[3431] | 1 | """ |
---|
| 2 | Generic PCM Photochemistry post-processing library |
---|
| 3 | Written by Maxime Maurice in 2024 anno domini |
---|
| 4 | """ |
---|
| 5 | |
---|
| 6 | import numpy as np |
---|
| 7 | import matplotlib.pyplot as plt |
---|
| 8 | import matplotlib.ticker as tk |
---|
| 9 | import xarray as xr |
---|
| 10 | from scipy.constants import R, N_A |
---|
| 11 | |
---|
| 12 | import warnings |
---|
| 13 | warnings.filterwarnings("ignore", message="The following kwargs were not used by contour: 't'") |
---|
| 14 | warnings.filterwarnings("ignore", message="The following kwargs were not used by contour: 'lon'") |
---|
| 15 | warnings.filterwarnings("ignore", message="The following kwargs were not used by contour: 'lat'") |
---|
| 16 | |
---|
| 17 | M = {'co2':44, # Molar masses |
---|
| 18 | 'o':16, # TODO: automatic parser |
---|
| 19 | 'o1d':16, |
---|
| 20 | 'o2':32, |
---|
| 21 | 'o3':48, |
---|
| 22 | 'h':1, |
---|
| 23 | 'h2':2, |
---|
| 24 | 'oh':17, |
---|
| 25 | 'h2o_vap':18, |
---|
| 26 | 'ho2':33, |
---|
| 27 | 'h2o2':34, |
---|
| 28 | 'co':28, |
---|
| 29 | 'cho':29, |
---|
| 30 | 'ch2o':30} |
---|
| 31 | |
---|
| 32 | background = 'co2' # background gas of the atmosphere |
---|
| 33 | |
---|
| 34 | class GPCM_simu: |
---|
| 35 | """ Generic PCM Simulation |
---|
| 36 | |
---|
| 37 | Stores the netCDF file and path to the simulation |
---|
| 38 | |
---|
| 39 | Attributes |
---|
| 40 | ---------- |
---|
| 41 | data : xr.Dataset |
---|
| 42 | NetCDF file of the simulation |
---|
| 43 | path : str |
---|
| 44 | Path to simulation directory |
---|
| 45 | |
---|
| 46 | Methods |
---|
| 47 | ------- |
---|
| 48 | get_profile(field,**kw) |
---|
| 49 | Get profile of a field (either local or averaged) |
---|
| 50 | plot_meridional_slice(field,logcb,labelcb,**kw) |
---|
| 51 | Plot a meridional slice of a field |
---|
| 52 | plot_time_evolution(field,logcb,labelcb,**kw) |
---|
| 53 | Plot time evolution of a field (as a time vs altitude contour plot) |
---|
| 54 | plot_profile(field,**kw) |
---|
| 55 | Plot a profile of a field |
---|
| 56 | |
---|
| 57 | """ |
---|
| 58 | def __init__(self,path,datafilename='diagfi',verbose=False): |
---|
| 59 | """ |
---|
| 60 | Parameters |
---|
| 61 | ---------- |
---|
| 62 | path : str |
---|
| 63 | Path to simulation directory |
---|
| 64 | datafilename : str (optional) |
---|
| 65 | Name of the netCDF file (by default: diagfi) |
---|
| 66 | works with start, startfi, concat etc. |
---|
| 67 | Do not add .nc type suffix |
---|
| 68 | """ |
---|
| 69 | self.path = path |
---|
| 70 | try: |
---|
| 71 | self.data = xr.open_dataset(path+'/'+datafilename+'.nc',decode_times=False) |
---|
| 72 | print(path+'/'+datafilename,'loaded, simulations lasts',self.data['Time'].values[-1],'sols') |
---|
| 73 | except: |
---|
| 74 | raise Exception('Data not found') |
---|
| 75 | |
---|
| 76 | def __getitem__(self,field): |
---|
| 77 | return self.data[field] |
---|
| 78 | |
---|
| 79 | def __setitem__(self,field,value): |
---|
| 80 | self.data[field] = value |
---|
| 81 | |
---|
| 82 | def get_profile(self,field,**kw): |
---|
| 83 | """ Get profile of a field (either local or averaged) |
---|
| 84 | |
---|
| 85 | Parameters |
---|
| 86 | ---------- |
---|
| 87 | field : str |
---|
| 88 | Field name |
---|
| 89 | t : float (optional) |
---|
| 90 | Time at which to select (if nothing specified use time-average) |
---|
| 91 | lat : float (optional) |
---|
| 92 | Latitude at which to select (if nothing specified use area-weighted meridional average) |
---|
| 93 | lon : float (optional) |
