[3464] | 1 | module jthermcalc_util |
---|
| 2 | |
---|
| 3 | implicit none |
---|
| 4 | |
---|
| 5 | contains |
---|
| 6 | |
---|
| 7 | c********************************************************************** |
---|
| 8 | c********************************************************************** |
---|
| 9 | |
---|
| 10 | subroutine column(ig,nlayer,chemthermod,rm,nesptherm,tx,iz,zenit, |
---|
| 11 | $ co2colx,o2colx,o3pcolx,h2colx,h2ocolx,h2o2colx,o3colx, |
---|
| 12 | $ n2colx,ncolx,nocolx,cocolx,hcolx,no2colx) |
---|
| 13 | |
---|
| 14 | c nov 2002 fgg first version |
---|
| 15 | |
---|
| 16 | c********************************************************************** |
---|
| 17 | |
---|
| 18 | use tracer_mod, only: igcm_o, igcm_co2, igcm_o2, igcm_h2, |
---|
| 19 | & igcm_h2o_vap, igcm_h2o2, igcm_co, igcm_h, |
---|
| 20 | & igcm_o3, igcm_n2, igcm_n, igcm_no, igcm_no2, |
---|
| 21 | & mmol |
---|
| 22 | use param_v4_h, only: radio,gg,masa,kboltzman,n_avog |
---|
| 23 | |
---|
| 24 | implicit none |
---|
| 25 | |
---|
| 26 | |
---|
| 27 | c common variables and constants |
---|
| 28 | include 'callkeys.h' |
---|
| 29 | |
---|
| 30 | |
---|
| 31 | |
---|
| 32 | c local parameters and variables |
---|
| 33 | |
---|
| 34 | |
---|
| 35 | |
---|
| 36 | c input and output variables |
---|
| 37 | |
---|
| 38 | integer ig,nlayer |
---|
| 39 | integer chemthermod |
---|
| 40 | integer nesptherm !# of species undergoing chemistry, input |
---|
| 41 | real rm(nlayer,nesptherm) !densities (cm-3), input |
---|
| 42 | real tx(nlayer) !temperature profile, input |
---|
| 43 | real iz(nlayer+1) !height profile, input |
---|
| 44 | real zenit !SZA, input |
---|
| 45 | real co2colx(nlayer) !column density of CO2 (cm^-2), output |
---|
| 46 | real o2colx(nlayer) !column density of O2(cm^-2), output |
---|
| 47 | real o3pcolx(nlayer) !column density of O(3P)(cm^-2), output |
---|
| 48 | real h2colx(nlayer) !H2 column density (cm-2), output |
---|
| 49 | real h2ocolx(nlayer) !H2O column density (cm-2), output |
---|
| 50 | real h2o2colx(nlayer) !column density of H2O2(cm^-2), output |
---|
| 51 | real o3colx(nlayer) !O3 column density (cm-2), output |
---|
| 52 | real n2colx(nlayer) !N2 column density (cm-2), output |
---|
| 53 | real ncolx(nlayer) !N column density (cm-2), output |
---|
| 54 | real nocolx(nlayer) !NO column density (cm-2), output |
---|
| 55 | real cocolx(nlayer) !CO column density (cm-2), output |
---|
| 56 | real hcolx(nlayer) !H column density (cm-2), output |
---|
| 57 | real no2colx(nlayer) !NO2 column density (cm-2), output |
---|
| 58 | |
---|
| 59 | |
---|
| 60 | c local variables |
---|
| 61 | |
---|
| 62 | real xx |
---|
| 63 | real grav(nlayer) |
---|
| 64 | real Hco2,Ho3p,Ho2,Hh2,Hh2o,Hh2o2 |
---|
| 65 | real Ho3,Hn2,Hn,Hno,Hco,Hh,Hno2 |
---|
| 66 | |
---|
| 67 | real co2x(nlayer) |
---|
| 68 | real o2x(nlayer) |
---|
| 69 | real o3px(nlayer) |
---|
| 70 | real cox(nlayer) |
---|
| 71 | real hx(nlayer) |
---|
| 72 | real h2x(nlayer) |
---|
| 73 | real h2ox(nlayer) |
---|
| 74 | real h2o2x(nlayer) |
---|
| 75 | real o3x(nlayer) |
---|
| 76 | real n2x(nlayer) |
---|
| 77 | real nx(nlayer) |
---|
| 78 | real nox(nlayer) |
---|
| 79 | real no2x(nlayer) |
---|
| 80 | |
---|
| 81 | integer i,j,k,icol,indexint !indexes |
---|
| 82 | |
---|
| 83 | c variables for optical path calculation |
---|
| 84 | |
---|
| 85 | integer nz3 |
---|
| 86 | ! parameter (nz3=nz*2) |
---|
| 87 | |
---|
| 88 | integer jj |
---|
| 89 | real*8 esp(nlayer*2) |
---|
| 90 | real*8 ilayesp(nlayer*2) |
---|
| 91 | real*8 szalayesp(nlayer*2) |
---|
| 92 | integer nlayesp |
---|
| 93 | real*8 zmini |
---|
| 94 | real*8 depth |
---|
| 95 | real*8 espco2, espo2, espo3p, esph2, esph2o, esph2o2,espo3 |
---|
| 96 | real*8 espn2,espn,espno,espco,esph,espno2 |
---|
| 97 | real*8 rcmnz, rcmmini |
---|
| 98 | real*8 szadeg |
---|
| 99 | |
---|
| 100 | |
---|
| 101 | ! Tracer indexes in the thermospheric chemistry: |
---|
