation |
---|
406 | |
---|
407 | ! do l=1,nlraf |
---|
408 | ! print*,'test',l,Nraf(l),Praf(l) |
---|
409 | ! do nn=1,ncompdiff |
---|
410 | ! Rrafk(l,nn)=RrafK(l,nn)*Mtot1(nn)/Mraf1(nn) |
---|
411 | ! enddo |
---|
412 | ! Rraf(l)=sum(Rrafk(l,:)) |
---|
413 | ! do nn=1,ncompdiff |
---|
414 | ! Qraf(l,nn)=Rrafk(l,nn)/Rraf(l) |
---|
415 | ! Nrafk(l,nn)=Rrafk(l,nn)/dble(mmol(gcmind(nn)))/masseU |
---|
416 | ! enddo |
---|
417 | ! Mraf(l)=1d0/sum(Qraf(l,:)/dble(mmol(gcmind(:)))) |
---|
418 | ! Nraf(l)=Rraf(l)/Mraf(l)/masseU |
---|
419 | ! Praf(l)=kbolt*Traf(l)*Nraf(l) |
---|
420 | ! print*,'test',l,Nraf(l),Praf(l) |
---|
421 | ! enddo |
---|
422 | |
---|
423 | ! do l=1,nlayer |
---|
424 | ! print*,'l',l,zz(l),pp(l),tt(l),sum(qq(l,:)),massemoy(l) |
---|
425 | ! enddo |
---|
426 | |
---|
427 | ! The diffusion is computed above il0 computed from Pdiff in diffusion.h |
---|
428 | ! No change below il0 |
---|
429 | |
---|
430 | do l=1,nlayer |
---|
431 | qnew(l,:)=qq(l,:) ! No effet below il0 |
---|
432 | enddo |
---|
433 | |
---|
434 | ! all species treated independently |
---|
435 | |
---|
436 | ! Upper boundary velocity |
---|
437 | ! Jeans escape for H and H2 |
---|
438 | ! Comparison with and without escape still to be done |
---|
439 | ! No escape for other species |
---|
440 | |
---|
441 | |
---|
442 | do nn=1,ncompdiff |
---|
443 | Uthermal(nn)=sqrt(2d0*kbolt*Traf(nlraf)/masseU/ & |
---|
444 | & dble(mmol(gcmind(nn)))) |
---|
445 | Lambdaexo(nn)=masseU*dble(mmol(gcmind(nn)))*Grav*Mmars/ & |
---|
446 | & (Rmars+Zraf(nlraf))/kbolt/Traf(nlraf) |
---|
447 | wi(nn)=0D0 |
---|
448 | alphaT(nn)=0D0 |
---|
449 | if (nn .eq. i_h .or. nn .eq. i_h2 .or. nn .eq. i_d) then |
---|
450 | wi(nn)=Uthermal(nn)/2d0/sqrt(PI)*exp(-Lambdaexo(nn))* & |
---|
451 | & (Lambdaexo(nn)+1d0) |
---|
452 | endif |
---|
453 | if (nn .eq. i_h .or. nn .eq. i_h2 .or. nn .eq. i_d .or. nn .eq. i_hd) then |
---|
454 | alphaT(nn)=-0.25D0 |
---|
455 | endif |
---|
456 | enddo |
---|
457 | |
---|
458 | ! print*,'wi',wi(i_h),wi(i_h2),wi(i_d),Uthermal,Lambdaexo,mmol(gcmind(:)) |
---|
459 | ! print*,'wi',wi |
---|
460 | |
---|
461 | ! Compute time step for diffusion |
---|
462 | |
---|
463 | ! Loop on species |
---|
464 | |
---|
465 | T0=Traf(nlraf) |
---|
466 | rho0=1d0 |
---|
467 | |
---|
468 | do nn=1,ncompdiff |
---|
469 | masse=dble(mmol(gcmind(nn))) |
---|
470 | ! DIffusion coefficient |
---|
471 | CALL DCOEFF(nn,dij,Praf,Traf,Nraf,Nrafk,Draf,nlraf,ncompdiff) |
---|
472 | Drafmol(:,nn)=Draf(:) |
---|
473 | ! Scale height of the density of the specie |
---|
474 | CALL HSCALEREAL(nn,Nrafk,Dzraf,Hraf,nlraf,ncompdiff) |
---|
475 | Hrafmol(:,nn)=Hraf(:) |
---|
476 | ! Hspecie(nn)=kbolt*T0/masse*invsgmu |
---|
477 | ! Computation of the diffusion vertical velocity of the specie |
---|
478 | CALL VELVERT(nn,Traf,Hraf,Draf,Dzraf,masse,Wraf,nlraf) |
---|
479 | Wrafmol(:,nn)=Wraf(:) |
---|
480 | ! Computation of the diffusion time |
---|
481 | CALL TIMEDIFF(nn,Hraf,Wraf,Tdiffraf,nlraf) |
---|
482 | Tdiffrafmol(:,nn)=Tdiffraf |
---|
483 | enddo |
---|
484 | ! We use a lower time step |
---|
485 | Tdiff=minval(Tdiffrafmol) |
---|
486 | Tdiff=minval(Tdiffrafmol(nlraf,:))*Mraf(nlraf) |
---|
487 | ! Some problems when H is dominant |
---|
488 | ! The time step is chosen function of atmospheric mass at higher level |
---|
489 | ! It is not very nice |
---|
490 | |
---|
491 | ! if (ig .eq. ij0) then |
---|
492 | ! print*,'test',ig,tdiff,tdiffmin,minloc(Tdiffrafmol),minloc(Tdiffrafmol(nlraf,:)) |
---|
493 | ! endif |
---|
494 | if (tdiff .lt. tdiffmin*Mraf(nlraf)) tdiff=tdiffmin*Mraf(nlraf) |
---|
495 | |
---|
496 | tdiff=ptimestep/5D0 |
---|
497 | |
---|
498 | ! Number of time step |
---|
499 | ntime=anint(dble(ptimestep)/tdiff) |
---|
500 | ! print*,'ptime',ig,ptimestep,tdiff,ntime,tdiffmin,Mraf(nlraf) |
---|
501 | ! Adimensionned temperature |
---|
502 | |
---|
503 | do l=1,nlraf |
---|
504 | Tad(l)=Traf(l)/T0 |
---|
505 | enddo |
---|
506 | |
---|
507 | do istep=1,ntime |
---|
508 | do nn=1,ncompdiff |
---|
509 | masse=dble(mmol(gcmind(nn))) |
---|
510 | Draf(1:nlraf)=Drafmol(1:nlraf,nn) |
---|
511 | |
---|
512 | ! Parameters to adimension the problem |
---|
513 | |
---|
514 | H0=kbolt*T0/masse*invsgmu |
---|
515 | D0=Draf(nlraf) |
---|
516 | Time0=H0*H0/D0 |
---|
517 | Time=Tdiff/Time0 |
---|
518 | |
---|
519 | ! Adimensions |
---|
520 | |
---|
521 | do l=1,nlraf |
---|
522 | Dad(l)=Draf(l)/D0 |
---|
523 | ! print*,dble(mmol(gcmind(:))) |
---|
524 | |
---|
525 | Zad(l)=Zraf(l)/H0 |
---|
526 | Kad(l)=Kraf(l)/D0 |
---|
527 | ! print*,'l',l,Zraf(l),Draf(l),Kraf(l),Time0/Dad(l),Time0/Kad(l) |
---|
528 | enddo |
---|
529 | ! STOP |
---|
530 | Wad(nn)=wi(nn)*Time0/H0 |
---|
531 | DZ=Zad(2)-Zad(1) |
---|
532 | ! FacEsc=exp(-wad(nn)*DZ/Dad(nlraf-1)) |
---|
533 | Ueff=Wad(nn) |
---|
534 | alphaTnn=alphaT(nn) |
---|
535 | |
---|
536 | do l=1,nlraf |
---|
537 | RhoAd(l)=Rrafk(l,nn)/rho0 |
---|
538 | Dad(l)=Dad(l)/dz/dz |
---|
539 | Kad(l)=Kad(l)/dz/dz |
---|
540 | enddo |
---|
541 | |
---|
542 | ! Compute intermediary coefficients |
---|
543 | |
---|
544 | CALL DIFFPARAM(Tad,Dad,Kad,DZ,Rhoad,alphaTnn,delta,ksi,eps,zeta,Mraf,masse,prod,loss,nlraf,Time) |
---|
545 | |
---|
546 | ! Compute the alpha and beta recurrent sequences |
---|
547 | |
---|
548 | CALL SEQUENCY(alpha,beta,delta,ksi,eps,zeta,Dad,Kad,rhoAd,Loss,Prod,Ueff, & |