---|
| 94 | Longitude at which to select (if nothing specified use zonal average) |
---|
| 95 | |
---|
| 96 | """ |
---|
| 97 | |
---|
| 98 | if self['latitude'].size == 1: |
---|
| 99 | # 1D |
---|
| 100 | return self[field][:,0,0] |
---|
| 101 | else: |
---|
| 102 | # 3D |
---|
| 103 | if 'lat' in kw: |
---|
| 104 | if 'lon' in kw: |
---|
| 105 | return self[field].sel(latitude=kw['lat'],method='nearest').sel(longitude=kw['lon'],method='nearest') |
---|
| 106 | else: |
---|
| 107 | return self[field].sel(latitude=kw['lat'],method='nearest').mean(dim='longitude') |
---|
| 108 | else: |
---|
| 109 | # Latitude-averaged profile: need to weight by the grid cell surface area |
---|
| 110 | if 'lon' in kw: |
---|
| 111 | return (self['aire']*self[field]/self['aire'].mean(dim='latitude')).mean(dim='latitude').sel(longitude=kw['lon'],method='nearest') |
---|
| 112 | else: |
---|
| 113 | return (self['aire']*self[field]/self['aire'].mean(dim='latitude').mean(dim='longitude')).mean(dim='latitude').mean(dim='longitude') |
---|
| 114 | |
---|
| 115 | def get_subset(self,field='all',**kw): |
---|
| 116 | """ Get a subset at fixed given coordinate of the data |
---|
| 117 | |
---|
| 118 | Parameters |
---|
| 119 | ---------- |
---|
| 120 | field : str (optional, default = 'all') |
---|
| 121 | Field name. If nothing or 'all' |
---|
| 122 | specified, return all fields. |
---|
| 123 | t : float (optional) |
---|
| 124 | Time of the slice. If nothing |
---|
| 125 | specified, use time average |
---|
| 126 | lon : float (optional) |
---|
| 127 | Longitude of the slice. If nothing |
---|
| 128 | specified, use meridional average |
---|
| 129 | lat : float (optional) |
---|
| 130 | Latitude of the slice. If nothing |
---|
| 131 | specified, use area-weighted zonal average |
---|
| 132 | alt : float (optional) |
---|
| 133 | Altitude of the slice. If nothing |
---|
| 134 | specified, use time-average |
---|
| 135 | |
---|
| 136 | Raise |
---|
| 137 | ----- |
---|
| 138 | Slice direction not provided |
---|
| 139 | """ |
---|
| 140 | if len(kw) == 0: |
---|
| 141 | raise Exception('Slice direction not provided') |
---|
| 142 | |
---|
| 143 | if field == 'all': |
---|
| 144 | data_subset = self.data |
---|
| 145 | else: |
---|
| 146 | data_subset = self[field] |
---|
| 147 | |
---|
| 148 | if 't' in kw: |
---|
| 149 | data_subset = data_subset.sel(Time=kw['t'],method='nearest') |
---|
| 150 | if 'lon' in kw: |
---|
| 151 | data_subset = data_subset.sel(longitude=kw['lon'],method='nearest') |
---|
| 152 | if 'lat' in kw: |
---|
| 153 | data_subset = data_subset.sel(latitude=kw['lat'],method='nearest') |
---|
| 154 | if 'alt' in kw: |
---|
| 155 | data_subset = data_subset.sel(altitude=kw['alt'],method='nearest') |
---|
| 156 | |
---|
| 157 | return data_subset |
---|
| 158 | |
---|
| 159 | def plot_meridional_slice(self,field,t='avg',lon='avg',logcb=False,labelcb=None,**plt_kw): |
---|
| 160 | """ Plot a meridional slice of a field |
---|
| 161 | |
---|
| 162 | Parameters |
---|
| 163 | ---------- |
---|
| 164 | field : str |
---|
| 165 | Field name to plot |
---|
| 166 | logcb : bool (optional) |
---|
| 167 | Use logarithmic colorscale |
---|
| 168 | labelcb : str (optional) |
---|
| 169 | Use custom colorbar label |
---|
| 170 | t : float (keyword) |
---|
| 171 | Time at which to plot (if nothing specified use time average) |
---|
| 172 | lon : float (keyword) |
---|
| 173 | Longitude at which to plot (if nothing specified use zonal average) |
---|
| 174 | """ |
---|
| 175 | |
---|
| 176 | if self['latitude'].size == 1: |
---|
