[38] | 1 | c********************************************************************** |
---|
| 2 | |
---|
[1266] | 3 | subroutine jthermcalc(ig,nlayer,chemthermod, |
---|
| 4 | . rm,nesptherm,tx,iz,zenit) |
---|
[38] | 5 | |
---|
| 6 | |
---|
| 7 | c feb 2002 fgg first version |
---|
| 8 | c nov 2002 fgg second version |
---|
| 9 | c |
---|
| 10 | c modified from paramhr.F |
---|
| 11 | c MAC July 2003 |
---|
| 12 | c********************************************************************** |
---|
| 13 | |
---|
[1266] | 14 | use param_v4_h, only: jfotsout,crscabsi2, |
---|
| 15 | . c1_16,c17_24,c25_29,c30_31,c32,c33,c34,c35,c36, |
---|
| 16 | . co2crsc195,co2crsc295,t0, |
---|
| 17 | . jabsifotsintpar,ninter,nz2 |
---|
| 18 | |
---|
[38] | 19 | implicit none |
---|
| 20 | |
---|
[635] | 21 | c input and output variables |
---|
| 22 | |
---|
[1266] | 23 | integer ig,nlayer |
---|
[635] | 24 | integer chemthermod |
---|
| 25 | integer nesptherm !Number of species considered |
---|
[1266] | 26 | real rm(nlayer,nesptherm) !Densities (cm-3) |
---|
| 27 | real tx(nlayer) !temperature |
---|
[635] | 28 | real zenit !SZA |
---|
[1266] | 29 | real iz(nlayer) !Local altitude |
---|
[635] | 30 | |
---|
| 31 | |
---|
[38] | 32 | c local parameters and variables |
---|
| 33 | |
---|
[1266] | 34 | real co2colx(nlayer) !column density of CO2 (cm^-2) |
---|
| 35 | real o2colx(nlayer) !column density of O2(cm^-2) |
---|
| 36 | real o3pcolx(nlayer) !column density of O(3P)(cm^-2) |
---|
| 37 | real h2colx(nlayer) !H2 column density (cm-2) |
---|
| 38 | real h2ocolx(nlayer) !H2O column density (cm-2) |
---|
| 39 | real h2o2colx(nlayer) !column density of H2O2(cm^-2) |
---|
| 40 | real o3colx(nlayer) !O3 column density (cm-2) |
---|
| 41 | real n2colx(nlayer) !N2 column density (cm-2) |
---|
| 42 | real ncolx(nlayer) !N column density (cm-2) |
---|
| 43 | real nocolx(nlayer) !NO column density (cm-2) |
---|
| 44 | real cocolx(nlayer) !CO column density (cm-2) |
---|
| 45 | real hcolx(nlayer) !H column density (cm-2) |
---|
| 46 | real no2colx(nlayer) !NO2 column density (cm-2) |
---|
| 47 | real t2(nlayer) |
---|
| 48 | real coltemp(nlayer) |
---|
| 49 | real sigma(ninter,nlayer) |
---|
| 50 | real alfa(ninter,nlayer) |
---|
[38] | 51 | |
---|
[635] | 52 | integer i,j,k,indexint !indexes |
---|
[38] | 53 | character dn |
---|
| 54 | |
---|
| 55 | |
---|
| 56 | |
---|
| 57 | c variables used in interpolation |
---|
| 58 | |
---|
[658] | 59 | real*8 auxcoltab(nz2) |
---|
| 60 | real*8 auxjco2(nz2) |
---|
| 61 | real*8 auxjo2(nz2) |
---|
| 62 | real*8 auxjo3p(nz2) |
---|
| 63 | real*8 auxjh2o(nz2) |
---|
| 64 | real*8 auxjh2(nz2) |
---|
| 65 | real*8 auxjh2o2(nz2) |
---|
| 66 | real*8 auxjo3(nz2) |
---|
| 67 | real*8 auxjn2(nz2) |
---|
| 68 | real*8 auxjn(nz2) |
---|
| 69 | real*8 auxjno(nz2) |
---|
| 70 | real*8 auxjco(nz2) |
---|
| 71 | real*8 auxjh(nz2) |
---|
| 72 | real*8 auxjno2(nz2) |
---|
[1266] | 73 | real*8 wp(nlayer),wm(nlayer) |
---|
| 74 | real*8 auxcolinp(nlayer) |
---|
| 75 | integer auxind(nlayer) |
---|
[658] | 76 | integer auxi |
---|
| 77 | integer ind |
---|
[1266] | 78 | real*8 cortemp(nlayer) |
---|
[38] | 79 | |
---|
[658] | 80 | real*8 limdown !limits for interpolation |
---|
| 81 | real*8 limup ! "" |
---|
| 82 | |
---|
[635] | 83 | !!!ATTENTION. Here i_co2 has to have the same value than in chemthermos.F90 |
---|
| 84 | !!!If the value is changed there, if has to be changed also here !!!! |
---|
| 85 | integer,parameter :: i_co2=1 |
---|
| 86 | |
---|
[658] | 87 | |
---|
[38] | 88 | c*************************PROGRAM STARTS******************************* |
---|
[635] | 89 | |
---|
| 90 | if(zenit.gt.140.) then |
---|
[38] | 91 | dn='n' |
---|
| 92 | else |
---|
| 93 | dn='d' |
---|
| 94 | end if |
---|
| 95 | if(dn.eq.'n') then |
---|
| 96 | return |
---|
[635] | 97 | endif |
---|
| 98 | |
---|
| 99 | !Initializing the photoabsorption coefficients |
---|
| 100 | jfotsout(:,:,:)=0. |
---|
[38] | 101 | |
---|
[635] | 102 | !Auxiliar temperature to take into account the temperature dependence |
---|
| 103 | !of CO2 cross section |
---|
[1266] | 104 | do i=1,nlayer |
---|
[38] | 105 | t2(i)=tx(i) |
---|
| 106 | if(t2(i).lt.195.0) t2(i)=195.0 |
---|
| 107 | if(t2(i).gt.295.0) t2(i)=295.0 |
---|
| 108 | end do |
---|
| 109 | |
---|
[635] | 110 | !Calculation of column amounts |
---|
[1266] | 111 | call column(ig,nlayer,chemthermod,rm,nesptherm,tx,iz,zenit, |
---|
[635] | 112 | $ co2colx,o2colx,o3pcolx,h2colx,h2ocolx, |
---|
| 113 | $ h2o2colx,o3colx,n2colx,ncolx,nocolx,cocolx,hcolx,no2colx) |
---|
[38] | 114 | |
---|
[635] | 115 | !Auxiliar column to include the temperature dependence |
---|
| 116 | !of CO2 cross section |
---|
[1266] | 117 | coltemp(nlayer)=co2colx(nlayer)*abs(t2(nlayer)-t0(nlayer)) |
---|
| 118 | do i=nlayer-1,1,-1 |
---|
[635] | 119 | coltemp(i)=!coltemp(i+1)+ PQ SE ELIMINA? REVISAR |
---|
| 120 | $ ( rm(i,i_co2) + rm(i+1,i_co2) ) * 0.5 |
---|
[38] | 121 | $ * 1e5 * (iz(i+1)-iz(i)) * abs(t2(i)-t0(i)) |
---|
| 122 | end do |
---|
[635] | 123 | |
---|
| 124 | !Calculation of CO2 cross section at temperature t0(i) |
---|
[1266] | 125 | do i=1,nlayer |
---|
[635] | 126 | do indexint=24,32 |
---|
| 127 | sigma(indexint,i)=co2crsc195(indexint-23) |
---|
| 128 | alfa(indexint,i)=((co2crsc295(indexint-23) |
---|
| 129 | $ /sigma(indexint,i))-1.)/(295.-t0(i)) |
---|
| 130 | end do |
---|
| 131 | end do |
---|
[38] | 132 | |
---|
[635] | 133 | ! Interpolation to the tabulated photoabsorption coefficients for each species |
---|
| 134 | ! in each spectral interval |
---|
[38] | 135 | |
---|
| 136 | |
---|
[658] | 137 | c auxcolinp-> Actual atmospheric column |
---|
| 138 | c auxj*-> Tabulated photoabsorption coefficients |
---|
| 139 | c auxcoltab-> Tabulated atmospheric columns |
---|
[38] | 140 | |
---|
[658] | 141 | ccccccccccccccccccccccccccccccc |
---|
| 142 | c 0.1,5.0 (int 1) |
---|
| 143 | c |
---|
| 144 | c Absorption by: |
---|
| 145 | c CO2, O2, O, H2, N |
---|
| 146 | ccccccccccccccccccccccccccccccc |
---|
[635] | 147 | |
---|
[658] | 148 | c Input atmospheric column |
---|
[38] | 149 | indexint=1 |
---|
[1266] | 150 | do i=1,nlayer |
---|
| 151 | auxcolinp(nlayer-i+1) = co2colx(i)*crscabsi2(1,indexint) + |
---|
[635] | 152 | $ o2colx(i)*crscabsi2(2,indexint) + |
---|
| 153 | $ o3pcolx(i)*crscabsi2(3,indexint) + |
---|
| 154 | $ h2colx(i)*crscabsi2(5,indexint) + |
---|
| 155 | $ ncolx(i)*crscabsi2(9,indexint) |
---|
[1260] | 156 | |
---|
| 157 | |
---|
[635] | 158 | end do |
---|
[658] | 159 | limdown=1.e-20 |
---|
| 160 | limup=1.e26 |
---|
[38] | 161 | |
---|
[658] | 162 | c Interpolations |
---|
[38] | 163 | |
---|
[635] | 164 | do i=1,nz2 |
---|
[658] | 165 | auxi = nz2-i+1 |
---|
| 166 | !CO2 tabulated coefficient |
---|
| 167 | auxjco2(i) = jabsifotsintpar(auxi,1,indexint) |
---|
| 168 | !O2 tabulated coefficient |
---|
| 169 | auxjo2(i) = jabsifotsintpar(auxi,2,indexint) |
---|
| 170 | !O3p tabulated coefficient |
---|
| 171 | auxjo3p(i) = jabsifotsintpar(auxi,3,indexint) |
---|
| 172 | !H2 tabulated coefficient |
---|
| 173 | auxjh2(i) = jabsifotsintpar(auxi,5,indexint) |
---|
| 174 | !Tabulated column |
---|
| 175 | auxcoltab(i) = c1_16(auxi,indexint) |
---|
[635] | 176 | enddo |
---|
[658] | 177 | !Only if chemthermod.ge.2 |
---|
| 178 | !N tabulated coefficient |
---|
| 179 | if(chemthermod.ge.2) then |
---|
| 180 | do i=1,nz2 |
---|
| 181 | auxjn(i) = jabsifotsintpar(nz2-i+1,9,indexint) |
---|
| 182 | enddo |
---|
| 183 | endif |
---|
[38] | 184 | |
---|
[658] | 185 | call interfast |
---|
[1266] | 186 | $ (wm,wp,auxind,auxcolinp,nlayer,auxcoltab,nz2,limdown,limup) |
---|
| 187 | do i=1,nlayer |
---|
[658] | 188 | ind=auxind(i) |
---|
[1266] | 189 | auxi=nlayer-i+1 |
---|
[1260] | 190 | ! Ehouarn: test |
---|
| 191 | if ((ind+1.gt.nz2).or.(ind.le.0)) then |
---|
| 192 | write(*,*) "jthercalc error: ind=",ind,ig,zenit |
---|
[1266] | 193 | write(*,*) " auxind(1:nlayer)=",auxind |
---|
| 194 | write(*,*) " auxcolinp(:nlayer)=",auxcolinp |
---|
| 195 | write(*,*) " co2colx(:nlayer)=",co2colx |
---|
| 196 | write(*,*) " o2colx(:nlayer)=",o2colx |
---|
| 197 | write(*,*) " o3pcolx(:nlayer)=",o3pcolx |
---|
| 198 | write(*,*) " h2colx(:nlayer)=",h2colx |
---|
| 199 | write(*,*) " ncolx(:nlayer)=",ncolx |
---|
[1260] | 200 | write(*,*) " auxcoltab(1:nz2)=",auxcoltab |
---|
| 201 | write(*,*) " limdown=",limdown |
---|
| 202 | write(*,*) " limup=",limup |
---|
| 203 | call abort_gcm('jthermcalc','error',1) |
---|
| 204 | endif |
---|
[658] | 205 | !CO2 interpolated coefficient |
---|
| 206 | jfotsout(indexint,1,auxi) = wm(i)*auxjco2(ind+1) + |
---|
| 207 | $ wp(i)*auxjco2(ind) |
---|
| 208 | !O2 interpolated coefficient |
---|
| 209 | jfotsout(indexint,2,auxi) = wm(i)*auxjo2(ind+1) + |
---|
| 210 | $ wp(i)*auxjo2(ind) |
---|
| 211 | !O3p interpolated coefficient |
---|
| 212 | jfotsout(indexint,3,auxi) = wm(i)*auxjo3p(ind+1) + |
---|
| 213 | $ wp(i)*auxjo3p(ind) |
---|
| 214 | !H2 interpolated coefficient |
---|
| 215 | jfotsout(indexint,5,auxi) = wm(i)*auxjh2(ind+1) + |
---|
| 216 | $ wp(i)*auxjh2(ind) |
---|
[635] | 217 | enddo |
---|
[658] | 218 | !Only if chemthermod.ge.2 |
---|
| 219 | !N interpolated coefficient |
---|
[635] | 220 | if(chemthermod.ge.2) then |