| 102 | !!! ATTENTION. These values have to be identical to those in chemthermos.F90 |
---|
| 103 | !!! If the values are changed there, the same has to be done here !!! |
---|
| 104 | integer,parameter :: i_co2 = 1 |
---|
| 105 | integer,parameter :: i_co = 2 |
---|
| 106 | integer,parameter :: i_o = 3 |
---|
| 107 | integer,parameter :: i_o1d = 4 |
---|
| 108 | integer,parameter :: i_o2 = 5 |
---|
| 109 | integer,parameter :: i_o3 = 6 |
---|
| 110 | integer,parameter :: i_h = 7 |
---|
| 111 | integer,parameter :: i_h2 = 8 |
---|
| 112 | integer,parameter :: i_oh = 9 |
---|
| 113 | integer,parameter :: i_ho2 = 10 |
---|
| 114 | integer,parameter :: i_h2o2 = 11 |
---|
| 115 | integer,parameter :: i_h2o = 12 |
---|
| 116 | integer,parameter :: i_n = 13 |
---|
| 117 | integer,parameter :: i_n2d = 14 |
---|
| 118 | integer,parameter :: i_no = 15 |
---|
| 119 | integer,parameter :: i_no2 = 16 |
---|
| 120 | integer,parameter :: i_n2 = 17 |
---|
| 121 | ! integer,parameter :: i_co2=1 |
---|
| 122 | ! integer,parameter :: i_o2=2 |
---|
| 123 | ! integer,parameter :: i_o=3 |
---|
| 124 | ! integer,parameter :: i_co=4 |
---|
| 125 | ! integer,parameter :: i_h=5 |
---|
| 126 | ! integer,parameter :: i_h2=8 |
---|
| 127 | ! integer,parameter :: i_h2o=9 |
---|
| 128 | ! integer,parameter :: i_h2o2=10 |
---|
| 129 | ! integer,parameter :: i_o3=12 |
---|
| 130 | ! integer,parameter :: i_n2=13 |
---|
| 131 | ! integer,parameter :: i_n=14 |
---|
| 132 | ! integer,parameter :: i_no=15 |
---|
| 133 | ! integer,parameter :: i_no2=17 |
---|
| 134 | |
---|
| 135 | |
---|
| 136 | c*************************PROGRAM STARTS******************************* |
---|
| 137 | |
---|
| 138 | nz3 = nlayer*2 |
---|
| 139 | do i=1,nlayer |
---|
| 140 | xx = ( radio + iz(i) ) * 1.e5 |
---|
| 141 | grav(i) = gg * masa /(xx**2) |
---|
| 142 | end do |
---|
| 143 | |
---|
| 144 | !Scale heights |
---|
| 145 | xx = kboltzman * tx(nlayer) * n_avog / grav(nlayer) |
---|
| 146 | Ho3p = xx / mmol(igcm_o) |
---|
| 147 | Hco2 = xx / mmol(igcm_co2) |
---|
| 148 | Ho2 = xx / mmol(igcm_o2) |
---|
| 149 | Hh2 = xx / mmol(igcm_h2) |
---|
| 150 | Hh2o = xx / mmol(igcm_h2o_vap) |
---|
| 151 | Hh2o2 = xx / mmol(igcm_h2o2) |
---|
| 152 | Hco = xx / mmol(igcm_co) |
---|
| 153 | Hh = xx / mmol(igcm_h) |
---|
| 154 | !Only if O3 chem. required |
---|
| 155 | if(chemthermod.ge.1) |
---|
| 156 | $ Ho3 = xx / mmol(igcm_o3) |
---|
| 157 | !Only if N or ion chem. |
---|
| 158 | if(chemthermod.ge.2) then |
---|
| 159 | Hn2 = xx / mmol(igcm_n2) |
---|
| 160 | Hn = xx / mmol(igcm_n) |
---|
| 161 | Hno = xx / mmol(igcm_no) |
---|
| 162 | Hno2 = xx / mmol(igcm_no2) |
---|
| 163 | endif |
---|
| 164 | ! first loop in altitude : initialisation |
---|
| 165 | do i=nlayer,1,-1 |
---|
| 166 | !Column initialisation |
---|
| 167 | co2colx(i) = 0. |
---|
| 168 | o2colx(i) = 0. |
---|
| 169 | o3pcolx(i) = 0. |
---|
| 170 | h2colx(i) = 0. |
---|
| 171 | h2ocolx(i) = 0. |
---|
| 172 | h2o2colx(i) = 0. |
---|
| 173 | o3colx(i) = 0. |
---|
| 174 | n2colx(i) = 0. |
---|
| 175 | ncolx(i) = 0. |
---|
| 176 | nocolx(i) = 0. |
---|
| 177 | cocolx(i) = 0. |
---|
| 178 | hcolx(i) = 0. |
---|
| 179 | no2colx(i) = 0. |
---|
| 180 | !Densities |
---|
| 181 | co2x(i) = rm(i,i_co2) |
---|
| 182 | o2x(i) = rm(i,i_o2) |
---|
| 183 | o3px(i) = rm(i,i_o) |
---|
| 184 | h2x(i) = rm(i,i_h2) |
---|
| 185 | h2ox(i) = rm(i,i_h2o) |
---|
| 186 | h2o2x(i) = rm(i,i_h2o2) |
---|
| 187 | cox(i) = rm(i,i_co) |
---|
| 188 | hx(i) = rm(i,i_h) |
---|
| 189 | !Only if O3 chem. required |
---|
| 190 | if(chemthermod.ge.1) |
---|
| 191 | $ o3x(i) = rm(i,i_o3) |
---|
| 192 | !Only if Nitrogen of ion chemistry requested |
---|
| 193 | if(chemthermod.ge.2) then |
---|
| 194 | n2x(i) = rm(i,i_n2) |
---|
| 195 | nx(i) = rm(i,i_n) |
---|
| 196 | nox(i) = rm(i,i_no) |
---|
| 197 | no2x(i) = rm(i,i_no2) |
---|
| 198 | endif |
---|
| 199 | enddo |
---|
| 200 | ! second loop in altitude : column calculations |
---|
| 201 | do i=nlayer,1,-1 |
