source: trunk/LMDZ.GENERIC/utilities/photochemistry/Photochem_Visualizer.ipynb @ 3537

Last change on this file since 3537 was 3529, checked in by mmaurice, 5 weeks ago

Generic PCM:

Python postprocessing: got rid of conflicting informations in the
notebook

MM

File size: 171.1 KB
Line 
1{
2 "cells": [
3  {
4   "cell_type": "markdown",
5   "id": "99703d03-5db7-4850-add9-77033d4c6217",
6   "metadata": {},
7   "source": [
8    "# Generic PCM Photochemistry postprocessing and visualization demonstrator"
9   ]
10  },
11  {
12   "cell_type": "markdown",
13   "id": "a6b7b35c-fb19-4bda-81dd-ee03df1e4ef8",
14   "metadata": {},
15   "source": [
16    "This Notebook will show you how to use the Generic PCM photochemistry postprocessing library and how to make interactive visualization with it. For it to work, you'll need to copy the *photochemistry_postprocessing.py* file along this notebook in the directory containing the output file (*diagfi.nc*) as well as the reaction network file chemnetwork/reactfile (to become *reaction.def*)."
17   ]
18  },
19  {
20   "cell_type": "markdown",
21   "id": "ed55c2f3-5fa8-481c-b9d8-8e31f93f7993",
22   "metadata": {},
23   "source": [
24    "## Loading simulation and calculating reaction rates"
25   ]
26  },
27  {
28   "cell_type": "markdown",
29   "id": "50a0abe3-e224-4b07-95dc-a424dd35cdcc",
30   "metadata": {},
31   "source": [
32    "If you do not have a simulation with photochemistry at hand, you can download an example file with:    \n",
33    "```\n",
34    "wget https://web.lmd.jussieu.fr/~mmaurice/photochem_example.zip\n",
35    "unzip photochem_example.zip\n",
36    "```"
37   ]
38  },
39  {
40   "cell_type": "code",
41   "execution_count": 1,
42   "id": "cd28bac5-65f6-464b-9c2b-6cba1bde9472",
43   "metadata": {},
44   "outputs": [
45    {
46     "name": "stdout",
47     "output_type": "stream",
48     "text": [
49      "./photochem_example/diagfi.nc loaded, simulations lasts 1.0 sols\n"
50     ]
51    }
52   ],
53   "source": [
54    "import photochem_postproc as pcpp\n",
55    "\n",
56    "sim_path        = './photochem_example'\n",
57    "NetCDF_filename = 'diagfi.nc'\n",
58    "\n",
59    "# The simu class is just a wrapper for xr.Dataset\n",
60    "my_sim = pcpp.GPCM_simu(sim_path,NetCDF_filename)"
61   ]
62  },
63  {
64   "cell_type": "markdown",
65   "id": "703aaead-59d4-4a93-8bfd-25ad8478dee0",
66   "metadata": {},
67   "source": [
68    "Now let's load the chemical network. Notice that unlike in this example, the reaction network is normally located in a ***chemnetwork/reactfile*** file."
69   ]
70  },
71  {
72   "cell_type": "code",
73   "execution_count": 2,
74   "id": "355df458-41a8-4d48-a21c-49a427f94ea5",
75   "metadata": {},
76   "outputs": [
77    {
78     "name": "stdout",
79     "output_type": "stream",
80     "text": [
81      "reaction  no + hv -> n + o seems to be hard-coded. Add it manually if needed.\n",
82      "reaction  co + oh -> co2 + h seems to be hard-coded. Add it manually if needed.\n"
83     ]
84    }
85   ],
86   "source": [
87    "my_sim.network = pcpp.network.from_file(my_sim.path+'/network.def')"
88   ]
89  },
90  {
91   "cell_type": "markdown",
92   "id": "63d2fe39-aedc-45b9-bfc8-d7670336a876",
93   "metadata": {},
94   "source": [
95    "Some reactions' rates are hard-coded and need to be added manually (you should find their rates in *reaction_rate_lib.py*). To do that we first need to define a new reaction and call again **compute_rates** with the new reaction as second argument:"
96   ]
97  },
98  {
99   "cell_type": "code",
100   "execution_count": 3,
101   "id": "bf9f8c56-6615-4f9f-acae-c788a9543770",
102   "metadata": {},
103   "outputs": [],
104   "source": [
105    "# First load the parametrization for its rate\n",
106    "from reaction_rate_lib import k_CO_OH_to_CO2_H_JPL_2015\n",
107    "\n",
108    "# Then create the reaction objet (here for the reaction co + oh -> co2 + h):\n",
109    "hard_coded_reaction = pcpp.reaction(['co','oh'],['co2','h'],k_CO_OH_to_CO2_H_JPL_2015)\n",
110    "\n",
111    "my_sim.network.append(hard_coded_reaction)"
112   ]
113  },
114  {
115   "cell_type": "markdown",
116   "id": "5b193a59-9338-487e-977e-35556a7a405a",
117   "metadata": {},
118   "source": [
119    "We are now ready to compute the rates (be careful with memory, as it will add 2 4D fields per chemical species, and 2 4D fields per reaction!)"
120   ]
121  },
122  {
123   "cell_type": "code",
124   "execution_count": 4,
125   "id": "776388e6-0506-428b-a99c-f02283bad4d8",
126   "metadata": {},
127   "outputs": [],
128   "source": [
129    "my_sim.compute_rates()"
130   ]
131  },
132  {
133   "cell_type": "markdown",
134   "id": "042e4416-5ad3-4d1d-bbe7-896619253146",
135   "metadata": {},
136   "source": [
137    "## Now let's do some visualization"
138   ]
139  },
140  {
141   "cell_type": "markdown",
142   "id": "d5e0e556-863a-4f39-b6be-ebe1402a5f95",
143   "metadata": {},
144   "source": [
145    "### Static visualization\n",
146    "Here we use the built-in visualization methods of the *simu* class."
147   ]
148  },
149  {
150   "cell_type": "code",
151   "execution_count": 5,
152   "id": "f34cbcfa-339b-46dd-b33e-4c699a118f60",
153   "metadata": {},
154   "outputs": [],
155   "source": [
156    "import matplotlib.pyplot as plt"
157   ]
158  },
159  {
160   "cell_type": "markdown",
161   "id": "779d0619-582e-4628-8161-5c0d9d943261",
162   "metadata": {},
163   "source": [
164    "#### Meridional slice"
165   ]
166  },
167  {
168   "cell_type": "code",
169   "execution_count": 6,
170   "id": "f54ea828-ea01-4f8c-9349-e5f051ef7043",
171   "metadata": {},
172   "outputs": [
173    {
174     "data": {
175      "image/png": "iVBORw0KGgoAAAANSUhEUgAABRUAAAHHCAYAAAAhwb9EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB95ElEQVR4nO3de3QTdf7/8Vda6AVKC+XSUig3b9ykXUFqvQJWKiKKoKKrbkEX3RVUrKiwfgVUBK/AqtWqK+C6siJe8IKLly6IKMhSKKursOIWQaAFRKgtl0I7vz/8NTS9ZtIkM0mej3N6DplMJu/MJJ8X885kxmEYhiEAAAAAAAAAcFOY1QUAAAAAAAAACCw0FQEAAAAAAACYQlMRAAAAAAAAgCk0FQEAAAAAAACYQlMRAAAAAAAAgCk0FQEAAAAAAACYQlMRAAAAAAAAgCk0FQEAAAAAAACYQlMRAAAAAAAAgCk0Ff1g7Nix6tatm9Vl2Eq3bt00duzYRudzOByaMWOGz+txx8qVK+VwOLRy5Uq/PN+gQYM0aNAgvzwXgMBFxtgDudY4cg2Au8g2eyDbGhds2Xb06FGrS0CAoanoIYfD4dafvwYzWGPRokWaN2+e1WUACDJkjKuXXnpJvXr1UlRUlE455RQ9/fTTVpcUtMg1AL5Ctrki2/wnlLPtwIEDuvnmm9W+fXu1bNlSgwcP1oYNG2rNV1hYqLS0NEVFRalfv37697//bUG1CETNrC4gUL3yyisut//617/q448/rjW9V69eevHFF1VZWenP8uAD559/vg4fPqyIiAjntEWLFunrr7/WpEmTrCsMQNAhY054/vnn9Yc//EGjR49Wdna2PvvsM91+++06dOiQ7r33XqvLC2jkGgB/IttOINt8h2w7obKyUsOHD9emTZt09913q127dnr22Wc1aNAg5efn65RTTnHOe/PNN6tz58667777tGzZMl1zzTX65ptvLKwegYKmooeuv/56l9tr167Vxx9/XGs6gkdYWJiioqKsLiMoGIahI0eOKDo62upSAFsiY351+PBh3XfffRo+fLjeeOMNSdL48eNVWVmphx56SDfffLPatGljcZWBi1zzHnINaBzZ9iuyzbfIthPeeOMNffHFF1qyZImuvPJKSdLVV1+tU089VdOnT9eiRYuc865Zs0Y7d+5UXFycLrvsMsXHx+unn35S27ZtrSofAYKfP/tBzXOCbNu2TQ6HQ0888YRycnLUo0cPtWjRQkOHDtWOHTtkGIYeeughde7cWdHR0br88su1f//+Wsv9xz/+ofPOO08tW7ZUq1atNHz4cP3nP//xuM4ffvhBt956q0477TRFR0erbdu2uuqqq7Rt2zaX+RYuXCiHw6HPP/9c2dnZzkOpr7jiCu3du9dlXsMwNHPmTHXu3FktWrTQ4MGDm1SjJG3cuFHDhg1TbGysYmJidOGFF2rt2rUe11hZWakZM2YoKSnJWeM333xT6xwiNc/PMWjQIC1btkw//PCD8+caVdu56vlrrrv6zvHxwgsv6KSTTlJ0dLQGDhyozz77rM7XfvToUU2fPl0nn3yyIiMjlZycrHvuucftc1888cQTOvvss9W2bVtFR0erf//+zv/MVOnbt68GDx5c67GVlZXq1KmTM5Cqps2bN099+vRRVFSUEhISdMstt+jnn392eWy3bt106aWX6sMPP9SAAQMUHR2t559/XpK0YMECDRkyRB06dFBkZKR69+6t5557rs7nd2c7Sb8e5j9p0iQlJycrMjJSJ598sh599NGg/sYboStQMsYTK1as0E8//aRbb73VZfqECRNUVlamZcuWNfh4co1ck8g1IBCRbfUj24I/27zljTfeUEJCgkaNGuWc1r59e1199dV65513XOrp0aOHHn/8cRUWFurZZ59VWFiY4uPj/VovAhNHKlro1VdfVXl5uW677Tbt379fjz32mK6++moNGTJEK1eu1L333qutW7fq6aef1uTJkzV//nznY1955RVlZWUpMzNTjz76qA4dOqTnnntO5557rjZu3OjRiY3/9a9/6YsvvtA111yjzp07a9u2bXruuec0aNAgffPNN2rRooXL/LfddpvatGmj6dOna9u2bZo3b54mTpyoxYsXO+eZNm2aZs6cqUsuuUSXXHKJNmzYoKFDh6q8vNyjdfaf//xH5513nmJjY3XPPfeoefPmev755zVo0CB9+umnSktLM13j1KlT9dhjj2nEiBHKzMzUpk2blJmZqSNHjjRYy3333aeDBw/qxx9/1Ny5cyVJMTExpl/TSy+9pFtuuUVnn322Jk2apP/973/Ob4eSk5Od81VWVuqyyy7T6tWrdfPNN6tXr1766quvNHfuXP33v//V0qVLG32uP//5z7rssst03XXXqby8XK+99pquuuoqvf/++xo+fLgkacyYMZoxY4aKioqUmJjofOzq1au1a9cuXXPNNc5pt9xyixYuXKhx48bp9ttvV2FhoZ555hlt3LhRn3/+uZo3b+6cd8uWLbr22mt1yy23aPz48TrttNMkSc8995z69Omjyy67TM2aNdN7772nW2+9VZWVlZowYYLz8e5up0OHDumCCy7Qzp07dcstt6hLly764osvNHXqVO3evTtkz6eC0GNVxlRWVta5I1eXuLg4l3Gipo0bN0qSBgwY4DK9f//+CgsL08aNGxs8woVcI9ckcg0IJmQb2Rbs2Xbo0CEdOnSo0XrCw8MbPaJ148aNOuOMMxQW5nos2cCBA/XCCy/ov//9r04//XRJv+bpFVdcoYcfflgtWrTQ3/72NzkcjkbrAGTAKyZMmGDUtzqzsrKMrl27Om8XFhYakoz27dsbBw4ccE6fOnWqIclISUkxjh075px+7bXXGhEREcaRI0cMwzCMX375xWjdurUxfvx4l+cpKioy4uLiak1316FDh2pNW7NmjSHJ+Otf/+qctmDBAkOSkZGRYVRWVjqn33nnnUZ4eLjzNe3Zs8eIiIgwhg8f7jLfn/70J0OSkZWV1WhNkozp06c7b48cOdKIiIgwvv/+e+e0Xbt2Ga1atTLOP/980zUWFRUZzZo1M0aOHOnyvDNmzKhV44oVKwxJxooVK5zThg8f7rJtaz5/YWGhy/SayygvLzc6dOhgpKamGkePHnXO98ILLxiSjAsuuMA57ZVXXjHCwsKMzz77zGWZubm5hiTj888/r1VHTTW3cXl5udG3b19jyJAhzmlbtmwxJBlPP/20y7y33nqrERMT41zGZ599ZkgyXn31VZf5li9fXmt6165dDUnG8uXLG63JMAwjMzPT6NGjh/O2me300EMPGS1btjT++9//usw7ZcoUIzw83Ni+fXut5wPsLpAypur53fmrPp7W97rDw8PrvK99+/bGNddc0+DjybUTyDVyDbAbsq02sq3uGkMp26ZPn+7W+6yu11NTy5YtjRtvvLHW9GXLltWZYQcOHDDWrl1r/PTTT40uG6jCz58tdNVVVykuLs55u+obm+uvv17NmjVzmV5eXq6dO3dKkj7++GMdOHBA1157rfbt2+f8Cw8PV1pamlasWOFRPdXPA3Ts2DH99NNPOvnkk9W6des6rxB18803u3x7cd5556miokI//PCDJOmTTz5xfpNYfT5PT5BbUVGhjz76SCNHjlSPHj2c0zt27Kjf/va3Wr16tUpKSkzVmJeXp+PHj9f6+cFtt93mUY1mrV+/Xnv27NEf/vAHl5MJjx071uW9IUlLlixRr1691LNnT5ftPmTIEElya7tX38Y///yzDh48qPPOO89l+5566qlKTU11+WawoqJCb7zxhkaMGOFcxpIlSxQXF6eLLrrIpZ7+/fsrJiamVj3du3dXZmZmgzUdPHhQ+/bt0wUXXKD//e9/OnjwoCRz22nJkiU677zz1KZNG5e6MjIyVFFRoVWrVjW6noBgYFXGJCYm6uOPP3brLyUlpcFl1TzRenVRUVE6fPhwg48n104g18g1IBiQbWRbdcGYbb/73e/cep+9+uqrjdZ9+PBhRUZG1ppedc7Jmu+1uLg4paWl8bNnmMLPny3UpUsXl9tVA1L1w6erT686n893330nSc6BqabY2FhJvw4SVf95rVL9Zz81HT58WLNnz9aCBQu0c+dOGYbhvK/mcuqqv+rw66o6q0Kg+lWlpF/P4+DJyYf37t2rQ4cOOX9eVF2vXr1UWVmpHTt2qE+fPqZrPPnkk13mi4+P98sJkutbR82bN3cJYenX7f7tt9+qffv2dS5rz549kqT9+/e7/FQhOjra+R56//33NXPmTBUUFLicQ6Pmoe1jxozRn/70J+3cuVOdOnXSypUrtWfPHo0ZM8alnoMHD6pDhw4N1lOle/fudc73+eefa/r06VqzZk2tQ/0PHjyouLg4U9vpu+++07///e9G1xMQ7HydMfWJiopSRkaG+YLrEB0dXe9Pr9y5KAa5dgK5Rq4BwYBsI9uqC+Rsq0+PHj1qLdNT0dHRdZ7Hseon41xcDN5AU9FC4eHhpqZXBUbVSblfeeWVOpuEVd/SLV68WOPGjatzGXW57bbbtGDBAk2aNEnp6emKi4uTw+HQNddcU+eJwBur0w6sqrG+809UVFR4vMzKykqdfvrpmjNnTp33V/1natSoUfr000+d07OysrRw4UJ99tlnuuyyy3T++efr2WefVceOHdW8eXMtWLDA5cpf0q87X1OnTtWSJUs0adIkvf7664qLi9PFF1/sUk+HDh3q/ZasZpDWFVrff/+9LrzwQvXs2VNz5sxRcnKyIiIi9MEHH2ju3LkenYC+srJSF110ke6555467z/11FNNLxMIRL7OmPpUVFTUOrl6feLj4+s9WkP69aiGiooK7dmzx6XRU15erp9++klJSUkNLp9c8x5yjVwD7IBsI9u8ycpsq09paalKS0sbfZ7w8PB6G5dVOnbsqN27d9eaXjWtsfca4A6aigHopJNOkiR16NChwW/MMjMz9fHHH7u93DfeeENZWVl68sknndOOHDmiAwcOeFRn165dJf36bU31b1v27t1b6yqK7mjfvr1atGihLVu21Lpv8+bNCgsLa3SQrq/GrVu3uhxx8NNPP7lVY31BVPWNWc11V/UtV83n/+6771y+OT127JgKCwtdfj5x0kknadOmTbrwwgsbPGnuk08+6VJ7VVi8+eabioqK0ocffuhyGPyCBQtqLaN79+4aOHCgFi9erIkTJ+qtt97SyJEjXR530kkn6ZNPPtE555zj8bdc7733no4ePap3333X5RvKmj8LMLOdTjrpJJWWlnrt22Qg1LibMfXZsWNHvUdw1bRixQoNGjSo3vtTU1Ml/fqzo0suucQ5ff369aqsrHTeXx9yjVyrQq4BoY1sqx/ZZk221eeJJ57QAw880Oh8Xbt2rXXV6ppSU1P12WefqbKy0uViLV9++aVatGjBl1LwCs6pGIAyMzMVGxurWbNm6dixY7Xur/oWrWPHjsrIyHD5a0h4eHitb4Oefvppj7+pycjIUPPmzfX000+7LNfTqxSGh4dr6NCheuedd1wG0OLiYi1atEjnnntuoz9dqOnCCy9Us2bN9Nxzz7lMf+aZZ9x6fMuWLev8mUHVf1yqn+eooqJCL7zwgst8AwYMUPv27ZWbm+vyM4iFCxfWCrerr75aO3fu1Isvvljr+Q4fPqyysjJJv145rvo27927t6Rf15/D4XDZntu2bav3CmRjxozR2rVrNX/+fO3bt8/lJ2JV9VRUVOihhx6q9djjx4+79R+bqm8la/5so+YOoZntdPXVV2vNmjX68MMPa9134MABHT9+vNG6gFDmbsbUx5vnnRoyZIji4+Nrffafe+45tWjRwnl13/qQayeQa+QaEMrItvqRbdZkW328eU7FK6+8UsXFxXrrrbec0/bt26clS5ZoxIgRdZ5vETCLIxUDUGxsrJ577jndcMMNOuOMM3TNNdeoffv22r59u5YtW6ZzzjnH7QG2uksvvVSvvPKK4uLi1Lt3b61Zs0affPKJ2rZt61Gd7du31+TJkzV79mxdeumluuSSS7Rx40b94x//ULt27Txa5syZM/Xxxx/r3HPP1a233qpmzZrp+eef19GjR/XYY4+ZXl5CQoLuuOMOPfnkk7rssst08cUXa9OmTc4aG/t2qX///lq8eLGys7N15plnKiYmRiNGjFCfPn101llnaerUqdq/f7/i4+P12muv1fqPf/PmzTVz5kzdcsstGjJkiMaMGaPCwkItWLCg1rk0brjhBr3++uv6wx/+oBUrVuicc85RRUWFNm/erNdff10ffvihBgwYUG+tw4cP15w5c3TxxRfrt7/9rfbs2aOcnBydfPLJ+ve//11r/quvvlqTJ0/W5MmTFR8fX6spfcEFF+iWW27R7NmzVVBQoKFDh6p58+b67rvvtGTJEv35z3/WlVde2eD6Gzp0qCIiIjRixAjdcsstKi0t1YsvvqgOHTq4HKpvZjvdfffdevfdd3XppZdq7Nix6t+/v8rKyvTVV1/pjTfe0LZt2zx+/wGhoKkZ4+3zTj300EOaMGGCrrrqKmVmZuqzzz7T3/72Nz388MONnkicXCPXqiPXgNBFttWPbLNXtnnznIpXXnmlzjrrLI0bN07ffPON2rVrp2effVYVFRVuHQ0JuMWv15oOYhMmTDDqW51ZWVkul3wvLCw0JBmPP/64y3xVl65fsmSJy/SqS93/61//qjV/ZmamERcXZ0RFRRknnXSSMXbsWGP9+vUevYaff/7ZGDdunNGuXTsjJibGyMzMNDZv3mx07drVyMrKcqseScaKFSuc0yoqKowHHnjA6NixoxEdHW0MGjTI+Prrr2stsz6SjOnTp7tM27Bhg5GZmWnExMQYLVq0MAYPHmx88cUXLvOYqfH48ePG/fffbyQmJhrR0dHGkCFDjG+//dZo27at8Yc//KHBx5aWlhq//e1vjdatWxuSXLbz999/b2RkZBiRkZFGQkKC8ac//cn4+OOPay3DMAzj2WefNbp3725ERkYaAwYMMFatWmVccMEFxgUXXOAyX3l5ufHoo48affr0MSIjI402bdoY/fv3Nx544AHj4MGDja7Pl156yTjllFOMyMhIo2fPnsaCBQuM6dOn1/vePeeccwxJxu9///t6l/nCCy8Y/fv3N6Kjo41WrVoZp59+unHPPfcYu3btcs7TtWtXY/jw4XU+/t133zX69etnREVFGd26dTMeffRRY/78+YYko7Cw0Dmfu9vJMAzjl19+MaZOnWqcfPLJRkREhNGuXTvj7LPPNp544gmjvLy80fUE2E0wZExTvPDCC8Zpp51mREREGCeddJIxd+5co7KystHHkWvkWk3kGmAfZBvZRrb53v79+42bbrrJaNu2rdGiRQvjggsuqLW+gaZwGIaNztAK2MSBAwfUpk0bzZw5U/fdd5/V5aAebCcAcA/jZWBgOwGA+xgzAetxTkWEvMOHD9eaVnUOkYZOsgz/YjsBgHsYLwMD2wkA3MeYCdgT51REyFu8eLEWLlyoSy65RDExMVq9erX+/ve/a+jQoTrnnHOsLg//H9spsO3YsUM33HCD9uzZo2bNmun+++/XVVddZXVZQFBivAwMbCd7IJ+AwMCYiVASSNnEz58R8jZs2KB77rlHBQUFKikpUUJCgkaPHq2ZM2cqJibG6vLw/7GdAtvu3btVXFys1NRUFRUVqX///vrvf/+rli1bWl0aEHQYLwMD28keyCcgMDBmIpQEUjbRVAQA+F1KSoref/99JScnW10KAABO5BMAwG7snE2cUxEAoFWrVmnEiBFKSkqSw+HQ0qVLa82Tk5Ojbt26KSoqSmlpaVq3bp1Hz5Wfn6+KigpbhiIAwF7IJwCA3ZBNJ9BUBACorKxMKSkpysnJqfP+xYsXKzs7W9OnT9eGDRuUkpKizMxM7dmzxzlPamqq+vbtW+tv165dznn279+v3/3ud3rhhRd8/poAAIGPfAIA2A3ZdELQ//y5srJSu3btUqtWreRwOKwuB0AQMgxDv/zyi5KSkhQW1rTvao4cOaLy8nKv1FRzzIuMjFRkZGSjj3U4HHr77bc1cuRI57S0tDSdeeaZeuaZZyT9OrYmJyfrtttu05QpU9yq6ejRo7rooos0fvx43XDDDe6/mCBENgHwB2/lk7eyqaom8sm+yCcAvsa+U3BlU9Bf/XnXrl22PUwUQHDZsWOHOnfu7PHjjxw5oi5dW2rvnsom1xITE6PS0lKXadOnT9eMGTNML6u8vFz5+fmaOnWqc1pYWJgyMjK0Zs0at5ZhGIbGjh2rIUOG2DoU/YVsAuBPTcknb2aTRD7ZHfkEwF/Yd6pfIGVT0DcVW7VqJUkaFH+9moVFWFyNdLx7R6tLAAJCs8LdVpfgtuOV5Vq5/2/O8cZT5eXl2runUqvWdVBMjOdHB5SWGjp/4B7t2LFDsbGxzunufNNWl3379qmiokIJCQku0xMSErR582a3lvH5559r8eLF6tevn/OcI6+88opOP/10j2oKdGQTELhCLZ+8lU0S+RQIyCcgsAVCRrHv1LhAyqagbypWHcLaLCzCFsGoZlFWVwAEhlO6q9n3O62uwhRv/UwoJsahmFZN+SnAr9/WxcbGugSjlc4991xVVnrnKJdgQDYBgcsWn1mTvJFPTc8miXyyPzvl0/GTOgX/zirgbQG0D8W+U/0CKZu4UAsA2zp+UierS4Ckdu3aKTw8XMXFxS7Ti4uLlZiYaFFVAGANssk+yCcAqI2cslaoZRNNRT/iww2Yx+fGehEREerfv7/y8vKc0yorK5WXl6f09HQLK4M38BkDzONzYw/kU/DiMwY0DZ8h64RaNnFEOQDbO35Sp4A5jD9QlZaWauvWrc7bhYWFKigoUHx8vLp06aLs7GxlZWVpwIABGjhwoObNm6eysjKNGzfOwqoBwDpkk3+QTwDgGXLKd8imE2gq+gnfFABNQyj61vr16zV48GDn7ezsbElSVlaWFi5cqDFjxmjv3r2aNm2aioqKlJqaquXLl9c6ATECC9kENA3Z5HvkU+ghmwDvIad8g2w6gaYigIBBKPrOoEGDZBhGg/NMnDhREydO9FNFABAYyCbfIp8AoGnIKe8jm07gnIp+wLdtgPfweQK8g88S4D18ngDv4LME+AafLfgKTUUf48MLeB+fKwCA3ZBNAAA7O35SJ7IKXkdTEUBAIhABz/H5AXyDzxbgOT4/gH/wWYM30VT0IT6sgG/xGQMA2A3ZBJjH5wbwL45ahLfQVAQQ0AhDwBw+M4Dv8TkDAAQC8gpNRVPRR/hwAv7DN20AALshlwD38FkBrMW+FJqCpiKAoEEYAg3jMwL4FztqQMP4fAD2UZVZfC5hRjOrCwhGfAgB61R9/pp9v9PiSgB7IZsA6xw/qRO5BNRALgH2VfPzSYahPjQVvYxwBOyh+meREESoI5sA65FLwAnkEhBYaDKiPjQVvYhwBOyJHTmEMrIJsB9yCQAQyGgyogpNRS9hpw0IDHV9VglBBCuyCbA/cgmhhmwCgg9floUumopeQDACga2hzzChiEBFNgGBq77PL5mEQEc2AcGPBmNooanYRAQjENzc+YwfP35E2ueHYgA3kU1AcOLnZghU5BIQmmgwBj+aih4gFAEAdkQ+AaGFI+1hd+QSgCpV4wEHZAQXmopuIhABAHZEPgGoy/GTOrHjBsuQTQAQGkKmqXi8e0epWZTVZQAA4EQ2AQDsiHwCALgjzOoCAAAAAAAAAAQWmooAAAAAAAAATKGpCAAAAAAAAMAUmooAAAAAAAAATKGpCAAAAAAAAMAUmooAAAAAAAAATKGpCAAAAAAAAMAUmooAAAAAAAAATKGpCAAAAAAAAMAUmooAAAAAAAAATKGpCAAAAAAAAMAUmooAAJ87cOCABgwYoNTUVPXt21cvvvii1SUBAEA+AQBsJ5CyqZnVBQAAgl+rVq20atUqtWjRQmVlZerbt69GjRqltm3bWl0aACCEkU8AALsJpGziSEUAgM+Fh4erRYsWkqSjR4/KMAwZhmFxVQCAUEc+AQDsJpCyiaYiAECrVq3SiBEjlJSUJIfDoaVLl9aaJycnR926dVNUVJTS0tK0bt06U89x4MABpaSkqHPnzrr77rvVrl07L1UPAAhW5BMAwG7IphNoKgIAVFZWppSUFOXk5NR5/+LFi5Wdna3p06drw4YNSklJUWZmpvbs2eOcp+qcHzX/du3aJUlq3bq1Nm3apMLCQi1atEjFxcV+eW0AgMBFPgEA7IZsOoFzKgJAkCopKXG5HRkZqcjIyDrnHTZsmIYNG1bvsubMmaPx48dr3LhxkqTc3FwtW7ZM8+fP15QpUyRJBQUFbtWVkJCglJQUffbZZ7ryyivdegwAIHiQTwAAuyGbPENTEQBs5qOynopyeD48Hyk7LqlYycnJLtOnT5+uGTNmmF5eeXm58vPzNXXqVOe0sLAwZWRkaM2aNW4to7i4WC1atFCrVq108OBBrVq1Sn/84x9N1wIAsEZTs0kinwAA3se+k7VoKgJAkNqxY4diY2Odt+v7pq0x+/btU0VFhRISElymJyQkaPPmzW4t44cfftDNN9/sPMnwbbfdptNPP92jegAAgY18AgDYDdnkGZqKABCkYmNjXYLRSgMHDnT7EH8AQHAjnwAAdkM2eYYLtQAAGtSuXTuFh4fXOjlwcXGxEhMTLaoKABDqyCcAgN2EWjZZ3lTcuXOnrr/+erVt21bR0dE6/fTTtX79euf9hmFo2rRp6tixo6Kjo5WRkaHvvvvOwooBILRERESof//+ysvLc06rrKxUXl6e0tPTLazMd8gmALA/8ol8AgC7CbVssrSp+PPPP+ucc85R8+bN9Y9//EPffPONnnzySbVp08Y5z2OPPaannnpKubm5+vLLL9WyZUtlZmbqyJEjFlYOAMGltLRUBQUFzsPsCwsLVVBQoO3bt0uSsrOz9eKLL+rll1/Wt99+qz/+8Y8qKytzXtEsmJBNAGAf5NMJ5BMA2APZdIKl51R89NFHlZycrAULFjinde/e3flvwzA0b948/d///Z8uv/xySdJf//pXJSQkaOnSpbrmmmv8XjMABKP169dr8ODBztvZ2dmSpKysLC1cuFBjxozR3r17NW3aNBUVFSk1NVXLly+vdQLiYEA2AYB9kE8nkE8AYA9k0wmWHqn47rvvasCAAbrqqqvUoUMH/eY3v9GLL77ovL+wsFBFRUXKyMhwTouLi1NaWlq9l+I+evSoSkpKXP4AAA0bNGiQ8+pi1f8WLlzonGfixIn64YcfdPToUX355ZdKS0uzrmAfIpsAwD7IpxPIJwCwB7LpBEubiv/73//03HPP6ZRTTtGHH36oP/7xj7r99tv18ssvS5KKiookqc5LcVfdV9Ps2bMVFxfn/EtOTvbtiwAABBWyCQBgR+QTAMBuLG0qVlZW6owzztCsWbP0m9/8RjfffLPGjx+v3Nxcj5c5depUHTx40Pm3Y8cOL1YMAAh2ZBMAwI7IJwCA3VjaVOzYsaN69+7tMq1Xr17Ok1tWXW7bzKW4IyMjFRsb6/IHAIC7yCYAgB2RTwAAu7G0qXjOOedoy5YtLtP++9//qmvXrpJ+PfFwYmKiy6W4S0pK9OWXXwblpbgBANYjmwAAdkQ+AQDsxtKrP9955506++yzNWvWLF199dVat26dXnjhBb3wwguSJIfDoUmTJmnmzJk65ZRT1L17d91///1KSkrSyJEjrSwdABCkyCYAgB2RTwAAu7G0qXjmmWfq7bff1tSpU/Xggw+qe/fumjdvnq677jrnPPfcc4/Kysp0880368CBAzr33HO1fPlyRUVFWVg5ACBYkU0AADsinwAAdmNpU1GSLr30Ul166aX13u9wOPTggw/qwQcf9GNVAIBQRjYBAOyIfAIA2Iml51QEAAAAAAAAEHhoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAMBvDh06pK5du2ry5MlWlwIAgBP5BACwm0DIJpqKAAC/efjhh3XWWWdZXQYAAC7IJwCA3QRCNtFUBAD4xXfffafNmzdr2LBhVpcCAIAT+QQAsJtAySaaigAArVq1SiNGjFBSUpIcDoeWLl1aa56cnBx169ZNUVFRSktL07p160w9x+TJkzV79mwvVQwACAXkEwDAbsimE2gqAgBUVlamlJQU5eTk1Hn/4sWLlZ2drenTp2vDhg1KSUlRZmam9uzZ45wnNTVVffv2rfW3a9cuvfPOOzr11FN16qmn+uslAQCCAPkEALAbsumEZlYXAADwjZKSEpfbkZGRioyMrHPeYcOGNXho/Zw5czR+/HiNGzdOkpSbm6tly5Zp/vz5mjJliiSpoKCg3sevXbtWr732mpYsWaLS0lIdO3ZMsbGxmjZtmslXBQAIdOQTAMBuyCbP0FQEAJv59KdT1fxIhMePP1ZWLulTJScnu0yfPn26ZsyYYXp55eXlys/P19SpU53TwsLClJGRoTVr1ri1jNmzZzsP31+4cKG+/vprW4YiAKBuTc0miXwCAHgf+07WoqkIAEFqx44dio2Ndd6u75u2xuzbt08VFRVKSEhwmZ6QkKDNmzc3qUYAQOghnwAAdkM2eYamIgAEqdjYWJdgtIuxY8daXQIAwELkEwDAbsgmz9BUBAA0qF27dgoPD1dxcbHL9OLiYiUmJlpUFQAg1JFP8JZfukfXmtaq8LAFlQAIdKGWTVz9GQDQoIiICPXv3195eXnOaZWVlcrLy1N6erqFlQEAQhn5BE/90j3a5a+heQDAjFDLJo5UBACotLRUW7dudd4uLCxUQUGB4uPj1aVLF2VnZysrK0sDBgzQwIEDNW/ePJWVlTmvaAYAgC+QT/A2s43CX7pHc9QiABdk0wk0FQEAWr9+vQYPHuy8nZ2dLUnKysrSwoULNWbMGO3du1fTpk1TUVGRUlNTtXz58lonIAYaws/LAJhFPsFbmnLUYdVjySwAEtlUHU3FAOdJOBKGAGoaNGiQDMNocJ6JEydq4sSJfqoIgcxMNlWfl3wCUBP5BG/w1s+YOWoRvtLYe5T3nb2QTSfQVAxATQ1FduAAAN7mjR028gkA4E2cExF25+57lIY27IqmYoDwVSAyOAEAPOXLnTXyCQDQFOw/wa5odiOYcPVnm/PHVccY1AAAZvjripjkEwDALK7aDDvzxrk9ATvhSEUbYrAAANgN2QQAsDN/5hRHK8IszuuJYEVT0Uas3GFjcIK3NfR+5r0GBA6rm4nkEwCgPlZnFOAOb79P+b8R7ISmosXsFIQMTmgqMycalmguAnZlp2ySyCd4h7vva95rgL3ZJaPIJriDc3si2NFUtIhdwrAmBid4wtP3M+83wF7smk0S4wU848l7mvcaYF92zimgJt6vCAVcqMXPAuHEwXavD/bhjfdzIHwmgGAXKJ/DQKgR9tHUk+HzfgPsw66fSTvWBHvggnYIFTQV/cSuQQh4yhfnBgHgX2QTgpE339d8PgDr2f1zaPf64H+8JxBKLG0qzpgxQw6Hw+WvZ8+ezvuPHDmiCRMmqG3btoqJidHo0aNVXFxsYcWeCcRBJRBrhn/4sgnB+w52EArZFMjNxECtG/7hi/cH7znYRSjkU018/oCG8RmB1Sw/UrFPnz7avXu382/16tXO++6880699957WrJkiT799FPt2rVLo0aNsrBacwJ5pw2oC4fxI1QEezYBwcbX/+ficwO7COZ8qonPHQIR71uEGssv1NKsWTMlJibWmn7w4EG99NJLWrRokYYMGSJJWrBggXr16qW1a9fqrLPO8neppgTDYMKJylHF3+9n3nuwGtlkb4wRqM5f72ved7CDYM2nmgItrxgfYCXef7CS5Ucqfvfdd0pKSlKPHj103XXXafv27ZKk/Px8HTt2TBkZGc55e/bsqS5dumjNmjX1Lu/o0aMqKSlx+fO3QAvBhgTTa4F5Vh5ty3sPViKbAPuzIqP4HMFqwZhPNfE5Q6DivYtQZGlTMS0tTQsXLtTy5cv13HPPqbCwUOedd55++eUXFRUVKSIiQq1bt3Z5TEJCgoqKiupd5uzZsxUXF+f8S05O9vGrAIKPXX66b4caEHqCMZuC8bMUjK8J7rE6o3jvwSrBmE818flCoLL6vWv18yN0Wfrz52HDhjn/3a9fP6Wlpalr1656/fXXFR3t2Ydi6tSpys7Odt4uKSnxazgG44eZw6lDg13fu7z/4G/BmE1AoLNbRpFNsEKw55PdPudmMS4ACEWWn1OxutatW+vUU0/V1q1bddFFF6m8vFwHDhxw+catuLi4zvOIVImMjFRkZKQfqq0t0IMQoSWQ3q/8Jw1WIpvsi7EhuNn9vcv7D1YL9Hyqzu6fd6AhvH8Ryiw/p2J1paWl+v7779WxY0f1799fzZs3V15envP+LVu2aPv27UpPT7ewyroF+0AS7K8v2FX9VKz6X6AJxJoRHMgmewuF1xgqAjGnAqVOBKdAzqfq+BwhkNnp/WunWhA6LD1ScfLkyRoxYoS6du2qXbt2afr06QoPD9e1116ruLg43XTTTcrOzlZ8fLxiY2N12223KT09PeCuXhYs+Ebe3kIhRKpeI+9D+BLZFHjIJ/sL5owim+AvwZhPwTY2kEehwc7vW96D8DdLm4o//vijrr32Wv30009q3769zj33XK1du1bt27eXJM2dO1dhYWEaPXq0jh49qszMTD377LNWllwnOw8q3sYgZQ+h9J6rS/XXz/sR3kY2BSbyyR5C7X1XHc1F+Fqw5FOVYB0vyKPgE2jvVd6D8CdLm4qvvfZag/dHRUUpJydHOTk5fqrIvEAbYLyB/zT7Vyi+x8zg/QhvI5sCF+OBf4Xq+6wxfPEFXwmGfKoS7OMHTR1rBfv7yx28B+EvtrpQCwILO2++QQh6hp044FeMIfxH2hd4X3mGbAJqC5XxhCzyn1B5T5nF/jr8gaZiEzB4/YrBynO8h3yj5nrlvYlQwZhyAs0cz/E+8g2yCQi98YX9JN8ItfdRU9Hghi/RVPQAg1jd2IGrG+8X6zW0DXivIlgw1tSPfKqN94v1GtsGvFcRTEJ9zKG52DSh/v7xBhqL8BWaiiYxoLkn2HfgeB8ED29sy+PHHNK/vFAM4CHGJPfZ8Wgxth/qQj4hGDC+uaprfdghh+yE94zv1Lduzb4Hm7qNyKbgQlPRBAY4z7DeAMB3GGObhvUHAL7B+OoeX6wnXzYq2a7Bh22KpqCp6AY+ZAAAuyGbAAB2QzbZA9sBgL/QVKwDgzAAwI7IJwCAnZBLABDaQqap+Eu3aDVrHmV1GQAQsrp166bY2FiFhYWpTZs2WrFihdUlWY5sAgDrkU+1kU8AYK1AyaaQaSoCAKz3xRdfKCYmxuoyAABwQT4BAOwmELIpzOoCAAAAAAAAAAQWmooAAK1atUojRoxQUlKSHA6Hli5dWmuenJwcdevWTVFRUUpLS9O6detMPYfD4dAFF1ygM888U6+++qqXKgcABDPyCQBgN2TTCfz8GQCgsrIypaSk6MYbb9SoUaNq3b948WJlZ2crNzdXaWlpmjdvnjIzM7VlyxZ16NBBkpSamqrjx4/XeuxHH32kpKQkrV69Wp06ddLu3buVkZGh008/Xf369fP5awMABC7yCQBgN2TTCTQVASBIlZSUuNyOjIxUZGRknfMOGzZMw4YNq3dZc+bM0fjx4zVu3DhJUm5urpYtW6b58+drypQpkqSCgoIG6+nUqZMkqWPHjrrkkku0YcMGWwYjAMC3yCcAgN2QTZ6hqQgANrOluL3CW3h+xcWKQ0ckScnJyS7Tp0+frhkzZpheXnl5ufLz8zV16lTntLCwMGVkZGjNmjVuLaOsrEyVlZVq1aqVSktL9c9//lNXX3216VoAANZoajZJ5BMAwPvYd7IWTUUACFI7duxQbGys83Z937Q1Zt++faqoqFBCQoLL9ISEBG3evNmtZRQXF+uKK66QJFVUVGj8+PE688wzPaoHABDYyCcAgN2QTZ6hqQgAQSo2NtYlGK3Uo0cPbdq0yeoyAAA2QD4BAOyGbPIMV38GADSoXbt2Cg8PV3Fxscv04uJiJSYmWlQVACDUkU8AALsJtWyiqQgAaFBERIT69++vvLw857TKykrl5eUpPT3dwsoAAKGMfAIA2E2oZRM/fwYAqLS0VFu3bnXeLiwsVEFBgeLj49WlSxdlZ2crKytLAwYM0MCBAzVv3