\chapter{The physical parameterizations of the Martian model: some references} \label{sc:phymars} \section{General} The Martian General Circulation Model uses a large number of physical parameterizations based on various scientific theories and some generated using specific numerical methods. A list of these parameterizations is given below, along with the most appropriate references for each one. Most of these documents can be consulted at: \verb+http://www-mars.lmd.jussieu.fr/mars/publi.html+. \paragraph{General references:} A document attempts to give a complete scientific description of the current version of the GCM (a version without tracers): \begin{itemize} \item {\it Forget et al.} [1999] (article published in JGR) \end{itemize} \nocite{Forg:99} \section{Radiative transfer} The radiative transfer parameterizations are used to calculate the heating and cooling ratios in the atmosphere and the radiative flux at the surface. \subsection{\bf CO$_2$ gas absorption/emission:} \subsubsection*{Thermal IR radiation} (\verb+ lwmain+) \begin{itemize} \item New numerical method, solution for the radiative transfer equation: {\it Dufresne et al.} [2005]. \item Model validation and inclusion of the ``Doppler'' effect (but using an old numerical formulation): {\it Hourdin} [1992] (article). \nocite{Hour:92,Hour:00b,Dufr:05} \item At high altitudes, parameterization of the thermal radiative transfer ({\tt nltecool}) when the local thermodynamic balance is no longer valid (e.g. within 0.1 Pa) : Lopez-Valverde et al. [2001] : Report for the ESA available on the web as: ``CO2 non-LTE cooling rate at 15-um and its parameterization for the Mars atmosphere''. \end{itemize} \subsubsection*{Absorption of near-infrared radiation} (\verb+ nirco2abs+) \begin{itemize} \item {\it Forget et al.} [1999] \end{itemize} \subsection{\bf Absorption/emission and diffusion by dust:} \subsubsection*{Dust spatial distribution} (\verb+ aeropacity+) \begin{itemize} \item The method for semi-interactive dust vertical distribution is detailed in {\it Madeleine et al.} [2011] \item Vertical distribution and description of ``MGS'' and ``Viking'' scenarios in the ESA report {\it Mars Climate Database V3.0 Detailed Design Document} by Lewis et al. (2001), available on the web. \item For the ``MY24''-``MY26'' scenarios, the dust distributions were derived from observations made by TES data is used. See technical note WP12.2.1 of ESA contract Ref~ESA 11369/95/NL/JG(SC) "New dust scenarios for the Mars Climate Model : Martian Years 24-29", available online at \verb+http://www-mars.lmd.jussieu.fr/WP2011/wp12.1.1.pdf+ \end{itemize} \nocite{Lewi:99,Made:11} \subsubsection*{Thermal IR radiation} (\verb+ lwmain+) \begin{itemize} \item Numerical method: {\it Toon et al.} [1989] \item Optical properties of dust: {\it Madeleine et al.} [2011] \nocite{Toon:89,Made:11} \end{itemize} \subsubsection*{Solar radiation} (\verb+ swmain+) \begin{itemize} \item Numerical method: {\it Toon et al.} [1989] \nocite{Toon:89} \item Optical properties of dust: see the discussion in {\it Madeleine et al.} [2011], which quotes properties from {\it Wolff et al.} [2009]. \nocite{Made:11,Wolf:09} \end{itemize} \section{Subgrid atmospheric dynamical processes} \subsection{Turbulent diffusion in the upper layer} (\verb+ vdifc+) \begin{itemize} \item Implicit numerical scheme in the vertical: see the thesis of Laurent Li (LMD, Universit\'e Paris 7, 1990), Appendix C2. \item Calculation of the turbulent diffusion coefficients: {\it Forget et al. } [1999]. \item fluxes in the near-surface layer: {\it Colaitis et al.} [2012], technical note WP13.1.3d of ESA contract Ref~ESA 11369/95/NL/JG(SC) "New Mars Climate Model: d) New convection and boundary layer schemes and their impact on Mars meteorology", available online at \verb+http://www-mars.lmd.jussieu.fr/WP2011/wp13.1.3d.pdf+ \end{itemize} \subsection{Convection} (\verb+ convadj+) \begin{itemize} \item For some details on the convective adjustement, see {\it Hourdin et al.