---|
[1266] | 221 | do i=1,nlayer |
---|
[658] | 222 | ind=auxind(i) |
---|
[1266] | 223 | jfotsout(indexint,9,nlayer-i+1) = wm(i)*auxjn(ind+1) + |
---|
[658] | 224 | $ wp(i)*auxjn(ind) |
---|
[38] | 225 | enddo |
---|
[658] | 226 | endif |
---|
| 227 | |
---|
[38] | 228 | |
---|
[658] | 229 | c End interval 1 |
---|
[38] | 230 | |
---|
| 231 | |
---|
[658] | 232 | ccccccccccccccccccccccccccccccc |
---|
| 233 | c 5-80.5nm (int 2-15) |
---|
| 234 | c |
---|
| 235 | c Absorption by: |
---|
| 236 | c CO2, O2, O, H2, N2, N, |
---|
| 237 | c NO, CO, H, NO2 |
---|
| 238 | ccccccccccccccccccccccccccccccc |
---|
[38] | 239 | |
---|
[658] | 240 | c Input atmospheric column |
---|
[635] | 241 | do indexint=2,15 |
---|
[1266] | 242 | do i=1,nlayer |
---|
| 243 | auxcolinp(nlayer-i+1) = co2colx(i)*crscabsi2(1,indexint)+ |
---|
[635] | 244 | $ o2colx(i)*crscabsi2(2,indexint)+ |
---|
| 245 | $ o3pcolx(i)*crscabsi2(3,indexint)+ |
---|
| 246 | $ h2colx(i)*crscabsi2(5,indexint)+ |
---|
| 247 | $ n2colx(i)*crscabsi2(8,indexint)+ |
---|
| 248 | $ ncolx(i)*crscabsi2(9,indexint)+ |
---|
| 249 | $ nocolx(i)*crscabsi2(10,indexint)+ |
---|
| 250 | $ cocolx(i)*crscabsi2(11,indexint)+ |
---|
| 251 | $ hcolx(i)*crscabsi2(12,indexint)+ |
---|
| 252 | $ no2colx(i)*crscabsi2(13,indexint) |
---|
[38] | 253 | end do |
---|
| 254 | |
---|
[658] | 255 | c Interpolations |
---|
[38] | 256 | |
---|
[635] | 257 | do i=1,nz2 |
---|
[658] | 258 | auxi = nz2-i+1 |
---|
| 259 | !O2 tabulated coefficient |
---|
| 260 | auxjo2(i) = jabsifotsintpar(auxi,2,indexint) |
---|
| 261 | !O3p tabulated coefficient |
---|
| 262 | auxjo3p(i) = jabsifotsintpar(auxi,3,indexint) |
---|
| 263 | !CO2 tabulated coefficient |
---|
| 264 | auxjco2(i) = jabsifotsintpar(auxi,1,indexint) |
---|
| 265 | !H2 tabulated coefficient |
---|
| 266 | auxjh2(i) = jabsifotsintpar(auxi,5,indexint) |
---|
| 267 | !N2 tabulated coefficient |
---|
| 268 | auxjn2(i) = jabsifotsintpar(auxi,8,indexint) |
---|
| 269 | !CO tabulated coefficient |
---|
| 270 | auxjco(i) = jabsifotsintpar(auxi,11,indexint) |
---|
| 271 | !H tabulated coefficient |
---|
| 272 | auxjh(i) = jabsifotsintpar(auxi,12,indexint) |
---|
| 273 | !tabulated column |
---|
| 274 | auxcoltab(i) = c1_16(auxi,indexint) |
---|
[635] | 275 | enddo |
---|
[658] | 276 | !Only if chemthermod.ge.2 |
---|
| 277 | if(chemthermod.ge.2) then |
---|
[635] | 278 | do i=1,nz2 |
---|
[658] | 279 | auxi = nz2-i+1 |
---|
| 280 | !N tabulated coefficient |
---|
| 281 | auxjn(i) = jabsifotsintpar(auxi,9,indexint) |
---|
| 282 | !NO tabulated coefficient |
---|
| 283 | auxjno(i) = jabsifotsintpar(auxi,10,indexint) |
---|
| 284 | !NO2 tabulated coefficient |
---|
| 285 | auxjno2(i) = jabsifotsintpar(auxi,13,indexint) |
---|
[635] | 286 | enddo |
---|
[658] | 287 | endif |
---|
[635] | 288 | |
---|
[1266] | 289 | call interfast(wm,wp,auxind,auxcolinp,nlayer, |
---|
[658] | 290 | $ auxcoltab,nz2,limdown,limup) |
---|
[1266] | 291 | do i=1,nlayer |
---|
[658] | 292 | ind=auxind(i) |
---|
[1266] | 293 | auxi = nlayer-i+1 |
---|
[658] | 294 | !O2 interpolated coefficient |
---|
| 295 | jfotsout(indexint,2,auxi) = wm(i)*auxjo2(ind+1) + |
---|
| 296 | $ wp(i)*auxjo2(ind) |
---|
| 297 | !O3p interpolated coefficient |
---|
| 298 | jfotsout(indexint,3,auxi) = wm(i)*auxjo3p(ind+1) + |
---|
| 299 | $ wp(i)*auxjo3p(ind) |
---|
| 300 | !CO2 interpolated coefficient |
---|
| 301 | jfotsout(indexint,1,auxi) = wm(i)*auxjco2(ind+1) + |
---|
| 302 | $ wp(i)*auxjco2(ind) |
---|
| 303 | !H2 interpolated coefficient |
---|
| 304 | jfotsout(indexint,5,auxi) = wm(i)*auxjh2(ind+1) + |
---|
| 305 | $ wp(i)*auxjh2(ind) |
---|
| 306 | !N2 interpolated coefficient |
---|
| 307 | jfotsout(indexint,8,auxi) = wm(i)*auxjn2(ind+1) + |
---|
| 308 | $ wp(i)*auxjn2(ind) |
---|
| 309 | !CO interpolated coefficient |
---|
| 310 | jfotsout(indexint,11,auxi) = wm(i)*auxjco(ind+1) + |
---|
| 311 | $ wp(i)*auxjco(ind) |
---|
| 312 | !H interpolated coefficient |
---|
| 313 | jfotsout(indexint,12,auxi) = wm(i)*auxjh(ind+1) + |
---|
[1119] | 314 | $ wp(i)*auxjh(ind) |
---|
[658] | 315 | enddo |
---|
| 316 | !Only if chemthermod.ge.2 |
---|
| 317 | if(chemthermod.ge.2) then |
---|
[1266] | 318 | do i=1,nlayer |
---|
[658] | 319 | ind=auxind(i) |
---|
[1266] | 320 | auxi = nlayer-i+1 |
---|
[658] | 321 | !N interpolated coefficient |
---|
| 322 | jfotsout(indexint,9,auxi) = wm(i)*auxjn(ind+1) + |
---|
| 323 | $ wp(i)*auxjn(ind) |
---|
| 324 | !NO interpolated coefficient |
---|
| 325 | jfotsout(indexint,10,auxi)=wm(i)*auxjno(ind+1) + |
---|
| 326 | $ wp(i)*auxjno(ind) |
---|
| 327 | !NO2 interpolated coefficient |
---|
| 328 | jfotsout(indexint,13,auxi)=wm(i)*auxjno2(ind+1)+ |
---|
| 329 | $ wp(i)*auxjno2(ind) |
---|
| 330 | enddo |
---|
| 331 | endif |
---|
[635] | 332 | end do |
---|
| 333 | |
---|
[658] | 334 | c End intervals 2-15 |
---|
[635] | 335 | |
---|
| 336 | |
---|
[658] | 337 | ccccccccccccccccccccccccccccccc |
---|
| 338 | c 80.6-90.8nm (int16) |
---|
| 339 | c |
---|
| 340 | c Absorption by: |
---|
| 341 | c CO2, O2, O, N2, N, NO, |
---|
| 342 | c CO, H, NO2 |
---|
| 343 | ccccccccccccccccccccccccccccccc |
---|
[635] | 344 | |
---|
[658] | 345 | c Input atmospheric column |
---|
[635] | 346 | indexint=16 |
---|
[1266] | 347 | do i=1,nlayer |
---|
| 348 | auxcolinp(nlayer-i+1) = co2colx(i)*crscabsi2(1,indexint)+ |
---|
[635] | 349 | $ o2colx(i)*crscabsi2(2,indexint)+ |
---|
| 350 | $ o3pcolx(i)*crscabsi2(3,indexint)+ |
---|
| 351 | $ n2colx(i)*crscabsi2(8,indexint)+ |
---|
| 352 | $ ncolx(i)*crscabsi2(9,indexint)+ |
---|
| 353 | $ nocolx(i)*crscabsi2(10,indexint)+ |
---|
| 354 | $ cocolx(i)*crscabsi2(11,indexint)+ |
---|
| 355 | $ hcolx(i)*crscabsi2(12,indexint)+ |
---|
| 356 | $ no2colx(i)*crscabsi2(13,indexint) |
---|
| 357 | end do |
---|
| 358 | |
---|
[658] | 359 | c Interpolations |
---|
[635] | 360 | |
---|
| 361 | do i=1,nz2 |
---|
[658] | 362 | auxi = nz2-i+1 |
---|
| 363 | !O2 tabulated coefficient |
---|
| 364 | auxjo2(i) = jabsifotsintpar(auxi,2,indexint) |
---|
| 365 | !CO2 tabulated coefficient |
---|
| 366 | auxjco2(i) = jabsifotsintpar(auxi,1,indexint) |
---|
| 367 | !O3p tabulated coefficient |
---|
| 368 | auxjo3p(i) = jabsifotsintpar(auxi,3,indexint) |
---|
| 369 | !N2 tabulated coefficient |
---|
| 370 | auxjn2(i) = jabsifotsintpar(auxi,8,indexint) |
---|
| 371 | !CO tabulated coefficient |
---|
| 372 | auxjco(i) = jabsifotsintpar(auxi,11,indexint) |
---|
| 373 | !H tabulated coefficient |
---|
| 374 | auxjh(i) = jabsifotsintpar(auxi,12,indexint) |
---|
| 375 | !NO2 tabulated coefficient |
---|
| 376 | auxjno2(i) = jabsifotsintpar(auxi,13,indexint) |
---|
| 377 | !Tabulated column |
---|
| 378 | auxcoltab(i) = c1_16(auxi,indexint) |
---|
[635] | 379 | enddo |
---|
[658] | 380 | !Only if chemthermod.ge.2 |
---|
| 381 | if(chemthermod.ge.2) then |
---|
| 382 | do i=1,nz2 |
---|
| 383 | auxi = nz2-i+1 |
---|
| 384 | !N tabulated coefficient |
---|
| 385 | auxjn(i) = jabsifotsintpar(auxi,9,indexint) |
---|
| 386 | !NO tabulated coefficient |
---|
| 387 | auxjno(i) = jabsifotsintpar(auxi,10,indexint) |
---|
| 388 | !NO2 tabulated coefficient |
---|
| 389 | auxjno2(i) = jabsifotsintpar(auxi,13,indexint) |
---|
| 390 | enddo |
---|
| 391 | endif |
---|
[635] | 392 | |
---|
[658] | 393 | call interfast |
---|
[1266] | 394 | $ (wm,wp,auxind,auxcolinp,nlayer,auxcoltab,nz2,limdown,limup) |
---|
| 395 | do i=1,nlayer |
---|
[658] | 396 | ind=auxind(i) |
---|
[1266] | 397 | auxi = nlayer-i+1 |
---|
[658] | 398 | !O2 interpolated coefficient |
---|
| 399 | jfotsout(indexint,2,auxi) = wm(i)*auxjo2(ind+1) + |
---|
| 400 | $ wp(i)*auxjo2(ind) |
---|
| 401 | !CO2 interpolated coefficient |
---|
| 402 | jfotsout(indexint,1,auxi) = wm(i)*auxjco2(ind+1) + |
---|
| 403 | $ wp(i)*auxjco2(ind) |
---|
| 404 | !O3p interpolated coefficient |
---|
| 405 | jfotsout(indexint,3,auxi) = wm(i)*auxjo3p(ind+1) + |
---|
| 406 | $ wp(i)*auxjo3p(ind) |
---|
| 407 | !N2 interpolated coefficient |
---|
| 408 | jfotsout(indexint,8,auxi) = wm(i)*auxjn2(ind+1) + |
---|
| 409 | $ wp(i)*auxjn2(ind) |
---|
| 410 | !CO interpolated coefficient |
---|
| 411 | jfotsout(indexint,11,auxi) = wm(i)*auxjco(ind+1) + |
---|
| 412 | $ wp(i)*auxjco(ind) |
---|
| 413 | !H interpolated coefficient |
---|
| 414 | jfotsout(indexint,12,auxi) = wm(i)*auxjh(ind+1) + |
---|
| 415 | $ wp(i)*auxjh(ind) |
---|
[635] | 416 | enddo |
---|
[658] | 417 | !Only if chemthermod.ge.2 |
---|
[635] | 418 | if(chemthermod.ge.2) then |
---|
[1266] | 419 | do i=1,nlayer |
---|
[658] | 420 | ind=auxind(i) |
---|
[1266] | 421 | auxi = nlayer-i+1 |
---|
[658] | 422 | !N interpolated coefficient |
---|
| 423 | jfotsout(indexint,9,auxi) = wm(i)*auxjn(ind+1) + |
---|
| 424 | $ wp(i)*auxjn(ind) |
---|
| 425 | !NO interpolated coefficient |
---|
| 426 | jfotsout(indexint,10,auxi) = wm(i)*auxjno(ind+1) + |
---|
| 427 | $ wp(i)*auxjno(ind) |
---|
| 428 | !NO2 interpolated coefficient |
---|
| 429 | jfotsout(indexint,13,auxi) = wm(i)*auxjno2(ind+1) + |
---|
| 430 | $ wp(i)*auxjno2(ind) |
---|
[635] | 431 | enddo |
---|
[658] | 432 | endif |
---|
| 433 | c End interval 16 |
---|
[635] | 434 | |
---|
| 435 | |
---|
[658] | 436 | ccccccccccccccccccccccccccccccc |
---|
| 437 | c 90.9-119.5nm (int 17-24) |
---|