---|
| 202 | !Routine to calculate the geometrical length of each layer |
---|
| 203 | call espesor_optico_A(ig,i,nlayer,zenit,iz(i),nz3,iz,esp, |
---|
| 204 | $ ilayesp,szalayesp,nlayesp, zmini) |
---|
| 205 | if(ilayesp(nlayesp).eq.-1) then |
---|
| 206 | co2colx(i)=1.e25 |
---|
| 207 | o2colx(i)=1.e25 |
---|
| 208 | o3pcolx(i)=1.e25 |
---|
| 209 | h2colx(i)=1.e25 |
---|
| 210 | h2ocolx(i)=1.e25 |
---|
| 211 | h2o2colx(i)=1.e25 |
---|
| 212 | o3colx(i)=1.e25 |
---|
| 213 | n2colx(i)=1.e25 |
---|
| 214 | ncolx(i)=1.e25 |
---|
| 215 | nocolx(i)=1.e25 |
---|
| 216 | cocolx(i)=1.e25 |
---|
| 217 | hcolx(i)=1.e25 |
---|
| 218 | no2colx(i)=1.e25 |
---|
| 219 | else |
---|
| 220 | rcmnz = ( radio + iz(nlayer) ) * 1.e5 |
---|
| 221 | rcmmini = ( radio + zmini ) * 1.e5 |
---|
| 222 | !Column calculation taking into account the geometrical depth |
---|
| 223 | !calculated before |
---|
| 224 | do j=1,nlayesp |
---|
| 225 | jj=ilayesp(j) |
---|
| 226 | !Top layer |
---|
| 227 | if(jj.eq.nlayer) then |
---|
| 228 | if(zenit.le.60.) then |
---|
| 229 | o3pcolx(i)=o3pcolx(i)+o3px(nlayer)*Ho3p*esp(j) |
---|
| 230 | $ *1.e-5 |
---|
| 231 | co2colx(i)=co2colx(i)+co2x(nlayer)*Hco2*esp(j) |
---|
| 232 | $ *1.e-5 |
---|
| 233 | h2o2colx(i)=h2o2colx(i)+ |
---|
| 234 | $ h2o2x(nlayer)*Hh2o2*esp(j)*1.e-5 |
---|
| 235 | o2colx(i)=o2colx(i)+o2x(nlayer)*Ho2*esp(j) |
---|
| 236 | $ *1.e-5 |
---|
| 237 | h2colx(i)=h2colx(i)+h2x(nlayer)*Hh2*esp(j) |
---|
| 238 | $ *1.e-5 |
---|
| 239 | h2ocolx(i)=h2ocolx(i)+h2ox(nlayer)*Hh2o*esp(j) |
---|
| 240 | $ *1.e-5 |
---|
| 241 | cocolx(i)=cocolx(i)+cox(nlayer)*Hco*esp(j) |
---|
| 242 | $ *1.e-5 |
---|
| 243 | hcolx(i)=hcolx(i)+hx(nlayer)*Hh*esp(j) |
---|
| 244 | $ *1.e-5 |
---|
| 245 | !Only if O3 chemistry required |
---|
| 246 | if(chemthermod.ge.1) o3colx(i)= |
---|
| 247 | $ o3colx(i)+o3x(nlayer)*Ho3*esp(j) |
---|
| 248 | $ *1.e-5 |
---|
| 249 | !Only if N or ion chemistry requested |
---|
| 250 | if(chemthermod.ge.2) then |
---|
| 251 | n2colx(i)=n2colx(i)+n2x(nlayer)*Hn2*esp(j) |
---|
| 252 | $ *1.e-5 |
---|
| 253 | ncolx(i)=ncolx(i)+nx(nlayer)*Hn*esp(j) |
---|
| 254 | $ *1.e-5 |
---|
| 255 | nocolx(i)=nocolx(i)+nox(nlayer)*Hno*esp(j) |
---|
| 256 | $ *1.e-5 |
---|
| 257 | no2colx(i)=no2colx(i)+no2x(nlayer)*Hno2*esp(j) |
---|
| 258 | $ *1.e-5 |
---|
| 259 | endif |
---|
| 260 | else if(zenit.gt.60.) then |
---|
| 261 | espco2 =sqrt((rcmnz+Hco2)**2 -rcmmini**2) - esp(j) |
---|
| 262 | espo2 = sqrt((rcmnz+Ho2)**2 -rcmmini**2) - esp(j) |
---|
| 263 | espo3p = sqrt((rcmnz+Ho3p)**2 -rcmmini**2)- esp(j) |
---|
| 264 | esph2 = sqrt((rcmnz+Hh2)**2 -rcmmini**2) - esp(j) |
---|
| 265 | esph2o = sqrt((rcmnz+Hh2o)**2 -rcmmini**2)- esp(j) |
---|
| 266 | esph2o2= sqrt((rcmnz+Hh2o2)**2-rcmmini**2)- esp(j) |
---|
| 267 | espco = sqrt((rcmnz+Hco)**2 -rcmmini**2) - esp(j) |
---|
| 268 | esph = sqrt((rcmnz+Hh)**2 -rcmmini**2) - esp(j) |
---|
| 269 | !Only if O3 chemistry required |
---|
| 270 | if(chemthermod.ge.1) |
---|
| 271 | $ espo3=sqrt((rcmnz+Ho3)**2-rcmmini**2)-esp(j) |
---|
| 272 | !Only if N or ion chemistry requested |
---|
| 273 | if(chemthermod.ge.2) then |
---|
| 274 | espn2 =sqrt((rcmnz+Hn2)**2-rcmmini**2)-esp(j) |
---|
| 275 | espn =sqrt((rcmnz+Hn)**2-rcmmini**2) - esp(j) |
---|
| 276 | espno =sqrt((rcmnz+Hno)**2-rcmmini**2) - esp(j) |
---|
| 277 | espno2=sqrt((rcmnz+Hno2)**2-rcmmini**2)- esp(j) |
---|
| 278 | endif |
---|
| 279 | co2colx(i) = co2colx(i) + espco2*co2x(nlayer) |
---|
| 280 | o2colx(i) = o2colx(i) + espo2*o2x(nlayer) |
---|
| 281 | o3pcolx(i) = o3pcolx(i) + espo3p*o3px(nlayer) |
---|
| 282 | h2colx(i) = h2colx(i) + esph2*h2x(nlayer) |
---|
| 283 | h2ocolx(i) = h2ocolx(i) + esph2o*h2ox(nlayer) |
---|
| 284 | h2o2colx(i)= h2o2colx(i)+ esph2o2*h2o2x(nlayer) |
---|
| 285 | cocolx(i) = cocolx(i) + espco*cox(nlayer) |
---|
| 286 | hcolx(i) = hcolx(i) + esph*hx(nlayer) |
---|
| 287 | !Only if O3 chemistry required |
---|
| 288 | if(chemthermod.ge.1) |
---|