---|
549 | & dz,time,nlraf) |
---|
550 | |
---|
551 | Xtri(:)=0D0 |
---|
552 | |
---|
553 | ! COMPUTE THE DENSITY FROM BOTTOM TO TOP |
---|
554 | |
---|
555 | Xtri(1)=Prod(1)/Loss(1) |
---|
556 | ! if (ig .eq. ij0) print*,nn,masse |
---|
557 | DO l=2,nlraf |
---|
558 | Xtri(l)=(-ALPHA(l-1)+eps(l-1)+zeta(l-1))/(Dad(l-1)+Kad(l-1))*Xtri(l-1)+Beta(l-1)/(Dad(l-1)+Kad(l-1)) |
---|
559 | ! if (ig .eq. ij0) print*,'l',l,Xtri(l),rhoAd(l),Prod(l)/Loss(l),ALPHA(l-1),BETA(l-1),eps(l-1),zeta(l-1),Dad(l-1),Kad(l-1) |
---|
560 | ENDDO |
---|
561 | |
---|
562 | |
---|
563 | |
---|
564 | ! Xtri=rhoAd |
---|
565 | |
---|
566 | ! if (ig .eq. ij0 .and. (nn .eq. 1 .or. nn .eq. 5 .or. nn .eq. 6 .or. nn .eq. 16)) then |
---|
567 | ! do l=1,nlraf |
---|
568 | ! if (Xtri(l) .lt. 0.) then |
---|
569 | ! print*,'l',l,rhoAd(l)*rho0,Xtri(l)*rho0,nn,Tad(l),Zad(l),Dad(l) |
---|
570 | ! stop |
---|
571 | ! endif |
---|
572 | ! enddo |
---|
573 | ! endif |
---|
574 | |
---|
575 | ! Check mass conservation of speci |
---|
576 | |
---|
577 | ! CALL CheckMass(rhoAd,Xtri,nlraf,nn) |
---|
578 | |
---|
579 | ! Update mass density of the species |
---|
580 | |
---|
581 | do l=1,nlraf |
---|
582 | Rrafk(l,nn)=rho0*Xtri(l) |
---|
583 | if (Rrafk(l,nn) .ne. Rrafk(l,nn) .or. & |
---|
584 | & Rrafk(l,nn) .lt. 0 .and. nn .eq. 16) then |
---|
585 | |
---|
586 | ! Test if n(CO2) < 0 skip diffusion (should never happen) |
---|
587 | |
---|
588 | print*,'pb moldiff',istep,ig,l,nn,Rrafk(l,nn),tdiff,& |
---|
589 | & rho0*Rhoad(l),Zmin,Zmax,ntime |
---|
590 | print*,'Atri',Atri |
---|
591 | print*,'Btri',Btri |
---|
592 | print*,'Ctri',Ctri |
---|
593 | print*,'Dtri',Dtri |
---|
594 | print*,'Xtri',Xtri |
---|
595 | print*,'alpha',alpha |
---|
596 | print*,'beta',beta |
---|
597 | print*,'delta',delta |
---|
598 | print*,'eps',eps |
---|
599 | print*,'Dad',Dad |
---|
600 | print*,'Temp',Traf |
---|
601 | print*,'alt',Zraf |
---|
602 | print*,'Mraf',Mraf |
---|
603 | stop |
---|
604 | ! pdqdiff(1:ngrid,1:nlayer,1:nq)=0. |
---|
605 | ! return |
---|
606 | ! Rrafk(l,nn)=1D-30*Rraf(l) |
---|
607 | Rrafk(l,nn)=rho0*Rhoad(l) |
---|
608 | |
---|
609 | endif |
---|
610 | |
---|
611 | enddo |
---|
612 | |
---|
613 | enddo ! END Species Loop |
---|
614 | |
---|
615 | ! Update total mass density |
---|
616 | |
---|
617 | do l=1,nlraf |
---|
618 | Rraf(l)=sum(Rrafk(l,:)) |
---|
619 | enddo |
---|
620 | |
---|
621 | ! Compute new mass average at each altitude level and new pressure |
---|
622 | |
---|
623 | do l=1,nlraf |
---|
624 | do nn=1,ncompdiff |
---|
625 | Qraf(l,nn)=Rrafk(l,nn)/Rraf(l) |
---|
626 | Nrafk(l,nn)=Rrafk(l,nn)/dble(mmol(gcmind(nn)))/masseU |
---|
627 | enddo |
---|
628 | Mraf(l)=1d0/sum(Qraf(l,:)/dble(mmol(gcmind(:)))) |
---|
629 | Nraf(l)=Rraf(l)/Mraf(l)/masseU |
---|
630 | Praf(l)=Nraf(l)*kbolt*Traf(l) |
---|
631 | enddo |
---|
632 | |
---|
633 | enddo ! END time Loop |
---|
634 | |
---|
635 | ! Compute the total mass of each species to check mass conservation |
---|
636 | |
---|
637 | Mraf2(1:ncompdiff)=0d0 |
---|
638 | do nn=1,ncompdiff |
---|
639 | do l=1,nlraf |
---|
640 | Mraf2(nn)=Mraf2(nn)+Rrafk(l,nn)*Dzraf |
---|
641 | enddo |
---|
642 | enddo |
---|
643 | |
---|
644 | ! print*,'Mraf',Mraf2 |
---|
645 | |
---|
646 | ! Reinterpolate values on the GCM pressure levels |
---|
647 | |
---|
648 | CALL GCMGRID_P2(Zraf,Praf,Qraf,Traf,Nrafk,Rrafk,qq,qnew,tt,tnew,& |
---|
649 | & pp,mmol,gcmind,nlraf,ncompdiff,nlayer,FacMass,ig) |
---|
650 | |
---|
651 | CALL RHOTOT(pp,tt,massemoy,qnew,RHOT,RHOK,nlayer,ncompdiff) |
---|
652 | |
---|
653 | ! Update total escape flux of H and H2 (if q was really qnew, but not forget we will output |
---|
654 | ! the trend only at the end |
---|
655 | |
---|
656 | ! if (i_h .ne. 1000) PhiEscH=PhiEscH+wi(i_h)*Nrafk(nlraf,i_h)*cell_area(ig) ! in s-1 |
---|
657 | if (i_h .ne. 1000) PhiauxH(ig)=wi(i_h)*Nrafk(nlraf,i_h)*cell_area(ig) ! in s-1 |
---|
658 | ! if (i_h2 .ne. 1000) PhiEscH2=PhiEscH2+wi(i_h2)*Nrafk(nlraf,i_h2)*cell_area(ig) ! in s-1 (U in m/s, aire in m2, Nrafk in m-3) |
---|
659 | if (i_h2 .ne. 1000) PhiauxH2(ig)=wi(i_h2)*Nrafk(nlraf,i_h2)*cell_area(ig) |
---|
660 | ! if (i_d .ne. 1000) PhiEscD=PhiEscD+wi(i_d)*Nrafk(nlraf,i_d)*cell_area(ig) |
---|
661 | if (i_d .ne. 1000) PhiauxD(ig)=wi(i_d)*Nrafk(nlraf,i_d)*cell_area(ig) |
---|
662 | ! print*,'test',ig,wi(i_h),wi(i_h2),Nrafk(nlraf,i_h),Nrafk(nlraf,i_h2),Nrafk(nlraf,i_d),cell_area(ig),PhiEscH,PhiEscH2,i_h,i_h2,i_d,PhiEscD |
---|
663 | ! stop |
---|
664 | |
---|
665 | |
---|
666 | if (ig .eq. ij0) then |
---|
667 | do l=il0,nlayer |
---|
668 | write(*,'(i2,1x,19(e12.4,1x))') l,zz(l),tt(l),RHOK(l,1)/sum(RHOK(l,:)),RHOKINIT(l,1)/sum(RHOKINIT(l,:)),& |
---|
669 | & RHOK(l,2)/sum(RHOK(l,:)),RHOKINIT(l,2)/sum(RHOKINIT(l,:)),& |
---|
670 | & RHOK(l,6)/sum(RHOK(l,:)),RHOKINIT(l,6)/sum(RHOKINIT(l,:)),& |
---|
671 | & RHOK(l,5)/sum(RHOK(l,:)),RHOKINIT(l,5)/sum(RHOKINIT(l,:)),& |
---|
672 | & RHOK(l,7)/sum(RHOK(l,:)),RHOKINIT(l,7)/sum(RHOKINIT(l,:)) |
---|
673 | enddo |
---|
674 | ! STOP |
---|
675 | endif |
---|
676 | |
---|
677 | ! Compute total mass of each specie on the GCM vertical grid |
---|
678 | |
---|
679 | Mtot2(1:ncompdiff)=0d0 |
---|
680 | |
---|
681 | do l=il0,nlayer |
---|
682 | do nn=1,ncompdiff |
---|
683 | Mtot2(nn)=Mtot2(nn)+1d0/g*qnew(l,nn)* & |
---|
684 | & (dble(pplev(ig,l))-dble(pplev(ig,l+1))) |
---|