| 438 | c |
---|
| 439 | c Absorption by: |
---|
| 440 | c CO2, O2, N2, NO, CO, NO2 |
---|
| 441 | ccccccccccccccccccccccccccccccc |
---|
[635] | 442 | |
---|
[658] | 443 | c Input column |
---|
[635] | 444 | |
---|
[1266] | 445 | do i=1,nlayer |
---|
| 446 | auxcolinp(nlayer-i+1) = co2colx(i) + o2colx(i) + n2colx(i) + |
---|
[658] | 447 | $ nocolx(i) + cocolx(i) + no2colx(i) |
---|
[38] | 448 | end do |
---|
| 449 | |
---|
| 450 | do indexint=17,24 |
---|
| 451 | |
---|
[658] | 452 | c Interpolations |
---|
[38] | 453 | |
---|
[635] | 454 | do i=1,nz2 |
---|
[658] | 455 | auxi = nz2-i+1 |
---|
| 456 | !CO2 tabulated coefficient |
---|
| 457 | auxjco2(i) = jabsifotsintpar(auxi,1,indexint) |
---|
| 458 | !O2 tabulated coefficient |
---|
| 459 | auxjo2(i) = jabsifotsintpar(auxi,2,indexint) |
---|
| 460 | !N2 tabulated coefficient |
---|
| 461 | auxjn2(i) = jabsifotsintpar(auxi,8,indexint) |
---|
| 462 | !CO tabulated coefficient |
---|
| 463 | auxjco(i) = jabsifotsintpar(auxi,11,indexint) |
---|
| 464 | !Tabulated column |
---|
| 465 | auxcoltab(i) = c17_24(auxi) |
---|
[635] | 466 | enddo |
---|
[658] | 467 | !Only if chemthermod.ge.2 |
---|
| 468 | if(chemthermod.ge.2) then |
---|
[635] | 469 | do i=1,nz2 |
---|
[658] | 470 | auxi = nz2-i+1 |
---|
| 471 | !NO tabulated coefficient |
---|
| 472 | auxjno(i) = jabsifotsintpar(auxi,10,indexint) |
---|
| 473 | !NO2 tabulated coefficient |
---|
| 474 | auxjno2(i) = jabsifotsintpar(auxi,13,indexint) |
---|
[635] | 475 | enddo |
---|
[658] | 476 | endif |
---|
| 477 | |
---|
| 478 | call interfast |
---|
[1266] | 479 | $ (wm,wp,auxind,auxcolinp,nlayer,auxcoltab,nz2,limdown,limup) |
---|
[658] | 480 | !Correction to include T variation of CO2 cross section |
---|
| 481 | if(indexint.eq.24) then |
---|
[1266] | 482 | do i=1,nlayer |
---|
| 483 | auxi = nlayer-i+1 |
---|
[658] | 484 | if(sigma(indexint,auxi)* |
---|
| 485 | $ alfa(indexint,auxi)*coltemp(auxi) |
---|
| 486 | $ .lt.60.) then |
---|
| 487 | cortemp(i)=exp(-sigma(indexint,auxi)* |
---|
| 488 | $ alfa(indexint,auxi)*coltemp(auxi)) |
---|
| 489 | else |
---|
| 490 | cortemp(i)=0. |
---|
[635] | 491 | end if |
---|
| 492 | enddo |
---|
[658] | 493 | else |
---|
[1266] | 494 | do i=1,nlayer |
---|
[658] | 495 | cortemp(i)=1. |
---|
[635] | 496 | enddo |
---|
[658] | 497 | end if |
---|
[1266] | 498 | do i=1,nlayer |
---|
[658] | 499 | ind=auxind(i) |
---|
[1266] | 500 | auxi = nlayer-i+1 |
---|
[658] | 501 | !O2 interpolated coefficient |
---|
| 502 | jfotsout(indexint,2,auxi) = (wm(i)*auxjo2(ind+1) + |
---|
| 503 | $ wp(i)*auxjo2(ind)) * cortemp(i) |
---|
| 504 | !CO2 interpolated coefficient |
---|
| 505 | jfotsout(indexint,1,auxi) = (wm(i)*auxjco2(ind+1) + |
---|
| 506 | $ wp(i)*auxjco2(ind)) * cortemp(i) |
---|
| 507 | if(indexint.eq.24) jfotsout(indexint,1,auxi)= |
---|
| 508 | $ jfotsout(indexint,1,auxi)* |
---|
| 509 | $ (1+alfa(indexint,auxi)* |
---|
| 510 | $ (t2(auxi)-t0(auxi))) |
---|
| 511 | !N2 interpolated coefficient |
---|
| 512 | jfotsout(indexint,8,auxi) = (wm(i)*auxjn2(ind+1) + |
---|
| 513 | $ wp(i)*auxjn2(ind)) * cortemp(i) |
---|
| 514 | !CO interpolated coefficient |
---|
| 515 | jfotsout(indexint,11,auxi) = (wm(i)*auxjco(ind+1) + |
---|
| 516 | $ wp(i)*auxjco(ind)) * cortemp(i) |
---|
| 517 | enddo |
---|
| 518 | !Only if chemthermod.ge.2 |
---|
| 519 | if(chemthermod.ge.2) then |
---|
[1266] | 520 | do i=1,nlayer |
---|
[658] | 521 | ind=auxind(i) |
---|
[1266] | 522 | auxi = nlayer-i+1 |
---|
[658] | 523 | !NO interpolated coefficient |
---|
| 524 | jfotsout(indexint,10,auxi)=(wm(i)*auxjno(ind+1) + |
---|
| 525 | $ wp(i)*auxjno(ind)) * cortemp(i) |
---|
| 526 | !NO2 interpolated coefficient |
---|
| 527 | jfotsout(indexint,13,auxi)=(wm(i)*auxjno2(ind+1)+ |
---|
| 528 | $ wp(i)*auxjno2(ind)) * cortemp(i) |
---|
[635] | 529 | enddo |
---|
[658] | 530 | endif |
---|
[38] | 531 | end do |
---|
[658] | 532 | c End intervals 17-24 |
---|
[38] | 533 | |
---|
| 534 | |
---|
[658] | 535 | ccccccccccccccccccccccccccccccc |
---|
| 536 | c 119.6-167.0nm (int 25-29) |
---|
| 537 | c |
---|
| 538 | c Absorption by: |
---|
| 539 | c CO2, O2, H2O, H2O2, NO, |
---|
| 540 | c CO, NO2 |
---|
| 541 | ccccccccccccccccccccccccccccccc |
---|
[38] | 542 | |
---|
[658] | 543 | c Input atmospheric column |
---|
[38] | 544 | |
---|
[1266] | 545 | do i=1,nlayer |
---|
| 546 | auxcolinp(nlayer-i+1) = co2colx(i) + o2colx(i) + h2ocolx(i) + |
---|
[658] | 547 | $ h2o2colx(i) + nocolx(i) + cocolx(i) + no2colx(i) |
---|
[38] | 548 | end do |
---|
| 549 | |
---|
[635] | 550 | do indexint=25,29 |
---|
[38] | 551 | |
---|
[658] | 552 | c Interpolations |
---|
[38] | 553 | |
---|
| 554 | do i=1,nz2 |
---|
[658] | 555 | auxi = nz2-i+1 |
---|
| 556 | !CO2 tabulated coefficient |
---|
| 557 | auxjco2(i) = jabsifotsintpar(auxi,1,indexint) |
---|
| 558 | !O2 tabulated coefficient |
---|
| 559 | auxjo2(i) = jabsifotsintpar(auxi,2,indexint) |
---|
| 560 | !H2O tabulated coefficient |
---|
| 561 | auxjh2o(i) = jabsifotsintpar(auxi,4,indexint) |
---|
| 562 | !H2O2 tabulated coefficient |
---|
| 563 | auxjh2o2(i) = jabsifotsintpar(auxi,6,indexint) |
---|
| 564 | !CO tabulated coefficient |
---|
| 565 | auxjco(i) = jabsifotsintpar(auxi,11,indexint) |
---|
| 566 | !Tabulated column |
---|
| 567 | auxcoltab(i) = c25_29(auxi) |
---|
[38] | 568 | enddo |
---|
[658] | 569 | !Only if chemthermod.ge.2 |
---|
| 570 | if(chemthermod.ge.2) then |
---|
| 571 | do i=1,nz2 |
---|
| 572 | auxi = nz2-i+1 |
---|
| 573 | !NO tabulated coefficient |
---|
| 574 | auxjno(i) = jabsifotsintpar(auxi,10,indexint) |
---|
| 575 | !NO2 tabulated coefficient |
---|
| 576 | auxjno2(i) = jabsifotsintpar(auxi,13,indexint) |
---|
| 577 | enddo |
---|
| 578 | endif |
---|
| 579 | call interfast |
---|
[1266] | 580 | $ (wm,wp,auxind,auxcolinp,nlayer,auxcoltab,nz2,limdown,limup) |
---|
| 581 | do i=1,nlayer |
---|
[658] | 582 | ind=auxind(i) |
---|
[1266] | 583 | auxi = nlayer-i+1 |
---|
[658] | 584 | !Correction to include T variation of CO2 cross section |
---|
| 585 | if(sigma(indexint,auxi)*alfa(indexint,auxi)* |
---|
| 586 | $ coltemp(auxi).lt.60.) then |
---|
| 587 | cortemp(i)=exp(-sigma(indexint,auxi)* |
---|
| 588 | $ alfa(indexint,auxi)*coltemp(auxi)) |
---|
| 589 | else |
---|
| 590 | cortemp(i)=0. |
---|
[38] | 591 | end if |
---|
[658] | 592 | !CO2 interpolated coefficient |
---|
| 593 | jfotsout(indexint,1,auxi) = (wm(i)*auxjco2(ind+1) + |
---|
| 594 | $ wp(i)*auxjco2(ind)) * cortemp(i) * |
---|
| 595 | $ (1+alfa(indexint,auxi)* |
---|
| 596 | $ (t2(auxi)-t0(auxi))) |
---|
| 597 | !O2 interpolated coefficient |
---|
| 598 | jfotsout(indexint,2,auxi) = (wm(i)*auxjo2(ind+1) + |
---|
| 599 | $ wp(i)*auxjo2(ind)) * cortemp(i) |
---|
| 600 | !H2O interpolated coefficient |
---|
| 601 | jfotsout(indexint,4,auxi) = (wm(i)*auxjh2o(ind+1) + |
---|
| 602 | $ wp(i)*auxjh2o(ind)) * cortemp(i) |
---|
| 603 | !H2O2 interpolated coefficient |
---|
| 604 | jfotsout(indexint,6,auxi) = (wm(i)*auxjh2o2(ind+1) + |
---|
| 605 | $ wp(i)*auxjh2o2(ind)) * cortemp(i) |
---|
| 606 | !CO interpolated coefficient |
---|
| 607 | jfotsout(indexint,11,auxi) = (wm(i)*auxjco(ind+1) + |
---|
| 608 | $ wp(i)*auxjco(ind)) * cortemp(i) |
---|
[38] | 609 | enddo |
---|
[658] | 610 | !Only if chemthermod.ge.2 |
---|
| 611 | if(chemthermod.ge.2) then |
---|
[1266] | 612 | do i=1,nlayer |
---|
[658] | 613 | ind=auxind(i) |
---|
[1266] | 614 | auxi = nlayer-i+1 |
---|
[658] | 615 | !NO interpolated coefficient |
---|
| 616 | jfotsout(indexint,10,auxi)=(wm(i)*auxjno(ind+1) + |
---|
| 617 | $ wp(i)*auxjno(ind)) * cortemp(i) |
---|
| 618 | !NO2 interpolated coefficient |
---|
| 619 | jfotsout(indexint,13,auxi)=(wm(i)*auxjno2(ind+1)+ |
---|
| 620 | $ wp(i)*auxjno2(ind)) * cortemp(i) |
---|
[635] | 621 | enddo |
---|
[658] | 622 | endif |
---|
[635] | 623 | |
---|
[658] | 624 | end do |
---|
[635] | 625 | |
---|
[658] | 626 | c End intervals 25-29 |
---|
[635] | 627 | |
---|
| 628 | |
---|
[658] | 629 | cccccccccccccccccccccccccccccccc |
---|
| 630 | c 167.1-202.5nm (int 30-31) |
---|
| 631 | c |
---|
| 632 | c Absorption by: |
---|
| 633 | c CO2, O2, H2O, H2O2, NO, |
---|
| 634 | c NO2 |
---|
| 635 | cccccccccccccccccccccccccccccccc |
---|
[635] | 636 | |
---|
[658] | 637 | c Input atmospheric column |
---|
[635] | 638 | |
---|
[1266] | 639 | do i=1,nlayer |
---|
| 640 | auxcolinp(nlayer-i+1) = co2colx(i) + o2colx(i) + h2ocolx(i) + |
---|
[658] | 641 | $ h2o2colx(i) + nocolx(i) + no2colx(i) |
---|
[635] | 642 | end do |
---|
| 643 | |
---|
[658] | 644 | c Interpolation |
---|
[635] | 645 | |
---|
| 646 | do indexint=30,31 |
---|
[38] | 647 | |
---|
[635] | 648 | do i=1,nz2 |
---|
[658] | 649 | auxi = nz2-i+1 |
---|
| 650 | !CO2 tabulated coefficient |
---|
| 651 | auxjco2(i) = jabsifotsintpar(auxi,1,indexint) |
---|
| 652 | !O2 tabulated coefficient |
---|
| 653 | auxjo2(i) = jabsifotsintpar(auxi,2,indexint) |
---|
| 654 | !H2O tabulated coefficient |
---|
| 655 | auxjh2o(i) = jabsifotsintpar(auxi,4,indexint) |
---|
| 656 | !H2O2 tabulated coefficient |
---|
| 657 | auxjh2o2(i) = jabsifotsintpar(auxi,6,indexint) |
---|
| 658 | !Tabulated column |
---|
| 659 | auxcoltab(i) = c30_31(auxi) |
---|
[635] | 660 | enddo |
---|
[658] | 661 | !Only if chemthermod.ge.2 |
---|