| 289 | $ o3colx(i) = o3colx(i) + espo3*o3x(nlayer) |
---|
| 290 | !Only if N or ion chemistry requested |
---|
| 291 | if(chemthermod.ge.2) then |
---|
| 292 | n2colx(i) = n2colx(i) + espn2*n2x(nlayer) |
---|
| 293 | ncolx(i) = ncolx(i) + espn*nx(nlayer) |
---|
| 294 | nocolx(i) = nocolx(i) + espno*nox(nlayer) |
---|
| 295 | no2colx(i) = no2colx(i) + espno2*no2x(nlayer) |
---|
| 296 | endif |
---|
| 297 | endif !Of if zenit.lt.60 |
---|
| 298 | !Other layers |
---|
| 299 | else |
---|
| 300 | co2colx(i) = co2colx(i) + |
---|
| 301 | $ esp(j) * (co2x(jj)+co2x(jj+1)) / 2. |
---|
| 302 | o2colx(i) = o2colx(i) + |
---|
| 303 | $ esp(j) * (o2x(jj)+o2x(jj+1)) / 2. |
---|
| 304 | o3pcolx(i) = o3pcolx(i) + |
---|
| 305 | $ esp(j) * (o3px(jj)+o3px(jj+1)) / 2. |
---|
| 306 | h2colx(i) = h2colx(i) + |
---|
| 307 | $ esp(j) * (h2x(jj)+h2x(jj+1)) / 2. |
---|
| 308 | h2ocolx(i) = h2ocolx(i) + |
---|
| 309 | $ esp(j) * (h2ox(jj)+h2ox(jj+1)) / 2. |
---|
| 310 | h2o2colx(i) = h2o2colx(i) + |
---|
| 311 | $ esp(j) * (h2o2x(jj)+h2o2x(jj+1)) / 2. |
---|
| 312 | cocolx(i) = cocolx(i) + |
---|
| 313 | $ esp(j) * (cox(jj)+cox(jj+1)) / 2. |
---|
| 314 | hcolx(i) = hcolx(i) + |
---|
| 315 | $ esp(j) * (hx(jj)+hx(jj+1)) / 2. |
---|
| 316 | !Only if O3 chemistry required |
---|
| 317 | if(chemthermod.ge.1) |
---|
| 318 | $ o3colx(i) = o3colx(i) + |
---|
| 319 | $ esp(j) * (o3x(jj)+o3x(jj+1)) / 2. |
---|
| 320 | !Only if N or ion chemistry requested |
---|
| 321 | if(chemthermod.ge.2) then |
---|
| 322 | n2colx(i) = n2colx(i) + |
---|
| 323 | $ esp(j) * (n2x(jj)+n2x(jj+1)) / 2. |
---|
| 324 | ncolx(i) = ncolx(i) + |
---|
| 325 | $ esp(j) * (nx(jj)+nx(jj+1)) / 2. |
---|
| 326 | nocolx(i) = nocolx(i) + |
---|
| 327 | $ esp(j) * (nox(jj)+nox(jj+1)) / 2. |
---|
| 328 | no2colx(i) = no2colx(i) + |
---|
| 329 | $ esp(j) * (no2x(jj)+no2x(jj+1)) / 2. |
---|
| 330 | endif |
---|
| 331 | endif !Of if jj.eq.nlayer |
---|
| 332 | end do !Of do j=1,nlayesp |
---|
| 333 | endif !Of ilayesp(nlayesp).eq.-1 |
---|
| 334 | enddo !Of do i=nlayer,1,-1 |
---|
| 335 | |
---|
| 336 | |
---|
| 337 | end subroutine column |
---|
| 338 | |
---|
| 339 | |
---|
| 340 | c********************************************************************** |
---|
| 341 | c********************************************************************** |
---|
| 342 | |
---|
| 343 | subroutine interfast(wm,wp,nm,p,nlayer,pin,nl,limdown,limup) |
---|
| 344 | C |
---|
| 345 | C subroutine to perform linear interpolation in pressure from 1D profile |
---|
| 346 | C escin(nl) sampled on pressure grid pin(nl) to profile |
---|
| 347 | C escout(nlayer) on pressure grid p(nlayer). |
---|
| 348 | C |
---|
| 349 | real*8,intent(out) :: wm(nlayer),wp(nlayer) ! interpolation weights |
---|
| 350 | integer,intent(out) :: nm(nlayer) ! index of nearest point |
---|
| 351 | real*8,intent(in) :: pin(nl),p(nlayer) |
---|
| 352 | real*8,intent(in) :: limup,limdown |
---|
| 353 | integer,intent(in) :: nl,nlayer |
---|
| 354 | integer :: n1,n,np,nini |
---|
| 355 | logical,parameter :: extra_sanity_checks=.false. |
---|
| 356 | |
---|
| 357 | ! Added sanity check: is input p(:) indeed monotonically increasing? |
---|
| 358 | if (extra_sanity_checks) then |
---|
| 359 | do nini=1,nlayer-1 |
---|
| 360 | if (p(nini).gt.p(nini+1)) then |
---|
| 361 | write(*,*) "possible interfast issue, nini=",nini |
---|
| 362 | write(*,*) "p(nini)=",p(nini),"> p(nini+1)=",p(nini+1) |
---|
| 363 | endif |
---|
| 364 | enddo |
---|
| 365 | endif ! of if (extra_sanity_checks) |
---|
| 366 | |
---|
| 367 | nini=1 |
---|
| 368 | do n1=1,nlayer |
---|
| 369 | if(p(n1) .gt. limup .or. p(n1) .lt. limdown) then |
---|
| 370 | wm(n1) = 0.d0 |
---|
| 371 | wp(n1) = 0.d0 |
---|
| 372 | else |
---|
| 373 | do n = nini,nl-1 |
---|
| 374 | if (p(n1).ge.pin(n).and.p(n1).le.pin(n+1)) then |
---|
| 375 | nm(n1)=n |
---|
| 376 | np=n+1 |
---|
| 377 | wm(n1)=abs(pin(n)-p(n1))/(pin(np)-pin(n)) |
---|
| 378 | wp(n1)=1.d0 - wm(n1) |
---|
| 379 | nini = n |