685 | enddo |
---|
686 | enddo |
---|
687 | |
---|
688 | ! Check mass conservation of each specie on column |
---|
689 | |
---|
690 | ! do nn=1,ncompdiff |
---|
691 | ! CALL CheckMass2(qq,qnew,pplev(ig,:),il0,nlayer,nn,ncompdiff) |
---|
692 | ! enddo |
---|
693 | |
---|
694 | ! Compute the diffusion trends du to diffusion |
---|
695 | |
---|
696 | do l=1,nlayer |
---|
697 | do nn=1,ncompdiff |
---|
698 | pdqdiff(ig,l,gcmind(nn))=(qnew(l,nn)-qq(l,nn))/ptimestep |
---|
699 | enddo |
---|
700 | enddo |
---|
701 | |
---|
702 | ! deallocation des tableaux |
---|
703 | |
---|
704 | deallocate(Praf,Traf,Rraf,Mraf) |
---|
705 | deallocate(Nraf,Draf,Hraf,Wraf) |
---|
706 | deallocate(Zraf,Tdiffraf,Kraf) |
---|
707 | deallocate(Prafold,Mrafold) |
---|
708 | deallocate(Qraf,Rrafk,Nrafk) |
---|
709 | deallocate(Rrafkold) |
---|
710 | deallocate(Drafmol,Hrafmol) |
---|
711 | deallocate(Wrafmol,Tdiffrafmol) |
---|
712 | deallocate(Atri,Btri,Ctri,Dtri,Xtri) |
---|
713 | deallocate(Tad,Dad,Kad,Zad,rhoad) |
---|
714 | deallocate(alpha,beta,delta,ksi,eps,zeta) |
---|
715 | deallocate(prod,loss) |
---|
716 | |
---|
717 | enddo ! ig loop |
---|
718 | ! print*,'Escape flux H, H2,D (s-1)',PhiEscH,PhiEscH2,PhiEscD |
---|
719 | if (i_h.ne.1000) call planetwide_sumval(PhiauxH,PhiEscH) |
---|
720 | if (i_h2.ne.1000) call planetwide_sumval(PhiauxH2,PhiEscH2) |
---|
721 | if (i_d.ne.1000) call planetwide_sumval(PhiauxD,PhiEscD) |
---|
722 | ! print*,'Escape flux H, H2,D (s-1)',PhiEscH,PhiEscH2,PhiEscD |
---|
723 | |
---|
724 | end subroutine moldiff_MPF |
---|
725 | |
---|
726 | ! ******************************************************************** |
---|
727 | ! ******************************************************************** |
---|
728 | ! ******************************************************************** |
---|
729 | |
---|
730 | ! JYC subtroutine solving MX = Y where M is defined as a block tridiagonal |
---|
731 | ! matrix (Thomas algorithm), tested on a example |
---|
732 | |
---|
733 | subroutine tridagbloc(M,F,X,n1,n2) |
---|
734 | parameter (nmax=100) |
---|
735 | real*8 M(n1*n2,n1*n2),F(n1*n2),X(n1*n2) |
---|
736 | real*8 A(n1,n1,n2),B(n1,n1,n2),C(n1,n1,n2),D(n1,n2) |
---|
737 | real*8 at(n1,n1),bt(n1,n1),ct(n1,n1),dt(n1),gamt(n1,n1),y(n1,n1) |
---|
738 | real*8 alf(n1,n1),gam(n1,n1,n2),alfinv(n1,n1) |
---|
739 | real*8 uvec(n1,n2),uvect(n1),vvect(n1),xt(n1) |
---|
740 | real*8 indx(n1) |
---|
741 | real*8 rhu |
---|
742 | integer n1,n2 |
---|
743 | integer i,p,q |
---|
744 | |
---|
745 | X(:)=0. |
---|
746 | ! Define the bloc matrix A,B,C and the vector D |
---|
747 | A(1:n1,1:n1,1)=M(1:n1,1:n1) |
---|
748 | C(1:n1,1:n1,1)=M(1:n1,n1+1:2*n1) |
---|
749 | D(1:n1,1)=F(1:n1) |
---|
750 | |
---|
751 | do i=2,n2-1 |
---|
752 | A(1:n1,1:n1,i)=M((i-1)*n1+1:i*n1,(i-1)*n1+1:i*n1) |
---|
753 | B(1:n1,1:n1,i)=M((i-1)*n1+1:i*n1,(i-2)*n1+1:(i-1)*n1) |
---|
754 | C(1:n1,1:n1,i)=M((i-1)*n1+1:i*n1,i*n1+1:(i+1)*n1) |
---|
755 | D(1:n1,i)=F((i-1)*n1+1:i*n1) |
---|
756 | enddo |
---|
757 | A(1:n1,1:n1,n2)=M((n2-1)*n1+1:n2*n1,(n2-1)*n1+1:n2*n1) |
---|
758 | B(1:n1,1:n1,n2)=M((n2-1)*n1+1:n2*n1,(n2-2)*n1+1:(n2-1)*n1) |
---|
759 | D(1:n1,n2)=F((n2-1)*n1+1:n2*n1) |
---|
760 | |
---|
761 | ! Initialization |
---|
762 | y(:,:)=0. |
---|
763 | do i=1,n1 |
---|
764 | y(i,i)=1. |
---|
765 | enddo |
---|
766 | |
---|
767 | at(:,:)=A(:,:,1) |
---|
768 | ct(:,:)=C(:,:,1) |
---|
769 | dt(:)=D(:,1) |
---|
770 | call ludcmp(at,n1,n1,indx,rhu,ierr) |
---|
771 | do p=1,n1 |
---|
772 | call lubksb(at,n1,n1,indx,y(1,p)) |
---|
773 | do q=1,n1 |
---|
774 | alfinv(q,p)=y(q,p) |
---|
775 | enddo |
---|
776 | enddo |
---|
777 | gamt=matmul(alfinv,ct) |
---|
778 | gam(:,:,1)=gamt(:,:) |
---|
779 | uvect=matmul(alfinv,dt) |
---|
780 | uvec(:,1)=uvect |
---|
781 | |
---|
782 | do i=2,n2-1 |
---|
783 | y(:,:)=0. |
---|
784 | do j=1,n1 |
---|
785 | y(j,j)=1. |
---|
786 | enddo |
---|
787 | bt(:,:)=B(:,:,i) |
---|
788 | at(:,:)=A(:,:,i)-matmul(bt,gamt) |
---|
789 | ct(:,:)=C(:,:,i) |
---|
790 | dt(:)=D(:,i) |
---|
791 | call ludcmp(at,n1,n1,indx,rhu,ierr) |
---|
792 | do p=1,n1 |
---|
793 | call lubksb(at,n1,n1,indx,y(1,p)) |
---|
794 | do q=1,n1 |
---|
795 | alfinv(q,p)=y(q,p) |
---|
796 | enddo |
---|
797 | enddo |
---|
798 | gamt=matmul(alfinv,ct) |
---|
799 | gam(:,:,i)=gamt |
---|
800 | vvect=dt-matmul(bt,uvect) |
---|
801 | uvect=matmul(alfinv,vvect) |
---|
802 | uvec(:,i)=uvect |
---|
803 | enddo |
---|
804 | bt=B(:,:,n2) |
---|
805 | dt=D(:,n2) |
---|
806 | at=A(:,:,n2)-matmul(bt,gamt) |
---|
807 | vvect=dt-matmul(bt,uvect) |
---|
808 | y(:,:)=0. |
---|
809 | do j=1,n1 |
---|
810 | y(j,j)=1. |
---|
811 | enddo |
---|
812 | call ludcmp(at,n1,n1,indx,rhu,ierr) |
---|
813 | do p=1,n1 |
---|
814 | call lubksb(at,n1,n1,indx,y(1,p)) |
---|
815 | do q=1,n1 |
---|
816 | alfinv(q,p)=y(q,p) |
---|
817 | enddo |
---|
818 | enddo |
---|
819 | xt=matmul(alfinv,vvect) |
---|
820 | X((n2-1)*n1+1 :n1*n2)=xt |
---|
821 | do i=n2-1,1,-1 |
---|
822 | gamt=gam(:,:,i) |
---|
823 | xt=X(i*n1+1:n1*n2) |
---|
824 | uvect=uvec(:,i) |
---|
825 | vvect=matmul(gamt,xt) |
---|
826 | X((i-1)*n1+1:i*n1)=uvect-vvect |
---|
827 | enddo |
---|
828 | |
---|
829 | end subroutine tridagbloc |
---|
830 | |
---|
831 | subroutine tridag(a,b,c,r,u,n) |
---|
832 | ! parameter (nmax=4000) |
---|
833 | ! dimension gam(nmax),a(n),b(n),c(n),r(n),u(n) |
---|