jyVlZU5r2gGAIAvkE8AALshm06gqQgA0Pr16zV48GDn7ezsbElSVlaWFi5cqDFjxmjv3r2aNm2aioqKlJqaquXLl9c6ATEAAN5EPgEA7IZsOoGmIgBAgwYNkmEYDc4zceJETZw40U8VAQBAPgEA7IdsOoFzKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFOauTPTu+++a3rBF110kaKjo00/DgAAd5FPAAC7IZsAAKHCrabiyJEjTS3U4XDou+++U48ePTypCQAAt5BPAAC7IZsAAKHC7Z8/FxUVqbKy0q2/Fi1a+LJmAACcyCcAgN2QTQCAUOBWUzErK8vU4fjXX3+9YmNjPS4KAAB3kE8AALshmwAAocKtnz8vWLDA1EKfe+45j4oBAMAM8gkAYDdkEwAgVHD1ZwAAAAAAAACmuHWkYnVHjhzR008/rRUrVmjPnj2qrKx0uX/Dhg1eKw4AAHeRTwAAuyGbAADBzHRT8aabbtJHH32kK6+8UgMHDpTD4fBFXQAAmEI+AQDshmwCAAQz003F999/Xx988IHOOeccX9QDAIBHyCcAgN2QTQCAYGb6nIqdOnVSq1atfFELAAAeI58AAHZDNgEAgpnppuKTTz6pe++9Vz/88IMv6gEAwCPkEwDAbsgmAEAwM91UHDBggI4cOaIePXqoVatWio+Pd/nz1COPPCKHw6FJkyY5px05ckQTJkxQ27ZtFRMTo9GjR6u4uNjj5wAABC/yCQBgN2QTACCYmT6n4rXXXqudO3dq1qxZSkhI8MrJhv/1r3/p+eefV79+/Vym33nnnVq2bJmWLFmiuLg4TZw4UaNGjdLnn3/e5OcEAAQX8gkAYDdkEwAgmJluKn7xxRdas2aNUlJSvFJAaWmprrvuOr344ouaOXOmc/rBgwf10ksvadGiRRoyZIgkacGCBerVq5fWrl2rs846yyvPDwAIDuQTAMBuyCYAQDAz/fPnnj176vDhw14rYMKECRo+fLgyMjJcpufn5+vYsWMu03v27KkuXbpozZo19S7v6NGjKikpcfkDAAQ/O+cT2QQAocnO2SSRTwCApjHdVHzkkUd01113aeXKlfrpp5+aFEKvvfaaNmzYoNmzZ9e6r6ioSBEREWrdurXL9ISEBBUVFdW7zNmzZysuLs75l5ycbKomAEBgsnM+kU0AEJrsnE0S+QQAaBrTP3+++OKLJUkXXnihy3TDMORwOFRRUeHWcnbs2KE77rhDH3/8saKiosyWUa+pU6cqOzvbebukpIRwBIAQYOd8IpsAIDTZOZsk8gkA0DSmm4orVqzwyhPn5+drz549OuOMM5zTKioqtGrVKj3zzDP68MMPVV5ergMHDrh841ZcXKzExMR6lxsZGanIyEiv1AgA8J7CwkLdeOONKi4uVnh4uNauXauWLVt6bfl2zieyCQDsy5f5ZOdsksgnALArX+87eYvppuLZZ5+t5s2b13nfvn373F7OhRdeqK+++spl2rhx49SzZ0/de++9Sk5OVvPmzZWXl6fRo0dLkrZs2aLt27crPT3dbNkAAIuNHTtWM2fO1Hnnnaf9+/d7fSeGfAIAeMKX+UQ2AQA84et9J28x3VS85ppr9MYbb8jhcLhMLy4u1oUXXqivv/7areW0atVKffv2dZnWsmVLtW3b1jn9pptuUnZ2tuLj4xUbG6vbbrtN6enpXL0MAALMf/7zHzVv3lznnXeeJCk+Pt6ry8/Ly9P111+v6OhoORwO9erVS5MmTVJGRgb5BAColy/ziWwCAHjCH/tOc+fO1bfffitJLvlklukLtWzfvl2///3vXabt3r1bgwYNUs+ePU0X0JC5c+fq0ksv1ejRo3X++ecrMTFRb731llefAwAgrVq1SiNGjFBSUpIcDoeWLl1aa56cnBx169ZNUVFRSktL07p169xe/nfffaeYmBiNGDFCZ5xxhmbNmuW12p999lldfPHFKi8vV4cOHXTHHXcoNjZWl1xyiWbNmkU+AUAAC9R8IpsAIHgFajZJJ/KpVatWuuOOO1zyKScnx/TyTB+p+MEHH+j8889Xdna25syZo127dmnw4MFKSUnRa6+9ZrqA6lauXOlyOyoqSjk5OR69MACA+8rKypSSkqIbb7xRo0aNqnX/4sWLlZ2drdzcXKWlpWnevHnKzMzUli1b1KFDB0lSamqqjh8/XuuxH330kY4fP67PPvtMBQUF6tChgy6++GKdeeaZuuiii5pc+6xZszR37lyNGTNG559/vrZt26ZFixapT58+mjZtmkaNGkU+AUCACtR8IpsAIHgFajZJJ/Jp4sSJzmm33367zjnnHM2aNUsTJkwwtTzTTcX27dvro48+0rnnnitJev/993XGGWfo1VdfVViY6QMfAQA+UlJS4nK7oZOxDxs2TMOGDat3WXPmzNH48eM1btw4SVJubq6WLVum+fPna8qUKZKkgoKCeh/fqVMnDRgwwHlFyUsuuUQFBQVeCcYDBw7o4osvrpVPb7/9tiTp73//O/kEADYSCvlENgFAYAmFbJJO5FNNQ4cO1b333mt6eR4lWXJysj7++GO9+uqrGjhwoP7+978rPDzck0UBAGqoKGqh47s8/6soaiHp17E6Li7O+Td79myP6ikvL1d+fr7LOTbCwsKUkZGhNWvWuLWMM888U3v27NHPP/+syspKrVq1Sr169fKonpouu+wy505a9Xxq06aNRo8eTT4BgBc0NZtCLZ/IJgDwD/adzKmeT9W98847uvTSS00vz60jFdu0aVPrwiySdOjQIb333ntq27atc9r+/ftNFwEA8L4dO3YoNjbWedvTK4bt27dPFRUVSkhIcJmekJCgzZs3u7WMZs2aadasWTr//PNlGIaGDh3qUWjV1KZNGx09elSvvfaa7rvvPjVr9musHT16VHv27NHmzZvVsmVLSdLs2bN1++23N/k5AQBNE+z5RDYBQOAJ9myq0rt3bz388MNauXKl0tPTJUlr167V559/rrvuuktPPfWUc1538smtpuK8efM8qxYAYJnY2FiXYLRaYz8T8MS8efM0efJk585ZlZq3q+Zlxw0ArBfs+UQ2AUDgCfZsqvLSSy+pTZs2+uabb/TNN984p7du3VovvfSS87bD4fBeUzErK8uDUgEAwaBdu3YKDw9XcXGxy/Ti4mIlJiZaVNWvsrKyyCgACFF2zSeyCQBCl12zqUphYaFXl+fWORVrnrCyMb/88otHxQAA7CciIkL9+/dXXl6ec1plZaXy8vKch8xbhXwCgNBl13wimwAgdNk1m3zF7XMq7t6923np68Z06tRJBQUF6tGjR5OKAwD4R2lpqbZu3eq8XVhYqIKCAsXHx6tLly7Kzs5WVlaWBgwYoIEDB2revHkqKytzXtHMKlX5VF5ernfffVfbt29XeXm5yzxz5sxx/pt8AoDAEoj5RDYBQHALxGyq7scff3Qrn9zhVlPRMAz95S9/UUxMjFsLPXbsmKkiAADWWr9+vQYPHuy8nZ2dLenXn3AtXLhQY8aM0d69ezVt2jQVFRUpNTVVy5cvr3UCYn8zDENTp07VK6+8onbt2qm4uFgdO3bU/v37ZRiGkpOT1a1bN+f85BMABJZAzCeyCQCCWyBmU5W8vDxddtll6tGjhzZv3qy+fftq27ZtMgxDZ5xxhunludVU7NKli1588UW3F5qYmKjmzZubLgYAYI1BgwbJMIwG55k4caImTpzop4rc06VLF/3tb39Ty5YtFRkZKcMw5HA41KFDB+3du1f79+/X3LlznfOTTwAQWAIxn8gmAAhugZhNVaZOnarJkyfrgQceUKtWrfTmm2+qQ4cOuu6663TxxRebXp5bTcVt27aZXjAAAL62bds2tWrVSuvXr9dJJ52kNm3aaPny5erTp482bdqkyy+/3OsnIwYAoCFkEwDArr799lv9/e9/lyQ1a9ZMhw8fVkxMjB588EFdfvnl+uMf/2hqeW5dqAUAALtq2bKl81wgHTt21Pfff++8b9++fVaVBQAIYWQTAMCOvJ1Pbh2pCACAXZ111llavXq1evXqpUsuuUR33XWXvvrqK7311ls666yzrC4PABCCyCYAgB15O59oKgIAAtqcOXNUWloqSXrggQdUWlqqxYsX65RTTjF99TIAALyBbAIA2JG384mmIgAgoPXo0cP575YtWyo3N9fCagAAIJsAAPbk7XzinIoAgID2+9//XitXrrS6DAAAnMgmAIAdeTufPGoqfvbZZ7r++uuVnp6unTt3SpJeeeUVrV692muFAQDgjr179+riiy9WcnKyrr32Wg0fPpx8AgBYimwCANhR9Xy6++67tWnTpiYtz3RT8c0331RmZqaio6O1ceNGHT16VJJ08OBBzZo1q0nFAABg1jvvvKPdu3dr+PDhev311/XBBx/oyy+/1Ny5c7Vt2zbyCQDgd2QTAMCOqvLp/vvv17/+9S+dccYZ6tOnj2bNmqVt27aZXp7ppuLMmTOVm5urF198Uc2bN3dOP+ecc7RhwwbTBQAA0FRt2rTRl19+qQULFmjHjh1q3ry53n77bZ188snkEwDAEmQTAMCO2rRpo5tvvlkrV67UDz/8oLFjx+qVV17RySefbHpZppuKW7Zs0fnnn19relxcnA4cOGC6AAAAvGHLli1KT0/X+vXrVVlZqR9//FEJCQnkEwDAMmQTAMCujh07pvXr1+vLL7/Utm3blJCQYHoZppuKiYmJ2rp1a63pq1evdrmKDAAA/rJixQo1a9ZMZ5xxhsaOHStJ+stf/qIff/yRfAIAWIJsAgDY0YoVKzR+/HglJCRo7Nixio2N1fvvv68ff/zR9LJMNxXHjx+vO+64Q19++aUcDod27dqlV199VZMnT9Yf//hH0wUAANAUnTp10iWXXKLk5GS1bt1a7733nqKjo9W9e3ctWrSIfAIA+B3ZBACwo6p82rdvn1544QUVFxdr/vz5uvDCC+VwOEwvr5nZB0yZMkWVlZW68MILdejQIZ1//vmKjIzU5MmTddttt5kuAACAppgxY4auuuoqxcXFadasWRo2bFid+fTjjz8qKSlJYWGmv08DAMAUsgkAYEdV+dS6desG53M3n0w3FR0Oh+677z7dfffd2rp1q0pLS9W7d2/FxMSYXRQAAE02fvx4578byqfevXuroKCAn5sBAHyObAIA2FH1fGqIu/lkuqlYJSIiQr179/b04QAA+ER9+WQYhgXVAABANgEAAou7+eRWU3HUqFFuP/Fbb73l9rwAADSFmXwCAMAfyCYAQKhw6+QdcXFxzr/Y2Fjl5eVp/fr1zvvz8/OVl5enuLg4nxUKAEBN5BMAwG7IJgBAqHDrSMUFCxY4/33vvffq6quvVm5ursLDwyVJFRUVuvXWWxUbG+ubKgEAqAP5BACwG7IJABAqTJ9Tcf78+Vq9erUzFCUpPDxc2dnZOvvss/X44497tUAAANzRWD45HA4LqwMAhCKyCQAQiNzNJ7d+/lzd8ePHtXnz5lrTN2/erMrKSrOLAwDAKxrLJ06GDwDwN7IJABCIvHqhlurGjRunm266Sd9//70GDhwoSfryyy/1yCOPaNy4cWYXBwCAV4wbN07jxo3TxIkTNXToUEmu+XTnnXcqKSnJ4ioBAKGEbAIA2NWPP/4oSercuXOt+7755hu38sl0U/GJJ55QYmKinnzySe3evVuS1LFjR91999266667zC4OAIAmqays1MyZM/WXv/xFpaWleuihh/TQQw/J4XC45FP1n54BAOBLZBMAwI6q8unJJ59UaWmpJKlVq1a66667dN999yks7NcfNCcnJ7u1PNNNxbCwMN1zzz265557VFJSIkmcZBgAYJn77rtPL730kh599FGdc845kqSPP/5Ys2fP1tixY3XPPfdYXCEAINSQTQAAO6rKp0ceecSZT6tXr9aMGTN05MgRPfzww6aWZ7qpWB3NRACA1V5++WX95S9/0WWXXeac1q9fP5188sm69dZbTQcjAABNRTYBAOyovnzq1KmTR/lkuqnYvXv3Bq8C87///c/sIgEA8Nj+/fvVs2fPWvl07Ngx7d69Wz169JBEPgEA/IdsAgDYUVU+1dSzZ0/t37/f9PJMNxUnTZrkcvvYsWPauHGjli9frrvvvtt0AQAANEVKSoqeeeaZWvn0+uuv6/Dhwzp48CD5BADwK7IJAGBHVfn01FNPuUx/5plnlJKSYnp5ppuKd9xxR53Tc3JytH79etMFAADQFI899piGDx+uLl26KD09XZK0Zs0a7dixQx988IH+/e9/k08AAL8imwAAdlSVT5988kmd+WRWmLcKGzZsmN58801vLQ4AEES2bNmi1NRU5190dLSWLl3qlWVfcMEF+u9//6srrrhCBw4c0IEDBzRq1Cht2bJF5513HvkEAKiXr/KJbAIAeMrKfSezmnShlureeOMNxcfHe2txAIAgctppp6mgoECSVFpaqm7duumiiy7y2vKTkpLqPakw+QQAqI8v84lsAgB4wsp9J7NMNxV/85vfuJxs2DAMFRUVae/evXr22We9UhQAIHi9++67uvDCC9WyZUuvLK+yslJhYWF15tPOnTu1f/9+8gkA0Chv5hPZBADwBl/tO9U1/ccff1SXLl1MLc/0z58vv/xyl79Ro0Zp+vTp+vrrr3XzzTebXRwAwAZWrVqlESNGKCkpSQ6Ho87D63NyctStWzdFRUUpLS1N69at8+i5Xn/9dY0ZM6aJFUslJSW6+uqr1bJlSyUkJCg2NlYjRoxw5tPQoUO1b98+8gkAAlig5RPZBADBL9CySaqdT9OmTVNFRYXz/r1796p79+6ml2v6SMUZM2aYfhIAgL2VlZUpJSVFN954o0aNGlXr/sWLFys7O1u5ublKS0vTvHnzlJmZqS1btqhDhw6SpNTUVB0/frzWYz/66CMlJSVJ+jXMvvjiC7322mtNrvn+++/Xpk2b9Morr+jAgQOaOXOm8vPz9dZbbykiIkLFxcV6/PHH1bNnzyY/FwDAGoGWT2QTAAS/QMsmqe582rBhgzOfpF+PpjfLdFMxPDxcu3fvdq6IKj/99JM6dOjg0ukEAFinpKTE5XZkZKQiIyPrnHfYsGEaNmxYvcuaM2eOxo8fr3HjxkmScnNztWzZMs2fP19TpkyRJOd5PxryzjvvaOjQoYqKinLzVdRv6dKlevnllzVo0CBJ0i233KL4+HiNGDFC7777riTJ4XCQTwBgM8GcT2QTAASmYM4mqXY+jRw5UsOHD6+VT2aZ/vlzfZ3Lo0ePOrub7nruuefUr18/xcbGKjY2Vunp6frHP/7hvP/IkSOaMGGC2rZtq5iYGI0ePVrFxcVmSwaAgBK9M0wtfvT8L3rnr0N7cnKy4uLinH+zZ8/2qJ7y8nLl5+crIyPDOS0sLEwZGRlas2aNqWV56/B96ddD9Lt27eq8bRiG3njjDf3yyy+65JJLdOjQIUnm84lsAoDamppNoZJPvsomiXwCgLqw7+SemvnUrl07ffLJJ7XyySy3j1R86qmnJP3aufzLX/6imJgY530VFRVatWqV6cP4O3furEceeUSnnHKKDMPQyy+/rMsvv1wbN25Unz59dOedd2rZsmVasmSJ4uLiNHHiRI0aNUqff/65qecBgFC0Y8cOxcbGOm/X901bY/bt26eKigolJCS4TE9ISNDmzZvdXs7Bgwe1bt06vfnmmx7VUVOXLl307bff6r333pP0az699tpruuKKK/Tss8/q3HPPlWEYmjBhgql8IpsAwLeCOZ98lU0S+QQAvhTM2SSdyKfq501s1aqVPvroIw0dOlRXXHGFR8t1u6k4d+5cSb9+25abm6vw8HDnfREREerWrZtyc3NNPfmIESNcbj/88MN67rnntHbtWnXu3FkvvfSSFi1apCFDhkiSFixYoF69emnt2rU666yzTD0XAISaqiMZ7CIuLs6rR0wMHTpUCxYs0Pr16yW55pNhGPrpp59kGIYOHTpkKp/IJgDwrWDOJ19lk0Q+AYAvBXM2SSfy6ZJLLnGZHhMTow8//FAXXXSRR8t1u6lYWFgoSRo8eLDeeusttWnTxqMnrE9FRYWWLFmisrIypaenKz8/X8eOHXM5ZLRnz57q0qWL1qxZQzACgJ+0a9dO4eHhtUKtuLhYiYmJFlUlPfDAA9q1a5f69OkjqXY+/fLLL9qwYYMuuOACj5+DbAIA+7JjPvkjmyTyCQDsyo7ZJJ3Ip7q0atVKH3/8sTZs2GB6uaYv1LJixQrTT9KQr776Sunp6Tpy5IhiYmL09ttvq3fv3iooKFBERIRat27tMn9CQoKKiorqXd7Ro0d19OhR5+2aJ9sEAJgTERGh/v37Ky8vTyNHjpQkVVZWKi8vTxMnTrSsrjZt2jh30vLy8pSenq67775blZWVLvN5suNGNgGA/dkxn3yZTRL5BAB2Z8dskmrnU15envbs2dPkfHKrqZidna2HHnpILVu2VHZ2doPzzpkzx1QBp512mgoKCnTw4EG98cYbysrK0qeffmpqGdXNnj1bDzzwgMePB4BQVFpaqq1btzpvFxYWqqCgQPHx8erSpYuys7OVlZWlAQMGaODAgZo3b57KysqcVzSzSnZ2tqKjo/XII4+offv2Luf7rT6PZC6fyCYAsIdAzCdfZZNEPgGAHQRiNlV54IEH9OCDD2rAgAHq2LGjR1d8rs6tpuLGjRt17NgxSdKGDRua/KTVRURE6OSTT5Yk9e/fX//617/05z//WWPGjFF5ebkOHDjg8o1bY4eMTp061aXxWVJSouTkZK/VCwDBaP369Ro8eLDzdtU4mpWVpYULF2rMmDHau3evpk2bpqKiIqWmpmr58uW1TkDsbxs3btQ333yjhQsX6qWXXqoznzZu3Gh6uWQTANhDIOaTr7JJIp8AwA4CMZuq5ObmauHChbrhhhu8sjy3morVf/K8cuVKrzxxfSorK3X06FH1799fzZs3V15enkaPHi1J2rJli7Zv36709PR6Hx8ZGenxVXoAIFQNGjRIhmE0OM/EiRMtPWS/LitWrFDbtm119tlney0Y60I2AYA1AjGf/JVNEvkEAFYIxGyqUl5errPPPttrywsz+4Abb7xRv/zyS63pZWVluvHGG00ta+rUqVq1apW2bdumr776SlOnTtXKlSt13XXXKS4uTjfddJOys7O1YsUK5efna9y4cUpPT+dEwwAAp9///vdatGiR1/KJbAIANJW3s0kinwAATVeVT95i+kItL7/8sh555BG1atXKZfrhw4f117/+VfPnz3d7WXv27NHvfvc77d69W3FxcerXr5/Lpaznzp2rsLAwjR49WkePHlVmZqaeffZZsyUDAIJM9Z9qVVZW6oUXXtCBAwfkcDgUFxfnMu+f/vQnU/lENgEAPOHLbJLIJwCAZ+rKp08++UT9+vVT8+bNXeY1e65ft5uKJSUlMgxDhmHol19+UVRUlPO+iooKffDBB+rQoYOpJ3/ppZcavD8qKko5OTnKyckxtVwAQHCrfi6q48ePq2/fvlq9erX+85//1ApGs/lENgEAPOHLbJLIJwCAZ2qexzc1NVWS9PXXX7tM9+T6KW43FVu3bi2HwyGHw6FTTz211v0Oh4MrhwEA/KL6uX7DwsLkcDgUFhamf/3rX7XmXbNmDfkEAPA5sgkAYEfV88nb3G4qrlixQoZhaMiQIXrzzTcVHx/vvC8iIkJdu3ZVUlKST4oEAKA+5BMAwG7IJgBAKHC7qXjBBRdIkgoLC9WlSxePDosEAMDbyCcAgN2QTQCAUOBWU/Hf//63y+2vvvqq3nn79evXtIoAAHAT+QQAsBuyCQAQKtxqKqampsrhcMgwjAbnczgcqqio8EphAAA0hnwCANgN2QQACBVuNRULCwt9XQcAAKaRTwAAuyGbAAChwq2mYteuXX1dBwAAppFPAAC7IZsAAKHC7Qu11PTNN99o+/btKi8vd5l+2WWXNbkoAAA8RT4BAOyGbAIABCPTTcX//e9/uuKKK/TVV1+5nCuk6opmnBcEAGAF8gkAYDdkEwAgmIWZfcAdd9yh7t27a8+ePWrRooX+85//aNWqVRowYIBWrlzpgxIBAGgc+QQAsBuyCQAQzEwfqbhmzRr985//VLt27RQWFqawsDCde+65mj17tm6//XZt3LjRF3UCANAg8gkAYDdkEwAgmJk+UrGiokKtWrWSJLVr1067du2S9OsJibds2eLd6gAAcBP5BACwG7IJABDMTB+p2LdvX23atEndu3dXWlqaHnvsMUVEROiFF15Qjx49fFEjAACNIp8AAHZDNgEAgpnppuL//d//qaysTJL04IMP6tJLL9V5552ntm3bavHixV4vEAAAd5BPAAC7IZsAAMHMdFMxMzPT+e+TTz5Zmzdv1v79+9WmTRvnVcwAAPA38gkAYDdkEwAgmJluKtYlPj7eG4sBAMCryCcAgN2QTQCAYGH6Qi0AAAAAAAAAQhtNRQAAAAAAAACm0FQEAAAAAAAAYApNRQAAAAAAAACm0FQEAAAAAAAAYApNRQAAAAAAAACm0FQEAAAAAAAAYApNRQAAAAAAAACm0FQEAAAAAAAAYApNRQCAX8ydO1d9+vRR7969dfvtt8swDKtLAgCAfAIA2E6gZBNNRcAGSjuFufwBwWbv3r165plnlJ+fr6+++kr5+flau3at1WUBAEIc+QQAsJtAyqZmVhcAhLL6Gog1p8fsrPRHOYBPHT9+XEeOHJEkHTt2TB06dLC4IgD1cfcLLvIJwYB8AgDYTaBkE4dEAX7myRGJHL0IX1u1apVGjBihpKQkORwOLV26tNY8OTk56tatm6KiopSWlqZ169a5vfz27dtr8uTJ6tKli5KSkpSRkaGTTjrJi68AQFORT7Aj8gkAYDdk0wn8TxDwo6bsfPHTaPhSWVmZUlJSlJOTU+f9ixcvVnZ2tqZPn64NGzYoJSVFmZmZ2rNnj3Oe1NRU9e3bt9bfrl279PPPP+v999/Xtm3btHPnTn3xxRdatWqVv14egEY0NZ8AXyGfAAB2QzadwM+fgQBT2imMn5vBLSUlJS63IyMjFRkZWee8w4YN07Bhw+pd1pw5czR+/HiNGzdOkpSbm6tly5Zp/vz5mjJliiSpoKCg3scvWbJEJ598suLj4yVJw4cP19q1a3X++eebeUkAfMAbTUGyCWaQTwAAuyGbPMNXy4CfePNIDo4KCW4td1cqZqfnfy13/7pjn5ycrLi4OOff7NmzPaqnvLxc+fn5ysjIcE4LCwtTRkaG1qxZ49YykpOT9cUXX+jIkSOqqKjQypUrddppp3lUDwB7IpuCW1OziXwCAPgC+07W4khFwA98saPFUSFozI4dOxQbG+u8Xd83bY3Zt2+fKioqlJCQ4DI9ISFBmzdvdmsZZ511li655BL95je/UVhYmC688EJddtllHtUDwHu8nU9kE9xBPgEA7IZs8gxNRQAIUrGxsS7BaLWHH35YDz/8sNVlAPj/fHVkIY1FNIZ8AgDYDdnkGX6nAviYL38Oxk/N4A/t2rVTeHi4iouLXaYXFxcrMTHRoqoAAKGOfAIA2E2oZRMdCcCHaPohGERERKh///7Ky8tzTqusrFReXp7S09MtrAyAp3ydT+Qf/IF8AgDYTahlEz9/BgIcPzODN5SWlmrr1q3O24WFhSooKFB8fLy6dOmi7OxsZWVlacCAARo4cKDmzZunsrIy5xXNAAQOGn4IJOQTAMBuyKYTaCoCPsJOGwLJ+vXrNXjwYOft7OxsSVJWVpYWLlyoMWPGaO/evZo2bZqKioqUmpqq5cuX1zoBMQBU4UsveAP5BACwG7LpBJqKgA/4u6HIjhuaatCgQTIMo8F5Jk6cqIkTJ/qpIgC+wBdeCDTkEwDAbsimE2gqAo0IlB2wqjoDsblY3zp297U0dRsF4joDgEDIp+o1BuJY25T6Pdk+gbiOAIQ2u2RRzfGzrroCcYwN9BxF8KOpCNuzS1AFCn83F4Ph6tZNfZ6Ko7xHgVBCLnnGn0fV+2Ib+WO7e/s5yCcgdIVaVrnzeu306y5Pto/dtqmnX7aRTcGFpiJsxW4DZSDzVXORbQQgFDH2eQfZBABNw3jXNL5qLIbidgnF14zaaCrCMgxC/tHUHTi2E4BQw7jne97YqWM7AQh2jHO+4a3GItsHkCz9FMyePVtnnnmmWrVqpQ4dOmjkyJHasmWLyzxHjhzRhAkT1LZtW8XExGj06NEqLi62qGJ4qrRTWK0/+JeZ9c52QigjmxoXTOMD+WQdT9c32wmhinwKDeSRf3i6ftk+gCtLj1T89NNPNWHCBJ155pk6fvy4/vSnP2no0KH65ptv1LJlS0nSnXfeqWXLlmnJkiWKi4vTxIkTNWrUKH3++edWlu41wXoSbwZZ+6rvyEW2GfArsslVQ2OD2XHDDvnFWGc/7hxRz3YDyCdPeXqhC39nHOOc/5n9RRfbCKjN0qbi8uXLXW4vXLhQHTp0UH5+vs4//3wdPHhQL730khYtWqQhQ4ZIkhYsWKBevXpp7dq1Ouuss6wou8maOhh5+nhf78wxyAYWthdQt1DNpup8NT409Urv3nxO2E/NHX+2HeDKTvnk7ufTqi+T6qvPXxcYpEkVWBr7OTTbCaifrc6pePDgQUlSfHy8JCk/P1/Hjh1TRkaGc56ePXuqS5cuWrNmTZ3BePToUR09etR5u6SkRJJU1jFM4ZHWXo7d6sGorudvynqw+vUAgD8EezZVZ9W47q1mI7kUPNiWQOP8lU9VY3FTrlbrq3yz61hRsy5+IWR//JoL8IxtmoqVlZWaNGmSzjnnHPXt21eSVFRUpIiICLVu3dpl3oSEBBUVFdW5nNmzZ+uBBx5o9PnMDA7BfCi7nWsDAKvZOZsk7+yk2TkH7FwbAFjJn/nkjbE41H9mGmyvJ5ixrQBzbNNUnDBhgr7++mutXr26ScuZOnWqsrOznbdLSkqUnJzcpGV6coQfgxEABD47Z5NEPgFAqLJ7PtWnoSP4yCcACDy2aCpOnDhR77//vlatWqXOnTs7pycmJqq8vFwHDhxw+catuLhYiYmJdS4rMjJSkZGRvi6Z0AOAIBeI2SSRTwAQ7AI1n+pCZgFAYLN0FDcMQxMnTtTbb7+tf/7zn+revbvL/f3791fz5s2Vl5fnnLZlyxZt375d6enp/i4XABACyCYAgB2RTwAAu7H0SMUJEyZo0aJFeuedd9SqVSvnuT7i4uIUHR2tuLg43XTTTcrOzlZ8fLxiY2N12223KT09PSiurgkAsB+yCQBgR+QTAMBuLG0qPvfcc5KkQYMGuUxfsGCBxo4dK0maO3euwsLCNHr0aB09elSZmZl69tln/VwpACBUkE0AADsinwAAdmNpU9EwjEbniYqKUk5OjnJycvxQEQAg1JFNAAA7Ip8AAHbDmXEBAAAAAAAAmEJTEQAAAAAAAIApNBUBAAAAAAAAmEJTEQAAAAAAAIApNBUBAAAAAAAAmGLp1Z8Bsw51rrS6hHq1+JEevSfq2qasSwCBxM7ZJDGmeqrmdmU9Agh23sozxktz3FnvrFPYFU1F2Jbdd9JqaqjeYA0BX20jq7d9sG4vAE1n9fjkicZqDrYxL5SzqWaNlUcC7/0KwD98OaZVX3YwZYyZdVbzdTd1fVc9vrH16enz+Gs7HepcSTYFGZqKNsA34SdY/R92XwmWbRys26cms6+TYESwC8UvTWoK5vEv0DMqmLdNdaHyOoEq7jZR0Dgrx49g2I6erD9ff8FVfX1647nqW0ZTthu5FRpoKvqRux8qX3747DqYh9qAEwjhGmrbBIB1/2m261gYquPgoc6VttsmobotgFBU8/Pe1DGpKUfNNeXINCvZccwMhP2fmuy4Hqv4qzYz283O6wu+Q1PRx+z2wfLFNxCestu6sYJVPw1g3QOQ7DMWuFuHP3+aE+qs2PljvQOhraExwJPGYl3Lq+vIbG+NPb74f30wjot2/OKqpmBc701V33ZjXSFkmoqHO1UqZp9/nisQP1jeajYG4mu3i6buwLHugcBzuFOlwqL895/rQB8nzO6wmWlWBvq68RVfNBdZ14D9+TOfzP6ay5vjvz9/ourJ44OVXRuLwb7em4r1g7qETFNR8t1ResH84Qrm12ZX7uw0s12A4OLLC2kE63jhzdcVrOvIm5qyg8z6BQKXr3/l5OlpNwLl/8hmx0671R8qWO+A50KqqVgfBhHYFe9NBJMnnnhCCxYskMPh0JQpU3T99ddbXVLAYCyAXfj66pOAFcgn85p62gpvXQk3UHDQQG12OFox1NY5AkugZBNNRQCAz3311VdatGiR8vPzZRiGBg8erEsvvVStW7e2ujQAHqjaGWSHDIGOfPKtupppoT5uhPrrtxrrH4EgkLLJficyAAAEnW+//Vbp6emKiopSdHS0UlJStHz5cqvLAtAE7JghGJBP/nOocyXjBixR9d7j/YdAEUjZRFMRAKBVq1ZpxIgRSkpKksPh0NKlS2vNk5OTo27duikqKkppaWlat26d28vv27evVq5cqQMHDujnn3/WypUrtXPnTi++AgBAMCKfgOBFkw+Bimw6gZ8/AwBUVlamlJQU3XjjjRo1alSt+xcvXqzs7Gzl5uYqLS1N8+bNU2ZmprZs2aIOHTpIklJTU3X8+PFaj/3oo4/Uu3dv3X777RoyZIji4uJ01llnKTw83OevCwAQ2MgnAE1B4xK+QDadQFMRAIJUSUmJy+3IyEhFRkbWOe+wYcM0bNiwepc1Z84cjR8/XuPGjZMk5ebmatmyZZo/f76mTJkiSSooKGiwnltuuUW33HKLJOn3v/+9TjnlFHdfCgAgiJBPAKr48oItNBRhBtnkGZqKAGAzrbYdVrNmhsePP378iCQpOTnZZfr06dM1Y8YM08srLy9Xfn6+pk6d6pwWFhamjIwMrVmzxu3l7NmzRx06dNCWLVu0bt065ebmmq4FAGCNpmaTRD4B8B8aiqGDfSdr0VQEgCC1Y8cOxcbGOm/X901bY/bt26eKigolJCS4TE9ISNDmzZvdXs7ll1+ugwcPqmXLllqwYIGaNSOCACAUkU8AfImGIjxBNnnGnlUBAJosNjbWJRitZuabOQBA8CKfAFTnzZ9A01CEp8gmz9BURFBolnTIZ8s+vquFz5YNBIJ27dopPDxcxcXFLtOLi4uVmJhoUVVA4PBVRpFPCHXkE+B9TcmspuRSKDcD61vn3sz5qufg/w6+F2rZRFMRtubLZqG3arDzwGyH9RcKKg4dsboEn4qIiFD//v2Vl5enkSNHSpIqKyuVl5eniRMnWlscYAG7jK3kExpDPiGQ2akJYqdavM2b43HNZQXb+vJ3dtX1fA2tU3fqM/Mamrr96nsusim40FT0sUD9T7OVARBo68yK8Ay0dQT7Ky0t1datW523CwsLVVBQoPj4eHXp0kXZ2dnKysrSgAEDNHDgQM2bN09lZWXOK5ohsAT6GGJFRgXiOvPHkQ/uPifgKfLJPjz5fHsy3tR8nmZJh/w+7tf3WqtPD/SGmT/GayvWlzuvyxvvS6vUbHD7si4znz27rB9/IZtOoKmo0PsAuKOp6ySQB+qm8mWTMVjWEexn/fr1Gjx4sPN2dna2JCkrK0sLFy7UmDFjtHfvXk2bNk1FRUVKTU3V8uXLa52AGN7D571+/vppVrBuA28fcROs6wn2QD5ZxxufbTP/L27o+TwZtxpaXvXlePo6/dEw88UR6VaN2f442tPd12amFrtmnL/qamxd2XX9+BrZdELINBXDEw8pvEXonqfB3xo7OiKUBp+mBmgorStYZ9CgQTIMo8F5Jk6cGJSH7FuJbPK/xn5KFEpjblPyKZTWE6xFPlkjPPGQpCivL7epY4c7R055+yeg7vDFQQVmXkcgNcd81Vz05PU11hi2yzqzg7o+e6G8fsimE0KmqQh7COWBx2yAhvK6AgB/CvXxlp83AQgk1ccsu45JZs+F587j3Zmfpo/nWFeNC4TPHvyPpiLgZxxCDgCwG7IJQCAJxDHJ3aMZm/LaAmm9ePNcmYH0ugMd6xo10VQELMKADACwG7IJAPyj5k9vGX89w3oDrBVmdQEAAAAAAISqUG2MeeMcmwCsRVMRAAAAAAAEDBqKgD3QVAQAAAAAAH7nyUVpaCgC9sE5FQEAAAAAgO3QQATsjSMVAQAAAACAJepqHHJEIhAYaCoCAAAAAABboJkIBA5+/gwAAAAAACxDIxEITBypCAAAAAAAAMAUjlRE0OqVWOz2vN8WJfiwEuuZWRf1CfZ1BAD+5O64HKxjL7kEAPZkdnxmLPaMr9cz2xH+QlMRAcUbOyFmlmvnwdVX68IuzxdIjpWV639WFwHAMr4cHxtath0zyp9ZQS41jnxCIKv+GbdqvAu0Mdgsb4yjdthO1TX2mppSo5W509h6bmptNR/vyyYm2RRcaCr6UDD9Z9eOQW7V81sZllavDwCBK1jHD3+PyXZaj03dAfAmO60XAN7n7c94Q+NVXc/VK7G4yWOct1+Dv8dgb+2X+OOLMDvvO3raBLVTzvmjFnfWk53WCaxDU1F8GNzhz8On7b49/P1tnN3XBwDf4fPfOH/kU6BsB/IJgLeclrBXzVtG+Gz5dY1XjY0pZhqLVoxP3m6omWmQufOcVhxJ7s/moievz906Qz3vQv31o2Eh01T0dTDCldlv7gJ1oPLlN5SBuk4AuI9s8j93G2+BPgb7ssEY6OsGgL2YGVPqayzaaVyqr1Hlzn6Dp6/DruvFG0eY+kNDzUWr1yFgd5Ze/XnVqlUaMWKEkpKS5HA4tHTpUpf7DcPQtGnT1LFjR0VHRysjI0PfffedNcWiSXolFjf4Fyy88ZqCbZ0AgYh8Cg01x+xgzCXJe7kSjOsGCCRk068CZV+isRq9/ToCZb34grdea83lhNI6BDxlaVOxrKxMKSkpysnJqfP+xx57TE899ZRyc3P15ZdfqmXLlsrMzNSRI0f8XClgntkwD7XwB+yMfAo9oTD+erqjST4B9kA2IRD5Oj98ca5Mcg9wn6U/fx42bJiGDRtW532GYWjevHn6v//7P11++eWSpL/+9a9KSEjQ0qVLdc011/izVMBjjR32T2AB9kM+Idi5+5M0MgqwD7IJcEVGAdaz9EjFhhQWFqqoqEgZGRnOaXFxcUpLS9OaNWvqfdzRo0dVUlLi8gdYraGfPQAILJ7kE9kEO2oogzhKAwgs7Dsh1JBRgD3YtqlYVFQkSUpIcP0WPSEhwXlfXWbPnq24uDjnX3Jysk/rBMyoed4uAIHHk3wim2BXdeUR+QQEHvadYGe++IkyAHuwbVPRU1OnTtXBgwedfzt27LC6JMAFIQiEHrIJdsc5pIDQRD4h0JBTgL3YtqmYmJgoSSoudh00iouLnffVJTIyUrGxsS5/AAB4iyf5RDYBAHyJfSfYnbeubg3AXmzbVOzevbsSExOVl5fnnFZSUqIvv/xS6enpFlYGAAhl5BMAwG7IJgQzmomAfVl69efS0lJt3brVebuwsFAFBQWKj49Xly5dNGnSJM2cOVOnnHKKunfvrvvvv19JSUkaOXKkdUUDAIIe+QQAsBuyCaGIhiJgb5Y2FdevX6/Bgwc7b2dnZ0uSsrKytHDhQt1zzz0qKyvTzTffrAMHDujcc8/V8uXLFRUVZVXJAIAQQD4BAOyGbEKg65VYrG+LEhqfUTQTgUBhaVNx0KBBMgyj3vsdDocefPBBPfjgg36sCgAQ6sgnAIDdkE0IBTQTgcBi23MqAgCCyxVXXKE2bdroyiuvrHXf+++/r9NOO02nnHKK/vKXv1hQHQAgVJFPgP/U1zTkQiyAq0DJJkuPVARgvSHtNtc5/Z/7evq5EgS7O+64QzfeeKNefvlll+nHjx9Xdna2VqxYobi4OPXv319XXHGF2rZta1GlAKxCJsEK5BPgX8HWPKyeXfXlVX35VhdfZF7V85OngSNQsommIoJKY4N1qA2iZsKrscf6at3VVaOdt1Nd9R6JOq5/WFBLoBk0aJBWrlxZa/q6devUp08fderUSZI0bNgwffTRR7r22mv9XCHgH4E27nmbJ9nk73UWaNso0Oq1G/LJvoa028x7GU3iTsPP0+V5cr+7z+Gt933NemguBo5AySaaighYTd0pCcaB1BshZsWyG3ququ1k1bd7/nzdVlq1apUef/xx5efna/fu3Xr77bdrXS0yJydHjz/+uIqKipSSkqKnn35aAwcObPJz79q1yxmKktSpUyft3LmzycsFrOKtppkUHFnlq3G0Zlb4erxu6P8Q7jy3r3YQG5ovGL70Ip9CV9V73S6NRTvVUcUO9dhNQ2NkU7ehFftDntbrbvPT31/QScFxQAbZdAJNRQQcbw3mwRTIwdz48mXzOJjXm1llZWVKSUnRjTfeqFGjRtW6f/HixcrOzlZubq7S0tI0b948ZWZmasuWLerQoYMkKTU1VcePH6/12I8++khJSUk+fw3wvmAaJ/3BF2NKIG8Dq76MsuvzmdmW5NMJ5FNostvRVXZocNY1LviiHqvXdVO4M3Z6us6sGpc9qddMrb7Y3qGQYWTTCTQV/cQfH6y6BoJADoW6+Ppoh0BbT6EwYDdVKK+jkpISl9uRkZGKjIysc95hw4Zp2LBh9S5rzpw5Gj9+vMaNGydJys3N1bJlyzR//nxNmTJFklRQUOBRnUlJSS7fru3cudMr3+LBHF//nCfQxlcz/DXOBEpWhfK4666mHpEf6Min4NeUL0R8eaRZoHG3SSa5fy4/d+cLtXVtZ4GSD4FSZ33IJs/QVHRTIHxAGgvgxtg5NNhhcxUI70d4rlnhbjULi/B8AZXlkqTk5GSXydOnT9eMGTNML668vFz5+fmaOnWqc1pYWJgyMjK0Zs0az+v8/wYOHKivv/5aO3fuVFxcnP7xj3/o/vvvb/JyQ1Vj51az8pt2T9h5PA6koxb8gWzyTKCstyZnk0Q+hYj6jjKsrqk/QfXnGOjvZpunY0L1utzZL3Tn/wZ2zZu6mD06z8zrCpRxuikC6afhNbHvZG020VRsQCgMHtXZ9XxOVmwHOzcXQ+19Cc/t2LFDsbGxztv1fdPWmH379qmiokIJCQku0xMSErR5s/vvx4yMDG3atEllZWXq3LmzlixZovT0dDVr1kxPPvmkBg8erMrKSt1zzz1cWdMNnvy0JRCRTQ0/v9XroYrV6wOBhXxCfQ0MM+cMreLuqW7s+pNXbz5HqPzfwBvcbaKF+npyR7CsI7LJMzQV6xAsHwpvseooRztsB7t9O2eHdYLAERsb6xKMVvvkk0/qve+yyy7TZZdd5sdqAhfjwK9COZuqs0NO2W2dwP7Ip+DVlKPFmnKEntT4qQS8OV4G8lFdZtkhZxrjjaM7wfogmzxDU7GaQBrc7cbbR0zYaVvY5WgQO60ThJZ27dopPDxcxcXFLtOLi4uVmJhoUVWhhc+/Z7x5kRM7bwMrc8rO6wXBj3yyF08vYOStq7d7+yId3h7fAnm8tHOzqanrtaHXFsjbzF9YR7WFWjaFTFPxgrb/VVRMM1ucVyqYuXsi4IYeY1fu1umrK7ABVomIiFD//v2Vl5enkSNHSpIqKyuVl5eniRMnWltcgKvKpire2rFCbWbzKRC3Q0M1k00IRuST71TPJ1//f97f44k753j0ZoMyWMZLuxxo4Qt1/R8hWLabWVY23oNFqGVTyDQVq/DG969QXN+eNFYbWwbga6Wlpdq6davzdmFhoQoKChQfH68uXbooOztbWVlZGjBggAYOHKh58+aprKzMeUUzeAefff8JtXXtjQslhNo6gz2QT9YLhc++N38+G+zry85HLXpLsG/DxoTCNm4qsumEkGsqAv7mzs/vQj24YL3169dr8ODBztvZ2dmSpKysLC1cuFBjxozR3r17NW3aNBUVFSk1NVXLly+vdQJiAIHDnaNOyCdYjXyC3YXiOBnMRy3iV401FkPxfV8d2XQCTUXAj0J98IV9DRo0SIZhNDjPxIkTg/KQfSDUkU2wM/IJsC+rm4vkl2/Vt31Z72RTdTQVAQAAAACAR7x5YTR/LBfmsB3QEJqKAAAAAACgybx1ccuay+E8f/bAUYqoiaYiAAAAAADwG09+Wmv1z60B1EZTEQAAAAAA+J0nR75xtBxgH2FWFwAAAAAAAAAgsNBUBAAAAAAAAGAKTUUAAAAAAAAAptBUBAAAAAAAAGAKTUUAAAAAAAAAptBUBAAAAAAAAGAKTUUAAAAAAAAApjSzugAAAAAAAIBQdUnMN85/f1Da28JKAHNoKgIAAAAAbIUmC0JB9fd59Wm85xEoaCoCAAAEgKodD3Y0AASz+pos9Qm1MZFmq/14ks8Nvac9XSZgBZqKCCmNDd5mMMCHlobeO6VGpab4sRYAwcVsNrFzbZ7ZdRxo65EmA4KFJ/9Xb+r/7xv7zNS3fH991hp6fTSerFd9+zS2PZry/m7qNua9Al+hqehnNLX8w5vr2Z3nCKZt4Y91Z0Zd67ZmjU1Z/3Z7vYAVfL1Dhl+RTU3X0E6RN9dvY8uq+fzebvQ25bVUfyxfesHfAvH/VZ7W7MtmY1O+bArGsd+u6ttONbPKG5+Lpmzjuhqf9S2nrlq9/Z4mm4ILTUUf82Ww0qA8wer/wAT6eS+sXn8Ncac2O9cP2JU/GzCeCuRxVbJ+bAr0oxLcOTrHKmae352Go9WvB2hMQ1/o8v51ZfX6cPfL90DPCKtZuY9ipsHojSw1c0CH1e9/+B9NxSYKlg+N1Yf1m2XH9R6IwWzH9QjAvGD9LAdaNkn23BaB9sWXHdehr4TSa0VgGdpys2Jiwuq9n/du4HDn3H2eZoS77wOrM8jbR3La6f1f3z5ooBzchMAXMk3FxoIRdbNDUATaoBUIO2+Btk6BYEU2ecZO58cLlPGUbAIA1MfswRGB/PPspuahXbPKrnUh+IVMUxG+ZfbcC8E+6Nl15y3Y1zsA1MVMRgXzOEk2AQAa0lhOePPcgFZe6MbTGsgroDaaivCZUB907bTzFurbAgBqCtVxkWwCADSkZk74+ryAVv6awEwNZBZQN35zBfiQ1eFzScw3ltcAALAXq3OBbAIAe6sap/0xVvvjYiZNnZfMAupHUxHwMStCiB02AEBDyCYAgF14Oxs8WV59GUVuAQ2jqQj4gb/CiB02AIC7yCYAgF14Kyeaupzqjye7gMbRVAT8xJehxA4bAMATZBMAwC682RBs6nLIL8A9NBUBP/JmOPnzXCcAgODlixwhmwAAniA/gMBCUxHwM298A0fYAgC8iaM7AAB2QY4AgYOmImABT3a62FFDoLviiivUpk0bXXnllabuA+AfTckZMgqBjHwC7MeTfSUgmARKNjWzugAglNUMvw9KexOICFp33HGHbrzxRr388sum7gPgX9Vz6IPS3o3OAwQ68gmwp7qypnoukUUIZoGSTRypCNgIwYhgNmjQILVq1cr0fQCsU/38vZzLF8GKfAICB1mEUBEo2URTEQCgVatWacSIEUpKSpLD4dDSpUtrzZOTk6Nu3bopKipKaWlpWrdunf8LBQCEFPIJAGA3ZNMJNBUBACorK1NKSopycnLqvH/x4sXKzs7W9OnTtWHDBqWkpCgzM1N79uxxzpOamqq+ffvW+tu1a5e/XgYAIMiQTwAAuyGbTgj6cyoahiFJKi2ttLgSAMGqanypGm+a6rhRLjVhyDpulEuSSkpKXKZHRkYqMjKyzscMGzZMw4YNq3eZc+bM0fjx4zVu3DhJUm5urpYtW6b58+drypQpkqSCggLPiw4xZBMAf/BmPjU1m5zLEPlkZ+QTAF9j3ym4sinom4q//PKLJOn8gXstrgRAsPvll18UFxfn8eMjIiKUmJiolUV/a3ItMTExSk5Odpk2ffp0zZgxw/SyysvLlZ+fr6lTpzqnhYWFKSMjQ2vWrGlqqSGJbALgT03JJ29mk0Q+2R35BMBf2HcKDkHfVExKStKOHTvUqlUrORwOq8vxq5KSEiUnJ2vHjh2KjY21upyAwXrzXKiuO8Mw9MsvvygpKalJy4mKilJhYaHKy8u9UlPNMa++b9oas2/fPlVUVCghIcFlekJCgjZv3uz2cjIyMrRp0yaVlZWpc+fOWrJkidLT0xu9LxiRTaE3TngD684zobzevJFP3symqprIJ/sin0JzrGgK1pvnQnXdse/knkDJpqBvKoaFhalz585Wl2Gp2NjYkBqkvIX15rlQXHdN+ZatuqioKEVFRXllWXbzySefeHRfMCKbQnOc8BbWnWdCdb15I5+COZsk8qk68il0x4qmYr15LhTXHftOjQuUbOJCLQCABrVr107h4eEqLi52mV5cXKzExESLqgIAhDryCQBgN6GWTTQVAQANioiIUP/+/ZWXl+ecVllZqby8vKD+CRgAwN7IJwCA3YRaNgX9z59DWWRkpKZPn+7xuQBCFevNc6y7wFVaWqqtW7c6bxcWFqqgoEDx8fHq0qWLsrOzlZWVpQEDBmjgwIGaN2+eysrKnFc0A9zFOOE51p1nWG+BjXyCvzBWeIb15jnWXeAim05wGN66jjcAIGCtXLlSgwcPrjU9KytLCxculCQ988wzevzxx1VUVKTU1FQ99dRTSktL83OlAIBQQj4BAOyGbDqBpiIAAAAAAAAAUzinIgAAAAAAAABTaCoCAAAAAAAAMIWmIgAAAAAAAABTaCoGqW7dusnhcLj8PfLIIy7z/Pvf/9Z5552nqKgoJScn67HHHrOoWnvJyclRt27dFBUVpbS0NK1bt87qkmxlxowZtd5bPXv2dN5/5MgRTZgwQW3btlVMTIxGjx6t4uJiCysGYBdkk+fIpoaRTQCagnzyHPnUMPIJwY6mYhB78MEHtXv3buffbbfd5ryvpKREQ4cOVdeuXZWfn6/HH39cM2bM0AsvvGBhxdZbvHixsrOzNX36dG3YsEEpKSnKzMzUnj17rC7NVvr06ePy3lq9erXzvjvvvFPvvfeelixZok8//VS7du3SqFGjLKwWgJ2QTeaRTe4hmwA0BflkHvnkHvIJQc1AUOratasxd+7ceu9/9tlnjTZt2hhHjx51Trv33nuN0047zQ/V2dfAgQONCRMmOG9XVFQYSUlJxuzZsy2syl6mT59upKSk1HnfgQMHjObNmxtLlixxTvv2228NScaaNWv8VCEAuyKbPEM2NY5sAtAU5JNnyKfGkU8IdhypGMQeeeQRtW3bVr/5zW/0+OOP6/jx48771qxZo/PPP18RERHOaZmZmdqyZYt+/vlnK8q1XHl5ufLz85WRkeGcFhYWpoyMDK1Zs8bCyuznu+++U1JSknr06KHrrrtO27dvlyTl5+fr2LFjLuuwZ8+e6tKlC+sQgCSyySyyyX1kE4CmIJ/MIZ/cRz4hmDWzugD4xu23364zzjhD8fHx+uKLLzR16lTt3r1bc+bMkSQVFRWpe/fuLo9JSEhw3temTRu/12y1ffv2qaKiwrkeqiQkJGjz5s0WVWU/aWlpWrhwoU477TTt3r1bDzzwgM477zx9/fXXKioqUkREhFq3bu3ymISEBBUVFVlTMADbIJvMI5vcQzYBaAryyTzyyT3kE4IdTcUAMmXKFD366KMNzvPtt9+qZ8+eys7Odk7r16+fIiIidMstt2j27NmKjIz0dakIYsOGDXP+u1+/fkpLS1PXrl31+uuvKzo62sLKAFiBbIIdkE0AaiKfYAfkE4IdTcUActddd2ns2LENztOjR486p6elpen48ePatm2bTjvtNCUmJta6qlTV7cTERK/UG2jatWun8PDwOtdLqK4Td7Ru3Vqnnnqqtm7dqosuukjl5eU6cOCAyzdurEMgeJFNvkU2eYZsAkA++Rb55BnyCcGGcyoGkPbt26tnz54N/lU/z0d1BQUFCgsLU4cOHSRJ6enpWrVqlY4dO+ac5+OPP9Zpp50WkofvS1JERIT69++vvLw857TKykrl5eUpPT3dwsrsrbS0VN9//706duyo/v37q3nz5i7rcMuWLdq+fTvrEAhSZJNvkU2eIZsAkE++RT55hnxC0LH6SjHwvi+++MKYO3euUVBQYHz//ffG3/72N6N9+/bG7373O+c8Bw4cMBISEowbbrjB+Prrr43XXnvNaNGihfH8889bWLn1XnvtNSMyMtJYuHCh8c033xg333yz0bp1a6OoqMjq0mzjrrvuMlauXGkUFhYan3/+uZGRkWG0a9fO2LNnj2EYhvGHP/zB6NKli/HPf/7TWL9+vZGenm6kp6dbXDUAq5FNniObGkc2AfAU+eQ58qlx5BOCHU3FIJSfn2+kpaUZcXFxRlRUlNGrVy9j1qxZxpEjR1zm27Rpk3HuuecakZGRRqdOnYxHHnnEoort5emnnza6dOliREREGAMHDjTWrl1rdUm2MmbMGKNjx45GRESE0alTJ2PMmDHG1q1bnfcfPnzYuPXWW402bdoYLVq0MK644gpj9+7dFlYMwA7IpqYhmxpGNgHwFPnUNORTw8gnBDuHYRiG1UdLAgAAAAAAAAgcnFMRAAAAAAAAgCk0FQEAAAAAAACYQlMRAAAAAAAAgCk0FQEAAAAAAACYQlMRAAAAAAAAgCk0FQEAAAAAAACYQlMRAAAAAAAAgCk0FWG5QYMGadKkSbZZTl3Gjh2rkSNHNmkZ3bp1k8PhkMPh0IEDBxqdf+XKlc75m/rcAADzyKe6kU8AYB2yqW5kE2ANmooIOFWBUTNc3nrrLT300EPO2926ddO8efP8W1wjHnzwQe3evVtxcXHOaS+++KK6du2q3/zmN/ryyy+d088++2zt3r1bV199tRWlAgBMIp8AAHZDNgHwpWZWFwB4S3x8vNUlNKpVq1ZKTEx03t6+fbsee+wxvfbaa9q5c6fGjRunb775RpIUERGhxMRERUdH6+jRo1aVDABoIvIJAGA3ZBMAb+BIRdjOK6+8ogEDBjhD5Le//a327NkjSdq2bZsGDx4sSWrTpo0cDofGjh0ryfUQ/kGDBumHH37QnXfe6TwMXpJmzJih1NRUl+ebN2+eunXr5rxdUVGh7OxstW7dWm3bttU999wjwzBcHlNZWanZs2ere/fuio6OVkpKit544w3Tr7WkpEStW7dWv3791L9/fx0+fNj0MgAA/kE+AQDshmwCYCWairCdY8eO6aGHHtKmTZu0dOlSbdu2zRl+ycnJevPNNyVJW7Zs0e7du/XnP/+51jLeeustde7c2XnI/O7du91+/ieffFILFy7U/PnztXr1au3fv19vv/22yzyzZ8/WX//6V+Xm5uo///mP7rzzTl1//fX69NNPTb3Wvn37ql+/foqLi1OfPn00c+ZMU48HAPgP+QQAsBuyCYCV+PkzbOfGG290/rtHjx566qmndOaZZ6q0tFQxMTHOQ/U7dOig1q1b17mM+Ph4hYeH1zpk3h3z5s3T1KlTNWrUKElSbm6uPvzwQ+f9R48e1axZs/TJJ58oPT3dWefq1av1/PPP64ILLjD1fC+99JIee+wxtWjRQtHR0aYeCwDwH/IJAGA3ZBMAK9FUhO3k5+drxowZ2rRpk37++WdVVlZK+vUcGr179/bpcx88eFC7d+9WWlqac1qzZs00YMAA52H8W7du1aFDh3TRRRe5PLa8vFy/+c1vPHretm3bel40AMAvyCcAgN2QTQCsRFMRtlJWVqbMzExlZmbq1VdfVfv27bV9+3ZlZmaqvLy8ycsPCwurdY6PY8eOmVpGaWmpJGnZsmXq1KmTy32RkZFNKxAAYEvkEwDAbsgmAFajqQhb2bx5s3766Sc98sgjSk5OliStX7/eZZ6IiAhJv54UuCERERG15mnfvr2KiopkGIbzBMQFBQXO++Pi4tSxY0d9+eWXOv/88yVJx48fV35+vs444wxJUu/evRUZGant27ebPlwfABCYyCcAgN2QTQCsxoVaYCtdunRRRESEnn76af3vf//Tu+++q4ceeshlnq5du8rhcOj999/X3r17nd9+1dStWzetWrVKO3fu1L59+yT9emWzvXv36rHHHtP333+vnJwc/eMf/3B53B133KFHHnlES5cu1ebNm3XrrbfqwIEDzvtbtWqlyZMn684779TLL7+s77//Xhs2bNDTTz+tl19+2bsrBABgC+QTAMBuyCYAVqOpCFtp3769Fi5cqCVLlqh379565JFH9MQTT7jM06lTJz3wwAOaMmWKEhISNHHixDqX9eCDD2rbtm066aST1L59e0lSr1699OyzzyonJ0cpKSlat26dJk+e7PK4u+66SzfccIOysrKUnp6uVq1a6YorrnCZ56GHHtL999+v2bNnq1evXrr44ou1bNkyde/e3YtrAwBgF+QTAMBuyCYAVnMYNU+SAMAnunXrpkmTJmnSpEmmHjd27FgdOHBAS5cu9UldAIDQRj4BAOyGbAICA0cqAn507733KiYmRgcPHmx03s8++0wxMTF69dVX/VAZACCUkU8AALshmwD740hFwE9++OEH59XSevToobCwhnv6hw8f1s6dOyVJMTExSkxM9HmNAIDQQz4BAOyGbAICA01FAAAAAAAAAKbw82cAAAAAAAAAptBUBAAAAAAAAGAKTUUAAAAAAAAAptBUBAAAAAAAAGAKTUUAAAAAAAAAptBUBAAAAAAAAGAKTUUAAAAAAAAAptBUBAAAAAAAAGAKTUUAAAAAAAAApvw/+7qf8E/7U5sAAAAASUVORK5CYII=",
176      "text/plain": [
177       "<Figure size 640x480 with 6 Axes>"
178      ]
179     },
180     "metadata": {},
181     "output_type": "display_data"
182    }
183   ],
184   "source": [
185    "plt.subplot(131)\n",
186    "my_sim.plot_meridional_slice('h2o_vap',logcb=True)\n",
187    "plt.title('Time- and longitude-average')\n",
188    "\n",
189    "plt.subplot(132)\n",
190    "my_sim.plot_meridional_slice('h2o_vap',logcb=True,t=0)\n",
191    "plt.title('Time = 0 and longitude-average')\n",
192    "\n",
193    "plt.subplot(133)\n",
194    "my_sim.plot_meridional_slice('h2o_vap',logcb=True,t=0,lon=0)\n",
195    "plt.title('Time = 0 and longitude = 0°')\n",
196    "\n",
197    "plt.subplots_adjust(right=2)"
198   ]
199  },
200  {
201   "cell_type": "markdown",
202   "id": "3d691c4b-a690-4644-a00a-1ee77c85658a",
203   "metadata": {},
204   "source": [
205    "#### Time evolution"
206   ]
207  },
208  {
209   "cell_type": "code",
210   "execution_count": 7,
211   "id": "2328745a-55e1-40d9-86c7-41f04bea872c",
212   "metadata": {},
213   "outputs": [
214    {
215     "data": {
216      "image/png": "iVBORw0KGgoAAAANSUhEUgAABRUAAAHHCAYAAAAhwb9EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+3ElEQVR4nO3deViU9f7/8deAAiqLogJiuFuuSWEiLrlR5Fampe1gap6TZkVWevqmZqW2GS2YLS6dyuNSaaVmFrkcTTMXPJZpWpg7bimCCgqf3x/9GB0BnRuBGeD5uK65Lucz93zmfc/gvOZ+zz33bTPGGAEAAAAAAACAkzxcXQAAAAAAAACA0oWmIgAAAAAAAABLaCoCAAAAAAAAsISmIgAAAAAAAABLaCoCAAAAAAAAsISmIgAAAAAAAABLaCoCAAAAAAAAsISmIgAAAAAAAABLaCoCAAAAAAAAsISm4kVmzpwpm82mXbt2Fdmcu3btks1m08yZM4tszkuJi4tTvXr1SuSxSoKzz9/y5ctls9m0fPnyEqnrcsaNGyebzVZij2ez2TRu3LgSezwAcNaVZKurMq1z587q3LlziT9uQdytnpLMnJLOUwCwgoxzXklvF19OcWz7X0q9evUUFxdXIo9VEjIzM11dAtwATcUiNGvWLCUkJDi17OLFi2kAlUMTJkzQggULXF0GgBKU+4G1oMvatWtdXaIk3p9wZX744QeNGzdOx48fd3UpAEoQGYeyZsqUKW7T9Cxp+/btU//+/VW1alX5+/vrtttu0x9//JFnuY0bN6pJkyaqVKmSOnbsqD179rigWriLCq4uoCyZNWuWfv75Zz322GMO43Xr1tXp06dVsWJF+9jixYuVmJhIY7EM+7//+z+NGjXKYWzChAm644471KdPH9cUBcBlxo8fr/r16+cZb9SokQuqyas435/uv/9+3XXXXfL29i7yueEap0+fVoUK5z9G/vDDD3ruuecUFxenqlWruq4wAC5BxpFxpVF+r92UKVNUo0aNMrVHoTPS09PVpUsXnThxQv/6179UsWJFvf766+rUqZOSk5NVvXp1+7J33XWXunbtqpdfflkffvihhg4dqsWLF7uwergSTcUSYLPZ5OPj4+oyUMIqVKjgsMGFwjt37pxycnLk5eXl6lKAQuvevbtat27t6jJKVEZGhqpUqSJPT095enq6uhwUIT7XFJ3c/ydAaUbGkXGlEa/deVOmTNGOHTu0bt063XDDDZL+/n/dokULvfbaa5owYYIk6ciRIzpy5IimTp0qSerUqZOuuuoql9UN1+Pnz0744osv1LNnT4WGhsrb21sNGzbU888/r+zsbPsynTt31qJFi/Tnn3/ad/fPPT7GxceOiIuLU2JioiQ5/DxAKvi4gAUdf2LBggVq0aKFfHx81KJFC82fPz/fdcjJyVFCQoKaN28uHx8fBQcHa+jQofrrr78K/bz897//1Z133qk6derI29tbYWFhevzxx3X69GmH5eLi4uTr66t9+/apT58+8vX1Vc2aNTVy5EiH51CSjh8/rri4OAUEBKhq1aqKjY294p9SzZs3TxEREapUqZJq1Kih++67T/v27St0jUePHtX9998vf39/e42bN2/O8/pcfAwom82mjIwMffjhh/bXPPcbsIKOp5LfcaQyMzP1+OOPq2bNmvLz89Ott96qvXv35rvu+/bt04MPPqjg4GB5e3urefPmmj59ulPP27FjxzRy5Ei1bNlSvr6+8vf3V/fu3bV582b7MqmpqapQoYKee+65PPffvn27bDab3n77bfvY8ePH9dhjjyksLEze3t5q1KiRXnrpJeXk5NiXyf1bf/XVV5WQkKCGDRvK29tbW7duVVZWlsaMGaOIiAgFBASoSpUq6tixo5YtW5bn8Z19nSRp27ZtuuOOOxQYGCgfHx+1bt1aX375pVPPE1CU8nsPTE5OzvN3W9CxkPJ7L3n11VfVrl07Va9eXZUqVVJERIQ+/fRTh2Uu9f4kSZs2bVL37t3l7+8vX19fdevWLc9P2nJ/ArdixQo9/PDDCgoKsn/IzO+YRc5kq7N69eqlBg0a5HtbVFSUw4bujBkz1LVrVwUFBcnb21vNmjXTO++8c9nHKOi4SwXl9o8//qhbbrlFAQEBqly5sjp16qTVq1dbXrdLOXTokAYNGqTg4GD5+PioVatW+vDDDx2WufA99b333rO/p95www366aef8sw5b948NWvWzOFzRX5/VxceU3HcuHF68sknJUn169e3/w3t2rXrksfPyu+4jKtWrdINN9wgHx8fNWzYUO+++26B6//xxx/b8z0wMFB33XWX0z/Bcubvb/jw4fL19dWpU6fy3P/uu+9WSEiIw/Jff/21OnbsqCpVqsjPz089e/bUL7/84nC/3M8bv//+u3r06CE/Pz/de++9kpz/XCU5/zoVx+c/oLDIODKuIN9//739/bNq1aq67bbb9Ouvvzosk7tdtHPnTvte8QEBARo4cGCe9+nTp09rxIgRqlGjhn17ad++fXly5+L1rlevnn755RetWLHC/reS+7dY0PF983vujDF64YUXdNVVV6ly5crq0qVLnjzI5cz2UUn49NNPdcMNN9gbipLUpEkTdevWTXPnzrWPBQYGSvq7CZmSkqJXXnlFjRs3LtFa4V7YjcoJM2fOlK+vr+Lj4+Xr66vvv/9eY8aMUVpaml555RVJ0jPPPKMTJ05o7969ev311yVJvr6++c43dOhQ7d+/X99++60++uijQte1dOlS9evXT82aNdPEiRN19OhRDRw4MN9vCoYOHaqZM2dq4MCBGjFihFJSUvT2229r06ZNWr16tcNPs501b948nTp1Sv/85z9VvXp1rVu3Tm+99Zb27t2refPmOSybnZ2tmJgYRUZG6tVXX9V3332n1157TQ0bNtQ///lPSX+/+d52221atWqV/vGPf6hp06aaP3++YmNjC/cESfZ1vuGGGzRx4kSlpqbqjTfe0OrVq7Vp0yaHn2g5U2NOTo569+6tdevW6Z///KeaNGmiL774wqkaP/roIw0ePFht2rTRQw89JElq2LCh5XUaPHiwPv74Y91zzz1q166dvv/+e/Xs2TPPcqmpqWrbtq1sNpuGDx+umjVr6uuvv9agQYOUlpaW52f6F/vjjz+0YMEC3Xnnnapfv75SU1P17rvvqlOnTtq6datCQ0MVHBysTp06ae7cuRo7dqzD/efMmSNPT0/deeedkqRTp06pU6dO2rdvn4YOHao6derohx9+0OjRo3XgwIE8xyOdMWOGzpw5o4ceekje3t4KDAxUWlqaPvjgA919990aMmSITp48qWnTpikmJkbr1q1TeHi4JGuv0y+//KL27durdu3aGjVqlKpUqaK5c+eqT58++uyzz3T77bc7/+IAl3DixAkdOXLEYcxms9l/TlIc74GS9MYbb+jWW2/Vvffeq6ysLM2ePVt33nmnFi5caH/vuNT70y+//KKOHTvK399fTz31lCpWrKh3331XnTt31ooVKxQZGenweA8//LBq1qypMWPGKCMjo8C6nMlWZw0YMEAPPPCAfvrpJ4cPw3/++afWrl3rMN8777yj5s2b69Zbb1WFChX01Vdf6eGHH1ZOTo6GDRtm6XEL8v3336t79+6KiIjQ2LFj5eHhYd/Q++9//6s2bdpc8WOcPn1anTt31s6dOzV8+HDVr19f8+bNU1xcnI4fP65HH33UYflZs2bp5MmTGjp0qGw2m15++WX17dtXf/zxh/0zwKJFizRgwAC1bNlSEydO1F9//aVBgwapdu3al6ylb9+++u233/Sf//xHr7/+umrUqCFJqlmzpg4fPuz0Om3ZskU333yzatasqXHjxuncuXMaO3asgoOD8yz74osv6tlnn1X//v01ePBgHT58WG+99ZZuvPHGPPmeH2f+/gYMGKDExEQtWrTInmXS33n21VdfKS4uzr6Hy0cffaTY2FjFxMTopZde0qlTp/TOO++oQ4cO2rRpk0Mj5Ny5c4qJiVGHDh306quvqnLlypKc/1xl5XUqjs9/QH7IOEdknPO+++47de/eXQ0aNNC4ceN0+vRpvfXWW2rfvr02btyYp5Hcv39/1a9fXxMnTtTGjRv1wQcfKCgoSC+99JJ9mbi4OM2dO1f333+/2rZtqxUrVuS7vXSxhIQEPfLII/L19dUzzzwjSflm0OWMGTNGL7zwgnr06KEePXpo48aNuvnmm5WVleWwnNXto4ulp6frzJkzl62nYsWKCggIKPD2nJwc/e9//9ODDz6Y57Y2bdpo6dKlOnnypPz8/OTh4aHExEQNHDhQw4YNU/Xq1dkZo7wzcDBjxgwjyaSkpNjHTp06lWe5oUOHmsqVK5szZ87Yx3r27Gnq1q2bZ9mUlBQjycyYMcM+NmzYMJPf079s2TIjySxbtuyyc4SHh5tatWqZ48eP28eWLl1qJDnU8d///tdIMp988onDnEuWLMl33Fn5PS8TJ040NpvN/Pnnn/ax2NhYI8mMHz/eYdnrrrvORERE2K8vWLDASDIvv/yyfezcuXOmY8eOedY9Pxc/d1lZWSYoKMi0aNHCnD592r7cwoULjSQzZswYyzV+9tlnRpJJSEiwj2VnZ5uuXbvmqXHs2LF5XuMqVaqY2NjYPLXHxsbm+7dz8RzJyclGknn44YcdlrvnnnuMJDN27Fj72KBBg0ytWrXMkSNHHJa96667TEBAQL6v34XOnDljsrOzHcZSUlKMt7e3w/P07rvvGklmy5YtDss2a9bMdO3a1X79+eefN1WqVDG//fabw3KjRo0ynp6eZvfu3fbHkGT8/f3NoUOHHJY9d+6cyczMdBj766+/THBwsHnwwQftY1Zep27dupmWLVs6/F/Oyckx7dq1M40bN77kcwQ4IzdX8rt4e3vbl7PyHtipUyfTqVOnPI+V33vJxf/Xs7KyTIsWLRz+fxpT8PtTnz59jJeXl/n999/tY/v37zd+fn7mxhtvzLOeHTp0MOfOncv3OShMthb0/nihEydOGG9vb/PEE084jL/