---|
| 380 | exit |
---|
| 381 | endif |
---|
| 382 | enddo |
---|
| 383 | endif |
---|
| 384 | enddo |
---|
| 385 | |
---|
| 386 | ! Added sanity check: does nm(:) indeed contain values |
---|
| 387 | ! between 1 and nl-1 ? |
---|
| 388 | if (extra_sanity_checks) then |
---|
| 389 | if ((minval(nm)<1).or.(maxval(nm)>nl-1)) then |
---|
| 390 | write(*,*) "interfast issue nm(:) contains incoherent values" |
---|
| 391 | write(*,*) " nm(:) values should be between 1 and ",nl-1 |
---|
| 392 | write(*,*) " but nm(:)=",nm(:) |
---|
| 393 | endif |
---|
| 394 | endif ! of if (extra_sanity_checks) |
---|
| 395 | |
---|
| 396 | end subroutine interfast |
---|
| 397 | |
---|
| 398 | |
---|
| 399 | c********************************************************************** |
---|
| 400 | c********************************************************************** |
---|
| 401 | |
---|
| 402 | subroutine espesor_optico_A (ig,capa,nlayer, szadeg,z, |
---|
| 403 | @ nz3,iz,esp,ilayesp,szalayesp,nlayesp, zmini) |
---|
| 404 | |
---|
| 405 | c fgg nov 03 Adaptation to Martian model |
---|
| 406 | c malv jul 03 Corrected z grid. Split in alt & frec codes |
---|
| 407 | c fgg feb 03 first version |
---|
| 408 | ************************************************************************* |
---|
| 409 | |
---|
| 410 | use param_v4_h, only: radio |
---|
| 411 | implicit none |
---|
| 412 | |
---|
| 413 | c arguments |
---|
| 414 | |
---|
| 415 | real szadeg ! I. SZA [rad] |
---|
| 416 | real z ! I. altitude of interest [km] |
---|
| 417 | integer nz3,ig,nlayer ! I. dimension of esp, ylayesp, etc... |
---|
| 418 | ! (=2*nlayer= max# of layers in ray path) |
---|
| 419 | real iz(nlayer+1) ! I. Altitude of each layer |
---|
| 420 | real*8 esp(nz3) ! O. layer widths after geometrically |
---|
| 421 | ! amplified; in [cm] except at TOA |
---|
| 422 | ! where an auxiliary value is used |
---|
| 423 | real*8 ilayesp(nz3) ! O. Indexes of layers along ray path |
---|
| 424 | real*8 szalayesp(nz3) ! O. SZA [deg] " " " |
---|
| 425 | integer nlayesp |
---|
| 426 | ! real*8 nlayesp ! O. # layers along ray path at this z |
---|
| 427 | real*8 zmini ! O. Minimum altitud of ray path [km] |
---|
| 428 | |
---|
| 429 | |
---|
| 430 | c local variables and constants |
---|
| 431 | |
---|
| 432 | integer j,i,capa |
---|
| 433 | integer jmin ! index of min.altitude along ray path |
---|
| 434 | real*8 szarad ! SZA [deg] |
---|
| 435 | real*8 zz |
---|
| 436 | real*8 diz(nlayer+1) |
---|
| 437 | real*8 rkmnz ! distance TOA to center of Planet [km] |
---|
| 438 | real*8 rkmmini ! distance zmini to center of P [km] |
---|
| 439 | real*8 rkmj ! intermediate distance to C of P [km] |
---|
| 440 | c external function |
---|
| 441 | c external grid_R8 ! Returns index of layer containing the altitude |
---|
| 442 | c ! of interest, z; for example, if |
---|
| 443 | c ! zkm(i)=z or zkm(i)<z<zkm(i+1) => grid(z)=i |
---|
| 444 | c integer grid_R8 |
---|
| 445 | |
---|
| 446 | ************************************************************************* |
---|
| 447 | szarad = dble(szadeg)*3.141592d0/180.d0 |
---|
| 448 | zz=dble(z) |
---|
| 449 | do i=1,nlayer |
---|
| 450 | diz(i)=dble(iz(i)) |
---|
| 451 | enddo |
---|
| 452 | do j=1,nz3 |
---|
| 453 | esp(j) = 0.d0 |
---|
| 454 | szalayesp(j) = 777.d0 |
---|
| 455 | ilayesp(j) = 0 |
---|
| 456 | enddo |
---|
| 457 | nlayesp = 0 |
---|
| 458 | |
---|
| 459 | ! First case: szadeg<60 |
---|
| 460 | ! The optical thickness will be given by 1/cos(sza) |
---|
| 461 | ! We deal with 2 different regions: |
---|
| 462 | ! 1: First, all layers between z and ztop ("upper part of ray") |
---|
| 463 | ! 2: Second, the layer at ztop |
---|
| 464 | if(szadeg.lt.60.d0) then |
---|
| 465 | |
---|
| 466 | zmini = zz |
---|
| 467 | if(abs(zz-diz(nlayer)).lt.1.d-3) goto 1357 |
---|
| 468 | ! 1st Zone: Upper part of ray |
---|
| 469 | ! |
---|
| 470 | do j=grid_R8(zz,diz,nlayer),nlayer-1 |
---|
| 471 | nlayesp = nlayesp + 1 |