834 | real*8 gam(n),a(n),b(n),c(n),r(n),u(n) |
---|
835 | if(b(1).eq.0.)then |
---|
836 | stop 'tridag: error: b(1)=0 !!! ' |
---|
837 | endif |
---|
838 | bet=b(1) |
---|
839 | u(1)=r(1)/bet |
---|
840 | do 11 j=2,n |
---|
841 | gam(j)=c(j-1)/bet |
---|
842 | bet=b(j)-a(j)*gam(j) |
---|
843 | if(bet.eq.0.) then |
---|
844 | stop 'tridag: error: bet=0 !!! ' |
---|
845 | endif |
---|
846 | u(j)=(r(j)-a(j)*u(j-1))/bet |
---|
847 | 11 continue |
---|
848 | do 12 j=n-1,1,-1 |
---|
849 | u(j)=u(j)-gam(j+1)*u(j+1) |
---|
850 | 12 continue |
---|
851 | |
---|
852 | end subroutine tridag |
---|
853 | |
---|
854 | ! ******************************************************************** |
---|
855 | ! ******************************************************************** |
---|
856 | ! ******************************************************************** |
---|
857 | |
---|
858 | SUBROUTINE LUBKSB(A,N,NP,INDX,B) |
---|
859 | |
---|
860 | implicit none |
---|
861 | |
---|
862 | integer i,j,n,np,ii,ll |
---|
863 | real*8 sum |
---|
864 | real*8 a(np,np),indx(np),b(np) |
---|
865 | |
---|
866 | ! DIMENSION A(NP,NP),INDX(N),B(N) |
---|
867 | II=0 |
---|
868 | DO 12 I=1,N |
---|
869 | LL=INDX(I) |
---|
870 | SUM=B(LL) |
---|
871 | B(LL)=B(I) |
---|
872 | IF (II.NE.0)THEN |
---|
873 | DO 11 J=II,I-1 |
---|
874 | SUM=SUM-A(I,J)*B(J) |
---|
875 | 11 CONTINUE |
---|
876 | ELSE IF (SUM.NE.0.) THEN |
---|
877 | II=I |
---|
878 | ENDIF |
---|
879 | B(I)=SUM |
---|
880 | 12 CONTINUE |
---|
881 | DO 14 I=N,1,-1 |
---|
882 | SUM=B(I) |
---|
883 | IF(I.LT.N)THEN |
---|
884 | DO 13 J=I+1,N |
---|
885 | SUM=SUM-A(I,J)*B(J) |
---|
886 | 13 CONTINUE |
---|
887 | ENDIF |
---|
888 | B(I)=SUM/A(I,I) |
---|
889 | 14 CONTINUE |
---|
890 | |
---|
891 | END SUBROUTINE LUBKSB |
---|
892 | |
---|
893 | ! ******************************************************************** |
---|
894 | ! ******************************************************************** |
---|
895 | ! ******************************************************************** |
---|
896 | |
---|
897 | SUBROUTINE LUDCMP(A,N,NP,INDX,D,ierr) |
---|
898 | |
---|
899 | implicit none |
---|
900 | |
---|
901 | integer n,np,nmax,i,j,k,imax |
---|
902 | real*8 d,tiny,aamax |
---|
903 | real*8 a(np,np),indx(np) |
---|
904 | integer ierr ! error =0 if OK, =1 if problem |
---|
905 | |
---|
906 | PARAMETER (NMAX=100,TINY=1.0E-20) |
---|
907 | ! DIMENSION A(NP,NP),INDX(N),VV(NMAX) |
---|
908 | real*8 sum,vv(nmax),dum |
---|
909 | |
---|
910 | D=1. |
---|
911 | DO 12 I=1,N |
---|
912 | AAMAX=0. |
---|
913 | DO 11 J=1,N |
---|
914 | IF (ABS(A(I,J)).GT.AAMAX) AAMAX=ABS(A(I,J)) |
---|
915 | 11 CONTINUE |
---|
916 | IF (AAMAX.EQ.0.) then |
---|
917 | write(*,*) 'In moldiff: Problem in LUDCMP with matrix A' |
---|
918 | write(*,*) 'Singular matrix ?' |
---|
919 | write(*,*) 'Matrix A = ', A |
---|
920 | ! stop |
---|
921 | ! TO DEBUG : |
---|
922 | ierr =1 |
---|
923 | return |
---|
924 | ! stop |
---|
925 | END IF |
---|
926 | |
---|
927 | VV(I)=1./AAMAX |
---|
928 | 12 CONTINUE |
---|
929 | DO 19 J=1,N |
---|
930 | IF (J.GT.1) THEN |
---|
931 | DO 14 I=1,J-1 |
---|
932 | SUM=A(I,J) |
---|
933 | IF (I.GT.1)THEN |
---|
934 | DO 13 K=1,I-1 |
---|
935 | SUM=SUM-A(I,K)*A(K,J) |
---|
936 | 13 CONTINUE |
---|
937 | A(I,J)=SUM |
---|
938 | ENDIF |
---|
939 | 14 CONTINUE |
---|
940 | ENDIF |
---|
941 | AAMAX=0. |
---|
942 | DO 16 I=J,N |
---|
943 | SUM=A(I,J) |
---|
944 | IF (J.GT.1)THEN |
---|
945 | DO 15 K=1,J-1 |
---|
946 | SUM=SUM-A(I,K)*A(K,J) |
---|
947 | 15 CONTINUE |
---|
948 | A(I,J)=SUM |
---|
949 | ENDIF |
---|
950 | DUM=VV(I)*ABS(SUM) |
---|
951 | IF (DUM.GE.AAMAX) THEN |
---|
952 | IMAX=I |
---|
953 | AAMAX=DUM |
---|
954 | ENDIF |
---|
955 | 16 CONTINUE |
---|
956 | IF (J.NE.IMAX)THEN |
---|
957 | DO 17 K=1,N |
---|
958 | DUM=A(IMAX,K) |
---|
959 | A(IMAX,K)=A(J,K) |
---|
960 | A(J,K)=DUM |
---|
961 | 17 CONTINUE |
---|
962 | D=-D |
---|
963 | VV(IMAX)=VV(J) |
---|
964 | ENDIF |
---|
965 | INDX(J)=IMAX |
---|
966 | IF(J.NE.N)THEN |
---|
967 | IF(A(J,J).EQ.0.)A(J,J)=TINY |
---|
968 | DUM=1./A(J,J) |
---|
969 | DO 18 I=J+1,N |
---|
970 | A(I,J)=A(I,J)*DUM |
---|
971 | 18 CONTINUE |
---|
972 | ENDIF |
---|
973 | 19 CONTINUE |
---|
974 | IF(A(N,N).EQ.0.)A(N,N)=TINY |
---|
975 | ierr =0 |
---|
976 | |
---|
977 | END SUBROUTINE LUDCMP |
---|
978 | |
---|
979 | SUBROUTINE TMNEW(T1,DT1,DT2,DT3,T2,dtime,nl,ig) |
---|
980 | IMPLICIT NONE |
---|
981 | |
---|
982 | INTEGER,INTENT(IN) :: nl,ig |
---|
983 | REAL,INTENT(IN),DIMENSION(nl) :: T1,DT1,DT2,DT3 |
---|
984 | REAL*8,INTENT(OUT),DIMENSION(nl) :: T2 |
---|
985 | REAL,INTENT(IN) :: dtime |
---|
986 | INTEGER :: l |
---|
987 | DO l=1,nl |
---|
988 | T2(l)=T1(l)*1D0+(DT1(l)*dble(dtime)+ & |
---|
989 | & DT2(l)*dble(dtime)+ & |
---|
990 | & DT3(l)*dble(dtime))*1D0 |
---|
991 | if (T2(l) .ne. T2(l)) then |
---|
992 | print*,'Err TMNEW',ig,l,T2(l),T1(l),dT1(l),DT2(l), & |
---|
993 | & DT3(l),dtime,dble(dtime) |
---|
994 | endif |
---|
995 | |
---|
996 | ENDDO |
---|
997 | END SUBROUTINE TMNEW |
---|
998 | |
---|
999 | SUBROUTINE QMNEW(Q1,DQ,Q2,dtime,nl,nq,gc,ig) |
---|
1000 | use tracer_mod, only: nqmx |
---|
1001 | IMPLICIT NONE |
---|
1002 | |
---|
1003 | INTEGER,INTENT(IN) :: nl,nq |
---|
1004 | INTEGER,INTENT(IN) :: ig |
---|
1005 | INTEGER,INTENT(IN),dimension(nq) :: gc |
---|
1006 | REAL,INTENT(IN),DIMENSION(nl,nqmx) :: Q1,DQ |
---|
1007 | REAL*8,INTENT(OUT),DIMENSION(nl,nq) :: Q2 |
---|
1008 | REAL,INTENT(IN) :: dtime |
---|
1009 | INTEGER :: l,iq |
---|
1010 | DO l=1,nl |
---|
1011 | DO iq=1,nq |
---|
1012 | Q2(l,iq)=Q1(l,gc(iq))*1D0+(DQ(l,gc(iq))*dble(dtime))*1D0 |
---|
1013 | Q2(l,iq)=max(Q2(l,iq),1d-30) |
---|
1014 | ENDDO |
---|
1015 | ENDDO |
---|
1016 | END SUBROUTINE QMNEW |
---|
1017 | |
---|
1018 | SUBROUTINE HSCALE(p,hp,nl) |
---|
1019 | IMPLICIT NONE |
---|
1020 | |
---|
1021 | INTEGER :: nl |
---|
1022 | INTEGER :: l |
---|
1023 | REAL*8,dimension(nl) :: P |
---|
1024 | REAL*8,DIMENSION(nl) :: Hp |
---|
1025 | |
---|
1026 | hp(1)=-log(P(2)/P(1)) |
---|
1027 | hp(nl)=-log(P(nl)/P(nl-1)) |
---|
1028 | |
---|
1029 | DO l=2,nl-1 |
---|
1030 | hp(l)=-log(P(l+1)/P(l-1)) |
---|
1031 | ENDDO |
---|
1032 | END SUBROUTINE HSCALE |
---|
1033 | |
---|
1034 | SUBROUTINE MMOY(massemoy,mmol,qq,gc,nl,nq) |
---|
1035 | use tracer_mod, only: nqmx |
---|
1036 | IMPLICIT NONE |
---|
1037 | |
---|
1038 | INTEGER :: nl,nq,l |
---|
1039 | INTEGER,dimension(nq) :: gc |
---|
1040 | REAL*8,DIMENSION(nl,nq) :: qq |
---|
1041 | REAL*8,DIMENSION(nl) :: massemoy |
---|
1042 | REAL,DIMENSION(nqmx) :: MMOL |
---|
1043 | |
---|
1044 | |
---|
1045 | do l=1,nl |
---|
1046 | massemoy(l)=1D0/sum(qq(l,:)/dble(mmol(gc(:)))) |
---|
1047 | enddo |
---|
1048 | |
---|
1049 | END SUBROUTINE MMOY |
---|
1050 | |
---|
1051 | SUBROUTINE DMMOY(M,H,DM,nl) |
---|
1052 | IMPLICIT NONE |
---|
1053 | INTEGER :: nl,l |
---|
1054 | REAL*8,DIMENSION(nl) :: M,H,DM |
---|
1055 | |
---|
1056 | DM(1)=(-3D0*M(1)+4D0*M(2)-M(3))/2D0/H(1) |
---|
1057 | DM(nl)=(3D0*M(nl)-4D0*M(nl-1)+M(nl-2))/2D0/H(nl) |
---|
1058 | |
---|
1059 | do l=2,nl-1 |
---|
1060 | DM(l)=(M(l+1)-M(l-1))/H(l) |
---|
1061 | enddo |
---|
1062 | |
---|
1063 | END SUBROUTINE DMMOY |
---|
1064 | |
---|
1065 | SUBROUTINE ZVERT(P,T,M,Z,nl,ig) |
---|
1066 | IMPLICIT NONE |
---|
1067 | INTEGER :: nl,l,ig |
---|
1068 | REAL*8,dimension(nl) :: P,T,M,Z,H |
---|
1069 | REAL*8 :: z0 |
---|
1070 | REAL*8 :: kbolt,masseU,Konst,g,Hpm |
---|
1071 | masseU=1.660538782d-27 |
---|
1072 | kbolt=1.3806504d-23 |
---|
1073 | Konst=kbolt/masseU |
---|
1074 | g=3.72D0 |
---|
1075 | |
---|
1076 | z0=0d0 |
---|
1077 | Z(1)=z0 |
---|
1078 | H(1)=Konst*T(1)/M(1)/g |
---|
1079 | |
---|
1080 | do l=2,nl |
---|
1081 | H(l)=Konst*T(l)/M(l)/g |
---|
1082 | Hpm=H(l-1) |
---|
1083 | Z(l)=z(l-1)-Hpm*log(P(l)/P(l-1)) |
---|
1084 | if (Z(l) .ne. Z(l)) then |
---|
1085 | print*,'pb',l,ig |
---|
1086 | print*,'P',P |
---|
1087 | print*,'T',T |
---|
1088 | print*,'M',M |
---|
1089 | print*,'Z',Z |
---|
1090 | print*,'Hpm',Hpm |
---|
1091 | endif |
---|
1092 | enddo |
---|
1093 | |
---|
1094 | END SUBROUTINE ZVERT |
---|
1095 | |
---|
1096 | SUBROUTINE RHOTOT(P,T,M,qq,rhoN,rhoK,nl,nq) |
---|
1097 | IMPLICIT NONE |
---|
1098 | |
---|
1099 | REAL*8 :: kbolt,masseU,Konst |
---|
1100 | INTEGER :: nl,nq,l,iq |
---|
1101 | REAL*8,DIMENSION(nl) :: P,T,M,RHON |
---|
1102 | REAL*8,DIMENSION(nl,nq) :: RHOK,qq |
---|
1103 | masseU=1.660538782d-27 |
---|
1104 | kbolt=1.3806504d-23 |
---|
1105 | Konst=Kbolt/masseU |
---|
1106 | |
---|
1107 | do l=1,nl |
---|
1108 | RHON(l)=P(l)*M(l)/T(l)/Konst |
---|
1109 | do iq=1,nq |
---|
1110 | RHOK(l,iq)=qq(l,iq)*RHON(l) |
---|
1111 | enddo |
---|
1112 | enddo |
---|
1113 | |
---|
1114 | END SUBROUTINE RHOTOT |
---|
1115 | |
---|
1116 | SUBROUTINE UPPER_RESOL(P,T,Z,M,R,Rk, & |
---|
1117 | & qq,mmol,gc,Praf,Traf,Qraf,Mraf,Zraf, & |
---|
1118 | & Nraf,Nrafk,Rraf,Rrafk,il,nl,nq,nlx,ig) |
---|
1119 | use tracer_mod, only: nqmx |
---|
1120 | IMPLICIT NONE |
---|
1121 | |
---|
1122 | INTEGER :: nl,nq,il,l,i,iq,nlx,iz,ig |
---|
1123 | INTEGER :: gc(nq) |
---|
1124 | INTEGER,DIMENSION(1) :: indz |
---|
1125 | REAL*8, DIMENSION(nlx) :: P,T,Z,M,R |
---|
1126 | REAL*8, DIMENSION(nlx,nq) :: qq,Rk |
---|
1127 | REAL*8, DIMENSION(nl) :: Praf,Traf,Mraf,Zraf,Nraf,Rraf |
---|
1128 | REAL*8 :: kbolt,masseU,Konst,g |
---|
1129 | REAL*8, DIMENSION(nl,nq) :: Qraf,Rrafk,Nrafk |
---|
1130 | REAL*8 :: facZ,dZ,H |
---|
1131 | REAL,DIMENSION(nqmx) :: mmol |
---|
1132 | masseU=1.660538782d-27 |
---|
1133 | kbolt=1.3806504d-23 |
---|
1134 | Konst=Kbolt/masseU |
---|
1135 | g=3.72d0 |
---|
1136 | |
---|
1137 | |
---|
1138 | Zraf(1)=z(il) |
---|
1139 | Praf(1)=P(il) |
---|
1140 | Traf(1)=T(il) |
---|
1141 | Nraf(1)=Praf(1)/kbolt/Traf(1) |
---|
1142 | do iq=1,nq |
---|
1143 | Qraf(1,iq)=qq(il,iq) |
---|
1144 | enddo |
---|
1145 | Mraf(1)=1d0/sum(Qraf(1,:)/dble(mmol(gc(:)))) |
---|
1146 | Rraf(1)=Mraf(1)*masseU*Nraf(1) |
---|
1147 | do iq=1,nq |
---|
1148 | Rrafk(1,iq)=Rraf(1)*Qraf(1,iq) |
---|
1149 | Nrafk(1,iq)=Rrafk(1,iq)/masseU/dble(mmol(gc(iq))) |
---|
1150 | enddo |
---|
1151 | Zraf(nl)=z(nlx) |
---|
1152 | |
---|
1153 | do l=2,nl-1 |
---|
1154 | Zraf(l)=Zraf(1)+(Zraf(nl)-Zraf(1))/dble(nl-1)*dble((l-1)) |
---|
1155 | indz=maxloc(z,mask=z <= Zraf(l)) |
---|
1156 | iz=indz(1) |
---|
1157 | if (iz .lt. 1 .or. iz .gt. nlx) then |
---|
1158 | print*,'danger',iz,nl,Zraf(l),l,Zraf(1),Zraf(nl),z,P,T,ig |
---|
1159 | stop |
---|
1160 | endif |
---|
1161 | dZ=Zraf(l)-Zraf(l-1) |
---|
1162 | ! dZ=Zraf(l)-z(iz) |
---|
1163 | facz=(Zraf(l)-z(iz))/(z(iz+1)-z(iz)) |
---|
1164 | Traf(l)=T(iz)+(T(iz+1)-T(iz))*facz |
---|
1165 | do iq=1,nq |
---|
1166 | ! Qraf(l,iq)=qq(iz,iq)+(qq(iz+1,iq)-qq(iz,iq))*facz |
---|
