1 | \chapter{Zoomed simulations} |
---|
2 | |
---|
3 | \label{sc:zoom} |
---|
4 | |
---|
5 | The LMD GCM can use a zoom to enhance the resolution locally. |
---|
6 | In practice, one can |
---|
7 | increase the latitudinal resolution on the one hand, |
---|
8 | and the longitudinal resolution on |
---|
9 | the other hand. |
---|
10 | |
---|
11 | \section{To define the zoomed area} |
---|
12 | |
---|
13 | The zoom is defined in {\tt run.def}. |
---|
14 | Here are the variables that you want to set: |
---|
15 | |
---|
16 | \begin{itemize} |
---|
17 | \item East longitude (in degrees) of zoom center {\tt clon} |
---|
18 | \item latitude (in degrees) of zoom center {\tt clat} |
---|
19 | \item zooming factors, along longitude {\tt grossismx}. |
---|
20 | {\it Typically 1.5, 2 or even 3 (see below)} |
---|
21 | \item zooming factors, along latitude {\tt grossismy}. {\it Typically 1.5, 2 |
---|
22 | or even 3 (see below)} |
---|
23 | \item {\tt fxyhypb}: |
---|
24 | {\it {\bf must be set to "T" for a zoom}, whereas it must be F otherwise} |
---|
25 | \item extention in longitude of zoomed area {\tt dzoomx}. |
---|
26 | This is the total |
---|
27 | longitudinal extension of the zoomed region (degree). \newline |
---|
28 | {\it It is recommended that {\tt grossismx} $\times$ |
---|
29 | {\tt dzoomx} $< 200^o$} |
---|
30 | \item extention in latitude of the zoomed region {\tt dzoomy}. |
---|
31 | This is the total |
---|
32 | latitudinal extension of the zoomed region (degree). \newline |
---|
33 | {\it It is recommended that {\tt |
---|
34 | grossismy} $\times$ {\tt dzoomy} $< 100^o$} |
---|
35 | \item stiffness of the zoom along longitudes {\tt taux}. |
---|
36 | 2 is for a smooth transition in |
---|
37 | longitude, more means sharper transition. |
---|
38 | \item stiffness of the zoom along latitudes {\tt taux}. |
---|
39 | 2 is for a smooth transition in |
---|
40 | latitude, more means sharper transition. |
---|
41 | \end{itemize} |
---|
42 | |
---|
43 | \section{Making a zoomed initial state} |
---|
44 | |
---|
45 | One must start from an initial state archive {\tt start\_archive.nc} |
---|
46 | obtained from a previous |
---|
47 | simulation (see section~\ref{sc:newstart}) |
---|
48 | Then compile and run {\tt newstart.e} {\bf using the {\tt run.def} |
---|
49 | file designed for the zoom}. |
---|
50 | |
---|
51 | After running {\tt newstart.e}. The zoomed grid may be visualized |
---|
52 | using grads, for instance. |
---|
53 | Here is a grads script that can be used to map the grid above a topography |
---|
54 | map: |
---|
55 | |
---|
56 | \begin{verbatim} |
---|
57 | set mpdraw off |
---|
58 | set grid off |
---|
59 | sdfopen restart.nc |
---|
60 | set gxout grid |
---|
61 | set digsiz 0 |
---|
62 | set lon -180 180 |
---|
63 | d ps |
---|
64 | close 1 |
---|
65 | *** replace the path to surface.nc in the following line: |
---|
66 | sdfopen /u/forget/WWW/datagcm/datafile/surface.nc |
---|
67 | set lon -180 180 |
---|
68 | set gxout contour |
---|
69 | set clab off |
---|
70 | set cint 3 |
---|
71 | d zMOL |
---|
72 | \end{verbatim} |
---|
73 | |
---|
74 | |
---|
75 | \section{Running a zoomed simulation and stability issue} |
---|
76 | |
---|
77 | \begin{itemize} |
---|
78 | |
---|
79 | \item {\bf dynamical timestep} |
---|
80 | Because of their higher resolution, zoomed simulation requires a higher |
---|
81 | timestep. |
---|
82 | Therefore in {\tt run.def}, the number of dynamical timestep per day |
---|
83 | {\tt day\_step} must be increased by more than {\tt grossismx} or |
---|
84 | {\tt grossismy} (twice that if necessary). |
---|
85 | However, you can keep the same physical timestep (48/sol) and thus increase |
---|
86 | {\tt iphysiq} accordingly ({\tt iphysiq = day\_step/48}). |
---|
87 | |
---|
88 | %\item It has been found that when zooming in longitude, on must set |
---|
89 | %{\tt ngroup=1} in |
---|
90 | %{\tt dyn3d/groupeun.F}. Otherwise the run is less stable. |
---|
91 | |
---|
92 | \item The very first initial state made with {\tt newstart.e} can be noisy and |
---|
93 | dynamically unstable. |
---|
94 | It may be necessary to strongly increase the intensity of the |
---|
95 | dissipation and increase {\tt day\_step} in {\tt run.def} for 1 to 3 sols, |
---|
96 | and then use less strict values. |
---|
97 | |
---|
98 | \item If the run remains very unstable and requires too much dissipation |
---|
99 | or a too small timestep, a good tip to help stabilize the model |
---|
100 | is to decrease the vertical extension of your run and the number of |
---|
101 | layer (one generally zoom to study near-surface process, so 20 to 22 |
---|
102 | layers and a vertical extension up to 60 or 80 km is usually enough). |
---|
103 | |
---|
104 | \end{itemize} |
---|
105 | |
---|
106 | |
---|
107 | |
---|
108 | |
---|
109 | |
---|
110 | |
---|
111 | |
---|
112 | |
---|
113 | |
---|
114 | |
---|
115 | |
---|
116 | |
---|
117 | |
---|
118 | |
---|
119 | |
---|
120 | |
---|
121 | |
---|