| 662 | if(chemthermod.ge.2) then |
---|
| 663 | do i=1,nz2 |
---|
| 664 | auxi = nz2-i+1 |
---|
| 665 | !NO tabulated coefficient |
---|
| 666 | auxjno(i) = jabsifotsintpar(auxi,10,indexint) |
---|
| 667 | !NO2 tabulated coefficient |
---|
| 668 | auxjno2(i) = jabsifotsintpar(auxi,13,indexint) |
---|
| 669 | enddo |
---|
| 670 | endif |
---|
[635] | 671 | |
---|
[658] | 672 | call interfast |
---|
[1266] | 673 | $ (wm,wp,auxind,auxcolinp,nlayer,auxcoltab,nz2,limdown,limup) |
---|
| 674 | do i=1,nlayer |
---|
[658] | 675 | ind=auxind(i) |
---|
[1266] | 676 | auxi = nlayer-i+1 |
---|
[658] | 677 | !Correction to include T variation of CO2 cross section |
---|
| 678 | if(sigma(indexint,auxi)*alfa(indexint,auxi)* |
---|
| 679 | $ coltemp(auxi).lt.60.) then |
---|
| 680 | cortemp(i)=exp(-sigma(indexint,auxi)* |
---|
| 681 | $ alfa(indexint,auxi)*coltemp(auxi)) |
---|
| 682 | else |
---|
| 683 | cortemp(i)=0. |
---|
[635] | 684 | end if |
---|
[658] | 685 | !CO2 interpolated coefficient |
---|
| 686 | jfotsout(indexint,1,auxi) = (wm(i)*auxjco2(ind+1) + |
---|
| 687 | $ wp(i)*auxjco2(ind)) * cortemp(i) * |
---|
| 688 | $ (1+alfa(indexint,auxi)* |
---|
| 689 | $ (t2(auxi)-t0(auxi))) |
---|
| 690 | !O2 interpolated coefficient |
---|
| 691 | jfotsout(indexint,2,auxi) = (wm(i)*auxjo2(ind+1) + |
---|
| 692 | $ wp(i)*auxjo2(ind)) * cortemp(i) |
---|
| 693 | !H2O interpolated coefficient |
---|
| 694 | jfotsout(indexint,4,auxi) = (wm(i)*auxjh2o(ind+1) + |
---|
| 695 | $ wp(i)*auxjh2o(ind)) * cortemp(i) |
---|
| 696 | !H2O2 interpolated coefficient |
---|
| 697 | jfotsout(indexint,6,auxi) = (wm(i)*auxjh2o2(ind+1) + |
---|
| 698 | $ wp(i)*auxjh2o2(ind)) * cortemp(i) |
---|
[635] | 699 | enddo |
---|
[658] | 700 | !Only if chemthermod.ge.2 |
---|
| 701 | if(chemthermod.ge.2) then |
---|
[1266] | 702 | do i=1,nlayer |
---|
[658] | 703 | ind=auxind(i) |
---|
[1266] | 704 | auxi = nlayer-i+1 |
---|
[658] | 705 | !NO interpolated coefficient |
---|
| 706 | jfotsout(indexint,10,auxi)=(wm(i)*auxjno(ind+1) + |
---|
| 707 | $ wp(i)*auxjno(ind)) * cortemp(i) |
---|
| 708 | !NO2 interpolated coefficient |
---|
| 709 | jfotsout(indexint,13,auxi)=(wm(i)*auxjno2(ind+1)+ |
---|
| 710 | $ wp(i)*auxjno2(ind)) * cortemp(i) |
---|
[635] | 711 | enddo |
---|
[658] | 712 | endif |
---|
[635] | 713 | |
---|
[658] | 714 | end do |
---|
[635] | 715 | |
---|
[658] | 716 | c End intervals 30-31 |
---|
[635] | 717 | |
---|
| 718 | |
---|
[658] | 719 | ccccccccccccccccccccccccccccccc |
---|
| 720 | c 202.6-210.0nm (int 32) |
---|
| 721 | c |
---|
| 722 | c Absorption by: |
---|
| 723 | c CO2, O2, H2O2, NO, NO2 |
---|
| 724 | ccccccccccccccccccccccccccccccc |
---|
[635] | 725 | |
---|
[658] | 726 | c Input atmospheric column |
---|
[635] | 727 | |
---|
| 728 | indexint=32 |
---|
[1266] | 729 | do i=1,nlayer |
---|
| 730 | auxcolinp(nlayer-i+1) =co2colx(i) + o2colx(i) + h2o2colx(i) + |
---|
[635] | 731 | $ nocolx(i) + no2colx(i) |
---|
| 732 | end do |
---|
| 733 | |
---|
[658] | 734 | c Interpolation |
---|
[635] | 735 | |
---|
| 736 | do i=1,nz2 |
---|
[658] | 737 | auxi = nz2-i+1 |
---|
| 738 | !CO2 tabulated coefficient |
---|
| 739 | auxjco2(i) = jabsifotsintpar(auxi,1,indexint) |
---|
| 740 | !O2 tabulated coefficient |
---|
| 741 | auxjo2(i) = jabsifotsintpar(auxi,2,indexint) |
---|
| 742 | !H2O2 tabulated coefficient |
---|
| 743 | auxjh2o2(i) = jabsifotsintpar(auxi,6,indexint) |
---|
| 744 | !Tabulated column |
---|
| 745 | auxcoltab(i) = c32(auxi) |
---|
[635] | 746 | enddo |
---|
[658] | 747 | !Only if chemthermod.ge.2 |
---|
| 748 | if(chemthermod.ge.2) then |
---|
| 749 | do i=1,nz2 |
---|
| 750 | auxi = nz2-i+1 |
---|
| 751 | !NO tabulated coefficient |
---|
| 752 | auxjno(i) = jabsifotsintpar(auxi,10,indexint) |
---|
| 753 | !NO2 tabulated coefficient |
---|
| 754 | auxjno2(i) = jabsifotsintpar(auxi,13,indexint) |
---|
| 755 | enddo |
---|
| 756 | endif |
---|
| 757 | call interfast |
---|
[1266] | 758 | $ (wm,wp,auxind,auxcolinp,nlayer,auxcoltab,nz2,limdown,limup) |
---|
| 759 | do i=1,nlayer |
---|
[658] | 760 | ind=auxind(i) |
---|
[1266] | 761 | auxi = nlayer-i+1 |
---|
[658] | 762 | !Correction to include T variation of CO2 cross section |
---|
[1266] | 763 | if(sigma(indexint,nlayer-i+1)*alfa(indexint,auxi)* |
---|
[658] | 764 | $ coltemp(auxi).lt.60.) then |
---|
| 765 | cortemp(i)=exp(-sigma(indexint,auxi)* |
---|
| 766 | $ alfa(indexint,auxi)*coltemp(auxi)) |
---|
| 767 | else |
---|
| 768 | cortemp(i)=0. |
---|
[635] | 769 | end if |
---|
[658] | 770 | !CO2 interpolated coefficient |
---|
| 771 | jfotsout(indexint,1,auxi) = (wm(i)*auxjco2(ind+1) + |
---|
| 772 | $ wp(i)*auxjco2(ind)) * cortemp(i) * |
---|
| 773 | $ (1+alfa(indexint,auxi)* |
---|
| 774 | $ (t2(auxi)-t0(auxi))) |
---|
| 775 | !O2 interpolated coefficient |
---|
| 776 | jfotsout(indexint,2,auxi) = (wm(i)*auxjo2(ind+1) + |
---|
| 777 | $ wp(i)*auxjo2(ind)) * cortemp(i) |
---|
| 778 | !H2O2 interpolated coefficient |
---|
| 779 | jfotsout(indexint,6,auxi) = (wm(i)*auxjh2o2(ind+1) + |
---|
| 780 | $ wp(i)*auxjh2o2(ind)) * cortemp(i) |
---|
[635] | 781 | enddo |
---|
[658] | 782 | !Only if chemthermod.ge.2 |
---|
| 783 | if(chemthermod.ge.2) then |
---|
[1266] | 784 | do i=1,nlayer |
---|
| 785 | auxi = nlayer-i+1 |
---|
[658] | 786 | ind=auxind(i) |
---|
| 787 | !NO interpolated coefficient |
---|
| 788 | jfotsout(indexint,10,auxi) = (wm(i)*auxjno(ind+1) + |
---|
| 789 | $ wp(i)*auxjno(ind)) * cortemp(i) |
---|
| 790 | !NO2 interpolated coefficient |
---|
| 791 | jfotsout(indexint,13,auxi) = (wm(i)*auxjno2(ind+1) + |
---|
| 792 | $ wp(i)*auxjno2(ind)) * cortemp(i) |
---|
[635] | 793 | enddo |
---|
[658] | 794 | endif |
---|
[635] | 795 | |
---|
[658] | 796 | c End of interval 32 |
---|
[635] | 797 | |
---|
| 798 | |
---|
[658] | 799 | ccccccccccccccccccccccccccccccc |
---|
| 800 | c 210.1-231.0nm (int 33) |
---|
| 801 | c |
---|
| 802 | c Absorption by: |
---|
| 803 | c O2, H2O2, NO2 |
---|
| 804 | ccccccccccccccccccccccccccccccc |
---|
[635] | 805 | |
---|
[658] | 806 | c Input atmospheric column |
---|
[635] | 807 | |
---|
[38] | 808 | indexint=33 |
---|
[1266] | 809 | do i=1,nlayer |
---|
| 810 | auxcolinp(nlayer-i+1) = o2colx(i) + h2o2colx(i) + no2colx(i) |
---|
[635] | 811 | end do |
---|
| 812 | |
---|
[658] | 813 | c Interpolation |
---|
[635] | 814 | |
---|
| 815 | do i=1,nz2 |
---|
[658] | 816 | auxi = nz2-i+1 |
---|
| 817 | !O2 tabulated coefficient |
---|
| 818 | auxjo2(i) = jabsifotsintpar(auxi,2,indexint) |
---|
| 819 | !H2O2 tabulated coefficient |
---|
| 820 | auxjh2o2(i) = jabsifotsintpar(auxi,6,indexint) |
---|
| 821 | !Tabulated column |
---|
| 822 | auxcoltab(i) = c33(auxi) |
---|
[635] | 823 | enddo |
---|
[658] | 824 | !Only if chemthermod.ge.2 |
---|
| 825 | if(chemthermod.ge.2) then |
---|
| 826 | do i=1,nz2 |
---|
| 827 | !NO2 tabulated coefficient |
---|
| 828 | auxjno2(i) = jabsifotsintpar(nz2-i+1,13,indexint) |
---|
| 829 | enddo |
---|
| 830 | endif |
---|
| 831 | call interfast |
---|
[1266] | 832 | $ (wm,wp,auxind,auxcolinp,nlayer,auxcoltab,nz2,limdown,limup) |
---|
| 833 | do i=1,nlayer |
---|
[658] | 834 | ind=auxind(i) |
---|
[1266] | 835 | auxi = nlayer-i+1 |
---|
[658] | 836 | !O2 interpolated coefficient |
---|
| 837 | jfotsout(indexint,2,auxi) = wm(i)*auxjo2(ind+1) + |
---|
| 838 | $ wp(i)*auxjo2(ind) |
---|
| 839 | !H2O2 interpolated coefficient |
---|
| 840 | jfotsout(indexint,6,auxi) = wm(i)*auxjh2o2(ind+1) + |
---|
| 841 | $ wp(i)*auxjh2o2(ind) |
---|
[635] | 842 | enddo |
---|
[658] | 843 | !Only if chemthermod.ge.2 |
---|
[635] | 844 | if(chemthermod.ge.2) then |
---|
[1266] | 845 | do i=1,nlayer |
---|
[658] | 846 | ind=auxind(i) |
---|
| 847 | !NO2 interpolated coefficient |
---|
[1266] | 848 | jfotsout(indexint,13,nlayer-i+1) = wm(i)*auxjno2(ind+1) + |
---|
[658] | 849 | $ wp(i)*auxjno2(ind) |
---|
[38] | 850 | enddo |
---|
[658] | 851 | endif |
---|
[38] | 852 | |
---|
[658] | 853 | c End of interval 33 |
---|
[635] | 854 | |
---|
| 855 | |
---|
[658] | 856 | ccccccccccccccccccccccccccccccc |
---|
| 857 | c 231.1-240.0nm (int 34) |
---|
| 858 | c |
---|
| 859 | c Absorption by: |
---|
| 860 | c O2, H2O2, O3, NO2 |
---|
| 861 | ccccccccccccccccccccccccccccccc |
---|
[635] | 862 | |
---|
[658] | 863 | c Input atmospheric column |
---|
| 864 | |
---|
[635] | 865 | indexint=34 |
---|
[1266] | 866 | do i=1,nlayer |
---|
| 867 | auxcolinp(nlayer-i+1) = h2o2colx(i) + o2colx(i) + o3colx(i) + |
---|
[635] | 868 | $ no2colx(i) |
---|
| 869 | end do |
---|
| 870 | |
---|
[658] | 871 | c Interpolation |
---|
[635] | 872 | |
---|
| 873 | do i=1,nz2 |
---|
[658] | 874 | auxi = nz2-i+1 |
---|
| 875 | !O2 tabulated coefficient |
---|
| 876 | auxjo2(i) = jabsifotsintpar(auxi,2,indexint) |
---|
| 877 | !H2O2 tabulated coefficient |
---|
| 878 | auxjh2o2(i) = jabsifotsintpar(auxi,6,indexint) |
---|
| 879 | !O3 tabulated coefficient |
---|
| 880 | auxjo3(i) = jabsifotsintpar(auxi,7,indexint) |
---|
| 881 | !Tabulated column |
---|
| 882 | auxcoltab(i) = c34(nz2-i+1) |
---|
[635] | 883 | enddo |
---|
[658] | 884 | !Only if chemthermod.ge.2 |
---|
| 885 | if(chemthermod.ge.2) then |
---|
| 886 | do i=1,nz2 |
---|
| 887 | !NO2 tabulated coefficient |
---|
| 888 | auxjno2(i) = jabsifotsintpar(nz2-i+1,13,indexint) |