1167 | Rrafk(l,iq)=Rk(iz,iq)+(Rk(iz+1,iq)-Rk(iz,iq))*facZ |
---|
1168 | Rrafk(l,iq)=Rk(iz,iq)*(Rk(iz+1,iq)/Rk(iz,iq))**facZ |
---|
1169 | enddo |
---|
1170 | ! Mraf(l)=1D0/(sum(qraf(l,:)/dble(mmol(gc(:))))) |
---|
1171 | Rraf(l)=sum(Rrafk(l,:)) |
---|
1172 | do iq=1,nq |
---|
1173 | Qraf(l,iq)=Rrafk(l,iq)/Rraf(l) |
---|
1174 | enddo |
---|
1175 | Mraf(l)=1D0/(sum(qraf(l,:)/dble(mmol(gc(:))))) |
---|
1176 | ! H=Konst*Traf(l)/Mraf(l)/g |
---|
1177 | ! H=Konst*T(iz)/M(iz)/g |
---|
1178 | ! Praf(l)=P(iz)*exp(-dZ/H) |
---|
1179 | ! Praf(l)=Praf(l-1)*exp(-dZ/H) |
---|
1180 | ! print*,'iz',l,iz,Praf(il-1)*exp(-dZ/H),z(iz),z(iz+1),H |
---|
1181 | Nraf(l)=Rraf(l)/Mraf(l)/masseU |
---|
1182 | Praf(l)=Nraf(l)*kbolt*Traf(l) |
---|
1183 | ! Rraf(l)=Nraf(l)*Mraf(l)*masseU |
---|
1184 | do iq=1,nq |
---|
1185 | ! Rrafk(l,iq)=Rraf(l)*Qraf(l,iq) |
---|
1186 | Nrafk(l,iq)=Rrafk(l,iq)/dble(mmol(gc(iq)))/masseU |
---|
1187 | if (Nrafk(l,iq) .lt. 0. .or. & |
---|
1188 | & Nrafk(l,iq) .ne. Nrafk(l,iq)) then |
---|
1189 | print*,'pb interpolation',l,iq,Nrafk(l,iq),Rrafk(l,iq), & |
---|
1190 | & Qraf(l,iq),Rk(iz,iq),Rk(iz+1,iq),facZ,Zraf(l),z(iz) |
---|
1191 | stop |
---|
1192 | endif |
---|
1193 | enddo |
---|
1194 | enddo |
---|
1195 | Zraf(nl)=z(nlx) |
---|
1196 | Traf(nl)=T(nlx) |
---|
1197 | do iq=1,nq |
---|
1198 | Rrafk(nl,iq)=Rk(nlx,iq) |
---|
1199 | Qraf(nl,iq)=Rk(nlx,iq)/R(nlx) |
---|
1200 | Nrafk(nl,iq)=Rk(nlx,iq)/dble(mmol(gc(iq)))/masseU |
---|
1201 | enddo |
---|
1202 | Nraf(nl)=sum(Nrafk(nl,:)) |
---|
1203 | Praf(nl)=Nraf(nl)*kbolt*Traf(nl) |
---|
1204 | Mraf(nl)=1D0/sum(Qraf(nl,:)/dble(mmol(gc(:)))) |
---|
1205 | END SUBROUTINE UPPER_RESOL |
---|
1206 | |
---|
1207 | SUBROUTINE CORRMASS(qq,qint,FacMass,nl,nq) |
---|
1208 | IMPLICIT NONE |
---|
1209 | INTEGER :: nl,nq,l,nn |
---|
1210 | REAL*8,DIMENSION(nl,nq) :: qq,qint,FacMass |
---|
1211 | |
---|
1212 | do nn=1,nq |
---|
1213 | do l=1,nl |
---|
1214 | FacMass(l,nn)=qq(l,nn)/qint(l,nn) |
---|
1215 | enddo |
---|
1216 | enddo |
---|
1217 | |
---|
1218 | END |
---|
1219 | |
---|
1220 | |
---|
1221 | SUBROUTINE DCOEFF(nn,Dij,P,T,N,Nk,D,nl,nq) |
---|
1222 | IMPLICIT NONE |
---|
1223 | REAL*8,DIMENSION(nl) :: N,T,D,P |
---|
1224 | REAL*8,DIMENSION(nl,nq) :: Nk |
---|
1225 | INTEGER :: nn,nl,nq,l,iq |
---|
1226 | REAL,DIMENSION(nq,nq) :: Dij |
---|
1227 | REAL*8 :: interm,P0,T0,ptfac,dfac |
---|
1228 | |
---|
1229 | P0=1D5 |
---|
1230 | T0=273d0 |
---|
1231 | |
---|
1232 | |
---|
1233 | do l=1,nl |
---|
1234 | ptfac=(P0/P(l))*(T(l)/T0)**1.75d0 |
---|
1235 | D(l)=0d0 |
---|
1236 | interm=0d0 |
---|
1237 | do iq=1,nq |
---|
1238 | if (iq .ne. nn) then |
---|
1239 | dfac=dble(dij(nn,iq))*ptfac |
---|
1240 | interm=interm+Nk(l,iq)/N(l)/dfac |
---|
1241 | endif |
---|
1242 | enddo |
---|
1243 | !Temporary: eliminate modification to include Wilke's formulation |
---|
1244 | !back to the old scheme to check effect |
---|
1245 | !D(l)=1d0/interm |
---|
1246 | D(l)=(1D0-Nk(l,nn)/N(l))/interm |
---|
1247 | enddo |
---|
1248 | END SUBROUTINE DCOEFF |
---|
1249 | |
---|
1250 | SUBROUTINE HSCALEREAL(nn,Nk,Dz,H,nl,nq) |
---|
1251 | IMPLICIT NONE |
---|
1252 | INTEGER :: nn,nl,nq,l |
---|
1253 | REAL*8,DIMENSION(nl) :: H |
---|
1254 | REAL*8,DIMENSION(nl,nq) :: Nk |
---|
1255 | REAL*8 :: Dz |
---|
1256 | |
---|
1257 | H(1)=(-3D0*Nk(1,nn)+4d0*NK(2,nn)-Nk(3,nn))/(2D0*DZ)/ & |
---|
1258 | & NK(1,nn) |
---|
1259 | |
---|
1260 | H(1)=-1D0/H(1) |
---|
1261 | |
---|
1262 | DO l=2,nl-1 |
---|
1263 | H(l)=(Nk(l+1,nn)-NK(l-1,nn))/(2D0*DZ)/NK(l,nn) |
---|
1264 | H(l)=-1D0/H(l) |
---|
1265 | ENDDO |
---|
1266 | |
---|
1267 | H(nl)=(3D0*Nk(nl,nn)-4D0*Nk(nl-1,nn)+Nk(nl-2,nn))/(2D0*DZ)/ & |
---|
1268 | & Nk(nl,nn) |
---|
1269 | H(nl)=-1D0/H(nl) |
---|
1270 | |
---|
1271 | ! do l=1,nl |
---|
1272 | ! if (abs(H(l)) .lt. 100.) then |
---|
1273 | ! print*,'H',l,H(l),Nk(l,nn),nn |
---|
1274 | ! endif |
---|
1275 | ! enddo |
---|
1276 | |
---|
1277 | END SUBROUTINE HSCALEREAL |
---|
1278 | |
---|
1279 | SUBROUTINE VELVERT(nn,T,H,D,Dz,masse,W,nl) |
---|
1280 | IMPLICIT NONE |
---|
1281 | INTEGER :: l,nl,nn |
---|
1282 | REAL*8,DIMENSION(nl) :: T,H,D,W,DT |
---|
1283 | REAL*8 :: Dz,Hmol,masse |
---|
1284 | REAL*8 :: kbolt,masseU,Konst,g |
---|
1285 | masseU=1.660538782d-27 |
---|
1286 | kbolt=1.3806504d-23 |
---|
1287 | Konst=Kbolt/masseU |
---|
1288 | g=3.72d0 |
---|
1289 | |
---|
1290 | DT(1)=1D0/T(1)*(-3D0*T(1)+4D0*T(2)-T(3))/(2D0*DZ) |
---|
1291 | Hmol=Konst*T(1)/masse/g |
---|
1292 | W(1)=-D(1)*(1D0/H(1)-1D0/Hmol-DT(1)) |
---|
1293 | |
---|
1294 | DO l=2,nl-1 |
---|
1295 | DT(l)=1D0/T(l)*(T(l+1)-T(l-1))/(2D0*DZ) |
---|
1296 | Hmol=Konst*T(l)/masse/g |
---|
1297 | W(l)=-D(l)*(1D0/H(l)-1D0/Hmol-DT(l)) |
---|
1298 | ENDDO |
---|
1299 | |
---|
1300 | DT(nl)=1D0/T(nl)*(3d0*T(nl)-4D0*T(nl-1)+T(nl-2))/(2D0*DZ) |
---|
1301 | Hmol=Konst*T(nl)/masse/g |
---|
1302 | W(nl)=-D(nl)*(1D0/H(nl)-1D0/Hmol-DT(nl)) |
---|
1303 | |
---|
1304 | ! do l=1,nl |
---|
1305 | ! print*,'W',W(l),D(l),H(l),DT(l) |
---|
1306 | ! enddo |
---|
1307 | |
---|
1308 | END SUBROUTINE VELVERT |
---|
1309 | |
---|
1310 | SUBROUTINE TIMEDIFF(nn,H,W,TIME,nl) |
---|
1311 | IMPLICIT NONE |
---|
1312 | INTEGER :: nn,nl,l |
---|
1313 | REAL*8,DIMENSION(nl) :: W,H,TIME |
---|
1314 | |
---|
1315 | DO l=1,nl |
---|
1316 | TIME(l)=abs(H(l)/W(l)) |
---|
1317 | if (TIME(l) .lt. 1.D-4) then |
---|
1318 | ! print*,'low tdiff',H(l),W(l),nn,l |