| 177 | # safety check |
---|
| 178 | raise Exception('Trying to plot a meridional slice of a 1D simulation') |
---|
| 179 | |
---|
| 180 | meridional_slice = self[field] |
---|
| 181 | |
---|
| 182 | if t == 'avg': |
---|
| 183 | meridional_slice = meridional_slice.mean(dim='Time') |
---|
| 184 | else: |
---|
| 185 | meridional_slice = meridional_slice.sel(Time=t,method='nearest') |
---|
| 186 | if lon == 'avg': |
---|
| 187 | meridional_slice = meridional_slice.mean(dim='longitude') |
---|
| 188 | else: |
---|
| 189 | meridional_slice = meridional_slice.sel(longitude=lon,method='nearest') |
---|
| 190 | |
---|
| 191 | if logcb: |
---|
| 192 | plt.contourf(self['latitude'],self['altitude'],meridional_slice,locator=tk.LogLocator(),**plt_kw) |
---|
| 193 | else: |
---|
| 194 | plt.contourf(self['latitude'],self['altitude'],meridional_slice,**plt_kw) |
---|
| 195 | |
---|
| 196 | plt.colorbar(label=field if labelcb==None else labelcb) |
---|
| 197 | plt.xlabel('latitude [°]') |
---|
| 198 | plt.ylabel('altitude [km]') |
---|
| 199 | |
---|
| 200 | def plot_time_evolution(self,field,lat='avg',lon='avg',logcb=False,labelcb=None,**plt_kw): |
---|
| 201 | """ Plot time evolution of a field (as a time vs altitude contour plot) |
---|
| 202 | |
---|
| 203 | Parameters |
---|
| 204 | ---------- |
---|
| 205 | field : str |
---|
| 206 | Field name to plot |
---|
| 207 | lat : float (optional) |
---|
| 208 | Latitude at which to plot (if nothing specified use area-weighted meridional average) |
---|
| 209 | lon : float (optional) |
---|
| 210 | Longitude at which to plot (if nothing specified use zonal average) |
---|
| 211 | logcb : bool (optional) |
---|
| 212 | Use logarithmic colorscale |
---|
| 213 | labelcb : str (optional) |
---|
| 214 | Use custom colorbar label |
---|
| 215 | matplotlib contourf keyword arguments |
---|
| 216 | """ |
---|
| 217 | |
---|
| 218 | time_evolution = self[field] |
---|
| 219 | |
---|
| 220 | if lat == 'avg': |
---|
| 221 | time_evolution = (self['aire']*time_evolution/self['aire'].mean(dim='latitude')).mean(dim='latitude') |
---|
| 222 | else: |
---|
| 223 | time_evolution = time_evolution.sel(latitude=lat,method='nearest') |
---|
| 224 | if lon == 'avg': |
---|
| 225 | time_evolution = time_evolution.mean(dim='longitude') |
---|
| 226 | else: |
---|
| 227 | time_evolution = time_evolution.sel(longitude=lon,method='nearest') |
---|
| 228 | |
---|
| 229 | if logcb: |
---|
| 230 | plt.contourf(self['Time'],self['altitude'],time_evolution.T,locator=tk.LogLocator(),**plt_kw) |
---|
| 231 | else: |
---|
| 232 | plt.contourf(self['Time'],self['altitude'],time_evolution.T,**plt_kw) |
---|
| 233 | |
---|
| 234 | plt.colorbar(label=field if labelcb==None else labelcb) |
---|
| 235 | plt.xlabel('time [day]') |
---|
| 236 | plt.ylabel('altitude [km]') |
---|
| 237 | |
---|
| 238 | def plot_atlas(self,field,t='avg',alt='avg',logcb=False,labelcb=None,**plt_kw): |
---|
| 239 | """ Plot atlas of a field |
---|
| 240 | |
---|
| 241 | Parameters |
---|
| 242 | ---------- |
---|
| 243 | field : str |
---|
| 244 | Field name to plot |
---|
| 245 | t : float (optional) |
---|
| 246 | Time at which to pot (if nothing specified, use time average) |
---|
| 247 | alt : float (optional) |
---|
| 248 | Altitude at which to plot (if nothing specified use vertical average) |
---|
| 249 | logcb : bool (optional) |
---|
| 250 | Use logarithmic colorscale |
---|
| 251 | labelcb : str (optional) |
---|
| 252 | Use custom colorbar label |
---|
| 253 | matplotlib contourf keyword arguments |
---|
| 254 | """ |
---|
| 255 | |
---|