---|
| 889 | enddo |
---|
| 890 | endif |
---|
| 891 | call interfast |
---|
[1266] | 892 | $ (wm,wp,auxind,auxcolinp,nlayer,auxcoltab,nz2,limdown,limup) |
---|
| 893 | do i=1,nlayer |
---|
[658] | 894 | ind=auxind(i) |
---|
[1266] | 895 | auxi = nlayer-i+1 |
---|
[658] | 896 | !O2 interpolated coefficient |
---|
| 897 | jfotsout(indexint,2,auxi) = wm(i)*auxjo2(ind+1) + |
---|
| 898 | $ wp(i)*auxjo2(ind) |
---|
| 899 | !H2O2 interpolated coefficient |
---|
| 900 | jfotsout(indexint,6,auxi) = wm(i)*auxjh2o2(ind+1) + |
---|
| 901 | $ wp(i)*auxjh2o2(ind) |
---|
| 902 | !O3 interpolated coefficient |
---|
| 903 | jfotsout(indexint,7,auxi) = wm(i)*auxjo3(ind+1) + |
---|
| 904 | $ wp(i)*auxjo3(ind) |
---|
[635] | 905 | enddo |
---|
[658] | 906 | !Only if chemthermod.ge.2 |
---|
| 907 | if(chemthermod.ge.2) then |
---|
[1266] | 908 | do i=1,nlayer |
---|
[658] | 909 | ind=auxind(i) |
---|
| 910 | !NO2 interpolated coefficient |
---|
[1266] | 911 | jfotsout(indexint,13,nlayer-i+1) = wm(i)*auxjno2(ind+1) + |
---|
[658] | 912 | $ wp(i)*auxjno2(ind) |
---|
[635] | 913 | enddo |
---|
[658] | 914 | endif |
---|
[635] | 915 | |
---|
[658] | 916 | c End of interval 34 |
---|
[635] | 917 | |
---|
| 918 | |
---|
[658] | 919 | ccccccccccccccccccccccccccccccc |
---|
| 920 | c 240.1-337.7nm (int 35) |
---|
| 921 | c |
---|
| 922 | c Absorption by: |
---|
| 923 | c H2O2, O3, NO2 |
---|
| 924 | ccccccccccccccccccccccccccccccc |
---|
[635] | 925 | |
---|
[658] | 926 | c Input atmospheric column |
---|
[635] | 927 | |
---|
| 928 | indexint=35 |
---|
[1266] | 929 | do i=1,nlayer |
---|
| 930 | auxcolinp(nlayer-i+1) = h2o2colx(i) + o3colx(i) + no2colx(i) |
---|
[635] | 931 | end do |
---|
[658] | 932 | |
---|
| 933 | c Interpolation |
---|
| 934 | |
---|
[635] | 935 | do i=1,nz2 |
---|
[658] | 936 | auxi = nz2-i+1 |
---|
| 937 | !H2O2 tabulated coefficient |
---|
| 938 | auxjh2o2(i) = jabsifotsintpar(auxi,6,indexint) |
---|
| 939 | !O3 tabulated coefficient |
---|
| 940 | auxjo3(i) = jabsifotsintpar(auxi,7,indexint) |
---|
| 941 | !Tabulated column |
---|
| 942 | auxcoltab(i) = c35(auxi) |
---|
[635] | 943 | enddo |
---|
[658] | 944 | !Only if chemthermod.ge.2 |
---|
| 945 | if(chemthermod.ge.2) then |
---|
| 946 | do i=1,nz2 |
---|
| 947 | !NO2 tabulated coefficient |
---|
| 948 | auxjno2(i) = jabsifotsintpar(nz2-i+1,13,indexint) |
---|
| 949 | enddo |
---|
| 950 | endif |
---|
| 951 | call interfast |
---|
[1266] | 952 | $ (wm,wp,auxind,auxcolinp,nlayer,auxcoltab,nz2,limdown,limup) |
---|
| 953 | do i=1,nlayer |
---|
[658] | 954 | ind=auxind(i) |
---|
[1266] | 955 | auxi = nlayer-i+1 |
---|
[658] | 956 | !H2O2 interpolated coefficient |
---|
| 957 | jfotsout(indexint,6,auxi) = wm(i)*auxjh2o2(ind+1) + |
---|
| 958 | $ wp(i)*auxjh2o2(ind) |
---|
| 959 | !O3 interpolated coefficient |
---|
| 960 | jfotsout(indexint,7,auxi) = wm(i)*auxjo3(ind+1) + |
---|
| 961 | $ wp(i)*auxjo3(ind) |
---|
[635] | 962 | enddo |
---|
[658] | 963 | if(chemthermod.ge.2) then |
---|
[1266] | 964 | do i=1,nlayer |
---|
[658] | 965 | ind=auxind(i) |
---|
| 966 | !NO2 interpolated coefficient |
---|
[1266] | 967 | jfotsout(indexint,13,nlayer-i+1) = wm(i)*auxjno2(ind+1) + |
---|
[658] | 968 | $ wp(i)*auxjno2(ind) |
---|
[635] | 969 | enddo |
---|
[658] | 970 | endif |
---|
[635] | 971 | |
---|
[658] | 972 | c End of interval 35 |
---|
[635] | 973 | |
---|
[658] | 974 | ccccccccccccccccccccccccccccccc |
---|
| 975 | c 337.8-800.0 nm (int 36) |
---|
| 976 | c |
---|
| 977 | c Absorption by: |
---|
| 978 | c O3, NO2 |
---|
| 979 | ccccccccccccccccccccccccccccccc |
---|
[635] | 980 | |
---|
[658] | 981 | c Input atmospheric column |
---|
[635] | 982 | |
---|
[658] | 983 | indexint=36 |
---|
[1266] | 984 | do i=1,nlayer |
---|
| 985 | auxcolinp(nlayer-i+1) = o3colx(i) + no2colx(i) |
---|
[658] | 986 | end do |
---|
[635] | 987 | |
---|
[658] | 988 | c Interpolation |
---|
[635] | 989 | |
---|
[658] | 990 | do i=1,nz2 |
---|
| 991 | auxi = nz2-i+1 |
---|
| 992 | !O3 tabulated coefficient |
---|
| 993 | auxjo3(i) = jabsifotsintpar(auxi,7,indexint) |
---|
| 994 | !Tabulated column |
---|
| 995 | auxcoltab(i) = c36(auxi) |
---|
| 996 | enddo |
---|
| 997 | !Only if chemthermod.ge.2 |
---|
| 998 | if(chemthermod.ge.2) then |
---|
[635] | 999 | do i=1,nz2 |
---|
[658] | 1000 | !NO2 tabulated coefficient |
---|
| 1001 | auxjno2(i) = jabsifotsintpar(nz2-i+1,13,indexint) |
---|
[635] | 1002 | enddo |
---|
[658] | 1003 | endif |
---|
| 1004 | call interfast |
---|
[1266] | 1005 | $ (wm,wp,auxind,auxcolinp,nlayer,auxcoltab,nz2,limdown,limup) |
---|
| 1006 | do i=1,nlayer |
---|
[658] | 1007 | ind=auxind(i) |
---|
| 1008 | !O3 interpolated coefficient |
---|
[1266] | 1009 | jfotsout(indexint,7,nlayer-i+1) = wm(i)*auxjo3(ind+1) + |
---|
[658] | 1010 | $ wp(i)*auxjo3(ind) |
---|
| 1011 | enddo |
---|
| 1012 | !Only if chemthermod.ge.2 |
---|
| 1013 | if(chemthermod.ge.2) then |
---|
[1266] | 1014 | do i=1,nlayer |
---|
[658] | 1015 | ind=auxind(i) |
---|
| 1016 | !NO2 interpolated coefficient |
---|
[1266] | 1017 | jfotsout(indexint,13,nlayer-i+1) = wm(i)*auxjno2(ind+1) + |
---|
[658] | 1018 | $ wp(i)*auxjno2(ind) |
---|
[635] | 1019 | enddo |
---|
| 1020 | endif |
---|
| 1021 | |
---|
[658] | 1022 | c End of interval 36 |
---|
[635] | 1023 | |
---|
[658] | 1024 | c End of interpolation to obtain photoabsorption rates |
---|
[635] | 1025 | |
---|
| 1026 | |
---|
[38] | 1027 | return |
---|
| 1028 | |
---|
| 1029 | end |
---|
| 1030 | |
---|
| 1031 | |
---|
| 1032 | |
---|
[635] | 1033 | c********************************************************************** |
---|
| 1034 | c********************************************************************** |
---|
[38] | 1035 | |
---|
[1266] | 1036 | subroutine column(ig,nlayer,chemthermod,rm,nesptherm,tx,iz,zenit, |
---|
[635] | 1037 | $ co2colx,o2colx,o3pcolx,h2colx,h2ocolx,h2o2colx,o3colx, |
---|
| 1038 | $ n2colx,ncolx,nocolx,cocolx,hcolx,no2colx) |
---|
[38] | 1039 | |
---|
[635] | 1040 | c nov 2002 fgg first version |
---|
[38] | 1041 | |
---|
[635] | 1042 | c********************************************************************** |
---|
[38] | 1043 | |
---|
[1036] | 1044 | use tracer_mod, only: igcm_o, igcm_co2, igcm_o2, igcm_h2, |
---|
| 1045 | & igcm_h2o_vap, igcm_h2o2, igcm_co, igcm_h, |
---|
| 1046 | & igcm_o3, igcm_n2, igcm_n, igcm_no, igcm_no2, |
---|
| 1047 | & mmol |
---|
[1266] | 1048 | use param_v4_h, only: radio,gg,masa,kboltzman,n_avog |
---|
| 1049 | |
---|
[635] | 1050 | implicit none |
---|
[38] | 1051 | |
---|
| 1052 | |
---|
[635] | 1053 | c common variables and constants |
---|
| 1054 | include 'callkeys.h' |
---|
[38] | 1055 | |
---|
| 1056 | |
---|
| 1057 | |
---|
[635] | 1058 | c local parameters and variables |
---|
[38] | 1059 | |
---|
| 1060 | |
---|
| 1061 | |
---|
[635] | 1062 | c input and output variables |
---|
[38] | 1063 | |
---|
[1266] | 1064 | integer ig,nlayer |
---|
[635] | 1065 | integer chemthermod |
---|
| 1066 | integer nesptherm !# of species undergoing chemistry, input |
---|
[1266] | 1067 | real rm(nlayer,nesptherm) !densities (cm-3), input |
---|
| 1068 | real tx(nlayer) !temperature profile, input |
---|
| 1069 | real iz(nlayer+1) !height profile, input |
---|
[635] | 1070 | real zenit !SZA, input |
---|
[1266] | 1071 | real co2colx(nlayer) !column density of CO2 (cm^-2), output |
---|
| 1072 | real o2colx(nlayer) !column density of O2(cm^-2), output |
---|
| 1073 | real o3pcolx(nlayer) !column density of O(3P)(cm^-2), output |
---|
| 1074 | real h2colx(nlayer) !H2 column density (cm-2), output |
---|
| 1075 | real h2ocolx(nlayer) !H2O column density (cm-2), output |
---|
| 1076 | real h2o2colx(nlayer) !column density of H2O2(cm^-2), output |
---|
| 1077 | real o3colx(nlayer) !O3 column density (cm-2), output |
---|
| 1078 | real n2colx(nlayer) !N2 column density (cm-2), output |
---|
| 1079 | real ncolx(nlayer) !N column density (cm-2), output |
---|
| 1080 | real nocolx(nlayer) !NO column density (cm-2), output |
---|
| 1081 | real cocolx(nlayer) !CO column density (cm-2), output |
---|
| 1082 | real hcolx(nlayer) !H column density (cm-2), output |
---|
| 1083 | real no2colx(nlayer) !NO2 column density (cm-2), output |
---|
[38] | 1084 | |
---|
[1266] | 1085 | |
---|
[635] | 1086 | c local variables |
---|
[38] | 1087 | |
---|
[635] | 1088 | real xx |
---|
[1266] | 1089 | real grav(nlayer) |
---|
[635] | 1090 | real Hco2,Ho3p,Ho2,Hh2,Hh2o,Hh2o2 |
---|
| 1091 | real Ho3,Hn2,Hn,Hno,Hco,Hh,Hno2 |
---|
[38] | 1092 | |
---|
[1266] | 1093 | real co2x(nlayer) |
---|
| 1094 | real o2x(nlayer) |
---|
| 1095 | real o3px(nlayer) |
---|
| 1096 | real cox(nlayer) |
---|
| 1097 | real hx(nlayer) |
---|
| 1098 | real h2x(nlayer) |
---|
| 1099 | real h2ox(nlayer) |
---|
| 1100 | real h2o2x(nlayer) |
---|
| 1101 | real o3x(nlayer) |
---|
| 1102 | real n2x(nlayer) |
---|
| 1103 | real nx(nlayer) |
---|
| 1104 | real nox(nlayer) |
---|
| 1105 | real no2x(nlayer) |
---|
[38] | 1106 | |
---|
[635] | 1107 | integer i,j,k,icol,indexint !indexes |
---|
[38] | 1108 | |
---|
[635] | 1109 | c variables for optical path calculation |
---|
[38] | 1110 | |
---|
[635] | 1111 | integer nz3 |
---|
| 1112 | ! parameter (nz3=nz*2) |
---|
| 1113 | |
---|
| 1114 | integer jj |
---|