---|
| 472 | ilayesp(nlayesp) = j |
---|
| 473 | esp(nlayesp) = (diz(j+1)-diz(j)) / cos(szarad) ! [km] |
---|
| 474 | esp(nlayesp) = esp(nlayesp) * 1.d5 ! [cm] |
---|
| 475 | szalayesp(nlayesp) = szadeg |
---|
| 476 | end do |
---|
| 477 | |
---|
| 478 | ! |
---|
| 479 | ! 2nd Zone: Top layer |
---|
| 480 | 1357 continue |
---|
| 481 | nlayesp = nlayesp + 1 |
---|
| 482 | ilayesp(nlayesp) = nlayer |
---|
| 483 | esp(nlayesp) = 1.d0 / cos(szarad) ! aux. non-dimens. factor |
---|
| 484 | szalayesp(nlayesp) = szadeg |
---|
| 485 | |
---|
| 486 | |
---|
| 487 | ! Second case: 60 < szadeg < 90 |
---|
| 488 | ! The optical thickness is evaluated. |
---|
| 489 | ! (the magnitude of the effect of not using cos(sza) is 3.e-5 |
---|
| 490 | ! for z=60km & sza=30, and 5e-4 for z=60km & sza=60, approximately) |
---|
| 491 | ! We deal with 2 different regions: |
---|
| 492 | ! 1: First, all layers between z and ztop ("upper part of ray") |
---|
| 493 | ! 2: Second, the layer at ztop ("uppermost layer") |
---|
| 494 | else if(szadeg.le.90.d0.and.szadeg.ge.60.d0) then |
---|
| 495 | |
---|
| 496 | zmini=(radio+zz)*sin(szarad)-radio |
---|
| 497 | rkmmini = radio + zmini |
---|
| 498 | |
---|
| 499 | if(abs(zz-diz(nlayer)).lt.1.d-4) goto 1470 |
---|
| 500 | |
---|
| 501 | ! 1st Zone: Upper part of ray |
---|
| 502 | ! |
---|
| 503 | do j=grid_R8(zz,diz,nlayer),nlayer-1 |
---|
| 504 | nlayesp = nlayesp + 1 |
---|
| 505 | ilayesp(nlayesp) = j |
---|
| 506 | esp(nlayesp) = |
---|
| 507 | & sqrt( (radio+diz(j+1))**2 - rkmmini**2 ) - |
---|
| 508 | & sqrt( (radio+diz(j))**2 - rkmmini**2 ) ! [km] |
---|
| 509 | esp(nlayesp) = esp(nlayesp) * 1.d5 ! [cm] |
---|
| 510 | rkmj = radio+diz(j) |
---|
| 511 | szalayesp(nlayesp) = asin( rkmmini/rkmj ) ! [rad] |
---|
| 512 | szalayesp(nlayesp) = szalayesp(nlayesp) * 180.d0/3.141592 ! [deg] |
---|
| 513 | end do |
---|
| 514 | 1470 continue |
---|
| 515 | ! 2nd Zone: Uppermost layer of ray. |
---|
| 516 | ! |
---|
| 517 | nlayesp = nlayesp + 1 |
---|
| 518 | ilayesp(nlayesp) = nlayer |
---|
| 519 | rkmnz = radio+diz(nlayer) |
---|
| 520 | esp(nlayesp) = sqrt( rkmnz**2 - rkmmini**2 ) ! aux.factor[km] |
---|
| 521 | esp(nlayesp) = esp(nlayesp) * 1.d5 ! aux.f. [cm] |
---|
| 522 | szalayesp(nlayesp) = asin( rkmmini/rkmnz ) ! [rad] |
---|
| 523 | szalayesp(nlayesp) = szalayesp(nlayesp) * 180.d0/3.141592! [deg] |
---|
| 524 | |
---|
| 525 | |
---|
| 526 | ! Third case: szadeg > 90 |
---|
| 527 | ! The optical thickness is evaluated. |
---|
| 528 | ! We deal with 5 different regions: |
---|
| 529 | ! 1: all layers between z and ztop ("upper part of ray") |
---|
| 530 | ! 2: the layer at ztop ("uppermost layer") |
---|
| 531 | ! 3: the lowest layer, at zmini |
---|
| 532 | ! 4: the layers increasing from zmini to z (here SZA<90) |
---|
| 533 | ! 5: the layers decreasing from z to zmini (here SZA>90) |
---|
| 534 | else if(szadeg.gt.90.d0) then |
---|
| 535 | |
---|
| 536 | zmini=(radio+zz)*sin(szarad)-radio |
---|
| 537 | !zmini should be lower than zz, as SZA<90. However, in situations |
---|
| 538 | !where SZA is very close to 90, rounding errors can make zmini |
---|
| 539 | !slightly higher than zz, causing problems in the determination |
---|
| 540 | !of the jmin index. A correction is implemented in the determination |
---|
| 541 | !of jmin, some lines below |
---|
| 542 | rkmmini = radio + zmini |
---|
| 543 | |
---|
| 544 | if(zmini.lt.diz(1)) then ! Can see the sun? No => esp(j)=inft |
---|
| 545 | nlayesp = nlayesp + 1 |
---|
| 546 | ilayesp(nlayesp) = - 1 ! Value to mark "no sun on view" |
---|
| 547 | ! esp(nlayesp) = 1.e30 |
---|
| 548 | |
---|
| 549 | else |
---|
| 550 | jmin=grid_R8(zmini,diz,nlayer)+1 |
---|
| 551 | !Correction for possible rounding errors when SZA very close |
---|
| 552 | !to 90 degrees |
---|
| 553 | if(jmin.gt.grid_R8(zz,diz,nlayer)) then |
---|
| 554 | write(*,*)'jthermcalc warning: possible rounding error' |
---|
| 555 | write(*,*)'point,sza,layer:',ig,szadeg,capa |