| 256 | atlas = self[field] |
---|
| 257 | |
---|
| 258 | if t == 'avg': |
---|
| 259 | atlas = atlas.mean(dim='Time') |
---|
| 260 | else: |
---|
| 261 | atlas = atlas.sel(Time=t,method='nearest') |
---|
| 262 | |
---|
| 263 | if 'altitude' in atlas.coords: |
---|
| 264 | if alt == 'avg': |
---|
| 265 | atlas = atlas.mean(dim='altitude') |
---|
| 266 | else: |
---|
| 267 | atlas = atlas.sel(altitude=alt,method='nearest') |
---|
| 268 | |
---|
| 269 | if logcb: |
---|
| 270 | plt.contourf(self['longitude'],self['latitude'],atlas,locator=tk.LogLocator(),**plt_kw) |
---|
| 271 | else: |
---|
| 272 | plt.contourf(self['longitude'],self['latitude'],atlas,**plt_kw) |
---|
| 273 | |
---|
| 274 | plt.colorbar(label=field if labelcb==None else labelcb) |
---|
| 275 | plt.xlabel('longitude [°]') |
---|
| 276 | plt.ylabel('matitude [°]') |
---|
| 277 | |
---|
| 278 | def plot_profile(self,field,t='avg',lon='avg',lat='avg',logx=False,**plt_kw): |
---|
| 279 | """ Plot a profile of a field |
---|
| 280 | |
---|
| 281 | Parameters |
---|
| 282 | ---------- |
---|
| 283 | field : str |
---|
| 284 | Field name to plot |
---|
| 285 | logx : bool (optional) |
---|
| 286 | Use logarithmic x axis |
---|
| 287 | t : float (optional) |
---|
| 288 | Time at which to select (if nothing specified use time-average) |
---|
| 289 | lat : float (optional) |
---|
| 290 | Latitude at which to plot (if nothing specified use area-weighted meridional average) |
---|
| 291 | lon : float (optional) |
---|
| 292 | Longitude at which to plot (if nothing specified use zonal average) |
---|
| 293 | matplotlib's plot / semilogx keyword arguments |
---|
| 294 | """ |
---|
| 295 | |
---|
| 296 | profile = self[field] |
---|
| 297 | |
---|
| 298 | if t == 'avg': |
---|
| 299 | profile = profile.mean(dim='Time') |
---|
| 300 | else: |
---|
| 301 | profile = profile.sel(Time=t,method='nearest') |
---|
| 302 | |
---|
| 303 | if self['latitude'].size > 1: |
---|
| 304 | |
---|
| 305 | if lat == 'avg': |
---|
| 306 | profile = (self['aire']*profile/self['aire'].mean(dim='latitude')).mean(dim='latitude') |
---|
| 307 | else: |
---|
| 308 | profile = profile.sel(latitude=lat,method='nearest') |
---|
| 309 | if lon == 'avg': |
---|
| 310 | profile = profile.mean(dim='longitude') |
---|
| 311 | else: |
---|
| 312 | profile = profile.sel(longitude=lon,method='nearest') |
---|
| 313 | |
---|
| 314 | if logx: |
---|
| 315 | plt.semilogx(profile,self['altitude'],**plt_kw) |
---|
| 316 | else: |
---|
| 317 | plt.plot(profile,self['altitude'],**plt_kw) |
---|
| 318 | |
---|
| 319 | plt.xlabel(field+' ['+self[field].units+']') |
---|
| 320 | plt.ylabel('altitude [km]') |
---|
| 321 | |
---|
| 322 | class reaction: |
---|
| 323 | """ Instantiates a basic two-body reaction |
---|
| 324 | |
---|
| 325 | Attributes |
---|
| 326 | ---------- |
---|
| 327 | formula : str |
---|
| 328 | Reaction formula (e.g. "A + B -> C + D") |
---|
| 329 | reactants : list |
---|
| 330 | Reactanting molecules formulae (e.g. ["A", "B"]) |
---|
| 331 | products : list |
---|
| 332 | Produced molecules formulae (e.g. ["C", "D"]) |
---|
| 333 | constant : fun |
---|
| 334 | Reaction rate constant, function of potentially temperature and densities |
---|
| 335 | |
---|
| 336 | Methods |
---|
| 337 | ------- |
---|
| 338 | rate(T,densities) |
---|
| 339 | Reaction rate for given temperature and densities |
---|
| 340 | """ |
---|
| 341 | |
---|
| 342 | def __init__(self,reactants,products,constant): |
---|
| 343 | """ |
---|
| 344 | Parameters |
---|
| 345 | ---------- |
---|
| 346 | reactants : list |
---|