[1266] | 1115 | real*8 esp(nlayer*2) |
---|
| 1116 | real*8 ilayesp(nlayer*2) |
---|
| 1117 | real*8 szalayesp(nlayer*2) |
---|
[635] | 1118 | integer nlayesp |
---|
| 1119 | real*8 zmini |
---|
| 1120 | real*8 depth |
---|
| 1121 | real*8 espco2, espo2, espo3p, esph2, esph2o, esph2o2,espo3 |
---|
| 1122 | real*8 espn2,espn,espno,espco,esph,espno2 |
---|
| 1123 | real*8 rcmnz, rcmmini |
---|
| 1124 | real*8 szadeg |
---|
| 1125 | |
---|
| 1126 | |
---|
| 1127 | ! Tracer indexes in the thermospheric chemistry: |
---|
| 1128 | !!! ATTENTION. These values have to be identical to those in chemthermos.F90 |
---|
| 1129 | !!! If the values are changed there, the same has to be done here !!! |
---|
| 1130 | integer,parameter :: i_co2=1 |
---|
| 1131 | integer,parameter :: i_o2=2 |
---|
| 1132 | integer,parameter :: i_o=3 |
---|
| 1133 | integer,parameter :: i_co=4 |
---|
| 1134 | integer,parameter :: i_h=5 |
---|
| 1135 | integer,parameter :: i_h2=8 |
---|
| 1136 | integer,parameter :: i_h2o=9 |
---|
| 1137 | integer,parameter :: i_h2o2=10 |
---|
| 1138 | integer,parameter :: i_o3=12 |
---|
| 1139 | integer,parameter :: i_n2=13 |
---|
| 1140 | integer,parameter :: i_n=14 |
---|
| 1141 | integer,parameter :: i_no=15 |
---|
| 1142 | integer,parameter :: i_no2=17 |
---|
| 1143 | |
---|
| 1144 | |
---|
| 1145 | c*************************PROGRAM STARTS******************************* |
---|
| 1146 | |
---|
[1266] | 1147 | nz3 = nlayer*2 |
---|
| 1148 | do i=1,nlayer |
---|
[635] | 1149 | xx = ( radio + iz(i) ) * 1.e5 |
---|
| 1150 | grav(i) = gg * masa /(xx**2) |
---|
| 1151 | end do |
---|
| 1152 | |
---|
| 1153 | !Scale heights |
---|
[1266] | 1154 | xx = kboltzman * tx(nlayer) * n_avog / grav(nlayer) |
---|
[635] | 1155 | Ho3p = xx / mmol(igcm_o) |
---|
| 1156 | Hco2 = xx / mmol(igcm_co2) |
---|
| 1157 | Ho2 = xx / mmol(igcm_o2) |
---|
| 1158 | Hh2 = xx / mmol(igcm_h2) |
---|
| 1159 | Hh2o = xx / mmol(igcm_h2o_vap) |
---|
| 1160 | Hh2o2 = xx / mmol(igcm_h2o2) |
---|
| 1161 | Hco = xx / mmol(igcm_co) |
---|
| 1162 | Hh = xx / mmol(igcm_h) |
---|
| 1163 | !Only if O3 chem. required |
---|
| 1164 | if(chemthermod.ge.1) |
---|
| 1165 | $ Ho3 = xx / mmol(igcm_o3) |
---|
| 1166 | !Only if N or ion chem. |
---|
| 1167 | if(chemthermod.ge.2) then |
---|
| 1168 | Hn2 = xx / mmol(igcm_n2) |
---|
| 1169 | Hn = xx / mmol(igcm_n) |
---|
| 1170 | Hno = xx / mmol(igcm_no) |
---|
| 1171 | Hno2 = xx / mmol(igcm_no2) |
---|
| 1172 | endif |
---|
[658] | 1173 | ! first loop in altitude : initialisation |
---|
[1266] | 1174 | do i=nlayer,1,-1 |
---|
[635] | 1175 | !Column initialisation |
---|
| 1176 | co2colx(i) = 0. |
---|
| 1177 | o2colx(i) = 0. |
---|
| 1178 | o3pcolx(i) = 0. |
---|
| 1179 | h2colx(i) = 0. |
---|
| 1180 | h2ocolx(i) = 0. |
---|
| 1181 | h2o2colx(i) = 0. |
---|
| 1182 | o3colx(i) = 0. |
---|
| 1183 | n2colx(i) = 0. |
---|
| 1184 | ncolx(i) = 0. |
---|
| 1185 | nocolx(i) = 0. |
---|
| 1186 | cocolx(i) = 0. |
---|
| 1187 | hcolx(i) = 0. |
---|
| 1188 | no2colx(i) = 0. |
---|
| 1189 | !Densities |
---|
| 1190 | co2x(i) = rm(i,i_co2) |
---|
| 1191 | o2x(i) = rm(i,i_o2) |
---|
| 1192 | o3px(i) = rm(i,i_o) |
---|
| 1193 | h2x(i) = rm(i,i_h2) |
---|
| 1194 | h2ox(i) = rm(i,i_h2o) |
---|
| 1195 | h2o2x(i) = rm(i,i_h2o2) |
---|
| 1196 | cox(i) = rm(i,i_co) |
---|
| 1197 | hx(i) = rm(i,i_h) |
---|
| 1198 | !Only if O3 chem. required |
---|
| 1199 | if(chemthermod.ge.1) |
---|
| 1200 | $ o3x(i) = rm(i,i_o3) |
---|
| 1201 | !Only if Nitrogen of ion chemistry requested |
---|
| 1202 | if(chemthermod.ge.2) then |
---|
| 1203 | n2x(i) = rm(i,i_n2) |
---|
| 1204 | nx(i) = rm(i,i_n) |
---|
| 1205 | nox(i) = rm(i,i_no) |
---|
| 1206 | no2x(i) = rm(i,i_no2) |
---|
| 1207 | endif |
---|
[658] | 1208 | enddo |
---|
| 1209 | ! second loop in altitude : column calculations |
---|
[1266] | 1210 | do i=nlayer,1,-1 |
---|
[635] | 1211 | !Routine to calculate the geometrical length of each layer |
---|
[1266] | 1212 | call espesor_optico_A(ig,i,nlayer,zenit,iz(i),nz3,iz,esp, |
---|
| 1213 | $ ilayesp,szalayesp,nlayesp, zmini) |
---|
[635] | 1214 | if(ilayesp(nlayesp).eq.-1) then |
---|
| 1215 | co2colx(i)=1.e25 |
---|
| 1216 | o2colx(i)=1.e25 |
---|
| 1217 | o3pcolx(i)=1.e25 |
---|
| 1218 | h2colx(i)=1.e25 |
---|
| 1219 | h2ocolx(i)=1.e25 |
---|
| 1220 | h2o2colx(i)=1.e25 |
---|
| 1221 | o3colx(i)=1.e25 |
---|
| 1222 | n2colx(i)=1.e25 |
---|
| 1223 | ncolx(i)=1.e25 |
---|
| 1224 | nocolx(i)=1.e25 |
---|
| 1225 | cocolx(i)=1.e25 |
---|
| 1226 | hcolx(i)=1.e25 |
---|
| 1227 | no2colx(i)=1.e25 |
---|
| 1228 | else |
---|
[1266] | 1229 | rcmnz = ( radio + iz(nlayer) ) * 1.e5 |
---|
[635] | 1230 | rcmmini = ( radio + zmini ) * 1.e5 |
---|
| 1231 | !Column calculation taking into account the geometrical depth |
---|
| 1232 | !calculated before |
---|
| 1233 | do j=1,nlayesp |
---|
| 1234 | jj=ilayesp(j) |
---|
| 1235 | !Top layer |
---|
[1266] | 1236 | if(jj.eq.nlayer) then |
---|
[658] | 1237 | if(zenit.le.60.) then |
---|
[1266] | 1238 | o3pcolx(i)=o3pcolx(i)+o3px(nlayer)*Ho3p*esp(j) |
---|
[635] | 1239 | $ *1.e-5 |
---|
[1266] | 1240 | co2colx(i)=co2colx(i)+co2x(nlayer)*Hco2*esp(j) |
---|
[635] | 1241 | $ *1.e-5 |
---|
| 1242 | h2o2colx(i)=h2o2colx(i)+ |
---|
[1266] | 1243 | $ h2o2x(nlayer)*Hh2o2*esp(j)*1.e-5 |
---|
| 1244 | o2colx(i)=o2colx(i)+o2x(nlayer)*Ho2*esp(j) |
---|
[635] | 1245 | $ *1.e-5 |
---|
[1266] | 1246 | h2colx(i)=h2colx(i)+h2x(nlayer)*Hh2*esp(j) |
---|
[635] | 1247 | $ *1.e-5 |
---|
[1266] | 1248 | h2ocolx(i)=h2ocolx(i)+h2ox(nlayer)*Hh2o*esp(j) |
---|
[635] | 1249 | $ *1.e-5 |
---|
[1266] | 1250 | cocolx(i)=cocolx(i)+cox(nlayer)*Hco*esp(j) |
---|
[635] | 1251 | $ *1.e-5 |
---|
[1266] | 1252 | hcolx(i)=hcolx(i)+hx(nlayer)*Hh*esp(j) |
---|
[635] | 1253 | $ *1.e-5 |
---|
| 1254 | !Only if O3 chemistry required |
---|
| 1255 | if(chemthermod.ge.1) o3colx(i)= |
---|
[1266] | 1256 | $ o3colx(i)+o3x(nlayer)*Ho3*esp(j) |
---|
[635] | 1257 | $ *1.e-5 |
---|
| 1258 | !Only if N or ion chemistry requested |
---|
| 1259 | if(chemthermod.ge.2) then |
---|
[1266] | 1260 | n2colx(i)=n2colx(i)+n2x(nlayer)*Hn2*esp(j) |
---|
[635] | 1261 | $ *1.e-5 |
---|
[1266] | 1262 | ncolx(i)=ncolx(i)+nx(nlayer)*Hn*esp(j) |
---|
[635] | 1263 | $ *1.e-5 |
---|
[1266] | 1264 | nocolx(i)=nocolx(i)+nox(nlayer)*Hno*esp(j) |
---|
[635] | 1265 | $ *1.e-5 |
---|
[1266] | 1266 | no2colx(i)=no2colx(i)+no2x(nlayer)*Hno2*esp(j) |
---|
[635] | 1267 | $ *1.e-5 |
---|
| 1268 | endif |
---|
[658] | 1269 | else if(zenit.gt.60.) then |
---|
[635] | 1270 | espco2 =sqrt((rcmnz+Hco2)**2 -rcmmini**2) - esp(j) |
---|
| 1271 | espo2 = sqrt((rcmnz+Ho2)**2 -rcmmini**2) - esp(j) |
---|
| 1272 | espo3p = sqrt((rcmnz+Ho3p)**2 -rcmmini**2)- esp(j) |
---|
| 1273 | esph2 = sqrt((rcmnz+Hh2)**2 -rcmmini**2) - esp(j) |
---|
| 1274 | esph2o = sqrt((rcmnz+Hh2o)**2 -rcmmini**2)- esp(j) |
---|
| 1275 | esph2o2= sqrt((rcmnz+Hh2o2)**2-rcmmini**2)- esp(j) |
---|
| 1276 | espco = sqrt((rcmnz+Hco)**2 -rcmmini**2) - esp(j) |
---|
| 1277 | esph = sqrt((rcmnz+Hh)**2 -rcmmini**2) - esp(j) |
---|
| 1278 | !Only if O3 chemistry required |
---|
| 1279 | if(chemthermod.ge.1) |
---|
| 1280 | $ espo3=sqrt((rcmnz+Ho3)**2-rcmmini**2)-esp(j) |
---|
| 1281 | !Only if N or ion chemistry requested |
---|
| 1282 | if(chemthermod.ge.2) then |
---|
| 1283 | espn2 =sqrt((rcmnz+Hn2)**2-rcmmini**2)-esp(j) |
---|
| 1284 | espn =sqrt((rcmnz+Hn)**2-rcmmini**2) - esp(j) |
---|
| 1285 | espno =sqrt((rcmnz+Hno)**2-rcmmini**2) - esp(j) |
---|
| 1286 | espno2=sqrt((rcmnz+Hno2)**2-rcmmini**2)- esp(j) |
---|
| 1287 | endif |
---|
[1266] | 1288 | co2colx(i) = co2colx(i) + espco2*co2x(nlayer) |
---|
| 1289 | o2colx(i) = o2colx(i) + espo2*o2x(nlayer) |
---|
| 1290 | o3pcolx(i) = o3pcolx(i) + espo3p*o3px(nlayer) |
---|
| 1291 | h2colx(i) = h2colx(i) + esph2*h2x(nlayer) |
---|
| 1292 | h2ocolx(i) = h2ocolx(i) + esph2o*h2ox(nlayer) |
---|
| 1293 | h2o2colx(i)= h2o2colx(i)+ esph2o2*h2o2x(nlayer) |
---|
| 1294 | cocolx(i) = cocolx(i) + espco*cox(nlayer) |
---|
| 1295 | hcolx(i) = hcolx(i) + esph*hx(nlayer) |
---|
[635] | 1296 | !Only if O3 chemistry required |
---|
| 1297 | if(chemthermod.ge.1) |
---|
[1266] | 1298 | $ o3colx(i) = o3colx(i) + espo3*o3x(nlayer) |
---|
[635] | 1299 | !Only if N or ion chemistry requested |
---|
| 1300 | if(chemthermod.ge.2) then |
---|
[1266] | 1301 | n2colx(i) = n2colx(i) + espn2*n2x(nlayer) |
---|
| 1302 | ncolx(i) = ncolx(i) + espn*nx(nlayer) |
---|
| 1303 | nocolx(i) = nocolx(i) + espno*nox(nlayer) |
---|
| 1304 | no2colx(i) = no2colx(i) + espno2*no2x(nlayer) |
---|
[635] | 1305 | endif |
---|
[658] | 1306 | endif !Of if zenit.lt.60 |
---|
[635] | 1307 | !Other layers |
---|
| 1308 | else |
---|
| 1309 | co2colx(i) = co2colx(i) + |
---|
| 1310 | $ esp(j) * (co2x(jj)+co2x(jj+1)) / 2. |
---|
| 1311 | o2colx(i) = o2colx(i) + |
---|
| 1312 | $ esp(j) * (o2x(jj)+o2x(jj+1)) / 2. |
---|
| 1313 | o3pcolx(i) = o3pcolx(i) + |
---|
| 1314 | $ esp(j) * (o3px(jj)+o3px(jj+1)) / 2. |
---|
| 1315 | h2colx(i) = h2colx(i) + |
---|
| 1316 | $ esp(j) * (h2x(jj)+h2x(jj+1)) / 2. |
---|
| 1317 | h2ocolx(i) = h2ocolx(i) + |
---|
| 1318 | $ esp(j) * (h2ox(jj)+h2ox(jj+1)) / 2. |
---|
| 1319 | h2o2colx(i) = h2o2colx(i) + |
---|
| 1320 | $ esp(j) * (h2o2x(jj)+h2o2x(jj+1)) / 2. |
---|
| 1321 | cocolx(i) = cocolx(i) + |