} [1993] \item The thermals' mass flux scheme is described in {\it Colaitis et al.} [2012], technical note WP13.1.3d of ESA contract Ref~ESA 11369/95/NL/JG(SC) "New Mars Climate Model: d) New convection and boundary layer schemes and their impact on Mars meteorology", available online at \verb+http://www-mars.lmd.jussieu.fr/WP2011/wp13.1.3d.pdf+ \end{itemize} \nocite{Hour:93} \subsection{Effects of subgrid orography and gravity waves} (\verb+ calldrag_noro+ , \verb+ drag_noro+ ) See {\it Forget et al. } [1999] and {\it Lott and Miller} [1997] \nocite{Lott:97} \section{Surface thermal conduction} (\verb+soil+) The numerical scheme is described in section 2 of technical note WP11.1 of ESA contract Ref~ESA 11369/95/NL/JG(SC) "Improvement of the high latitude processes in the Mars Global Climate Model", available online at \verb+http://www-mars.lmd.jussieu.fr/WP2008/Polar_processes.pdf+ \section{CO$_2$ Condensation} \begin{itemize} \item In {\it Forget et al.} [1998] (article published in Icarus): \begin{itemize} \item Numerical method for calculating the condensation and sublimation levels at the surface and in the atmosphere (\verb+ newcondens+) explained in the appendix. \item Description of the numerical scheme for calculating the evolution of CO$_2$ snow emissivity (\verb+co2snow+) explained in section 4.1 \end{itemize} \nocite{Forg:98} \item Noncondensable gaz treatment: see {\it Forget et al.} [2008], available online at \verb+http://www.lpi.usra.edu/meetings/modeling2008/pdf/9106.pdf+ \item Inclusion of sub-surface water ice table thermal effect, varying albedo of polar caps and tuning of the CO2 cycle are descibed in technical note WP13.1.3e of ESA contract Ref~ESA 11369/95/NL/JG(SC) "New Mars Global Climate Model: e) Improved CO2 cycle and seasonal pressure variations", available online at \verb+http://www-mars.lmd.jussieu.fr/WP2011/wp13.1.3e.pdf+ \end{itemize} \section{Tracer transport and sources} \begin{itemize} \item ``Van-Leer'' transport scheme used in the dynamical part (\verb+ tracvl+ and \verb+ vlsplt+ in the dynamical part): {\it Hourdin and Armengaud} [1999] \nocite{Hour:99} \item Transport by turbulent diffusion (in \verb+ vdifc+), convection (in \verb+ convadj+), sedimentation (\verb+ sedim+), dust lifting by winds (\verb+ dustlift+) : see note ``Preliminary design of dust lifting and transport in the Model'' (ESA contract, Work Package 4, 1998, available on the web). \item Dust transport by the ``Mass mixing ratio / Number mixing ratio'' method for grain size evolution: see article by {\it Madeleine et al.} [2011] \nocite{Made:11} %\item Simplified water cycle (source in {\tt vdifc}, {\tt %watercloud}) : and also see the Maitrise study by Delphine Nobileau, LMD, 2000. \item {\bf Watercycle}, see {\it Montmessin et al.} [2004] and technical note WP13.1.3c of ESA contract Ref~ESA 11369/95/NL/JG(SC) "New Mars Climate Model: c) Inclusion of cloud microphysics, dust scavenging and improvement of the water cycle", available online at \verb+http://www-mars.lmd.jussieu.fr/WP2011/wp13.1.3c.pdf+ \nocite{Mont:04jgr} \item Radiative effect of clouds: see technical note WP13.1.3b of ESA contract Ref~ESA 11369/95/NL/JG(SC) "New Mars Climate Model: b) Radiative effects of water ice clouds and impact on temperatures", available online at \verb+http://www-mars.lmd.jussieu.fr/WP2011/wp13.1.3b.pdf+ %\item Chemistry, thermosphere, clouds: currently being published. \item {\bf Chemistry}, see {\it Lef\`evre et al.} [2004] and {\it Lef\`evre et al. [2008]} \nocite{Lefe:04,Lefe:08} \end{itemize} \section{Thermosphere} \begin{itemize} \item A general description of the model is given in {\it Gonz{\'a}lez-Galindo et al.} [2009] \item Details on photochemistry and EUV radiative transfer can be found in {\it Angelats i Coll et al.} [2005] and {\it Gonz{\'a}lez-Galindo et al.} [2005] \end{itemize} \nocite{Gonz:09a,Gonz:09b,Gonz:05,Ange:05}