| 347 | Reacting molecules formulae (e.g. ["A", "B"]) |
---|
| 348 | products : list |
---|
| 349 | Produced molecules formulae (e.g. ["C", "D"]) |
---|
| 350 | constant : fun |
---|
| 351 | Reaction rate constant, function of potentially temperature and densities |
---|
| 352 | """ |
---|
| 353 | |
---|
| 354 | self.formula = ''.join([r_+' + ' for r_ in reactants[:-1]])+reactants[-1]+' -> '+''.join([r_+' + ' for r_ in products[:-1]])+products[-1] |
---|
| 355 | self.products = products |
---|
| 356 | self.reactants = reactants |
---|
| 357 | self.constant = constant |
---|
| 358 | |
---|
| 359 | def rate(self,T,densities): |
---|
| 360 | """ Computes reaction rate |
---|
| 361 | |
---|
| 362 | Parameters |
---|
| 363 | ---------- |
---|
| 364 | T : float |
---|
| 365 | Temperature [K] |
---|
| 366 | densities : dict |
---|
| 367 | Molecular densities [cm^-3] |
---|
| 368 | |
---|
| 369 | Returns |
---|
| 370 | ------- |
---|
| 371 | float |
---|
| 372 | Value of the reaction rate [cm^-3.s^-1] |
---|
| 373 | """ |
---|
| 374 | |
---|
| 375 | return self.constant(T,densities[background])*densities[self.reactants[0]]*densities[self.reactants[1]] |
---|
| 376 | |
---|
| 377 | class termolecular_reaction(reaction): |
---|
| 378 | |
---|
| 379 | def __init__(self,reactants,products,constant): |
---|
| 380 | |
---|
| 381 | self.formula = ''.join([r_+' + ' for r_ in reactants[:-1]])+reactants[-1]+' + M -> '+''.join([r_+' + ' for r_ in products[:-1]])+products[-1]+' + M' |
---|
| 382 | self.products = products |
---|
| 383 | self.reactants = reactants |
---|
| 384 | self.constant = constant |
---|
| 385 | |
---|
| 386 | class photolysis(reaction): |
---|
| 387 | |
---|
| 388 | def __init__(self,reactants,products): |
---|
| 389 | |
---|
| 390 | self.formula = ''.join([r_+' + ' for r_ in reactants[:-1]])+reactants[-1]+' + hv -> '+''.join([r_+' + ' for r_ in products[:-1]])+products[-1] |
---|
| 391 | self.products = products |
---|
| 392 | self.reactants = reactants |
---|
| 393 | |
---|
| 394 | def rate(self,j,densities): |
---|
| 395 | """ Computes reaction rate |
---|
| 396 | |
---|
| 397 | Parameters |
---|
| 398 | ---------- |
---|
| 399 | j : float |
---|
| 400 | Photolysis rate [s^-1] |
---|
| 401 | densities : dict |
---|
| 402 | Molecular densities [cm^-3] |
---|
| 403 | |
---|
| 404 | Returns |
---|
| 405 | ------- |
---|
| 406 | float |
---|
| 407 | Value of the reaction rate [cm^-3.s^-1] |
---|
| 408 | """ |
---|
| 409 | |
---|
| 410 | return j*densities[self.reactants[0]] |
---|
| 411 | |
---|
| 412 | class reaction_constant: |
---|
| 413 | """ Basic (Arrhenius) reaction rate constant |
---|
| 414 | |
---|
| 415 | Instantiates type 1 rate constant for a particular reaction |
---|
| 416 | (https://lmdz-forge.lmd.jussieu.fr/mediawiki/Planets/index.php/Photochemistry#Reaction_rate_formulae) |
---|
| 417 | |
---|
| 418 | Attributes |
---|
| 419 | ---------- |
---|
| 420 | params : dict |
---|
| 421 | Reaction-specific set of parameters for the rate constant: a,T0,c,b,d |
---|
| 422 | |
---|
| 423 | Methods |
---|
| 424 | ------- |
---|
| 425 | call(T,density) |
---|
| 426 | Compute the reaction rate for given temperature and density |
---|
| 427 | """ |
---|
| 428 | |
---|
| 429 | def __init__(self,params): |
---|
| 430 | """ |
---|
| 431 | Parameters |
---|
| 432 | ---------- |
---|
| 433 | params : dict |
---|
| 434 | Reaction-specific set of parameters for the rate constant: a,T0,c,b,d |
---|
| 435 | """ |
---|
| 436 | self.params = params |
---|
| 437 | |
---|
| 438 | def __call__(self,T,density): |
---|
| 439 | """ |