---|
| 1322 | $ esp(j) * (cox(jj)+cox(jj+1)) / 2. |
---|
| 1323 | hcolx(i) = hcolx(i) + |
---|
| 1324 | $ esp(j) * (hx(jj)+hx(jj+1)) / 2. |
---|
| 1325 | !Only if O3 chemistry required |
---|
| 1326 | if(chemthermod.ge.1) |
---|
| 1327 | $ o3colx(i) = o3colx(i) + |
---|
| 1328 | $ esp(j) * (o3x(jj)+o3x(jj+1)) / 2. |
---|
| 1329 | !Only if N or ion chemistry requested |
---|
| 1330 | if(chemthermod.ge.2) then |
---|
| 1331 | n2colx(i) = n2colx(i) + |
---|
| 1332 | $ esp(j) * (n2x(jj)+n2x(jj+1)) / 2. |
---|
| 1333 | ncolx(i) = ncolx(i) + |
---|
| 1334 | $ esp(j) * (nx(jj)+nx(jj+1)) / 2. |
---|
| 1335 | nocolx(i) = nocolx(i) + |
---|
| 1336 | $ esp(j) * (nox(jj)+nox(jj+1)) / 2. |
---|
| 1337 | no2colx(i) = no2colx(i) + |
---|
| 1338 | $ esp(j) * (no2x(jj)+no2x(jj+1)) / 2. |
---|
| 1339 | endif |
---|
[1266] | 1340 | endif !Of if jj.eq.nlayer |
---|
[635] | 1341 | end do !Of do j=1,nlayesp |
---|
| 1342 | endif !Of ilayesp(nlayesp).eq.-1 |
---|
[1266] | 1343 | enddo !Of do i=nlayer,1,-1 |
---|
[1260] | 1344 | |
---|
| 1345 | |
---|
[635] | 1346 | return |
---|
| 1347 | |
---|
| 1348 | |
---|
| 1349 | end |
---|
| 1350 | |
---|
| 1351 | |
---|
| 1352 | c********************************************************************** |
---|
| 1353 | c********************************************************************** |
---|
[658] | 1354 | |
---|
| 1355 | subroutine interfast(wm,wp,nm,p,nlayer,pin,nl,limdown,limup) |
---|
[635] | 1356 | C |
---|
| 1357 | C subroutine to perform linear interpolation in pressure from 1D profile |
---|
| 1358 | C escin(nl) sampled on pressure grid pin(nl) to profile |
---|
| 1359 | C escout(nlayer) on pressure grid p(nlayer). |
---|
| 1360 | C |
---|
[658] | 1361 | real*8 wm(nlayer),wp(nlayer),p(nlayer) |
---|
| 1362 | integer nm(nlayer) |
---|
| 1363 | real*8 pin(nl) |
---|
| 1364 | real*8 limup,limdown |
---|
| 1365 | integer nl,nlayer,n1,n,np,nini |
---|
| 1366 | nini=1 |
---|
| 1367 | do n1=1,nlayer |
---|
[635] | 1368 | if(p(n1) .gt. limup .or. p(n1) .lt. limdown) then |
---|
[658] | 1369 | wm(n1) = 0.d0 |
---|
| 1370 | wp(n1) = 0.d0 |
---|
[635] | 1371 | else |
---|
[658] | 1372 | do n = nini,nl-1 |
---|
[635] | 1373 | if (p(n1).ge.pin(n).and.p(n1).le.pin(n+1)) then |
---|
[658] | 1374 | nm(n1)=n |
---|
[635] | 1375 | np=n+1 |
---|
[658] | 1376 | wm(n1)=abs(pin(n)-p(n1))/(pin(np)-pin(n)) |
---|
| 1377 | wp(n1)=1.d0 - wm(n1) |
---|
| 1378 | nini = n |
---|
| 1379 | exit |
---|
[635] | 1380 | endif |
---|
| 1381 | enddo |
---|
| 1382 | endif |
---|
[658] | 1383 | enddo |
---|
[635] | 1384 | return |
---|
| 1385 | end |
---|
| 1386 | |
---|
| 1387 | |
---|
| 1388 | c********************************************************************** |
---|
| 1389 | c********************************************************************** |
---|
| 1390 | |
---|
[1266] | 1391 | subroutine espesor_optico_A (ig,capa,nlayer, szadeg,z, |
---|
[635] | 1392 | @ nz3,iz,esp,ilayesp,szalayesp,nlayesp, zmini) |
---|
| 1393 | |
---|
| 1394 | c fgg nov 03 Adaptation to Martian model |
---|
| 1395 | c malv jul 03 Corrected z grid. Split in alt & frec codes |
---|
| 1396 | c fgg feb 03 first version |
---|
| 1397 | ************************************************************************* |
---|
| 1398 | |
---|
[1266] | 1399 | use param_v4_h, only: radio |
---|
[635] | 1400 | implicit none |
---|
| 1401 | |
---|
| 1402 | c arguments |
---|
| 1403 | |
---|
| 1404 | real szadeg ! I. SZA [rad] |
---|
| 1405 | real z ! I. altitude of interest [km] |
---|
[1266] | 1406 | integer nz3,ig,nlayer ! I. dimension of esp, ylayesp, etc... |
---|
| 1407 | ! (=2*nlayer= max# of layers in ray path) |
---|
| 1408 | real iz(nlayer+1) ! I. Altitude of each layer |
---|
[635] | 1409 | real*8 esp(nz3) ! O. layer widths after geometrically |
---|
| 1410 | ! amplified; in [cm] except at TOA |
---|
| 1411 | ! where an auxiliary value is used |
---|
| 1412 | real*8 ilayesp(nz3) ! O. Indexes of layers along ray path |
---|
| 1413 | real*8 szalayesp(nz3) ! O. SZA [deg] " " " |
---|
| 1414 | integer nlayesp |
---|
| 1415 | ! real*8 nlayesp ! O. # layers along ray path at this z |
---|
| 1416 | real*8 zmini ! O. Minimum altitud of ray path [km] |
---|
| 1417 | |
---|
| 1418 | |
---|
| 1419 | c local variables and constants |
---|
| 1420 | |
---|
| 1421 | integer j,i,capa |
---|
| 1422 | integer jmin ! index of min.altitude along ray path |
---|
| 1423 | real*8 szarad ! SZA [deg] |
---|
| 1424 | real*8 zz |
---|
[1266] | 1425 | real*8 diz(nlayer+1) |
---|
[635] | 1426 | real*8 rkmnz ! distance TOA to center of Planet [km] |
---|
| 1427 | real*8 rkmmini ! distance zmini to center of P [km] |
---|
| 1428 | real*8 rkmj ! intermediate distance to C of P [km] |
---|
| 1429 | c external function |
---|
| 1430 | external grid_R8 ! Returns index of layer containing the altitude |
---|
| 1431 | ! of interest, z; for example, if |
---|
| 1432 | ! zkm(i)=z or zkm(i)<z<zkm(i+1) => grid(z)=i |
---|
| 1433 | integer grid_R8 |
---|
| 1434 | |
---|
| 1435 | ************************************************************************* |
---|
| 1436 | szarad = dble(szadeg)*3.141592d0/180.d0 |
---|
| 1437 | zz=dble(z) |
---|
[1266] | 1438 | do i=1,nlayer |
---|
[635] | 1439 | diz(i)=dble(iz(i)) |
---|
| 1440 | enddo |
---|
| 1441 | do j=1,nz3 |
---|
| 1442 | esp(j) = 0.d0 |
---|
| 1443 | szalayesp(j) = 777.d0 |
---|
| 1444 | ilayesp(j) = 0 |
---|
| 1445 | enddo |
---|
| 1446 | nlayesp = 0 |
---|
| 1447 | |
---|
| 1448 | ! First case: szadeg<60 |
---|
| 1449 | ! The optical thickness will be given by 1/cos(sza) |
---|
| 1450 | ! We deal with 2 different regions: |
---|
| 1451 | ! 1: First, all layers between z and ztop ("upper part of ray") |
---|
| 1452 | ! 2: Second, the layer at ztop |
---|
| 1453 | if(szadeg.lt.60.d0) then |
---|
| 1454 | |
---|
| 1455 | zmini = zz |
---|
[1266] | 1456 | if(abs(zz-diz(nlayer)).lt.1.d-3) goto 1357 |
---|
[635] | 1457 | ! 1st Zone: Upper part of ray |
---|
| 1458 | ! |
---|
[1266] | 1459 | do j=grid_R8(zz,diz,nlayer),nlayer-1 |
---|
[635] | 1460 | nlayesp = nlayesp + 1 |
---|
| 1461 | ilayesp(nlayesp) = j |
---|
| 1462 | esp(nlayesp) = (diz(j+1)-diz(j)) / cos(szarad) ! [km] |
---|
| 1463 | esp(nlayesp) = esp(nlayesp) * 1.d5 ! [cm] |
---|
| 1464 | szalayesp(nlayesp) = szadeg |
---|
| 1465 | end do |
---|
| 1466 | |
---|
| 1467 | ! |
---|
| 1468 | ! 2nd Zone: Top layer |
---|
| 1469 | 1357 continue |
---|
| 1470 | nlayesp = nlayesp + 1 |
---|
[1266] | 1471 | ilayesp(nlayesp) = nlayer |
---|
[635] | 1472 | esp(nlayesp) = 1.d0 / cos(szarad) ! aux. non-dimens. factor |
---|
| 1473 | szalayesp(nlayesp) = szadeg |
---|
| 1474 | |
---|
| 1475 | |
---|
| 1476 | ! Second case: 60 < szadeg < 90 |
---|
| 1477 | ! The optical thickness is evaluated. |
---|
| 1478 | ! (the magnitude of the effect of not using cos(sza) is 3.e-5 |
---|
| 1479 | ! for z=60km & sza=30, and 5e-4 for z=60km & sza=60, approximately) |
---|
| 1480 | ! We deal with 2 different regions: |
---|
| 1481 | ! 1: First, all layers between z and ztop ("upper part of ray") |
---|
| 1482 | ! 2: Second, the layer at ztop ("uppermost layer") |
---|
| 1483 | else if(szadeg.le.90.d0.and.szadeg.ge.60.d0) then |
---|
| 1484 | |
---|
| 1485 | zmini=(radio+zz)*sin(szarad)-radio |
---|
| 1486 | rkmmini = radio + zmini |
---|
| 1487 | |
---|
[1266] | 1488 | if(abs(zz-diz(nlayer)).lt.1.d-4) goto 1470 |
---|
[635] | 1489 | |
---|
| 1490 | ! 1st Zone: Upper part of ray |
---|
| 1491 | ! |
---|
[1266] | 1492 | do j=grid_R8(zz,diz,nlayer),nlayer-1 |
---|
[635] | 1493 | nlayesp = nlayesp + 1 |
---|
| 1494 | ilayesp(nlayesp) = j |
---|
| 1495 | esp(nlayesp) = |
---|
| 1496 | # sqrt( (radio+diz(j+1))**2 - rkmmini**2 ) - |
---|
| 1497 | # sqrt( (radio+diz(j))**2 - rkmmini**2 ) ! [km] |
---|
| 1498 | esp(nlayesp) = esp(nlayesp) * 1.d5 ! [cm] |
---|
| 1499 | rkmj = radio+diz(j) |
---|
| 1500 | szalayesp(nlayesp) = asin( rkmmini/rkmj ) ! [rad] |
---|
| 1501 | szalayesp(nlayesp) = szalayesp(nlayesp) * 180.d0/3.141592 ! [deg] |
---|
| 1502 | end do |
---|
| 1503 | 1470 continue |
---|
| 1504 | ! 2nd Zone: Uppermost layer of ray. |
---|
| 1505 | ! |
---|
| 1506 | nlayesp = nlayesp + 1 |
---|
[1266] | 1507 | ilayesp(nlayesp) = nlayer |
---|
| 1508 | rkmnz = radio+diz(nlayer) |
---|
[635] | 1509 | esp(nlayesp) = sqrt( rkmnz**2 - rkmmini**2 ) ! aux.factor[km] |
---|
| 1510 | esp(nlayesp) = esp(nlayesp) * 1.d5 ! aux.f. [cm] |
---|
| 1511 | szalayesp(nlayesp) = asin( rkmmini/rkmnz ) ! [rad] |
---|
| 1512 | szalayesp(nlayesp) = szalayesp(nlayesp) * 180.d0/3.141592! [deg] |
---|
| 1513 | |
---|
| 1514 | |
---|
| 1515 | ! Third case: szadeg > 90 |
---|
| 1516 | ! The optical thickness is evaluated. |
---|
| 1517 | ! We deal with 5 different regions: |
---|
| 1518 | ! 1: all layers between z and ztop ("upper part of ray") |
---|
| 1519 | ! 2: the layer at ztop ("uppermost layer") |
---|
| 1520 | ! 3: the lowest layer, at zmini |
---|
| 1521 | ! 4: the layers increasing from zmini to z (here SZA<90) |
---|
| 1522 | ! 5: the layers decreasing from z to zmini (here SZA>90) |
---|
| 1523 | else if(szadeg.gt.90.d0) then |
---|
| 1524 | |
---|
| 1525 | zmini=(radio+zz)*sin(szarad)-radio |
---|
[1260] | 1526 | !zmini should be lower than zz, as SZA<90. However, in situations |
---|
