| 1 | # |
|---|
| 2 | #----------------------------------------------------------------------- |
|---|
| 3 | #GCM run control parameters: |
|---|
| 4 | #--------------------------- |
|---|
| 5 | |
|---|
| 6 | # planet type |
|---|
| 7 | planet_type=mars |
|---|
| 8 | |
|---|
| 9 | # Number of days to run model for |
|---|
| 10 | nday=9999 |
|---|
| 11 | |
|---|
| 12 | # Number of dynamical steps per day (must be a multiple of iperiod) |
|---|
| 13 | day_step = 480 |
|---|
| 14 | |
|---|
| 15 | # Apply a Matsuno step every iperiod dynamical step |
|---|
| 16 | iperiod=5 |
|---|
| 17 | |
|---|
| 18 | # Control output information in the dynamics every iconser dynamical steps |
|---|
| 19 | iconser=120 |
|---|
| 20 | |
|---|
| 21 | # Apply dissipation every idissip dynamical steps |
|---|
| 22 | idissip=1 |
|---|
| 23 | |
|---|
| 24 | # dissipation operator to use (star or non-star) |
|---|
| 25 | lstardis=.true. |
|---|
| 26 | |
|---|
| 27 | # use hybrid vertical coordinate (else will use sigma levels) |
|---|
| 28 | hybrid=.true. |
|---|
| 29 | |
|---|
| 30 | # iterate lateral dissipation operator gradiv nitergdiv times |
|---|
| 31 | nitergdiv=1 |
|---|
| 32 | |
|---|
| 33 | # iterate lateral dissipation operator nxgradrot nitergrot times |
|---|
| 34 | nitergrot=2 |
|---|
| 35 | |
|---|
| 36 | # iterate lateral dissipation operator divgrad niterh times |
|---|
| 37 | niterh=2 |
|---|
| 38 | |
|---|
| 39 | # time scale (s) for shortest wavelengths for u,v (gradiv) |
|---|
| 40 | tetagdiv= 3000. |
|---|
| 41 | |
|---|
| 42 | # time scale (s) for shortest wavelengths for u,v (nxgradrot) |
|---|
| 43 | tetagrot=9000. |
|---|
| 44 | |
|---|
| 45 | # time scale (s) for shortest wavelengths for h (divgrad) |
|---|
| 46 | tetatemp=9000. |
|---|
| 47 | |
|---|
| 48 | # coefficient for gamdissip |
|---|
| 49 | coefdis=0. |
|---|
| 50 | |
|---|
| 51 | # time marching scheme (Matsuno if purmats is true, else Matsuno-Leapfrog) |
|---|
| 52 | purmats=.false. |
|---|
| 53 | |
|---|
| 54 | # run with (true) or without (false) physics |
|---|
| 55 | physic=.true. |
|---|
| 56 | |
|---|
| 57 | # call physics every iphysiq dynamical steps |
|---|
| 58 | iphysiq=10 |
|---|
| 59 | |
|---|
| 60 | # Use a regular grid |
|---|
| 61 | grireg=.true. |
|---|
| 62 | |
|---|
| 63 | # longitude (degrees) of zoom center |
|---|
| 64 | clon=63. |
|---|
| 65 | |
|---|
| 66 | # latitude (degrees) of zoom center |
|---|
| 67 | clat=0. |
|---|
| 68 | |
|---|
| 69 | # enhancement factor of zoom, along longitudes |
|---|
| 70 | grossismx=1. |
|---|
| 71 | |
|---|
| 72 | # enhancement factor of zoom, along latitudes |
|---|
| 73 | grossismy=1. |
|---|
| 74 | |
|---|
| 75 | # Use an hyperbolic function f(y) if .true., else use a sine |
|---|
| 76 | fxyhypb=.false. |
|---|
| 77 | |
|---|
| 78 | # extention along longitudes of zoom region (fraction of global domain) |
|---|
| 79 | dzoomx= 0. |
|---|
| 80 | |
|---|
| 81 | # extention along latitudes of zoom region (fraction of global domain) |
|---|
| 82 | dzoomy=0. |
|---|
| 83 | |
|---|
| 84 | # zoom stiffness along longitudes |
|---|
| 85 | taux=2. |
|---|
| 86 | |
|---|
| 87 | # zoom stiffness along latitudes |
|---|
| 88 | tauy=2. |
|---|
| 89 | |
|---|
| 90 | # Fonction f(y) as y = Sin(latitude) if = .true. , else y = latitude |
|---|
| 91 | ysinus= .false. |
|---|
| 92 | |
|---|
| 93 | # Use a sponge layer |
|---|
| 94 | callsponge = .true. |
|---|
| 95 | |
|---|
| 96 | # Sponge layer extends over topmost nsponge layers |
|---|
| 97 | nsponge = 3 |
|---|
| 98 | |
|---|
| 99 | # Sponge: mode0(u=v=0), mode1(u=umoy,v=0), mode2(u=umoy,v=vmoy) |
|---|
| 100 | mode_sponge= 2 |
|---|
| 101 | |
|---|
| 102 | # Sponge layer time scale (s): tetasponge |
|---|
| 103 | tetasponge = 30000 |
|---|
| 104 | |
|---|
| 105 | # some definitions for the physics, in file 'callphys.def' |
|---|
| 106 | INCLUDEDEF=callphys.def |
|---|