---|
| 440 | Parameters |
---|
| 441 | ---------- |
---|
| 442 | T : float |
---|
| 443 | Temperature [K] |
---|
| 444 | density : float |
---|
| 445 | Background gas density [cm^-3] |
---|
| 446 | |
---|
| 447 | Returns |
---|
| 448 | ------- |
---|
| 449 | float |
---|
| 450 | Value of the reaction rate constant [cm^3.s^-1] |
---|
| 451 | """ |
---|
| 452 | return self.params['a']*(T/self.params['T0'])**self.params['c']*np.exp(-self.params['b']/T)*density**self.params['d'] |
---|
| 453 | |
---|
| 454 | class reaction_constant_type2(reaction_constant): |
---|
| 455 | """ Type 2 reaction rate constant |
---|
| 456 | |
---|
| 457 | Instantiates type 2 rate constant for a particular reaction |
---|
| 458 | (https://lmdz-forge.lmd.jussieu.fr/mediawiki/Planets/index.php/Photochemistry#Reaction_rate_formulae) |
---|
| 459 | |
---|
| 460 | Attributes |
---|
| 461 | ---------- |
---|
| 462 | params : dict |
---|
| 463 | Reaction-specific set of parameters for the rate constant: k0,T0,n,a0,kinf,m,b0,g,h,dup,ddown,fc |
---|
| 464 | |
---|
| 465 | Methods |
---|
| 466 | ------- |
---|
| 467 | call(T,density) |
---|
| 468 | Computes the reaction rate for given temperature and density |
---|
| 469 | """ |
---|
| 470 | def __call__(self,T,density): |
---|
| 471 | """ |
---|
| 472 | Parameters |
---|
| 473 | ---------- |
---|
| 474 | T : float |
---|
| 475 | Temperature [K] |
---|
| 476 | density : float |
---|
| 477 | Background gas density [cm^-3] |
---|
| 478 | |
---|
| 479 | Returns |
---|
| 480 | ------- |
---|
| 481 | float |
---|
| 482 | The value of the reaction rate constant [cm^3.s^-1] |
---|
| 483 | """ |
---|
| 484 | num = self.params['k0']*(T/self.params['T0'])**self.params['n']*np.exp(-self.params['a0']/T) |
---|
| 485 | den = self.params['kinf']*(T/self.params['T0'])**self.params['m']*np.exp(-self.params['b0']/T) |
---|
| 486 | |
---|
| 487 | return self.params['g']*np.exp(-self.params['h']/T)+num*density**self.params['dup']/(1+num/den*density**self.params['ddown'])*self.params['fc']**(1/(1+np.log10(num/den*density)**2)) |
---|
| 488 | |
---|
| 489 | # TODO: implement type 3 reaction constant |
---|
| 490 | |
---|
| 491 | def read_reactfile(path): |
---|
| 492 | """ Reads the reactfile formatted for simulations with the Generic PCM |
---|
| 493 | |
---|
| 494 | Parameters |
---|
| 495 | ---------- |
---|
| 496 | path : str |
---|
| 497 | Path to the reactfile (to become reaction.def) |
---|
| 498 | |
---|
| 499 | Returns |
---|
| 500 | ------- |
---|
| 501 | dict |
---|
| 502 | Keys are reactions formulae, items are reactions instances |
---|
| 503 | """ |
---|
| 504 | |
---|
| 505 | reactions = {} |
---|
| 506 | with open(path+'/chemnetwork/reactfile') as reactfile: |
---|
| 507 | for line in reactfile: |
---|
| 508 | # Commented line |
---|
| 509 | if line[0] == '!': |
---|
| 510 | # Hard-coded reaction |
---|
| 511 | if 'hard' in line and 'coded' in line: |
---|
| 512 | hard_coded_reaction = reaction(line[1:51].split(),line[51:101].split(),None) |
---|
| 513 | print('reaction ',hard_coded_reaction.formula,'seems to be hard-coded. Add it manually if needed.') |
---|
| 514 | continue |
---|
| 515 | else: |
---|
| 516 | reactants = line[:50].split() |
---|
| 517 | products = line[50:100].split() |
---|
| 518 | |
---|
| 519 | # Photolysis |
---|
| 520 | if 'hv' in line: |
---|
| 521 | reactants.pop(reactants.index('hv')) |
---|
| 522 | new_reaction = photolysis(reactants,products) |
---|
| 523 | |
---|
| 524 | # Other reactions |
---|
| 525 | else: |
---|
| 526 | cst_params = [float(val) for val in line[101:].split()] |