---|
| 556 | jmin=grid_R8(zz,diz,nlayer) |
---|
| 557 | endif |
---|
| 558 | |
---|
| 559 | if(abs(zz-diz(nlayer)).lt.1.d-4) goto 9876 |
---|
| 560 | |
---|
| 561 | ! 1st Zone: Upper part of ray |
---|
| 562 | ! |
---|
| 563 | do j=grid_R8(zz,diz,nlayer),nlayer-1 |
---|
| 564 | nlayesp = nlayesp + 1 |
---|
| 565 | ilayesp(nlayesp) = j |
---|
| 566 | esp(nlayesp) = |
---|
| 567 | $ sqrt( (radio+diz(j+1))**2 - rkmmini**2 ) - |
---|
| 568 | $ sqrt( (radio+diz(j))**2 - rkmmini**2 ) ! [km] |
---|
| 569 | esp(nlayesp) = esp(nlayesp) * 1.d5 ! [cm] |
---|
| 570 | rkmj = radio+diz(j) |
---|
| 571 | szalayesp(nlayesp) = asin( rkmmini/rkmj ) ! [rad] |
---|
| 572 | szalayesp(nlayesp) = szalayesp(nlayesp) *180.d0/3.141592 ! [deg] |
---|
| 573 | end do |
---|
| 574 | |
---|
| 575 | 9876 continue |
---|
| 576 | ! 2nd Zone: Uppermost layer of ray. |
---|
| 577 | ! |
---|
| 578 | nlayesp = nlayesp + 1 |
---|
| 579 | ilayesp(nlayesp) = nlayer |
---|
| 580 | rkmnz = radio+diz(nlayer) |
---|
| 581 | esp(nlayesp) = sqrt( rkmnz**2 - rkmmini**2 ) !aux.factor[km] |
---|
| 582 | esp(nlayesp) = esp(nlayesp) * 1.d5 !aux.f.[cm] |
---|
| 583 | szalayesp(nlayesp) = asin( rkmmini/rkmnz ) ! [rad] |
---|
| 584 | szalayesp(nlayesp) = szalayesp(nlayesp) *180.d0/3.141592 ! [deg] |
---|
| 585 | |
---|
| 586 | ! 3er Zone: Lowestmost layer of ray |
---|
| 587 | ! |
---|
| 588 | if ( jmin .ge. 2 ) then ! If above the planet's surface |
---|
| 589 | j=jmin-1 |
---|
| 590 | nlayesp = nlayesp + 1 |
---|
| 591 | ilayesp(nlayesp) = j |
---|
| 592 | esp(nlayesp) = 2. * |
---|
| 593 | $ sqrt( (radio+diz(j+1))**2 -rkmmini**2 ) ! [km] |
---|
| 594 | esp(nlayesp) = esp(nlayesp) * 1.d5 ! [cm] |
---|
| 595 | rkmj = radio+diz(j+1) |
---|
| 596 | szalayesp(nlayesp) = asin( rkmmini/rkmj ) ! [rad] |
---|
| 597 | szalayesp(nlayesp) = szalayesp(nlayesp) *180.d0/3.141592 ! [deg] |
---|
| 598 | endif |
---|
| 599 | |
---|
| 600 | ! 4th zone: Lower part of ray, increasing from zmin to z |
---|
| 601 | ! ( layers with SZA < 90 deg ) |
---|
| 602 | do j=jmin,grid_R8(zz,diz,nlayer)-1 |
---|
| 603 | nlayesp = nlayesp + 1 |
---|
| 604 | ilayesp(nlayesp) = j |
---|
| 605 | esp(nlayesp) = |
---|
| 606 | $ sqrt( (radio+diz(j+1))**2 - rkmmini**2 ) |
---|
| 607 | $ - sqrt( (radio+diz(j))**2 - rkmmini**2 ) ! [km] |
---|
| 608 | esp(nlayesp) = esp(nlayesp) * 1.d5 ! [cm] |
---|
| 609 | rkmj = radio+diz(j) |
---|
| 610 | szalayesp(nlayesp) = asin( rkmmini/rkmj ) ! [rad] |
---|
| 611 | szalayesp(nlayesp) = szalayesp(nlayesp) *180.d0/3.141592 ! [deg] |
---|
| 612 | end do |
---|
| 613 | |
---|
| 614 | ! 5th zone: Lower part of ray, decreasing from z to zmin |
---|
| 615 | ! ( layers with SZA > 90 deg ) |
---|
| 616 | do j=grid_R8(zz,diz,nlayer)-1, jmin, -1 |
---|
| 617 | nlayesp = nlayesp + 1 |
---|
| 618 | ilayesp(nlayesp) = j |
---|
| 619 | esp(nlayesp) = |
---|
| 620 | $ sqrt( (radio+diz(j+1))**2 - rkmmini**2 ) |
---|
| 621 | $ - sqrt( (radio+diz(j))**2 - rkmmini**2 ) ! [km] |
---|
| 622 | esp(nlayesp) = esp(nlayesp) * 1.d5 ! [cm] |
---|
| 623 | rkmj = radio+diz(j) |
---|
| 624 | szalayesp(nlayesp) = 3.141592 - asin( rkmmini/rkmj ) ! [rad] |
---|
| 625 | szalayesp(nlayesp) = szalayesp(nlayesp)*180.d0/3.141592 ! [deg] |
---|
| 626 | end do |
---|
| 627 | |
---|
| 628 | end if |
---|
| 629 | |
---|
| 630 | end if |
---|
| 631 | |
---|
| 632 | |
---|
| 633 | end subroutine espesor_optico_A |
---|
| 634 | |
---|
| 635 | |
---|
| 636 | |
---|
| 637 | c********************************************************************** |
---|
| 638 | c*********************************************************************** |
---|
| 639 | |
---|
| 640 | function grid_R8 (z, zgrid, nz) |
---|
| 641 | |
---|
| 642 | c Returns the index where z is located within vector zgrid |
---|
| 643 | c The vector zgrid must be monotonously increasing, otherwise program stops. |
---|
| 644 | c If z is outside zgrid limits, or zgrid dimension is nz<2, the program stops. |
---|
| 645 | c |
---|