| 1527 | !where SZA is very close to 90, rounding errors can make zmini |
---|
| 1528 | !slightly higher than zz, causing problems in the determination |
---|
| 1529 | !of the jmin index. A correction is implemented in the determination |
---|
| 1530 | !of jmin, some lines below |
---|
[635] | 1531 | rkmmini = radio + zmini |
---|
| 1532 | |
---|
| 1533 | if(zmini.lt.diz(1)) then ! Can see the sun? No => esp(j)=inft |
---|
| 1534 | nlayesp = nlayesp + 1 |
---|
| 1535 | ilayesp(nlayesp) = - 1 ! Value to mark "no sun on view" |
---|
| 1536 | ! esp(nlayesp) = 1.e30 |
---|
| 1537 | |
---|
| 1538 | else |
---|
[1266] | 1539 | jmin=grid_R8(zmini,diz,nlayer)+1 |
---|
[1260] | 1540 | !Correction for possible rounding errors when SZA very close |
---|
| 1541 | !to 90 degrees |
---|
[1266] | 1542 | if(jmin.gt.grid_R8(zz,diz,nlayer)) then |
---|
[1260] | 1543 | write(*,*)'jthermcalc warning: possible rounding error' |
---|
| 1544 | write(*,*)'point,sza,layer:',ig,szadeg,capa |
---|
[1266] | 1545 | jmin=grid_R8(zz,diz,nlayer) |
---|
[1260] | 1546 | endif |
---|
[635] | 1547 | |
---|
[1266] | 1548 | if(abs(zz-diz(nlayer)).lt.1.d-4) goto 9876 |
---|
[635] | 1549 | |
---|
| 1550 | ! 1st Zone: Upper part of ray |
---|
| 1551 | ! |
---|
[1266] | 1552 | do j=grid_R8(zz,diz,nlayer),nlayer-1 |
---|
[635] | 1553 | nlayesp = nlayesp + 1 |
---|
| 1554 | ilayesp(nlayesp) = j |
---|
| 1555 | esp(nlayesp) = |
---|
| 1556 | $ sqrt( (radio+diz(j+1))**2 - rkmmini**2 ) - |
---|
| 1557 | $ sqrt( (radio+diz(j))**2 - rkmmini**2 ) ! [km] |
---|
| 1558 | esp(nlayesp) = esp(nlayesp) * 1.d5 ! [cm] |
---|
| 1559 | rkmj = radio+diz(j) |
---|
| 1560 | szalayesp(nlayesp) = asin( rkmmini/rkmj ) ! [rad] |
---|
| 1561 | szalayesp(nlayesp) = szalayesp(nlayesp) *180.d0/3.141592 ! [deg] |
---|
| 1562 | end do |
---|
| 1563 | |
---|
| 1564 | 9876 continue |
---|
| 1565 | ! 2nd Zone: Uppermost layer of ray. |
---|
| 1566 | ! |
---|
| 1567 | nlayesp = nlayesp + 1 |
---|
[1266] | 1568 | ilayesp(nlayesp) = nlayer |
---|
| 1569 | rkmnz = radio+diz(nlayer) |
---|
[635] | 1570 | esp(nlayesp) = sqrt( rkmnz**2 - rkmmini**2 ) !aux.factor[km] |
---|
| 1571 | esp(nlayesp) = esp(nlayesp) * 1.d5 !aux.f.[cm] |
---|
| 1572 | szalayesp(nlayesp) = asin( rkmmini/rkmnz ) ! [rad] |
---|
| 1573 | szalayesp(nlayesp) = szalayesp(nlayesp) *180.d0/3.141592 ! [deg] |
---|
| 1574 | |
---|
| 1575 | ! 3er Zone: Lowestmost layer of ray |
---|
| 1576 | ! |
---|
| 1577 | if ( jmin .ge. 2 ) then ! If above the planet's surface |
---|
| 1578 | j=jmin-1 |
---|
| 1579 | nlayesp = nlayesp + 1 |
---|
| 1580 | ilayesp(nlayesp) = j |
---|
| 1581 | esp(nlayesp) = 2. * |
---|
| 1582 | $ sqrt( (radio+diz(j+1))**2 -rkmmini**2 ) ! [km] |
---|
| 1583 | esp(nlayesp) = esp(nlayesp) * 1.d5 ! [cm] |
---|
| 1584 | rkmj = radio+diz(j+1) |
---|
| 1585 | szalayesp(nlayesp) = asin( rkmmini/rkmj ) ! [rad] |
---|
| 1586 | szalayesp(nlayesp) = szalayesp(nlayesp) *180.d0/3.141592 ! [deg] |
---|
| 1587 | endif |
---|
| 1588 | |
---|
| 1589 | ! 4th zone: Lower part of ray, increasing from zmin to z |
---|
| 1590 | ! ( layers with SZA < 90 deg ) |
---|
[1266] | 1591 | do j=jmin,grid_R8(zz,diz,nlayer)-1 |
---|
[635] | 1592 | nlayesp = nlayesp + 1 |
---|
| 1593 | ilayesp(nlayesp) = j |
---|
| 1594 | esp(nlayesp) = |
---|
| 1595 | $ sqrt( (radio+diz(j+1))**2 - rkmmini**2 ) |
---|
| 1596 | $ - sqrt( (radio+diz(j))**2 - rkmmini**2 ) ! [km] |
---|
| 1597 | esp(nlayesp) = esp(nlayesp) * 1.d5 ! [cm] |
---|
| 1598 | rkmj = radio+diz(j) |
---|
| 1599 | szalayesp(nlayesp) = asin( rkmmini/rkmj ) ! [rad] |
---|
| 1600 | szalayesp(nlayesp) = szalayesp(nlayesp) *180.d0/3.141592 ! [deg] |
---|
| 1601 | end do |
---|
| 1602 | |
---|
| 1603 | ! 5th zone: Lower part of ray, decreasing from z to zmin |
---|
| 1604 | ! ( layers with SZA > 90 deg ) |
---|
[1266] | 1605 | do j=grid_R8(zz,diz,nlayer)-1, jmin, -1 |
---|
[635] | 1606 | nlayesp = nlayesp + 1 |
---|
| 1607 | ilayesp(nlayesp) = j |
---|
| 1608 | esp(nlayesp) = |
---|
| 1609 | $ sqrt( (radio+diz(j+1))**2 - rkmmini**2 ) |
---|
| 1610 | $ - sqrt( (radio+diz(j))**2 - rkmmini**2 ) ! [km] |
---|
| 1611 | esp(nlayesp) = esp(nlayesp) * 1.d5 ! [cm] |
---|
| 1612 | rkmj = radio+diz(j) |
---|
| 1613 | szalayesp(nlayesp) = 3.141592 - asin( rkmmini/rkmj ) ! [rad] |
---|
| 1614 | szalayesp(nlayesp) = szalayesp(nlayesp)*180.d0/3.141592 ! [deg] |
---|
| 1615 | end do |
---|
| 1616 | |
---|
| 1617 | end if |
---|
| 1618 | |
---|
| 1619 | end if |
---|
| 1620 | |
---|
[1260] | 1621 | |
---|
[635] | 1622 | return |
---|
| 1623 | |
---|
| 1624 | end |
---|
| 1625 | |
---|
| 1626 | |
---|
| 1627 | |
---|
| 1628 | c********************************************************************** |
---|
| 1629 | c*********************************************************************** |
---|
| 1630 | |
---|
| 1631 | function grid_R8 (z, zgrid, nz) |
---|
| 1632 | |
---|
| 1633 | c Returns the index where z is located within vector zgrid |
---|
| 1634 | c The vector zgrid must be monotonously increasing, otherwise program stops. |
---|
| 1635 | c If z is outside zgrid limits, or zgrid dimension is nz<2, the program stops. |
---|
| 1636 | c |
---|
| 1637 | c FGG Aug-2004 Correct z.lt.zgrid(i) to .le. |
---|
| 1638 | c MALV Jul-2003 |
---|
| 1639 | c*********************************************************************** |
---|
| 1640 | |
---|
| 1641 | implicit none |
---|
| 1642 | |
---|
| 1643 | c Arguments |
---|
| 1644 | integer nz |
---|
| 1645 | real*8 z |
---|
| 1646 | real*8 zgrid(nz) |
---|
| 1647 | integer grid_R8 |
---|
| 1648 | |
---|
| 1649 | c Local |
---|
| 1650 | integer i, nz1, nznew |
---|
| 1651 | |
---|
| 1652 | c*** CODE START |
---|
| 1653 | |
---|
[1260] | 1654 | if ( z .lt. zgrid(1) ) then |
---|
[635] | 1655 | write (*,*) ' GRID/ z outside bounds of zgrid ' |
---|
| 1656 | write (*,*) ' z,zgrid(1),zgrid(nz) =', z,zgrid(1),zgrid(nz) |
---|
[1260] | 1657 | z = zgrid(1) |
---|
| 1658 | write(*,*) 'WARNING: error in grid_r8 (jthermcalc.F)' |
---|
| 1659 | write(*,*) 'Please check values of z and zgrid above' |
---|
[635] | 1660 | endif |
---|
[1260] | 1661 | if (z .gt. zgrid(nz) ) then |
---|
| 1662 | write (*,*) ' GRID/ z outside bounds of zgrid ' |
---|
| 1663 | write (*,*) ' z,zgrid(1),zgrid(nz) =', z,zgrid(1),zgrid(nz) |
---|
| 1664 | z = zgrid(nz) |
---|
| 1665 | write(*,*) 'WARNING: error in grid_r8 (jthermcalc.F)' |
---|
| 1666 | write(*,*) 'Please check values of z and zgrid above' |
---|
| 1667 | endif |
---|
[635] | 1668 | if ( nz .lt. 2 ) then |
---|
| 1669 | write (*,*) ' GRID/ zgrid needs 2 points at least ! ' |
---|
| 1670 | stop ' Serious error in GRID.F ' |
---|
| 1671 | endif |
---|
| 1672 | if ( zgrid(1) .ge. zgrid(nz) ) then |
---|
| 1673 | write (*,*) ' GRID/ zgrid must increase with index' |
---|
| 1674 | stop ' Serious error in GRID.F ' |
---|
| 1675 | endif |
---|
| 1676 | |
---|
| 1677 | nz1 = 1 |
---|
| 1678 | nznew = nz/2 |
---|
| 1679 | if ( z .gt. zgrid(nznew) ) then |
---|
| 1680 | nz1 = nznew |
---|
| 1681 | nznew = nz |
---|
| 1682 | endif |
---|
| 1683 | do i=nz1+1,nznew |
---|
| 1684 | if ( z. eq. zgrid(i) ) then |
---|
| 1685 | grid_R8=i |
---|
| 1686 | return |
---|
| 1687 | elseif ( z .le. zgrid(i) ) then |
---|
| 1688 | grid_R8 = i-1 |
---|
| 1689 | return |
---|
| 1690 | endif |
---|
| 1691 | enddo |
---|
| 1692 | grid_R8 = nz |
---|
| 1693 | return |
---|
| 1694 | |
---|
| 1695 | |
---|
| 1696 | |
---|
| 1697 | end |
---|
| 1698 | |
---|
| 1699 | |
---|
| 1700 | |
---|
| 1701 | !c*************************************************** |
---|
| 1702 | !c*************************************************** |
---|
| 1703 | |
---|
| 1704 | subroutine flujo(date) |
---|
| 1705 | |
---|
| 1706 | |
---|
| 1707 | !c fgg nov 2002 first version |
---|
| 1708 | !c*************************************************** |
---|
| 1709 | |
---|
[1047] | 1710 | use comsaison_h, only: dist_sol |
---|
[1266] | 1711 | use param_v4_h, only: ninter, |
---|
| 1712 | . fluxtop, ct1, ct2, p1, p2 |
---|
[635] | 1713 | implicit none |
---|
| 1714 | |
---|
| 1715 | |
---|
| 1716 | ! common variables and constants |
---|
[1119] | 1717 | include "callkeys.h" |
---|
[635] | 1718 | |
---|
| 1719 | |
---|
| 1720 | ! Arguments |
---|
| 1721 | |
---|
| 1722 | real date |
---|
| 1723 | |
---|
| 1724 | |
---|
| 1725 | ! Local variable and constants |
---|
| 1726 | |
---|
| 1727 | integer i |
---|
| 1728 | integer inter |
---|
| 1729 | real nada |
---|
| 1730 | |
---|
| 1731 | !c************************************************* |
---|
| 1732 | |
---|
| 1733 | if(date.lt.1985.) date=1985. |
---|
| 1734 | if(date.gt.2001.) date=2001. |
---|
| 1735 | |
---|
| 1736 | do i=1,ninter |
---|
| 1737 | fluxtop(i)=1. |
---|
| 1738 | !Variation of solar flux with 11 years solar cycle |
---|
| 1739 | !For more details, see Gonzalez-Galindo et al. 2005 |
---|
| 1740 | !To be improved in next versions |
---|
[1119] | 1741 | if(i.le.24.and.solvarmod.eq.0) then |
---|
| 1742 | fluxtop(i)=(((ct1(i)+p1(i)*date)/2.) |
---|
| 1743 | $ *sin(2.*3.1416/11.*(date-1985.-3.1416)) |
---|
| 1744 | $ +(ct2(i)+p2(i)*date)+1.)*fluxtop(i) |
---|
| 1745 | end if |
---|
| 1746 | fluxtop(i)=fluxtop(i)*(1.52/dist_sol)**2 |
---|
[635] | 1747 | end do |
---|
| 1748 | |
---|
| 1749 | return |
---|
| 1750 | end |
---|