---|
| 527 | |
---|
| 528 | # three-body reaction |
---|
| 529 | if 'M' in line: |
---|
| 530 | |
---|
| 531 | # if third body is not the background gas |
---|
| 532 | if line[line.index('M')+2] != ' ': |
---|
| 533 | third_body = reactants[reactants.index('M')+1] |
---|
| 534 | else: |
---|
| 535 | third_body = 'background' |
---|
| 536 | reactants.pop(reactants.index('M')) |
---|
| 537 | try: |
---|
| 538 | products.pop(reactants.index('M')) |
---|
| 539 | except: |
---|
| 540 | pass |
---|
| 541 | if int(line[100]) == 1: |
---|
| 542 | rate_constant = reaction_constant({param_key:cst_params[i] for i,param_key in enumerate(['a','b','c','T0','d'])}) |
---|
| 543 | # if the third body is not the background gas, we treat it as a two-body reaction |
---|
| 544 | if third_body != 'background': |
---|
| 545 | products.append(third_body) |
---|
| 546 | rate_constant.params['d'] = 0 |
---|
| 547 | elif int(line[100]) == 2: |
---|
| 548 | rate_constant = reaction_constant_type2({param_key:cst_params[i] for i,param_key in enumerate(['k0','n','a0','kinf','m','b0','T0','fc','g','h','dup','ddown'])}) |
---|
| 549 | if third_body != 'background': |
---|
| 550 | raise Exception('Dont know how to handle three body reaction with type 2 constant when third body is not the background gas.') |
---|
| 551 | else: |
---|
| 552 | raise Exception('rate constant parameterization type ',line[100],' not recognized.') |
---|
| 553 | new_reaction = termolecular_reaction(reactants,products,rate_constant) |
---|
| 554 | |
---|
| 555 | # two-body reaction |
---|
| 556 | else: |
---|
| 557 | rate_constant = reaction_constant({param_key:cst_params[i] for i,param_key in enumerate(['a','b','c','T0','d'])}) |
---|
| 558 | new_reaction = reaction(reactants,products,rate_constant) |
---|
| 559 | |
---|
| 560 | reactions[new_reaction.formula] = new_reaction |
---|
| 561 | |
---|
| 562 | return reactions |
---|
| 563 | |
---|
| 564 | |
---|
| 565 | def density(P,T,VMR=1): |
---|
| 566 | """ Computes molecular density using the perfect gas law |
---|
| 567 | |
---|
| 568 | Parameters |
---|
| 569 | ---------- |
---|
| 570 | P : float |
---|
| 571 | Pressure [Pa] |
---|
| 572 | T : float |
---|
| 573 | Temperature [K] |
---|
| 574 | VMR : float (optional) |
---|
| 575 | Volume mixing ratio [cm^3/cm^3] |
---|
| 576 | |
---|
| 577 | Returns |
---|
| 578 | ------- |
---|
| 579 | float |
---|
| 580 | Molecular density [cm^-3] |
---|
| 581 | """ |
---|
| 582 | |
---|
| 583 | m3_to_cm3 = 1e6 |
---|
| 584 | return VMR * P / R / T / m3_to_cm3 * N_A |
---|
| 585 | |
---|
| 586 | def compute_rates(s,reactions='read'): |
---|
| 587 | """ Computes reaction rates for a simulation |
---|
| 588 | |
---|
| 589 | Parameters |
---|
| 590 | ---------- |
---|
| 591 | s : GPCM_simu |
---|
| 592 | Simulation object |
---|
| 593 | reactions : dict or 'read' (optional) |
---|
| 594 | Dictionnary of reactions whose rate to compute as returned by read_reactfile |
---|
| 595 | If nothing passed, call read_reactfile to identify reactions |
---|
| 596 | |
---|
| 597 | Returns |
---|
| 598 | ------- |
---|
| 599 | GPCM_simu |
---|
| 600 | Simulation object with reactions rates, rates constants, species vmr and densities as new fields |
---|
| 601 | """ |
---|
| 602 | |
---|
| 603 | if reactions == 'read': |
---|
| 604 | reactions = read_reactfile(s.path) |
---|
| 605 | s.species = [] |
---|
| 606 | s.reactions = {} # reactions dict will be merged at the end |
---|
| 607 | |
---|
| 608 | # Register new species |
---|
| 609 | for r in reactions: |
---|
| 610 | for sp in reactions[r].reactants: |
