1 | \chapter{Photochemical Module} |
---|
2 | |
---|
3 | \label{sc:photochem} |
---|
4 | |
---|
5 | The LMD GCM includes a photochemical module, which allows to compute |
---|
6 | the atmospheric composition. |
---|
7 | |
---|
8 | \begin{itemize} |
---|
9 | |
---|
10 | \item 14 chemical species are included: CO$_2$ (background gas), CO, O, |
---|
11 | O({\em $^1D$}), O$_2$, O$_3$, H, H$_2$, OH, HO$_2$, H$_2$O$_2$, N$_2$, |
---|
12 | Ar (inert) and H$_2$O. |
---|
13 | |
---|
14 | \item In {\tt callphys.def}, set tracer to true {\tt tracer=.true.}. |
---|
15 | Use the same options as shown below for the tracer part of {\tt callphys.def}. |
---|
16 | You need to set {\tt photochem=.true.}, |
---|
17 | and to include the water cycle ({\tt water=.true.}, |
---|
18 | {\tt sedimentation=.true.}; see Chapter~\ref{sc:water}), because |
---|
19 | composition is extremely dependent on the water vapor abundance. |
---|
20 | %\input{input/photochem_list.tex} |
---|
21 | |
---|
22 | \item You will need the up-to-date file {\tt jmars.yyyymmdd} |
---|
23 | (e.g. {\tt jmars.20140930}), which contains the photodissociation rates. |
---|
24 | It should be in the {\it datafile} directory in which are stored |
---|
25 | datafiles used by the GCM (the path to these files is set in file |
---|
26 | {\tt callphys.def}). |
---|
27 | |
---|
28 | \item {\bf Settings} \\ \\ |
---|
29 | Compile as usual, what really matters are the options in {\tt callphys.def} |
---|
30 | and {\tt traceur.def}. |
---|
31 | You need at least 19 tracers: |
---|
32 | 13 chemical species (co2, co, o, o(1d), o2, o3, h, h2, oh, ho2, h2o2, n2, ar) |
---|
33 | along with water vapor (h2o\_vap), water ice (h2o\_ice), related condensation |
---|
34 | nuclei moments (ccn\_mass and ccn\_number), and dust moments |
---|
35 | (dust\_mass and dust\_number).\\ |
---|
36 | the {\tt traceur.def} file should thus be something like: |
---|
37 | \begin{verbatim} |
---|
38 | 19 |
---|
39 | co2 |
---|
40 | co |
---|
41 | o |
---|
42 | o1d |
---|
43 | o2 |
---|
44 | o3 |
---|
45 | h |
---|
46 | h2 |
---|
47 | oh |
---|
48 | ho2 |
---|
49 | h2o2 |
---|
50 | n2 |
---|
51 | ar |
---|
52 | dust_mass |
---|
53 | dust_number |
---|
54 | h2o_vap |
---|
55 | h2o_ice |
---|
56 | ccn_mass |
---|
57 | ccn_number |
---|
58 | \end{verbatim} |
---|
59 | |
---|
60 | |
---|
61 | \item {\bf Run} \\ \\ |
---|
62 | Same as usual. Just make sure that your start files contains the correct number |
---|
63 | of tracers. If you need to initialize the composition, you can run |
---|
64 | {\bf newstart} and use the options |
---|
65 | \begin{description} |
---|
66 | \item - ini\_q: the 15 tracers are initialized, including water ice and vapor. |
---|
67 | \item - ini\_q-h2o: the 13 chemical species are initialized, water ice is put |
---|
68 | to zero, and water vapor is kept untouched. |
---|
69 | \item - ini\_q-iceh2o: the 13 chemical species are initialized, water ice and |
---|
70 | vapor are kept untouched. |
---|
71 | \end{description} |
---|
72 | The initialization is done with the files {\tt atmosfera\_LMD\_may.dat} and |
---|
73 | {\tt atmosfera\_LMD\_min.dat}, which should also be found in the |
---|
74 | {\it datafile} directory. |
---|
75 | |
---|
76 | \item {\bf Outputs} \\ \\ |
---|
77 | The outputs can be done from the {\tt aeronomars/calchim.F} routine for the 14 |
---|
78 | chemical species. The variables put in the {\tt diagfi.nc} and |
---|
79 | {\tt stats.nc} files are |
---|
80 | labeled (where {\it name} is the name of the chemical species, e.g. co2): |
---|
81 | \begin{description} |
---|
82 | \item - n\_{\it name}: local density (in molecule cm$^{-3}$, |
---|
83 | 3-dimensional field) |
---|
84 | \item - c\_{\it name}: integrated column density (in molecule cm$^{-2}$, |
---|
85 | 2-dimensional field) |
---|
86 | \end{description} |
---|
87 | |
---|
88 | \end{itemize} |
---|
89 | |
---|
90 | |
---|