| 646 | c FGG Aug-2004 Correct z.lt.zgrid(i) to .le. |
---|
| 647 | c MALV Jul-2003 |
---|
| 648 | c*********************************************************************** |
---|
| 649 | |
---|
| 650 | implicit none |
---|
| 651 | |
---|
| 652 | c Arguments |
---|
| 653 | integer nz |
---|
| 654 | real*8 z |
---|
| 655 | real*8 zgrid(nz) |
---|
| 656 | integer grid_R8 |
---|
| 657 | |
---|
| 658 | c Local |
---|
| 659 | integer i, nz1, nznew |
---|
| 660 | |
---|
| 661 | c*** CODE START |
---|
| 662 | |
---|
| 663 | if ( z .lt. zgrid(1) ) then |
---|
| 664 | write (*,*) ' GRID/ z outside bounds of zgrid ' |
---|
| 665 | write (*,*) ' z,zgrid(1),zgrid(nz) =', z,zgrid(1),zgrid(nz) |
---|
| 666 | z = zgrid(1) |
---|
| 667 | write(*,*) 'WARNING: error in grid_r8 (jthermcalc.F)' |
---|
| 668 | write(*,*) 'Please check values of z and zgrid above' |
---|
| 669 | endif |
---|
| 670 | if (z .gt. zgrid(nz) ) then |
---|
| 671 | write (*,*) ' GRID/ z outside bounds of zgrid ' |
---|
| 672 | write (*,*) ' z,zgrid(1),zgrid(nz) =', z,zgrid(1),zgrid(nz) |
---|
| 673 | z = zgrid(nz) |
---|
| 674 | write(*,*) 'WARNING: error in grid_r8 (jthermcalc.F)' |
---|
| 675 | write(*,*) 'Please check values of z and zgrid above' |
---|
| 676 | endif |
---|
| 677 | if ( nz .lt. 2 ) then |
---|
| 678 | write (*,*) ' GRID/ zgrid needs 2 points at least ! ' |
---|
| 679 | stop ' Serious error in GRID.F ' |
---|
| 680 | endif |
---|
| 681 | if ( zgrid(1) .ge. zgrid(nz) ) then |
---|
| 682 | write (*,*) ' GRID/ zgrid must increase with index' |
---|
| 683 | stop ' Serious error in GRID.F ' |
---|
| 684 | endif |
---|
| 685 | |
---|
| 686 | nz1 = 1 |
---|
| 687 | nznew = nz/2 |
---|
| 688 | if ( z .gt. zgrid(nznew) ) then |
---|
| 689 | nz1 = nznew |
---|
| 690 | nznew = nz |
---|
| 691 | endif |
---|
| 692 | do i=nz1+1,nznew |
---|
| 693 | if ( z. eq. zgrid(i) ) then |
---|
| 694 | grid_R8=i |
---|
| 695 | return |
---|
| 696 | elseif ( z .le. zgrid(i) ) then |
---|
| 697 | grid_R8 = i-1 |
---|
| 698 | return |
---|
| 699 | endif |
---|
| 700 | enddo |
---|
| 701 | grid_R8 = nz |
---|
| 702 | |
---|
| 703 | |
---|
| 704 | |
---|
| 705 | end function grid_R8 |
---|
| 706 | |
---|
| 707 | |
---|
| 708 | |
---|
| 709 | !c*************************************************** |
---|
| 710 | !c*************************************************** |
---|
| 711 | |
---|
| 712 | subroutine flujo(date) |
---|
| 713 | |
---|
| 714 | |
---|
| 715 | !c fgg nov 2002 first version |
---|
| 716 | !c*************************************************** |
---|
| 717 | |
---|
| 718 | use comsaison_h, only: dist_sol |
---|
| 719 | use param_v4_h, only: ninter, |
---|
| 720 | . fluxtop, ct1, ct2, p1, p2 |
---|
| 721 | implicit none |
---|
| 722 | |
---|
| 723 | |
---|
| 724 | ! common variables and constants |
---|
| 725 | include "callkeys.h" |
---|
| 726 | |
---|
| 727 | |
---|
| 728 | ! Arguments |
---|
| 729 | |
---|
| 730 | real date |
---|
| 731 | |
---|
| 732 | |
---|
| 733 | ! Local variable and constants |
---|
| 734 | |
---|
| 735 | integer i |
---|
| 736 | integer inter |
---|
| 737 | real nada |
---|
| 738 | |
---|
| 739 | !c************************************************* |
---|
| 740 | |
---|
| 741 | if(date.lt.1985.) date=1985. |
---|
| 742 | if(date.gt.2001.) date=2001. |
---|
| 743 | |
---|
| 744 | do i=1,ninter |
---|
| 745 | fluxtop(i)=1. |
---|
| 746 | !Variation of solar flux with 11 years solar cycle |
---|
| 747 | !For more details, see Gonzalez-Galindo et al. 2005 |
---|
| 748 | !To be improved in next versions |
---|
| 749 | if(i.le.24.and.solvarmod.eq.0) then |
---|
| 750 | fluxtop(i)=(((ct1(i)+p1(i)*date)/2.) |
---|
| 751 | $ *sin(2.*3.1416/11.*(date-1985.-3.1416)) |
---|
| 752 | $ +(ct2(i)+p2(i)*date)+1.)*fluxtop(i) |
---|
| 753 | end if |
---|
| 754 | fluxtop(i)=fluxtop(i)*(1.52/dist_sol)**2 |
---|
| 755 | end do |
---|
| 756 | |
---|
| 757 | end subroutine flujo |
---|
| 758 | |
---|
| 759 | end module jthermcalc_util |
---|