---|
| 611 | if not sp in s.species: |
---|
| 612 | s.species.append(sp) |
---|
| 613 | for sp in reactions[r].products: |
---|
| 614 | if not sp in s.species: |
---|
| 615 | s.species.append(sp) |
---|
| 616 | |
---|
| 617 | densities = {} |
---|
| 618 | |
---|
| 619 | # Background density |
---|
| 620 | s['total density'] = density(s['p'],s['temp']).assign_attrs({'units':'cm^-3.s^-1'}) |
---|
| 621 | |
---|
| 622 | for sp in s.species: |
---|
| 623 | # volume mixing ratios |
---|
| 624 | s[sp+' vmr'] = s[sp] * M['co2'] / M[sp] |
---|
| 625 | s[sp+' vmr'] = s[sp+' vmr'].assign_attrs({'units':'m^3/m^3'}) |
---|
| 626 | # molecular densities |
---|
| 627 | s[sp+' density'] = density(s['p'],s['temp'],VMR=s[sp+' vmr']) |
---|
| 628 | s[sp+' density'] = s[sp+' density'].assign_attrs({'units':'cm^-3'}) |
---|
| 629 | densities[sp] = s[sp+' density'] |
---|
| 630 | |
---|
| 631 | for r in reactions: |
---|
| 632 | |
---|
| 633 | # Photolysis |
---|
| 634 | if type(reactions[r]) == photolysis: |
---|
| 635 | |
---|
| 636 | # Cases with branching ratios |
---|
| 637 | if reactions[r].reactants[0] == 'co2': |
---|
| 638 | if 'o1d' in reactions[r].products: |
---|
| 639 | s['rate ('+reactions[r].formula+')'] = reactions[r].rate(s['jco2_o1d'],densities) |
---|
| 640 | else: |
---|
| 641 | s['rate ('+reactions[r].formula+')'] = reactions[r].rate(s['jco2_o'],densities) |
---|
| 642 | elif reactions[r].reactants[0] == 'o2': |
---|
| 643 | if 'o1d' in reactions[r].products: |
---|
| 644 | s['rate ('+reactions[r].formula+')'] = reactions[r].rate(s['jo2_o1d'],densities) |
---|
| 645 | else: |
---|
| 646 | s['rate ('+reactions[r].formula+')'] = reactions[r].rate(s['jo2_o'],densities) |
---|
| 647 | elif reactions[r].reactants[0] == 'o3': |
---|
| 648 | if 'o1d' in reactions[r].products: |
---|
| 649 | s['rate ('+reactions[r].formula+')'] = reactions[r].rate(s['jo3_o1d'],densities) |
---|
| 650 | else: |
---|
| 651 | s['rate ('+reactions[r].formula+')'] = reactions[r].rate(s['jo3_o'],densities) |
---|
| 652 | elif reactions[r].reactants[0] == 'ch2o': |
---|
| 653 | if 'cho' in reactions[r].products: |
---|
| 654 | s['rate ('+reactions[r].formula+')'] = reactions[r].rate(s['jch2o_cho'],densities) |
---|
| 655 | else: |
---|
| 656 | s['rate ('+reactions[r].formula+')'] = reactions[r].rate(s['jch2o_co'],densities) |
---|
| 657 | elif reactions[r].reactants[0] == 'h2o_vap': |
---|
| 658 | s['rate ('+reactions[r].formula+')'] = reactions[r].rate(s['jh2o'],densities) |
---|
| 659 | else: |
---|
| 660 | # General case |
---|
| 661 | s['rate ('+reactions[r].formula+')'] = reactions[r].rate(s['j'+reactions[r].reactants[0]],densities) |
---|
| 662 | else: |
---|
| 663 | s['k ('+reactions[r].formula+')'] = reactions[r].constant(s['temp'],densities[background]) |
---|
| 664 | s['rate ('+reactions[r].formula+')'] = reactions[r].rate(s['temp'],densities) |
---|
| 665 | |
---|
| 666 | # Termolecular reaction |
---|
| 667 | if type(reactions[r]) == termolecular_reaction: |
---|
| 668 | s['k ('+reactions[r].formula+')'] = s['k ('+reactions[r].formula+')'].assign_attrs({'units':'cm^6.s^-1'}) |
---|
| 669 | |
---|
| 670 | # Bimolecular reaction |
---|
| 671 | else: |
---|
| 672 | s['k ('+reactions[r].formula+')'] = s['k ('+reactions[r].formula+')'].assign_attrs({'units':'cm^3.s^-1'}) |
---|
| 673 | |
---|
| 674 | s['rate ('+reactions[r].formula+')'] = s['rate ('+reactions[r].formula+')'].assign_attrs({'units':'cm^-3.s^-1'}) |
---|
| 675 | |
---|
| 676 | s.reactions = s.reactions | reactions |
---|
| 677 | |
---|
| 678 | return s |
---|
| 679 | |
---|