---|
1319 | endif |
---|
1320 | ENDDO |
---|
1321 | |
---|
1322 | END SUBROUTINE TIMEDIFF |
---|
1323 | |
---|
1324 | |
---|
1325 | SUBROUTINE DIFFPARAM(T,D,K,dz,RHO,alphaTnn,delta,ksi,eps,zeta,Ma,mi,prod,loss,nl,dtime) |
---|
1326 | IMPLICIT NONE |
---|
1327 | INTEGER :: nl,l |
---|
1328 | REAL*8,DIMENSION(nl) :: T,D,K,RHO,Ma |
---|
1329 | REAL*8 :: DZ,DZinv,dT,dtime,mi,alphaTnn |
---|
1330 | REAL*8,DIMENSION(nl) :: delta,ksi,eps,zeta,prod,loss |
---|
1331 | |
---|
1332 | ! Compute the vectors delta,eps,prod and loss |
---|
1333 | DO l=1,nl-1 |
---|
1334 | dT=(1D0/T(l)*(T(l+1)-T(l)))/dZ |
---|
1335 | delta(l)=(1D0/T(l)+(1D0+alphaTnn)*dT)*D(l)*dz |
---|
1336 | ksi(l)=(1D0/T(l)*Ma(l)/mi+dT)*K(l)*dz |
---|
1337 | eps(l)=D(l)-delta(l) |
---|
1338 | zeta(l)=K(l)-ksi(l) |
---|
1339 | prod(l)=RHO(l)/dtime |
---|
1340 | loss(l)=1D0/dtime |
---|
1341 | ! print*,l,dT,delta(l),ksi(l),eps(l),zeta(l),D(l),K(l),eps(l)/D(l),zeta(l)/K(l),Ma(l),mi,dZ |
---|
1342 | ENDDO |
---|
1343 | |
---|
1344 | ! at top assume T = Cste (dT=0) |
---|
1345 | delta(nl)=1D0/T(nl)*D(nl)*dz |
---|
1346 | ksi(nl)=1D0/T(nl)*Ma(nl)/mi*K(nl)*dz |
---|
1347 | eps(nl)=D(nl)-delta(nl) |
---|
1348 | zeta(nl)=K(nl)-ksi(nl) |
---|
1349 | prod(nl)=RHO(nl)/dtime |
---|
1350 | loss(nl)=1D0/dtime |
---|
1351 | END SUBROUTINE DIFFPARAM |
---|
1352 | |
---|
1353 | |
---|
1354 | SUBROUTINE SEQUENCY(alpha,beta,delta,ksi,eps,zeta,Dad,Kad,rhoad,Loss,Prod, & |
---|
1355 | & Ueff,dz,dt,nl) |
---|
1356 | IMPLICIT NONE |
---|
1357 | INTEGER :: nl,l |
---|
1358 | REAL*8, DIMENSION(nl) :: alpha,beta,delta,ksi,eps,zeta,Dad,Kad,RHoad,Loss,Prod |
---|
1359 | REAL*8 :: dz,dt,del1,del2,del3,Ueff |
---|
1360 | |
---|
1361 | ALPHA(nl-1)=(eps(nl-1)+zeta(nl-1))*Ueff/dZ/(Dad(nl-1)+Kad(nl-1)+Ueff/dZ) |
---|
1362 | ! ALPHA(nl-1)=Ueff/dZ |
---|
1363 | BETA(nl-1)=0D0 |
---|
1364 | |
---|
1365 | DO l=nl-2,1,-1 |
---|
1366 | ! print*,l,eps(l),zeta(l),Dad(l),Kad(l),ALPHA(l+1),BETA(l+1),Prod(l+1),Loss(l+1) |
---|
1367 | ALPHA(l)=(eps(l)+zeta(l))*(ALPHA(l+1)+Loss(l+1))/(ALPHA(l+1)+Dad(l)+Kad(l)+Loss(l+1)) |
---|
1368 | BETA(l)=(Dad(l)+Kad(l))*(BETA(l+1)+Prod(l+1))/(ALPHA(l+1)+Dad(l)+Kad(l)+Loss(l+1)) |
---|
1369 | ENDDO |
---|
1370 | |
---|
1371 | |
---|
1372 | END SUBROUTINE SEQUENCY |
---|
1373 | |
---|
1374 | SUBROUTINE Checkmass(X,Y,nl,nn) |
---|
1375 | IMPLICIT NONE |
---|
1376 | |
---|
1377 | INTEGER :: nl,nn |
---|
1378 | REAL*8,DIMENSION(nl) :: X,Y |
---|
1379 | REAL*8 Xtot,Ytot |
---|
1380 | |
---|
1381 | Xtot=sum(X) |
---|
1382 | Ytot=sum(Y) |
---|
1383 | |
---|
1384 | if (abs((Xtot-Ytot)/Xtot) .gt. 1d-3) then |
---|
1385 | print*,'no conservation for mass',Xtot,Ytot,nn |
---|
1386 | endif |
---|
1387 | END SUBROUTINE Checkmass |
---|
1388 | |
---|
1389 | SUBROUTINE Checkmass2(qold,qnew,P,il,nl,nn,nq) |
---|
1390 | IMPLICIT NONE |
---|
1391 | INTEGER :: nl,nn,l,nq,il |
---|
1392 | REAL,DIMENSION(nl+1) :: P |
---|
1393 | REAL*8,DIMENSION(nl,nq) :: qold,qnew |
---|
1394 | REAL*8 :: DM,Mold,Mnew,g |
---|
1395 | g=3.72d0 |
---|
1396 | DM=0d0 |
---|
1397 | Mold=0d0 |
---|
1398 | Mnew=0d0 |
---|
1399 | DO l=il,nl |
---|
1400 | DM=DM+(qnew(l,nn)-qold(l,nn))*(dble(P(l))-dble(P(l+1)))/g |
---|
1401 | Mold=Mold+qold(l,nn)*(dble(P(l))-dble(P(l+1)))/g |
---|
1402 | Mnew=Mnew+qnew(l,nn)*(dble(P(l))-dble(P(l+1)))/g |
---|
1403 | ! print*,'l',l,qold(l,nn),qnew(l,nn),Mold,Mnew,DM,P(l),P(l+1) |
---|
1404 | ENDDO |
---|
1405 | IF (abs(DM/Mold) .gt. 1d-2) THEN |
---|
1406 | Print*,'We dont conserve mas',nn,DM,Mold,Mnew,DM/Mold |
---|
1407 | ENDIF |
---|
1408 | |
---|
1409 | END SUBROUTINE Checkmass2 |
---|
1410 | |
---|
1411 | SUBROUTINE GCMGRID_P(Z,P,Q,T,Nk,Rk,qq,qnew,tt,tnew, & |
---|
1412 | & pp,M,gc,nl,nq,nlx,ig) |
---|
1413 | use tracer_mod, only: nqmx |
---|
1414 | IMPLICIT NONE |
---|
1415 | INTEGER :: nl,nq,nlx,il,nn,iP,ig,compteur |
---|
1416 | INTEGER,DIMENSION(1) :: indP |
---|
1417 | INTEGER,DIMENSION(nq) :: gc |
---|
1418 | REAL*8,DIMENSION(nl) :: Z,P,T |
---|
1419 | REAL*8,DIMENSION(nl,nq) :: Q,Nk,Rk |
---|
1420 | REAL,DIMENSION(nqmx) :: M |
---|
1421 | REAL*8,DIMENSION(nq) :: nNew |
---|
1422 | REAL*8,DIMENSION(nlx) :: pp,tt,tnew |
---|
1423 | REAL*8,DIMENSION(nlx) :: rhonew |
---|
1424 | REAL*8,DIMENSION(nlx,nq) :: qq,qnew,rhoknew |
---|
1425 | REAL*8 :: kbolt,masseU,Konst,g,Dz,facP,Hi |
---|
1426 | REAL*8 :: Znew,Znew2,Pnew,Pnew2 |
---|
1427 | masseU=1.660538782d-27 |
---|
1428 | kbolt=1.3806504d-23 |
---|
1429 | Konst=Kbolt/masseU |
---|
1430 | g=3.72d0 |
---|
1431 | Dz=Z(2)-Z(1) |
---|
1432 | Znew=Z(nl) |
---|
1433 | Znew2=Znew+dz |
---|
1434 | ! print*,'dz',Znew,Znew2,dz |
---|
1435 | nNew(1:nq)=Nk(nl,1:nq) |
---|
1436 | Pnew=P(nl) |
---|
1437 | |
---|
1438 | do il=1,nlx |
---|
1439 | ! print*,'il',il,pp(il),P(1),P(nl) |
---|
1440 | if (pp(il) .ge. P(1)) then |
---|
1441 | qnew(il,:)=qq(il,:) |
---|
1442 | tnew(il)=tt(il) |
---|
1443 | endif |
---|
1444 | if (pp(il) .lt. P(1)) then |
---|
1445 | if (pp(il) .gt. P(nl)) then |
---|
1446 | indP=maxloc(P,mask=P < pp(il)) |
---|
1447 | iP=indP(1)-1 |
---|
1448 | if (iP .lt. 1 .or. iP .gt. nl) then |
---|
1449 | print*,'danger 2',iP,nl,pp(il) |
---|
1450 | endif |
---|
1451 | facP=(pp(il)-P(ip))/(P(ip+1)-P(ip)) |
---|
1452 | ! print*,'P',P(ip),P(ip+1),facP,indP,iP |
---|
1453 | |
---|
1454 | ! do nn=1,nq |
---|
1455 | ! qnew(il,nn)=Q(iP,nn)+ |
---|
1456 | ! & (Q(ip+1,nn)-Q(ip,nn))*facP |
---|
1457 | ! enddo |
---|
1458 | |
---|
1459 | do nn=1,nq |
---|
1460 | rhoknew(il,nn)=Rk(iP,nn)+ & |
---|
1461 | & (Rk(ip+1,nn)-Rk(ip,nn))*facP |
---|
1462 | enddo |
---|
1463 | tnew(il)=T(iP)+(T(iP+1)-T(iP))*facP |
---|
1464 | rhonew(il)=sum(rhoknew(il,:)) |
---|
1465 | do nn=1,nq |
---|
1466 | qnew(il,nn)=rhoknew(il,nn)/rhonew(il) |
---|
1467 | enddo |
---|
1468 | |
---|
1469 | else ! pp < P(nl) need to extrapolate density of each specie |
---|
1470 | Pnew2=Pnew |
---|
1471 | |
---|
1472 | compteur=0 |
---|
1473 | do while (pnew2 .ge. pp(il)) |
---|
1474 | compteur=compteur+1 |
---|
1475 | do nn=1,nq |
---|
1476 | Hi=Konst*T(nl)/dble(M(gc(nn)))/g |
---|
1477 | Nnew(nn)=Nnew(nn)*exp(-dZ/Hi) |
---|
1478 | enddo |
---|
1479 | Pnew=Pnew2 |
---|
1480 | Pnew2=kbolt*T(nl)*sum(Nnew(:)) |
---|
1481 | Znew=Znew2 |
---|
1482 | Znew2=Znew2+Dz |
---|
1483 | if (compteur .ge. 100000) then |
---|
1484 | print*,'error moldiff_MPF infinite loop' |
---|
1485 | print*,ig,il,pp(il),tt(nl),pnew2,qnew(il,:),Znew2 |
---|
1486 | stop |
---|
1487 | endif |
---|
1488 | ! print*,'test',Pnew2,Znew2,Nnew(nq),pp(il) |
---|
1489 | enddo |
---|
1490 | |
---|
1491 | facP=(pp(il)-Pnew)/(Pnew2-Pnew) |
---|
1492 | |
---|
1493 | ! do nn=1,nq |
---|
1494 | ! qnew(il,nn)=dble(M(gc(nn)))*Nnew(nn) |
---|
1495 | ! & /sum(dble(M(gc(:)))*Nnew(:)) |
---|
1496 | ! enddo |
---|
1497 | |
---|
1498 | do nn=1,nq |
---|
1499 | rhoknew(il,nn)=dble(M(gc(nn)))*Nnew(nn) |
---|
1500 | enddo |
---|
1501 | rhonew(il)=sum(rhoknew(il,:)) |
---|
1502 | do nn=1,nq |
---|
1503 | qnew(il,nn)=rhoknew(il,nn)/rhonew(il) |
---|
1504 | enddo |
---|
1505 | tnew(il)=T(nl) |
---|
1506 | endif |
---|
1507 | endif |
---|
1508 | enddo |
---|
1509 | |
---|
1510 | END SUBROUTINE GCMGRID_P |
---|
1511 | |
---|
1512 | SUBROUTINE GCMGRID_P2(Z,P,Q,T,Nk,Rk,qq,qnew,tt,tnew & |
---|
1513 | & ,pp,M,gc,nl,nq,nlx,facM,ig) |
---|
1514 | use tracer_mod, only: nqmx |
---|
1515 | IMPLICIT NONE |
---|
1516 | INTEGER :: nl,nq,nlx,il,nn,iP,ig,compteur |
---|
1517 | INTEGER,DIMENSION(1) :: indP |
---|
1518 | INTEGER,DIMENSION(nq) :: gc |
---|
1519 | REAL*8,DIMENSION(nl) :: Z,P,T |
---|
1520 | REAL*8,DIMENSION(nl,nq) :: Q,Nk,Rk |
---|
1521 | REAL,DIMENSION(nqmx) :: M |
---|
1522 | REAL*8,DIMENSION(nq) :: nNew |
---|
1523 | REAL*8,DIMENSION(nlx) :: pp,rhonew,tt,tnew |
---|
1524 | REAL*8,DIMENSION(nlx,nq) :: qq,qnew,facM,rhoknew |
---|
1525 | REAL*8 :: kbolt,masseU,Konst,g,Dz,facP,Hi |
---|
1526 | REAL*8 :: Znew,Znew2,Pnew,Pnew2 |
---|
1527 | masseU=1.660538782d-27 |
---|
1528 | kbolt=1.3806504d-23 |
---|
1529 | Konst=Kbolt/masseU |
---|
1530 | g=3.72d0 |
---|
1531 | Dz=Z(2)-Z(1) |
---|
1532 | Znew=Z(nl) |
---|
1533 | Znew2=Znew+dz |
---|
1534 | ! print*,'dz',Znew,Znew2,dz |
---|
1535 | nNew(1:nq)=Nk(nl,1:nq) |
---|
1536 | Pnew=P(nl) |
---|
1537 | |
---|
1538 | do il=1,nlx |
---|
1539 | ! print*,'il',il,pp(il),P(1),P(nl) |
---|
1540 | if (pp(il) .ge. P(1)) then |
---|
1541 | qnew(il,:)=qq(il,:) |
---|
1542 | tnew(il)=tt(il) |
---|
1543 | endif |
---|
1544 | if (pp(il) .lt. P(1)) then |
---|
1545 | if (pp(il) .gt. P(nl)) then |
---|
1546 | indP=maxloc(P,mask=P < pp(il)) |
---|
1547 | iP=indP(1)-1 |
---|
1548 | if (iP .lt. 1 .or. iP .gt. nl) then |
---|
1549 | print*,'danger 3',iP,nl,pp(il) |
---|
1550 | endif |
---|
1551 | facP=(pp(il)-P(ip))/(P(ip+1)-P(ip)) |
---|
1552 | ! print*,'P',P(ip),P(ip+1),facP,indP,iP |
---|
1553 | |
---|
1554 | ! do nn=1,nq |
---|
1555 | ! qnew(il,nn)=Q(iP,nn)+ |
---|
1556 | ! & (Q(ip+1,nn)-Q(ip,nn))*facP |
---|
1557 | ! enddo |
---|
1558 | |
---|
1559 | do nn=1,nq |
---|
1560 | rhoknew(il,nn)=(RK(iP,nn)+ & |
---|
1561 | & (RK(iP+1,nn)-Rk(iP,nn))*facP)*facM(il,nn) |
---|
1562 | enddo |
---|
1563 | tnew(il)=T(iP)+(T(ip+1)-T(iP))*facP |
---|
1564 | rhonew(il)=sum(rhoknew(il,:)) |
---|
1565 | do nn=1,nq |
---|
1566 | qnew(il,nn)=rhoknew(il,nn)/rhonew(il) |
---|
1567 | enddo |
---|
1568 | |
---|
1569 | else ! pp < P(nl) need to extrapolate density of each specie |
---|
1570 | Pnew2=Pnew |
---|
1571 | |
---|
1572 | compteur=0 |
---|
1573 | do while (pnew2 .ge. pp(il)) |
---|
1574 | compteur=compteur+1 |
---|
1575 | do nn=1,nq |
---|
1576 | Hi=Konst*T(nl)/dble(M(gc(nn)))/g |
---|
1577 | Nnew(nn)=Nnew(nn)*exp(-dZ/Hi) |
---|
1578 | enddo |
---|
1579 | Pnew=Pnew2 |
---|
1580 | Pnew2=kbolt*T(nl)*sum(Nnew(:)) |
---|
1581 | Znew=Znew2 |
---|
1582 | Znew2=Znew2+Dz |
---|
1583 | if (compteur .ge. 100000) then |
---|
1584 | print*,'pb moldiff_MPF infinite loop' |
---|
1585 | print*,ig,nl,T(nl),pnew2,qnew(il,:),Znew2 |
---|
1586 | stop |
---|
1587 | endif |
---|
1588 | |
---|
1589 | ! print*,'test',Pnew2,Znew2,Nnew(nq),pp(il) |
---|
1590 | enddo |
---|
1591 | |
---|
1592 | facP=(pp(il)-Pnew)/(Pnew2-Pnew) |
---|
1593 | |
---|
1594 | ! do nn=1,nq |
---|
1595 | ! qnew(il,nn)=dble(M(gc(nn)))*Nnew(nn) |
---|
1596 | ! & /sum(dble(M(gc(:)))*Nnew(:)) |
---|
1597 | ! enddo |
---|
1598 | |
---|
1599 | do nn=1,nq |
---|
1600 | rhoknew(il,nn)=dble(M(gc(nn)))*Nnew(nn)*FacM(il,nn) |
---|
1601 | enddo |
---|
1602 | rhonew(il)=sum(rhoknew(il,:)) |
---|
1603 | do nn=1,nq |
---|
1604 | qnew(il,nn)=rhoknew(il,nn)/rhonew(il) |
---|
1605 | enddo |
---|
1606 | tnew(il)=T(nl) |
---|
1607 | |
---|
1608 | endif |
---|
1609 | endif |
---|
1610 | enddo |
---|
1611 | |
---|
1612 | END SUBROUTINE GCMGRID_P2 |
---|
1613 | END MODULE moldiff_MPF_mod |
---|