88st5Mim/x42JiTENGjRwGLv4Oc5vHYzJmz05OTmmcePGJiYmxuTk5Dg8bv369c1NN910yXUpyMX1JCQkGEnm448/to9lZWWZqKgo4+vra9LS0owx599Tq1evbo4dO2Zf9osvvjCSzFdffWUfa9mypbnqqqvMyZMn7WPLly/P87nCGJMnc1555ZV8n5/8Pr8UNEefPn2Mj4+Pw+u1detW4+np6ZCFu3btMp6enubFF190mG/Lli2mQoUKecbz48zfX05Ojqldu7bp16+fw3Jz5841kszKlSuNMcacPHnSVK1a1QwZMsRhuYMHD5qAgACH8dzPG6NGjXKqpvw+Vzn7OhXX5z/gQmQcGZf7uM5kXEHbtEFBQebo0aP2sc2bNxsPDw/zwAMP2Mdyt4su/MxvjDG33367qV69uv36hg0bjCTz2GOPOSwXFxeXJ3fyW+/mzZvn+/eX37ZdfnMcOnTIeHl5mZ49ezo8R//617+MJIe/Q2e3jwqSmymXu+S3Phc6fPhwvtvCxhiTmJhoJJlt27bluc/atWvtnzdQfvHzZydUqlTJ/u+TJ0/qyJEj6tixo06dOqVt27a5pKYDBw4oOTlZsbGxDt863HTTTWrWrJnDsvPmzVNAQIBuuukm+zEQjhw5ooiICPn6+ub701FnXPi8ZGRk6MiRI2rXrp2MMdq0aVOe5f/xj384XO/YsaPD2aQWL16sChUq2PcKlP4+zsUjjzxSqPrWr1+vQ4cO6eGHH3Y49lPPnj3VpEkTLVq0yHKNS5YsUcWKFTVkyBD7mIeHR5F983c5uQfAHTFihMP4xXsdGmP02WefqXfv3jLGOLzuMTExOnHihDZu3HjJx/L29paHx99vEdnZ2Tp69Kh8fX11zTXXONy3b9++qlChgubMmWMf+/nnn7V161YNGDDAPjZv3jx17NhR1apVc6gnOjpa2dnZWrlypcPj9+vXTzVr1nQY8/T0tB9XMScnR8eOHdO5c+fUunVrh5qcfZ2OHTum77//Xv3797f/3z5y5IiOHj2qmJgY7dixI89P5YHCSkxM1Lfffutw+frrr+23F/V7YK4L36v/+usvnThxQh07drzse4D09//9pUuXqk+fPg4/vapVq5buuecerVq1SmlpaQ73GTJkiFPHJyrKbM09PMPcuXNljLGPz5kzR23btlWdOnXyfdzcPWs6deqkP/74QydOnLD0uPlJTk7Wjh07dM899+jo0aP295WMjAx169ZNK1euLJKfNC1evFghISG6++677WMVK1bUiBEjlJ6erhUrVjgsP2DAAFWrVs1+vWPHjpJkz7j9+/dry5YteuCBBxx+adGpUye1bNnyiuu9nOzsbH3zzTfq06ePw+vVtGlTxcTEOCz7+eefKycnR/3793fIk5CQEDVu3NipzzXO/P3ZbDbdeeedWrx4sdLT0+3Lz5kzR7Vr11aHDh0kSd9++62OHz+uu+++26EeT09PRUZG5lvPhf/P86upoM9VVl6n4vr8B+SHjCu4LjKuYLnbtHFxcfaf1UrStddeq5tuuinfk3/kt7129OhR+2u1ZMkSSX/vVXqhK/1bc9Z3332nrKwsPfLIIw4/l87vV2JWt48u9tRTT+X5f5ff5bXXXrvkPLmH2cjvZEO529EXH4qjRo0aioyMlJ+f3yXnRtnHz5+d8Msvv+j//u//9P333+cJlqJ4cy6MP//8U5LyPX7BxU2fHTt26MSJEwoKCsp3rkOHDkn6e10ufLPw8vJyeHO/2O7duzVmzBh9+eWXeY7Nc/Hz4uPjk6dBVK1aNYf7/fnnn6pVq1aen41fc801BdZwKbnPUX73b9KkiVatWlXoGnN/qpSrpM5s9+eff8rDwyPPz6YvXsfDhw/r+PHjeu+99/Tee+/lO1fu637w4EGH8YCAAFWqVEk5OTl644037MfLuPAYMBee/atGjRr2Y208//zzkv7+kFOhQgX17dvXvtyOHTv0v//9L89zfHE9ufI7g6Akffjhh3rttde0bds2nT17Nt/lnX2ddu7cKWOMnn32WT377LMF1nW5n/4BzmjTps0lD2Jf1O+BuRYuXKgXXnhBycnJyszMtI/nd1ygix0+fFinTp3Kt4amTZsqJydHe/bsUfPmze3jBf3fvVhRZ+uAAQO0YMECrVmzRu3atdPvv/+uDRs25Pnp0OrVqzV27FitWbMmzzGYTpw4ccmfBzljx44dknTJn/SdOHHCocFXGH/++acaN25s//InV9OmTe23X+jCjU5J9sfPzbjc5fPLs0aNGjm1gX4lDh8+rNOnTxf4uebCDcsdO3bIGFPgMZxyf9Kbnp7u0Az09PS0Z5Czf38DBgxQQkKCvvzyS91zzz1KT0/X4sWL7T8jz61Hkrp27ZpvPf7+/g7XK1SokO+hapz5XGXldXL28x9QFMg4R2Sccxl3qe21pk2b6ptvvslzMqtL5Zm/v799e+ni16okt9ekvNvpNWvWzPO8WN0+ulizZs3y7FBUGLnN6Av/D+XK/Xn1hQ1r4EI0FS/j+PHj6tSpk/z9/TV+/Hg1bNhQPj4+2rhxo55++ukiP4BqQQFYmIP65srJyVFQUJA++eSTfG/PfRN79NFHHQ7w3qlTpzwH5b2wnptuuknHjh3T008/rSZNmqhKlSrat2+f4uLi8jwvpeGsWq6ssahf99zn/7777isw9K+99lpJf38be6EZM2YoLi5OEyZM0LPPPqsHH3xQzz//vAIDA+Xh4aHHHnssz+t71113aeDAgUpOTlZ4eLjmzp2rbt262Y+rlVvTTTfdpKeeeirfeq6++mqH6/kF18cff6y4uDj16dNHTz75pIKCguTp6amJEyfq999/v8yzklfueowcOTLPnjC5SuoDCGCFzWZz2Fsh18XvGf/9739166236sYbb9SUKVNUq1YtVaxYUTNmzNCsWbOKpTZnPnQWR7b27t1blStX1ty5c9WuXTvNnTtXHh4eDsfC+/3339WtWzc1adJEkydPVlhYmLy8vLR48WK9/vrrl3xcZ9+nc+d45ZVX7Md5vVhBx1wuTgVlXH5/R0WpuD7X2Gw2ff311/muV+7z++qrrzqcSKxu3bratWuXpb+/tm3bql69epo7d67uueceffXVVzp9+rTDnvi5y3/00UcKCQnJU0+FCo4fty/8JUAuq5+rnH2enPn8B7gbMi4vMu68spZnVraPLnbxTkEFudzOQoGBgfL29taBAwfy3JY7FhoaetnHQflEU/Eyli9frqNHj+rzzz/XjTfeaB9PSUnJs6wz34hdbtncby8uPuPxxXsc1K1bV9L5b4sutH37dofrDRs21Hfffaf27dtfMgifeuop3XfffXlqyc+WLVv022+/6cMPP9QDDzxgH//2228LvM/l1K1bV0lJSUpPT3cIo4vXx8p8ufe/eO+B7du322+3OueyZct06tQph73gdu7c6dT9L/W653eW6/xe95ycHP3+++8O3+hd/Bzlnhk6Oztb0dHRl6zp4tcs99vYTz/9VF26dNG0adMcbj9+/LhDs1CS+vTpo6FDh9p/Av3bb79p9OjRDss0bNhQ6enpl63nUj799FM1aNBAn3/+ucNzefFJYpx9nXJ/6lKxYsUrqgsoClbeA6tVq+ZwaIZcF79nfPbZZ/Lx8dE333zj8JOWGTNm5Llvfu9PNWvWVOXKlfOtYdu2bfLw8FBYWNilVywfVrLVWVWqVFGvXr00b948TZ48WXPmzFHHjh0dPgR/9dVXyszM1Jdffumwp4MzPwN1Np9z9yT39/cv1veVunXr6n//+59ycnIcGlS5P6uzmnG5y+eXZ85k3JV+rqlZs6YqVark9OcaY4zq169/yQ2uBx54wP4TZel8M8Dq31///v31xhtvKC0tTXPmzFG9evXUtm1bh3okKSgoqNCvubOfq6y8Ts5+/gNKAhlHxuXnwu21i23btk01atRw2EvR2TlzcnKUkpLisLdgUWyvSX8/RxeeDOxS2+kX/qz+8OHDefZCv9Lto4t3CirIpXYWkv4+TFTLli21fv36PLf9+OOPatCgAT9zRoE4puJl5H4TcuE3H1lZWZoyZUqeZatUqeL07uy5b44Xv3HXrVtXnp6eeY6fcPHj1apVS+Hh4frwww8dHvPbb7/V1q1bHZbt37+/srOz7T9NvdC5c+fsNTRr1kzR0dH2S0RERIH15/e8GGP0xhtvFHify+nRo4fOnTund955xz6WnZ2tt956q1DztW7dWkFBQZo6darDrtxff/21fv31V6fOAHaxmJgYnT17Vu+//759LCcnR4mJiU7dv0qVKvk2Dxs2bKgTJ07of//7n33swIEDmj9/vsNy3bt3lyS9+eabDuMX//TB09NT/fr102effaaff/45z+NdeDbOC1/z6Oho+56Lnp6eeb7xmzdvXr7HGKxatapiYmI0d+5czZ49W15eXurTp4/DMv3799eaNWv0zTff5Ln/8ePHde7cuTzjF8vv7+7HH3/UmjVrHJZz9nUKCgpS586d9e677+b7zZyVs5YCV8rKe2DDhg21bds2h7/RzZs3a/Xq1Q7LeXp6ymazOXyLvmvXLi1YsCDPnPm9P3l6eurmm2/WF198oV27dtnHU1NTNWvWLHXo0CHPTzudYSVbrRgwYID279+vDz74QJs3b3bYm6ygxz1x4kS+G6AXy92QujCfs7Oz8xxiIiIiQg0bNtSrr77q8NPbXEX1vtKjRw8dPHjQ4Xi2586d01tvvSVfX1916tTJ0nyhoaFq0aKF/v3vfzvUvWLFCm3ZsuWy9y/oc42/v79q1Khx2c81np6eiomJ0YIFC7R79277+K+//ponN/r27StPT08999xzeXLKGKOjR49K+vuLowvzrX379vbHyl0216X+/gYMGKDMzEx9+OGHWrJkifr37+9we0xMjPz9/TVhwgSHw3LkcuY1d/ZzlZXXydnPf0BJIOPIuPxcuE174evz888/a+nSperRo4el+STZf3108fPt7DblpbbXJMfnKCMjI09TLzo6WhUrVtRbb73l8FrkdybnK90+KqpjKkrSHXfcoZ9++smhsbh9+3Z9//33DnvEAhdjT8XLaNeunapVq6bY2FiNGDFCNptNH330Ub67V0dERGjOnDmKj4/XDTfcIF9fX/Xu3TvfeXMbdiNGjFBMTIw8PT111113KSAgQHfeeafeeust2Ww2NWzYUAsXLsz3eAoTJ05Uz5491aFDBz344IM6duyY3nrrLTVv3tzhTb5Tp04aOnSoJk6cqOTkZN18882qWLGiduzYoXnz5umNN97QHXfcYel5adKkiRo2bKiRI0dq37598vf312effZbn2xcrevfurfbt22vUqFHatWuXmjVrps8//7zQx62sWLGiXnrpJQ0cOFCdOnXS3XffrdTUVL3xxhuqV6+eHn/8cctz9unTR23atNETTzyhnTt3qkmTJvryyy917NgxSZffWzUiIkLfffedJk+erNDQUNWvX1+RkZG666679PTTT+v222/XiBEjdOrUKb3zzju6+uqrHY6PFB4errvvvltTpkzRiRMn1K5dOyUlJeX7zdukSZO0bNkyRUZGasiQIWrWrJmOHTumjRs36rvvvrPXXJBevXpp/PjxGjhwoNq1a6ctW7bok08+cfjG7UIDBgzQfffdpylTpigmJsbhGzxJevLJJ/Xll1+qV69eiouLU0REhDIyMrRlyxZ9+umn2rVrV549IPOr6fPPP9ftt9+unj17KiUlRVOnTlWzZs0c/uatvE6JiYnq0KGDWrZsqSFDhqhBgwZKTU3VmjVrtHfvXm3evPmSNQHO+vrrr/M9OHu7du3UoEEDS++BDz74oCZPnqyYmBgNGjRIhw4d0tSpU9W8eXOHYzf17NlTkydP1i233KJ77rlHhw4dUmJioho1auTwJYZU8PvTCy+8oG+//VYdOnTQww8/rAoVKujdd99VZmamXn755UI9F1ay1YoePXrIz89PI0eOtH+5cqGbb75ZXl5e6t27t4YOHar09HS9//77CgoKyveLhQs1b95cbdu21ejRo3Xs2DEFBgZq9uzZeT7we3h46IMPPlD37t3VvHlzDRw4ULVr19a+ffu0bNky+fv766uvvrIvb7PZLrsHQX4eeughvfvuu4qLi9OGDRtUr149ffrpp1q9erUSEhIKtUfBhAkTdNttt6l9+/YaOHCg/vrrL7399ttq0aJFvhuPF8r9XPPMM8/orrvuUsWKFdW7d29VqVJFgwcP1qRJkzR48GC1bt1aK1eu1G+//ZZnjueee05LlixRx44d9fDDD9ubpM2bN3f4e23YsKFeeOEFjR49Wrt27VKfPn3k5+enlJQUzZ8/Xw899JBGjhxZYK1W//6uv/56NWrUSM8884wyMzPzbMj7+/vrnXfe0f3336/rr79ed911l2rWrKndu3dr0aJFat++vd5+++1LPn9WPlc5+zoVx+c/oCBknOM6k3HOe+WVV9S9e3dFRUVp0KBBOn36tN566y0FBARo3LhxluaS/n6t+/Xrp4SEBB09elRt27bVihUr7LnjzPbaO++8oxdeeEGNGjVSUFCQunbtqptvvll16tTRoEGD9OSTT8rT01PTp0+3v9/nqlmzpkaOHKmJEyeqV69e6tGjhzZt2qSvv/46z7bOlW4fFdUxFaW/T2zz/vvvq2fPnho5cqQqVqyoyZMnKzg4WE888USRPAbKqOI/wXTpkt9p5VevXm3atm1rKlWqZEJDQ81TTz1lvvnmGyPJLFu2zL5cenq6ueeee0zVqlWNJFO3bl1jjDEpKSlGkpkxY4Z92XPnzplHHnnE1KxZ09hsNofT0x8+fNj069fPVK5c2VSrVs0MHTrU/Pzzz3nmMMaYzz77zDRt2tR4e3ubZs2amc8//9zExsbaH/tC7733nomIiDCVKlUyfn5+pmXLluapp54y+/fvL9RztXXrVhMdHW18fX1NjRo1zJAhQ8zmzZvz1BkbG2uqVKmS5/5jx441F/8JHj161Nx///3G39/fBAQEmPvvv99s2rQp33W/2LJly/K8JsYYM2fOHHPdddcZb29vExgYaO69916zd+9eh2Ws1Hj48GFzzz33GD8/PxMQEGDi4uLM6tWrjSQze/bsS95327Zt5sYbbzSVKlUykkxsbKz9tqVLl5oWLVoYLy8vc80115iPP/443zlOnz5tRowYYapXr26qVKlievfubfbs2WMkmbFjxzosm5qaaoYNG2bCwsJMxYoVTUhIiOnWrZt57733LvlcGmPMmTNnzBNPPGFq1aplKlWqZNq3b2/WrFljOnXqZDp16pRn+bS0NPt6ffzxx/nOefLkSTN69GjTqFEj4+XlZWrUqGHatWtnXn31VZOVlWWMOf//5ZVXXslz/5ycHDNhwgRTt25d4+3tba677jqzcOHCfP/mnX2djDHm999/Nw888IAJCQkxFStWNLVr1za9evUyn3766WWfJ+BycnOloMuF721W3gM//vhj06BBA+Pl5WXCw8PNN998k+//hWnTppnGjRsbb29v06RJEzNjxgzL708bN240MTExxtfX11SuXNl06dLF/PDDD/mu508//VTgc1CYbC0o0wpy7733GkkmOjo639u//PJLc+211xofHx9Tr14989JLL5np06fnqS+/97rff//dREdHG29vbxMcHGz+9a9/mW+//Tbf7Nm0aZPp27evqV69uvH29jZ169Y1/fv3N0lJSfZlTp48aSSZu+6667LrlV89qampZuDAgaZGjRrGy8vLtGzZMs/fyaXeU/PLjdmzZ5smTZoYb29v06JFC/Pll1+afv36mSZNmlz2vs8//7ypXbu28fDwcHg+T506ZQYNGmQCAgKMn5+f6d+/vzl06FC+c6xYscJEREQYLy8v06BBAzN16tR8/16N+fszUIcOHUyVKlVMlSpVTJMmTcywYcPM9u3bC3weczn795frmWeeMZJMo0aNCpxz2bJlJiYmxgQEBBgfHx/TsGFDExcXZ9avX29fpqDPG8Y4/7nKGOdfJ2OK/vMfcCEyjowrKOPyk992sTHGfPfdd6Z9+/amUqVKxt/f3/Tu3dts3brVYZnc1/Xw4cMO4/k9/xkZGWbYsGEmMDDQ+Pr6mj59+pjt27cbSWbSpEmXvO/BgwdNz549jZ+fn5Hk8Dxt2LDBREZGGi8vL1OnTh0zefLkfOfIzs42zz33nH07qnPnzubnn382devWdfjbM8a57aOSsmfPHnPHHXcYf39/4+vra3r16mV27NhRojWg9LEZU8xHNAXKgQULFuj222/XqlWr7D+vgvvhdUJptGvXLtWvX99+EiWUHYsXL1avXr20efNmtWzZ0tXlFCg8PFw1a9a8ouMmo/jxOqE0IuNQUpKTk3Xdddfp448/1r333uvqcoAyg2MqAhZdfIat3OPB+Pv76/rrr3dRVbgYrxMAd7ds2TLdddddbtNQPHv2bJ6fui1fvlybN29W586dXVMU8uB1AoBLy++MyAkJCfLw8HA4eQ6AK8cxFQGLHnnkEZ0+fVpRUVHKzMzU559/rh9++EETJkzg7IpuhNfJvezZs0f333+/Dh06pAoVKujZZ5/loM8o91555RVXl+Bg3759io6O1n333afQ0FBt27ZNU6dOVUhIiP7xj3+4ujz8f7xORYt8Asqel19+WRs2bFCXLl1UoUIFff311/r666/10EMPFeqM3kBJK03ZRFMRsKhr16567bXXtHDhQp05c0aNGjXSW2+9peHDh7u6NFyA18m9VKhQQQkJCQoPD9fBgwcVERGhHj162M8YC8D1qlWrpoiICH3wwQc6fPiwqlSpop49e2rSpEmqXr26q8vD/8frVLTIJ6Dsadeunb799ls9//zzSk9PV506dTRu3Dg988wzri4NcEppyiaOqQgAKHGtWrXSwoUL+bYYAOBWyCcAgLtx52zimIoAAK1cuVK9e/dWaGiobDabFixYkGeZxMRE1atXTz4+PoqMjNS6desK9VgbNmxQdna2W4YiAMC9kE8AAHdDNp1HUxEAoIyMDLVq1UqJiYn53j5nzhzFx8dr7Nix2rhxo1q1aqWYmBgdOnTIvkx4eLhatGiR57J//377MseOHdMDDzyg9957r9jXCQBQ+pFPAAB3QzadV+Z//pyTk6P9+/fLz89PNpvN1eUAKIOMMTp58qRCQ0Pl4XFl39WcOXNGWVlZRVLTxe953t7e8vb2vux9bTab5s+frz59+tjHIiMjdcMNN+jtt9+W9Pd7a1hYmB555BGNGjXKqZoyMzN10003aciQIbr//vudX5kyiGwCUBKKKp+KKptyayKf3Bf5BKC4se1UtrKpzJ+oZf/+/W67myiAsmXPnj266qqrCn3/M2fOqE6dKjp8OOeKa/H19VV6errD2NixYzVu3DjLc2VlZWnDhg0aPXq0fczDw0PR0dFas2aNU3MYYxQXF6euXbu6dSiWFLIJQEm6knwqymySyCd3Rz4BKClsOxWsNGVTmW8q+vn5SZI613hAFTy8XFwNgLLoXE6Wlh/5t/39prCysrJ0+HCOlv8YJF/fwu8dkJ5u1DnykPbs2SN/f3/7uDPftOXnyJEjys7OVnBwsMN4cHCwtm3b5tQcq1ev1pw5c3Tttdfajzny0UcfqWXLloWqqbQjmwCUhKLIp6LKJol8Kg3IJwDFjW2nyytN2VTmm4q5u7BW8PAiGAEUq6L6mZCvr02+flfyU4C/v63z9/d3CEZX6tChg3JyimYvl7KAbAJQkooin648myTyyf2RTwBKCttOBStN2cSJWgAAl1SjRg15enoqNTXVYTw1NVUhISEuqgoAUN6RTwAAd1PesommIgDgkry8vBQREaGkpCT7WE5OjpKSkhQVFeXCygAA5Rn5BABwN+Utm8r8z58BAJeXnp6unTt32q+npKQoOTlZgYGBqlOnjuLj4xUbG6vWrVurTZs2SkhIUEZGhgYOHOjCqgEAZR35BABwN2TTeTQVAQBav369unTpYr8eHx8vSYqNjdXMmTM1YMAAHT58WGPGjNHBgwcVHh6uJUuW5DkAMQAARYl8AgC4G7LpPJqKAAB17txZxphLLjN8+HANHz68hCoCAIB8AgC4H7LpPI6pCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAodsePH1fr1q0VHh6uFi1a6P3333d1SQAAkE8AALdTmrKpgqsLAACUfX5+flq5cqUqV66sjIwMtWjRQn379lX16tVdXRoAoBwjnwAA7qY0ZRN7KgIAip2np6cqV64sScrMzJQxRsYYF1cFACjvyCcAgLspTdlEUxEAoJUrV6p3794KDQ2VzWbTggUL8iyTmJioevXqycfHR5GRkVq3bp2lxzh+/LhatWqlq666Sk8++aRq1KhRRNUDAMoq8gkA4G7IpvNoKgIAlJGRoVatWikxMTHf2+fMmaP4+HiNHTtWGzduVKtWrRQTE6NDhw7Zl8k95sfFl/3790uSqlatqs2bNyslJUWzZs1SampqiawbAKD0Ip8AAO6GbDrP5U3Fffv26b777lP16tVVqVIltWzZUuvXr7ffbozRmDFjVKtWLVWqVEnR0dHasWOHCysGgNIhLS3N4ZKZmVngst27d9cLL7yg22+/Pd/bJ0+erCFDhmjgwIFq1qyZpk6dqsqVK2v69On2ZZKTk/Xzzz/nuYSGhjrMFRwcrFatWum///1v0axoMSCbAKD4kE+FRz4BQPEgmwrHpSdq+euvv9S+fXt16dJFX3/9tWrWrKkdO3aoWrVq9mVefvllvfnmm/rwww9Vv359Pfvss4qJidHWrVvl4+PjwuoBoHgsONlKPqZioe9/Jv2spKUKCwtzGB87dqzGjRtneb6srCxt2LBBo0ePto95eHgoOjpaa9ascWqO1NRUVa5cWX5+fjpx4oRWrlypf/7zn5ZrKQlkEwDkdaXZJJFPV4p8AoC82HZyLZc2FV966SWFhYVpxowZ9rH69evb/22MUUJCgv7v//5Pt912myTp3//+t4KDg7VgwQLdddddJV4zAJQWe/bskb+/v/26t7d3oeY5cuSIsrOzFRwc7DAeHBysbdu2OTXHn3/+qYceesh+kOFHHnlELVu2LFQ9xY1sAoDiRT4VDvkEAMWHbCoclzYVv/zyS8XExOjOO+/UihUrVLt2bT388MMaMmSIJCklJUUHDx5UdHS0/T4BAQGKjIzUmjVr8g3GzMxMh91U09LSin9FAMAN+fv7OwSjK7Vp00bJycmuLsMpZBMAFC/yqXDIJwAoPmRT4bj0mIp//PGH3nnnHTVu3FjffPON/vnPf2rEiBH68MMPJUkHDx6UpHw7vLm3XWzixIkKCAiwXy7ehRUAYE2NGjXk6emZ5+DAqampCgkJcVFVxYdsAoDSgXwinwDA3ZS3bHJpUzEnJ0fXX3+9JkyYoOuuu04PPfSQhgwZoqlTpxZ6ztGjR+vEiRP2y549e4qwYgAof7y8vBQREaGkpCT7WE5OjpKSkhQVFeXCyooH2QQApQP5RD4BgLspb9nk0p8/16pVS82aNXMYa9q0qT777DNJsndxU1NTVatWLfsyqampCg8Pz3dOb2/vQv/2HQDKq/T0dO3cudN+PSUlRcnJyQoMDFSdOnUUHx+v2NhYtW7dWm3atFFCQoIyMjI0cOBAF1ZdPMgmAHAf5NN55BMAuAey6TyXNhXbt2+v7du3O4z99ttvqlu3rqS/DzwcEhKipKQkexCmpaXpxx9/dNsz3wBAabR+/Xp16dLFfj0+Pl6SFBsbq5kzZ2rAgAE6fPiwxowZo4MHDyo8PFxLlizJ8xOrsoBsAgD3QT6dRz4BgHsgm85zaVPx8ccfV7t27TRhwgT1799f69at03vvvaf33ntPkmSz2fTYY4/phRdeUOPGjVW/fn09++yzCg0NVZ8+fVxZOgCUKZ07d5Yx5pLLDB8+XMOHDy+hilyHbAIA90E+nUc+AYB7IJvOc2lT8YYbbtD8+fM1evRojR8/XvXr11dCQoLuvfde+zJPPfWUMjIy9NBDD+n48ePq0KGDlixZIh8fHxdWDgAoq8gmAIA7Ip8AAO7GpU1FSerVq5d69epV4O02m03jx4/X+PHjS7AqAEB5RjYBANwR+QQAcCcuPfszAAAAAAAAgNKHpiIAAAAAAAAAS2gqAgAAAAAAALCEpiIAAAAAAAAAS2gqAgAAAAAAALCEpiIAAAAAAAAAS2gqAgAAAAAAALCEpiIAAAAAAAAAS2gqAgAAAAAAALCEpiIAAAAAAAAAS2gqAgAAAAAAALCEpiIAAAAAAAAAS2gqAgAAAAAAALCEpiIAAAAAAAAAS2gqAgAAAAAAALCEpiIAAAAAAAAAS2gqAgAAAAAAALCEpiIAAAAAAAAAS2gqAgAAAAAAALCEpiIAAAAAAAAAS2gqAgAAAAAAALCEpiIAAAAAAAAAS2gqAgAAAAAAALCEpiIAAAAAAAAAS2gqAgAAAAAAALCEpiIAAAAAAAAAS2gqAgAAAAAAALCEpiIAAAAAAAAAS2gqAgAAAAAAALCEpiIAAAAAAAAAS2gqAgAAAAAAALCEpiIAoMScOnVKdevW1ciRI11dCgAAduQTAMDdlIZsoqkIACgxL774otq2bevqMgAAcEA+AQDcTWnIJpqKAIASsWPHDm3btk3du3d3dSkAANiRTwAAd1NasommIgBAK1euVO/evRUaGiqbzaYFCxbkWSYxMVH16tWTj4+PIiMjtW7dOkuPMXLkSE2cOLGIKgYAlAfkEwDA3ZBN59FUBAAoIyNDrVq1UmJiYr63z5kzR/Hx8Ro7dqw2btyoVq1aKSYmRocOHbIvEx4erhYtWuS57N+/X1988YWuvvpqXX311SW1SgCAMoB8AgC4G7LpvAquLgAAUDzS0tIcrnt7e8vb2zvfZbt3737JXesnT56sIUOGaODAgZKkqVOnatGiRZo+fbpGjRolSUpOTi7w/mvXrtXs2bM1b948paen6+zZs/L399eYMWMsrhUAoLQjnwAA7oZsKhyaigDgZpalXq0K6fkHmDPOZWRKWqqwsDCH8bFjx2rcuHGW58vKytKGDRs0evRo+5iHh4eio6O1Zs0ap+aYOHGifff9mTNn6ueff3bLUAQA5O9Ks0kinwAARY9tJ9eiqQgAZdSePXvk7+9vv17QN22Xc+TIEWVnZys4ONhhPDg4WNu2bbuiGgEA5Q/5BABwN2RT4dBUBIAyyt/f3yEY3UVcXJyrSwAAuBD5BABwN2RT4XCiFgDAJdWoUUOenp5KTU11GE9NTVVISIiLqgIAlHfkEwDA3ZS3bKKpCAC4JC8vL0VERCgpKck+lpOTo6SkJEVFRbmwMgBAeUY+AQDcTXnLJn7+DABQenq6du7cab+ekpKi5ORkBQYGqk6dOoqPj1dsbKxat26tNm3aKCEhQRkZGfYzmgEAUBzIJwCAuyGbznPpnorjxo2TzWZzuDRp0sR++5kzZzRs2DBVr15dvr6+6tevX55dSAEAV279+vW67rrrdN1110mS4uPjdd1119nPMjZgwAC9+uqrGjNmjMLDw5WcnKwlS5bkOQBxWUA2AYD7IJ/OI58AwD2QTee5fE/F5s2b67vvvrNfr1DhfEmPP/64Fi1apHnz5ikgIEDDhw9X3759tXr1aleUCgBlVufOnWWMueQyw4cP1/Dhw0uoItcimwDAPZBPjsgnAHA9suk8lzcVK1SokO/BKk+cOKFp06Zp1qxZ6tq1qyRpxowZatq0qdauXau2bduWdKkAgHKCbAIAuCPyCQDgTlx+opYdO3YoNDRUDRo00L333qvdu3dLkjZs2KCzZ88qOjravmyTJk1Up04drVmzpsD5MjMzlZaW5nABAMAKsgkA4I7IJwCAO3FpUzEyMlIzZ87UkiVL9M477yglJUUdO3bUyZMndfDgQXl5ealq1aoO9wkODtbBgwcLnHPixIkKCAiwX8LCwop5LQAAZQnZBABwR+QTAMDduPTnz927d7f/+9prr1VkZKTq1q2ruXPnqlKlSoWac/To0YqPj7dfT0tLIxwBAE4jmwAA7oh8AgC4G5f//PlCVatW1dVXX62dO3cqJCREWVlZOn78uMMyqamp+R5HJJe3t7f8/f0dLgAAFBbZBABwR+QTAMDV3KqpmJ6ert9//121atVSRESEKlasqKSkJPvt27dv1+7duxUVFeXCKgEA5QnZBABwR+QTAMDVXPrz55EjR6p3796qW7eu9u/fr7Fjx8rT01N33323AgICNGjQIMXHxyswMFD+/v565JFHFBUVxdnLAADFhmwCALgj8gkA4G5c2lTcu3ev7r77bh09elQ1a9ZUhw4dtHbtWtWsWVOS9Prrr8vDw0P9+vVTZmamYmJiNGXKlEI9VtbVocqp4FOU5QOAJOncuTPSIVdXgaJSktkEAICzyCcAgLtxaVNx9uzZl7zdx8dHiYmJSkxMLKGKAADlHdkEAHBH5BMAwN241TEVAQAAAAAAALg/mooAAAAAAAAALKGpCAAAAAAAAMASlx5TEQCA8uxKTyLmtW1vEVYDAAAAAM6jqQgAQCmV1eQqV5cAwI2dO3dGOuTqKlAaFeZLL77oQknL/RzE3x7gOjQVAQAAAABXhC+64Cr87ZUufOFVtnBMRQAAAAAAAACW0FQEAAAAAAAAYAlNRQAAAAAAAACW0FQEAAAAAAAAYAlNRQAAAAAAAACW0FQEAAAAAAAAYAlNRQAAAAAAAACW0FQEAAAAAAAAYAlNRQAAAAAAAACW0FQEAAAAAAAAYAlNRQAAAAAAAACW0FQEAAAAAAAAYAlNRQAAAAAAAACW0FQEAAAAAAAAYAlNRQAAAAAAAACW0FQEAAAAAAAAYAlNRQAAAAAAAACWVHB1AQCA8qFevXry9/eXh4eHqlWrpmXLlrm6JAAAyCcAgNspLdlEUxEAUGJ++OEH+fr6uroMAAAckE8AAHdTGrKJnz8DAAAAAAAAsISmIgBAK1euVO/evRUaGiqbzaYFCxbkWSYxMVH16tWTj4+PIiMjtW7dOkuPYbPZ1KlTJ91www365JNPiqhyAEBZRj4BANwN2XQeP38GACgjI0OtWrXSgw8+qL59++a5fc6cOYqPj9fUqVMVGRmphIQExcTEaPv27QoKCpIkhYeH69y5c3nuu3TpUoWGhmrVqlWqXbu2Dhw4oOjoaLVs2VLXXnttsa8bAKD0Ip8AAO6GbDqPpiIAlFFpaWkO1729veXt7Z3vst27d1f37t0LnGvy5MkaMmSIBg4cKEmaOnWqFi1apOnTp2vUqFGSpOTk5EvWU7t2bUlSrVq11KNHD23cuNEtgxEAULzIJwCAuyGbCoemIgC4md37a8ijkk+h759z+owkKSwszGF87NixGjdunOX5srKytGHDBo0ePdo+5uHhoejoaK1Zs8apOTIyMpSTkyM/Pz+lp6fr+++/V//+/S3XAgBwjSvNJol8AgAUPbadXIumIgCUUXv27JG/v7/9ekHftF3OkSNHlJ2dreDgYIfx4OBgbdu2zak5UlNTdfvtt0uSsrOzNWTIEN1www2FqgcAULqRTwAAd0M2FY5TTcUvv/zS8sQ33XSTKlWqZPl+AICi4e/v7xCMrtSgQQNt3ry5yOclnwCg9Cnr+UQ2AUDpU9azqbg41VTs06ePpUltNpt27NihBg0aFKYmAIAbqVGjhjw9PZWamuownpqaqpCQEBdV9TfyCQDKL3fNJ7IJAMovd82m4uLh7IIHDx5UTk6OU5fKlSsXZ80AgBLk5eWliIgIJSUl2cdycnKUlJSkqKgoF1b2N/IJAMond84nsgkAyid3zqbi4NSeirGxsZZ2x7/vvvvcZrdRAMDlpaena+fOnfbrKSkpSk5OVmBgoOrUqaP4+HjFxsaqdevWatOmjRISEpSRkWE/o5mrkE8AULaVxnwimwCgbCuN2VRcnGoqzpgxw9Kk77zzTqGKAQC4xvr169WlSxf79fj4eEl/bxjNnDlTAwYM0OHDhzVmzBgdPHhQ4eHhWrJkSZ4DEJc08gkAyrbSmE9kEwCUbaUxm4oLZ38GAKhz584yxlxymeHDh2v48OElVBEAAOQTAMD9kE3nWW4qnjlzRm+99ZaWLVumQ4cOKScnx+H2jRs3FllxAAA4i3wCALgbsgkAUJZZbioOGjRIS5cu1R133KE2bdrIZrMVR10AAFhCPgEA3A3ZBAAoyyw3FRcuXKjFixerffv2xVEPAACFQj4BANwN2QQAKMs8rN6hdu3a8vPzK45aAAAoNPIJAOBuyCYAQFlmuan42muv6emnn9aff/5ZHPUAAFAo5BMAwN2QTQCAssxyU7F169Y6c+aMGjRoID8/PwUGBjpcCmvSpEmy2Wx67LHH7GNnzpzRsGHDVL16dfn6+qpfv35KTU0t9GMAAMou8gkA4G7IJgBAWWb5mIp333239u3bpwkTJig4OLhIDjb8008/6d1339W1117rMP74449r0aJFmjdvngICAjR8+HD17dtXq1evvuLHBACULeQTAMDdkE0AgLLMclPxhx9+0Jo1a9SqVasiKSA9PV333nuv3n//fb3wwgv28RMnTmjatGmaNWuWunbtKkmaMWOGmjZtqrVr16pt27ZF8vgAgLKBfAIAuBuyCQBQlln++XOTJk10+vTpIitg2LBh6tmzp6Kjox3GN2zYoLNnzzqMN2nSRHXq1NGaNWsKnC8zM1NpaWkOFwBA2efO+UQ2AUD55M7ZJJFPAIArY7mpOGnSJD3xxBNavny5jh49ekUhNHv2bG3cuFETJ07Mc9vBgwfl5eWlqlWrOowHBwfr4MGDBc45ceJEBQQE2C9hYWGWagIAlE7unE9kEwCUT+6cTRL5BAC4MpZ//nzLLbdIkrp16+YwboyRzWZTdna2U/Ps2bNHjz76qL799lv5+PhYLaNAo0ePVnx8vP16Wloa4QgA5YA75xPZBADlkztnk0Q+AQCujOWm4rJly4rkgTds2KBDhw7p+uuvt49lZ2dr5cqVevvtt/XNN98oKytLx48fd/jGLTU1VSEhIQXO6+3tLW9v7yKpEQBQerhzPpFNAFA+uXM2SeQTAODKWG4qtmvXThUrVsz3tiNHjjg9T7du3bRlyxaHsYEDB6pJkyZ6+umnFRYWpooVKyopKUn9+vWTJG3fvl27d+9WVFSU1bIBAGUc+QQAcDdkEwCgLLPcVLzrrrv06aefymazOYynpqaqW7du+vnnn52ax8/PTy1atHAYq1KliqpXr24fHzRokOLj4xUYGCh/f3898sgjioqK4uxlAAAHSUlJuu+++1SpUiXZbDY1bdpUjz32mKKjo8knAIBLkE0AAHeUlJSk119/Xb/++qskOeSTVZZP1LJ7924NHjzYYezAgQPq3LmzmjRpYrmAS3n99dfVq1cv9evXTzfeeKNCQkL0+eefF+ljAABKtylTpuiWW25RVlaWgoKC9Oijj8rf3189evTQhAkTyCcAQIkjmwAA7ig3n/z8/PToo4865FNiYqLl+Szvqbh48WLdeOONio+P1+TJk7V//3516dJFrVq10uzZsy0XcKHly5c7XPfx8VFiYmKhVgwAUD5MmDBBr7/+ugYMGKAbb7xRu3bt0qxZs9S8eXONGTNGffv2JZ8AACWKbAIAuKPcfBo+fLh9bMSIEWrfvr0mTJigYcOGWZrPclOxZs2aWrp0qTp06CBJWrhwoa6//np98skn8vCwvOMjAABX5Pjx47rlllvy5NP8+fMlSf/5z3/IJwBAiSKbAADuKDefLnbzzTfr6aeftjxfoZIsLCxM3377rT755BO1adNG//nPf+Tp6VmYqQAAuCK33nqrfSPtwnyqVq2a+vXrRz4BAEoc2QQAcEcX5tOFvvjiC/Xq1cvyfE7tqVitWrU8J2aRpFOnTumrr75S9erV7WPHjh2zXAQAAIVRrVo1ZWZmavbs2XrmmWdUocLfsZaZmalDhw5p27ZtqlKliiRp4sSJGjFihCvLBQCUA2QTAMBdNWvWTC+++KKWL1+uqKgoSdLatWu1evVqPfHEE3rzzTftyzqTT041FRMSEgpXLQAAxSghIUEjR460b5zluvh67rJsuAEAihvZBABwV9OmTVO1atW0detWbd261T5etWpVTZs2zX7dZrMVXVMxNja2EKUCAFC8YmNjySgAgFshmwAA7iolJaVI53PqmIppaWmWJj158mShigEAwAryCQDgbsgmAEB54fQxFQ8cOKCgoCCnJq1du7aSk5PVoEGDKyoOAIBLyc2nrKwsffnll9q9e7eysrIclpk8ebL93+QTAKC4kU0AAHe2d+9ep/LJGU41FY0x+uCDD+Tr6+vUpGfPnrVUBAAAhWGM0ejRo/XRRx+pRo0aSk1NVa1atXTs2DEZYxQWFqZ69erZlyefAADFjWwCALirpKQk3XrrrWrQoIG2bdumFi1aaNeuXTLG6Prrr7c8n1NNxTp16uj99993etKQkBBVrFjRcjEAAFhRp04dffzxx6pSpYq8vb1ljJHNZlNQUJAOHz6sY8eO6fXXX7cvTz4BAIob2QQAcFejR4/WyJEj9dxzz8nPz0+fffaZgoKCdO+99+qWW26xPJ9TTcVdu3ZZnhgAgOK2a9cu+fn5af369WrYsKGqVaumJUuWqHnz5tq8ebNuu+22Ij8YMQAAl0I2AQDc1a+//qr//Oc/kqQKFSro9OnT8vX11fjx43Xbbbfpn//8p6X5nDpRCwAA7qpKlSr2Y4HUqlVLv//+u/22I0eOuKosAEA5RjYBANxRUeeTU3sqAgDgrtq2batVq1apadOm6tGjh5544glt2bJFn3/+udq2bevq8gAA5RDZBABwR0WdTzQVAQCl2uTJk5Weni5Jeu6555Senq45c+aocePGls9eBgBAUSCbAADuqKjziaYiAKBUa9Cggf3fVapU0dSpU11YDQAAZBMAwD0VdT5xTEUAQKk2ePBgLV++3NVlAABgRzYBANxRUedToZqK//3vf3XfffcpKipK+/btkyR99NFHWrVqVZEVBgCAMw4fPqxbbrlFYWFhuvvuu9WzZ0/yCQDgUmQTAMAdXZhPTz75pDZv3nxF81luKn722WeKiYlRpUqVtGnTJmVmZkqSTpw4oQkTJlxRMQCAsislJUVdunRRs2bN1LJlS2VkZBTJvF988YUOHDignj17au7cuVq8eLF+/PFHvf7669q1axf5BAC4pOLIJ7IJAHAlinvb6dlnn9VPP/2k66+/Xs2bN9eECRO0a9cuy/NZbiq+8MILmjp1qt5//31VrFjRPt6+fXtt3LjRcgEAgPIhLi5O48eP19atW7VixQp5e3sX2dzVqlXTjz/+qBkzZmjPnj2qWLGi5s+fr0aNGpFPAIBLKq58IpsAAIVV3NtODz30kJYvX64///xTcXFx+uijj9SoUSPLc1k+Ucv27dt144035hkPCAjQ8ePHLRcAACj7fvnlF1WsWFEdO3aUJAUGBhb5Y2zfvl1RUVFav369cnJytHfvXgUHB5NPAIACFXc+kU0AAKtKYttJks6ePav169frxx9/1K5duxQcHGx5Dst7KoaEhGjnzp15xletWuVwFhkAQOmxcuVK9e7dW6GhobLZbFqwYEGeZRITE1WvXj35+PgoMjJS69atc3r+HTt2yNfXV71799b1119f5D/5WrZsmSpUqKDrr79ecXFxkqQPPvhAe/fuJZ8AoBQrzflENgFA2VSas0n6O5+GDBmi4OBgxcXFyd/fXwsXLtTevXstz2V5T8UhQ4bo0Ucf1fTp02Wz2bR//36tWbNGI0eO1LPPPmu5AACA62VkZKhVq1Z68MEH1bdv3zy3z5kzR/Hx8Zo6daoiIyOVkJCgmJgYbd++XUFBQZKk8PBwnTt3Ls99ly5dqnPnzum///2vkpOTFRQUpFtuuUU33HCDbrrppiuuvXbt2jp27JgaNGigtLQ0zZo1Sz179lT9+vU1a9Ys8gkASrHSmk9kEwCUXaU1m6Tz+XTLLbfovffeU+/eva/op9WWm4qjRo1STk6OunXrplOnTunGG2+Ut7e3Ro4cqUceeaTQhQAAilZaWprDdW9v7wIDo3v37urevXuBc02ePFlDhgzRwIEDJUlTp07VokWLNH36dI0aNUqSlJycXOD9a9eurdatWyssLEyS1KNHDyUnJxdJMI4bN0533nmnAgICNGHCBHXv3j3ffNq7d69CQ0Pl4WF5J30AQBEqD/lENgFA6VIeskk6n09Vq1a95HLO5pPlpqLNZtMzzzyjJ598Ujt37lR6erqaNWsmX19fq1MBAPLhtcdLnj5ehb5/9pkcSbKHUK6xY8dq3LhxlufLysrShg0bNHr0aPuYh4eHoqOjtWbNGqfmuOGGG3To0CH99ddfCggI0MqVKzV06FDLteRnyJAh9n9fKp+aNWum5ORkfm4GAIVwpdkkla98IpsAoGSw7WTNhfl0Kc7mk+WmYi4vLy81a9assHcHABSzPXv2yN/f3369sLu1HzlyRNnZ2XkO3BscHKxt27Y5NUeFChU0YcIE3XjjjTLG6Oabb1avXr0KVc/lFJRPxphieTwAgDXlMZ/IJgBwb+Uxmy7F2XxyqqmY32/EC/L55587vSwAoPj4+/s7BKOrXe5nAoVhJZ8AAO6hrOcT2QQApU9Zz6bi4tTBOwICAuwXf39/JSUlaf369fbbN2zYoKSkJAUEBBRboQAA16hRo4Y8PT2VmprqMJ6amqqQkBAXVfU38gkAyi93zSeyCQDKL3fNpuLi1J6KM2bMsP/76aefVv/+/TV16lR5enpKkrKzs/Xwww+7VVcXAFA0vLy8FBERoaSkJPXp00eSlJOTo6SkJA0fPtyltZFPAFB+uWs+kU0AUH65azYVF8vHVJw+fbpWrVplD0VJ8vT0VHx8vNq1a6dXXnmlSAsEABS/9PR07dy50349JSVFycnJCgwMVJ06dRQfH6/Y2Fi1bt1abdq0UUJCgjIyMuxnNHMHl8snm83mwuoAAIVR2vOJbAKAsqe0Z5MznM0ny03Fc+fOadu2bbrmmmscxrdt26acnByr0wEA3MD69evVpUsX+/X4+HhJUmxsrGbOnKkBAwbo8OHDGjNmjA4ePKjw8HAtWbIkzwGIXely+cTB8AGg9Cnt+UQ2AUDZU9qzyRlFeqKWCw0cOFCDBg3S77//rjZt2kiSfvzxR02aNKlUdV0BAOd17tz5ssExfPhwt95lf+DAgRo4cKCGDx+um2++WZJjPj3++OMKDQ11cZUAACtKez6RTQBQ9pT2bMq1d+9eSdJVV12V57atW7c6lU+Wm4qvvvqqQkJC9Nprr+nAgQOSpFq1aunJJ5/UE088YXU6AACuSE5Ojl544QV98MEHSk9P1/PPP6/nn39eNpvNIZ8u/OkZAADFiWwCALij3Hx67bXXlJ6eLkny8/PTE088oWeeeUYeHn+fzzksLMyp+Sw3FT08PPTUU0/pqaeeUlpamiRxkGEAgMs888wzmjZtml566SW1b99ekvTtt99q4sSJiouL01NPPeXiCgEA5Q3ZBABwR7n5NGnSJHs+rVq1SuPGjdOZM2f04osvWprPclPxQjQTAQCu9uGHH+qDDz7Qrbfeah+79tpr1ahRIz388MOWgxEAgCtFNgEA3FFB+VS7du1C5ZPlpmL9+vUveRaYP/74w+qUAAAU2rFjx9SkSZM8+XT27FkdOHBADRo0kEQ+AQBKDtkEAHBHufl0sSZNmujYsWOW57PcVHzsscccrp89e1abNm3SkiVL9OSTT1ouAACAK9GqVSu9/fbbefJp7ty5On36tE6cOEE+AQBKFNkEAHBHufn05ptvOoy//fbbatWqleX5LDcVH3300XzHExMTtX79essFAABwJV5++WX17NlTderUUVRUlCRpzZo12rNnjxYvXqz//e9/5BMAoESRTQAAd5SbT999912++WSVR1EV1r17d3322WdFNR0AAE7p1KmTfvvtN91+++06fvy4jh8/rr59+2r79u3q2LEj+QQAKHFkEwDAHV0un6y6ohO1XOjTTz9VYGBgUU0HAIDTQkNDCzyoMPkEAHAFsgkA4I4ulU9WWW4qXnfddQ4HGzbG6ODBgzp8+LCmTJlSJEUBAOCsnJwceXh45JtP+/bt07Fjx8gnAECJIpsAAO4oN5/yG9+7d6/q1KljaT7LTcXbbrvNIRg9PDxUs2ZNde7cOd8zyAAAUBzS0tI0ePBgffXVV/L391eTJk3UuXNne0ieOnVKr7zyirZu3Uo+AQBKBNkEAHBHF+fT0KFDNXbsWHl6ekqSDh8+rPr16ys7O9vSvJabiuPGjbN6FwAAityzzz6rzZs366OPPtLx48f1wgsvaMOGDfr888/l5eWl1NRUvfLKK2y0AQBKDNkEAHBH+eXTxo0b7fkk/b03vVWWT9Ti6empQ4cO5Rk/evSovcMJAEBxW7Bggd59913dcccdGjx4sPbs2aP9+/erd+/eyszMlCTZbDbyCQBQYsgmAIA7ujif1q9fr8OHD+fJJ6ssNxUL6lxmZmbau5vOeuedd3TttdfK399f/v7+ioqK0tdff22//cyZMxo2bJiqV68uX19f9evXT6mpqVZLBgCUQYcPH1bdunXt140x+vTTT3Xy5En16NFDp06dkmQ9n8gmAEBhFVc2SeQTAKDwLs6nGjVq6LvvvsuTT1Y5/fPnN998U9LfncsPPvhAvr6+9tuys7O1cuVKy7vxX3XVVZo0aZIaN24sY4w+/PBD3Xbbbdq0aZOaN2+uxx9/XIsWLdK8efMUEBCg4cOHq2/fvlq9erWlxwEAlD116tTRr7/+qq+++krS3/k0e/Zs3X777ZoyZYo6dOggY4yGDRtmKZ/IJgBAYRVXNknkEwCg8HLzqX79+vYxPz8/LV26VDfffLNuv/32Qs3rdFPx9ddfl/T3t21Tp0512F3fy8tL9erV09SpUy09eO/evR2uv/jii3rnnXe0du1aXXXVVZo2bZpmzZqlrl27SpJmzJihpk2bau3atWrbtq2lxwIAlC0333yzZsyYofXr10tyzCdjjI4ePSpjjE6dOmUpn8gmAEBhFVc2SeQTAKDwcvOpR48eDuO+vr765ptvdNNNNxVqXqebiikpKZKkLl266PPPP1e1atUK9YAFyc7O1rx585SRkaGoqCht2LBBZ8+eVXR0tH2ZJk2aqE6dOlqzZg3BCADl3HPPPaf9+/erefPmkvLm08mTJ7Vx40Z16tSp0I9BNgEArCiJbJLIJwCANbn5lB8/Pz99++232rhxo+V5LZ/9edmyZZYf5FK2bNmiqKgonTlzRr6+vpo/f76aNWum5ORkeXl5qWrVqg7LBwcH6+DBgwXOl5mZaT/IpPT3abMBAGVPtWrV7BtpSUlJioqK0pNPPqmcnByH5Qqz4UY2AQAKozizSSKfAACFc3E+JSUl6dChQ1ecT041FePj4/X888+rSpUqio+Pv+SykydPtlTANddco+TkZJ04cUKffvqpYmNjtWLFCktzXGjixIl67rnnCn1/AEDpER8fr0qVKmnSpEmqWbOmw/F+L1xGspZPZBMAoLCKK5sk8gkAcGWee+45jR8/Xq1bt1atWrUKdcbnCznVVNy0aZPOnj0rSdq4ceMVP+iFvLy81KhRI0lSRESEfvrpJ73xxhsaMGCAsrKydPz4cYdv3FJTUxUSElLgfKNHj3ZofKalpSksLKzI6gUAuI9NmzZp69atmjlzpqZNm5ZvPm3atMnyvGQTAKCwiiubJPIJAHBlpk6dqpkzZ+r+++8vkvmcaipe+JPn5cuXF8kDFyQnJ0eZmZmKiIhQxYoVlZSUpH79+kmStm/frt27dysqKqrA+3t7e8vb27tYawQAuIdly5apevXqateuXZEFY37IJgCAs0oqmyTyCQBgTVZWltq1a1dk83lYvcODDz6okydP5hnPyMjQgw8+aGmu0aNHa+XKldq1a5e2bNmi0aNHa/ny5br33nsVEBCgQYMGKT4+XsuWLdOGDRs0cOBARUVFcaBhAIDd4MGDNWvWrCLLJ7IJAHClijqbJPIJAHDlcvOpqFg+UcuHH36oSZMmyc/Pz2H89OnT+ve//63p06c7PdehQ4f0wAMP6MCBAwoICNC1117rcCrr119/XR4eHurXr58yMzMVExOjKVOmWC0ZAFDGXPhTrZycHL333ns6fvy4bDabAgICHJb917/+ZSmfyCYAQGEUZzZJ5BMAoHDyy6fvvvtO1157rSpWrOiwrNVj/TrdVExLS5MxRsYYnTx5Uj4+PvbbsrOztXjxYgUFBVl68GnTpl3ydh8fHyUmJioxMdHSvACAsu3CY1GdO3dOLVq00KpVq/TLL7/kCUar+UQ2AQAKozizSSKfAACFc/FxfMPDwyVJP//8s8N4Yc6f4nRTsWrVqrLZbLLZbLr66qvz3G6z2ThzGACgRFx4rF8PDw/ZbDZ5eHjop59+yrPsmjVryCcAQLEjmwAA7ujCfCpqTjcVly1bJmOMunbtqs8++0yBgYH227y8vFS3bl2FhoYWS5EAABSEfAIAuBuyCQBQHjjdVOzUqZMkKSUlRXXq1CnUbpEAABQ18gkA4G7IJgBAeeBUU/F///ufw/UtW7YUuOy11157ZRUBAOAk8gkA4G7IJgBAeeFUUzE8PFw2m03GmEsuZ7PZlJ2dXSSFAQBwOeQTAMDdkE0AgPLCqaZiSkpKcdcBAIBl5BMAwN2QTQCA8sKppmLdunWLuw4AACwjnwAA7oZsAgCUF06fqOViW7du1e7du5WVleUwfuutt15xUQAAFBb5BABwN2QTAKAsstxU/OOPP3T77bdry5YtDscKyT2jGccFAQC4AvkEAHA3ZBMAoCzzsHqHRx99VPXr19ehQ4dUuXJl/fLLL1q5cqVat26t5cuXF0OJAIDSbvv27QoPD7dfKlWqpAULFhTpY5BPAACrijufyCYAgFUlse1UVCzvqbhmzRp9//33qlGjhjw8POTh4aEOHTpo4sSJGjFihDZt2lQcdQIASrFrrrlGycnJkqT09HTVq1dPN910U5E+BvkEALCquPOJbAIAWFUS205FxfKeitnZ2fLz85Mk1ahRQ/v375f09wGJt2/fXrTVAQDKnC+//FLdunVTlSpVinRe8gkAcCWKI5/IJgDAlSiubaeiYrmp2KJFC23evFmSFBkZqZdfflmrV6/W+PHj1aBBgyIvEABQ/FauXKnevXsrNDRUNpst393rExMTVa9ePfn4+CgyMlLr1q0r1GPNnTtXAwYMuMKK8yKfAKDsKe35RDYBQNlT2rOpKFluKv7f//2fcnJyJEnjx49XSkqKOnbsqMWLF+vNN98s8gIBAMUvIyNDrVq1UmJiYr63z5kzR/Hx8Ro7dqw2btyoVq1aKSYmRocOHbIvEx4erhYtWuS55O6VIUlpaWn64Ycf1KNHjyJfB/IJAMqe0p5PZBMAlD2lPZuKkuVjKsbExNj/3ahRI23btk3Hjh1TtWrV7GcxAwC4XlpamsN1b29veXt757ts9+7d1b179wLnmjx5soYMGaKBAwdKkqZOnapFixZp+vTpGjVqlCTZj/txKV988YVuvvlm+fj4OLkWziOfAKB0KE/5RDYBQOlQnrKpKFluKuYnMDCwKKYBAEjy22Pk6WUKff/srL/vGxYW5jA+duxYjRs3zvJ8WVlZ2rBhg0aPHm0f8/DwUHR0tNasWWNprrlz5+qhhx6yXENhkU8AUDSuNJsk8ikX2QQARYdtJ9cqkqYiAMD97NmzR/7+/vbrBX3TdjlHjhxRdna2goODHcaDg4O1bds2p+c5ceKE1q1bp88++6xQdQAAygbyCQDgbsimwqGpCABllL+/v0MwulpAQIBSU1NdXQYAwMXIJwCAuyGbCsfyiVoAAOVLjRo15OnpmSfUUlNTFRIS4qKqAADlHfkEAHA35S2baCoCAC7Jy8tLERERSkpKso/l5OQoKSlJUVFRLqwMAFCekU8AAHdT3rKJnz8DAJSenq6dO3far6ekpCg5OVmBgYGqU6eO4uPjFRsbq9atW6tNmzZKSEhQRkaG/YxmAAAUB/IJAOBuyKbzaCoCALR+/Xp16dLFfj0+Pl6SFBsbq5kzZ2rAgAE6fPiwxowZo4MHDyo8PFxLlizJcwBiAACKEvkEAHA3ZNN5NBUBAOrcubOMMZdcZvjw4Ro+fHgJVQQAAPkEAHA/ZNN5HFMRAAAAAAAAgCU0FQEAAAAAAABYQlMRAAAAAAAAgCU0FQEAAAAAAABYQlMRAAAAAAAAgCU0FQEAAAAAAABYQlMRAAAAAAAAgCU0FQEAAAAAAABYQlMRAAAAAAAAgCU0FQEAAAAAAABYQlMRAAAAAAAAgCU0FQEAAAAAAABYQlMRAAAAAAAAgCU0FQEAAAAAAABYQlMRAAAAAAAAgCU0FQEAAAAAAABYUsHVBQAAAAAA3EdafW95enmX6GMG/J5Zoo8HALhy5aap6IpgBFA+ZGcZaZWrq0BpRDYBKE7kE0qTEw3JQ6A8IJvKFn7+DAAAAAAAAMASmooAAAAAAAAALHFpU3HixIm64YYb5Ofnp6CgIPXp00fbt293WObMmTMaNmyYqlevLl9fX/Xr10+pqakuqhgAUNaRTQAAd0Q+AQDcjUubiitWrNCwYcO0du1affvttzp79qxuvvlmZWRk2Jd5/PHH9dVXX2nevHlasWKF9u/fr759+7qwagBAWUY2AQDcEfkEAHA3Lj1Ry5IlSxyuz5w5U0FBQdqwYYNuvPFGnThxQtOmTdOsWbPUtWtXSdKMGTPUtGlTrV27Vm3btnVF2QCAMoxsAgC4I/IJAOBu3OqYiidOnJAkBQYGSpI2bNigs2fPKjo62r5MkyZNVKdOHa1ZsybfOTIzM5WWluZwAQCgsMgmAIA7Ip8AAK7mNk3FnJwcPfbYY2rfvr1atGghSTp48KC8vLxUtWpVh2WDg4N18ODBfOeZOHGiAgIC7JewsLDiLh0AUEaRTQAAd0Q+AQDcgds0FYcNG6aff/5Zs2fPvqJ5Ro8erRMnTtgve/bsKaIKAQDlDdkEAHBH5BMAwB249JiKuYYPH66FCxdq5cqVuuqqq+zjISEhysrK0vHjxx2+cUtNTVVISEi+c3l7e8vb27u4SwYAlHFkEwDAHZFPAAB34dI9FY0xGj58uObPn6/vv/9e9evXd7g9IiJCFStWVFJSkn1s+/bt2r17t6Kiokq6XABAOUA2AQDcEfkEAHA3Lt1TcdiwYZo1a5a++OIL+fn52Y/1ERAQoEqVKikgIECDBg1SfHy8AgMD5e/vr0ceeURRUVGcvQwAUCzIJgCAOyKfAADuxqVNxXfeeUeS1LlzZ4fxGTNmKC4uTpL0+uuvy8PDQ/369VNmZqZiYmI0ZcqUEq4UAFBekE0AAHdEPgEA3I1Lm4rGmMsu4+Pjo8TERCUmJpZARQCA8o5sAgC4I/IJAOBu3ObszwAAAAAAAABKB5qKAIAS8frrr6t58+Zq1qyZRowY4dQeFwAAFDfyCQDgbkpLNtFUBAAUu8OHD+vtt9/Whg0btGXLFm3YsEFr1651dVkAgHKOfAIAuJvSlE0uPaYiAKD8OHfunM6cOSNJOnv2rIKCglxcEQAA5BMAwP2UlmxiT0UAgFauXKnevXsrNDRUNptNCxYsyLNMYmKi6tWrJx8fH0VGRmrdunVOz1+zZk2NHDlSderUUWhoqKKjo9WwYcMiXAMAQFlEPgEA3A3ZdB57KgIAlJGRoVatWunBBx9U375989w+Z84cxcfHa+rUqYqMjFRCQoJiYmK0fft2+7dm4eHhOnfuXJ77Ll26VJUqVdLChQu1a9cuVapUSd27d9fKlSt14403Fvu6ubOTYTZ5+thcXQaAMir7TOl/fyGfXIN8AlBcyKaylU00FQGgjEpLS3O47u3tLW9v73yX7d69u7p3717gXJMnT9aQIUM0cOBASdLUqVO1aNEiTZ8+XaNGjZIkJScnF3j/efPmqVGjRgoMDJQk9ezZU2vXrnXLYAQAFC/yCQDgbsimwik3TUW+bQNQXIr62zb/lExVqFD4Oc+dy5QkhYWFOYyPHTtW48aNszxfVlaWNmzYoNGjR9vHPDw8FB0drTVr1jg1R1hYmH744QedOXNGFStW1PLly/XQQw9ZrgUA4BpXmk0S+QQAKHpsO7lWuWkqAkB5s2fPHvn7+9uvF/RN2+UcOXJE2dnZCg4OdhgPDg7Wtm3bnJqjbdu26tGjh6677jp5eHioW7duuvXWWwtVDwCgdCOfAADuhmwqHJqKAFBG+fv7OwSjq7344ot68cUXXV0GAMDFyCcAgLshmwqHsz8DAC6pRo0a8vT0VGpqqsN4amqqQkJCXFQVAKC8I58AAO6mvGUTTUUAwCV5eXkpIiJCSUlJ9rGcnBwlJSUpKirKhZUBAMoz8gkA4G7KWzbx82cAgNLT07Vz50779ZSUFCUnJyswMFB16tRRfHy8YmNj1bp1a7Vp00YJCQnKyMiwn9EMAIDiQD4BANwN2XQeTUUAgNavX68uXbrYr8fHx0uSYmNjNXPmTA0YMECHDx/WmDFjdPDgQYWHh2vJkiV5DkAMAEBRIp8AAO6GbDqPpiIAQJ07d5Yx5pLLDB8+XMOHDy+higAAIJ8AAO6HbDqPYyoCAAAAAAAAsISmIgAAAAAAAABLaCoCAAAAAAAAsISmIgAAAAAAAABLaCoCAAAAAAAAsISmIgAAAAAAAABLKri6AAAAyqussCx5VOL7PQDFI+d0lqtLQClFPgEoLmRT2UJSAAAAAAAAALCk3OypyLdtAIoL37YBAAAAAMobumwAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKng6gIAAAAAAOVPvasOu7oEAJexa29NV5cAN0ZTEQAAF6kTekQVqni7ugwAZdS5jEztcXURKJXIJwC5irr5TzaVLeWmqUgwAiguBCMAAAAAoLzhmIoAAAAAAAAALKGpCAAAAAAAAMASlzYVV65cqd69eys0NFQ2m00LFixwuN0YozFjxqhWrVqqVKmSoqOjtWPHDtcUCwAoN8gnAIC7IZsAAO7GpU3FjIwMtWrVSomJifne/vLLL+vNN9/U1KlT9eOPP6pKlSqKiYnRmTNnSrhSAEB5Qj4BANwN2QQAcDcuPVFL9+7d1b1793xvM8YoISFB//d//6fbbrtNkvTvf/9bwcHBWrBgge66666SLBUAUI6QTwAAd0M2AQDcjdseUzElJUUHDx5UdHS0fSwgIECRkZFas2ZNgffLzMxUWlqawwUAgKJSmHwimwAAxYltJwCAK7htU/HgwYOSpODgYIfx4OBg+235mThxogICAuyXsLCwYq0TAFC+FCafyCYAQHFi2wkA4Apu21QsrNGjR+vEiRP2y549e1xdEgCgnCObAADuiHwCAFwJt20qhoSESJJSU1MdxlNTU+235cfb21v+/v4OFwCA67366qtq3ry5WrRooY8//tjV5RRaYfKJbAIA91UW8oltJwAoW0pLNrltU7F+/foKCQlRUlKSfSwtLU0//vijoqKiXFgZAMCqLVu2aNasWdqwYYN++uknvf322zp+/LiryyoU8gkAyo6ykk9kEwCUHaUpm1zaVExPT1dycrKSk5Ml/X2A4eTkZO3evVs2m02PPfaYXnjhBX355ZfasmWLHnjgAYWGhqpPnz6uLBsAYNGvv/6qqKgo+fj4qFKlSmrVqpWWLFni6rIKRD4BQPlQmvKJbAKA8qE0ZZNLm4rr16/Xddddp+uuu06SFB8fr+uuu05jxoyRJD311FN65JFH9NBDD+mGG25Qenq6lixZIh8fH1eWDQBlzsqVK9W7d2+FhobKZrNpwYIFeZZJTExUvXr15OPjo8jISK1bt87p+Vu0aKHly5fr+PHj+uuvv7R8+XLt27evCNegaJFPAOAeyKfzyCYAcA9k03kVXPngnTt3ljGmwNttNpvGjx+v8ePHl2BVAFD+ZGRkqFWrVnrwwQfVt2/fPLfPmTNH8fHxmjp1qiIjI5WQkKCYmBht375dQUFBkqTw8HCdO3cuz32XLl2qZs2aacSIEeratasCAgLUtm1beXp6Fvt6FRb5BADugXw6j2wCAPdANp3n0qYiAKD4pKWlOVz39vaWt7d3vst2795d3bt3L3CuyZMna8iQIRo4cKAkaerUqVq0aJGmT5+uUaNGSZL951gFGTp0qIYOHSpJGjx4sBo3buzsqgAAyhDyCQDgbsimwqGpCABuxuu3/arg4VXo+3vkZEmSwsLCHMbHjh2rcePGWZ4vKytLGzZs0OjRo88/hoeHoqOjtWbNGqfnOXTokIKCgrR9+3atW7dOU6dOtVwLAMA1rjSbJPIJAFD02HZyLZqKAFBG7dmzR/7+/vbrBX3TdjlHjhxRdna2goODHcaDg4O1bds2p+e57bbbdOLECVWpUkUzZsxQhQpEEACUR+QTAMDdkE2F455VAQCumL+/v0MwupqVb+YAAGUX+QQAcDdkU+G49OzPAAD3V6NGDXl6eio1NdVhPDU1VSEhIS6qCgBQ3pFPAAB3U96yiT0VAQCX5OXlpYiICCUlJalPnz6SpJycHCUlJWn48OGuLa6U6xL8m3x8K7q6jGL17cEmri4BQBlFPgEA3E15y6Zy01QsDxtuAFzjTPpZrXZ1EVcoPT1dO3futF9PSUlRcnKyAgMDVadOHcXHxys2NlatW7dWmzZtlJCQoIyMDPsZzYCC3BTi/LFjyiOarsClkU8AAHdDNp1XbpqKAICCrV+/Xl26dLFfj4+PlyTFxsZq5syZGjBggA4fPqwxY8bo4MGDCg8P15IlS/IcgBiANe7edKXpCVcjnwAA7oZsOo+mIgBAnTt3ljHmkssMHz68TO6yD6Bg7tb0pMlZ/pBPAAB3QzadR1MRAAAApYK7NTkvpbAN0KJcx7JweA4AAOC+aCoCAAAARaw0NUABoDwpzPsze8oD+aOpCAAAAAAAJF35lyL5NeBK+xctpb1+d8Je9GULTUUAAAAAAIpJeWtIlbf1BcozmooAAAAAAJehCQUApRNNRQAAAACAXZfg3+TjW9HVZQAA3JyHqwsAAAAAAAAAULrQVAQAAAAAAABgCU1FAAAAAAAAAJbQVAQAAAAAAABgCU1FAAAAAAAAAJbQVAQAAAAAAABgCU1FAAAAAAAAAJbQVAQAAAAAAABgCU1FAAAAAAAAAJbQVAQAAAAAAABgCU1FAAAAAAAAAJbQVAQAAAAAAABgSQVXFwAAQHnVx2+zfP34fq84fZp2vatLAAAAAMokmooAAKDMusN/o6tLAFwm3ZajF1xdBAAAKLPYPQIAAAAAAACAJTQVAQAAAAAAAFhSbn7+zHGrABQXfl4GAADKktK07cSxc90HhxwpOvxdo7QoN01FAAAAAEDZUlYbWe7eVCqrz7u7KMvPLztklC00FQEAAAAAcCNluakEoOwoHfu0AwAAAAAAAHAbNBUBAAAAAAAAWEJTEQAAAAAAAIAlNBUBAAAAAAAAWEJTEQAAAAAAAIAlNBUBAAAAAAAAWEJTEQAAAAAAAIAlNBUBACXi9ttvV7Vq1XTHHXfkuW3hwoW65ppr1LhxY33wwQcuqA4AUF6RTwAAd1NasommIgCgRDz66KP697//nWf83Llzio+P1/fff69NmzbplVde0dGjR11QIQCgPCKfAADuprRkE01FAECJ6Ny5s/z8/PKMr1u3Ts2bN1ft2rXl6+ur7t27a+nSpS6oEABQHpFPAAB3U1qyiaYiAEArV65U7969FRoaKpvNpgULFuRZJjExUfXq1ZOPj48iIyO1bt26Inns/fv3q3bt2vbrtWvX1r59+4pkbgBA6UY+AQDcDdl0Hk1FAIAyMjLUqlUrJSYm5nv7nDlzFB8fr7Fjx2rjxo1q1aqVYmJidOjQIfsy4eHhatGiRZ7L/v37S2o1AABlDPkEAHA3ZNN5FVxdQHEzxkiS0tNzXFwJgLIq9/0l9/3mSp0zWdIVvGWdM1mSpLS0NIdxb29veXt753uf7t27q3v37gXOOXnyZA0ZMkQDBw6UJE2dOlWLFi3S9OnTNWrUKElScnJyoeoNDQ11+HZt3759atOmTaHmKi3IJgAloSjz6UqzyT6HyCd3Rj4BKG5sO5WxbDJl3J49e4wkLly4cCn2y++//35F71enT582ISEhRVKLr69vnrGxY8c6VYckM3/+fPv1zMxM4+np6TBmjDEPPPCAufXWWy2t47Jly0y/fv0cxs6ePWsaNWpk9u7da06ePGmuvvpqc+TIEUvzljZkExcuXEryciX5VJTZJJFP7o584sKFS0ld2Ha6vNKQTWV+T8XQ0FDt2bNHfn5+stlsri7HkrS0NIWFhWnPnj3y9/d3dTnFprysp8S6llUnTpxQnTp1FBgYeEXz+Pj4KCUlRVlZWVdckzEmz3teQd+0Xc6RI0eUnZ2t4OBgh/Hg4GBt27bN6Xmio6O1efNmZWRk6KqrrtK8efMUFRWlChUq6LXXXlOXLl2Uk5Ojp556StWrVy9UraUF2VQ6sK5lU3la16LIp6LMJol8cnfkU+lQXta1vKynVL7WlW0n55SWbCrzTUUPDw9dddVVri7jivj7+5f5Nxap/KynxLqWVR4eV36YWh8fH/n4+BRBNe7nu+++K/C2W2+9VbfeemsJVuNaZFPpwrqWTeVpXa80n8pyNknk04XIp9KlvKxreVlPqXytK9tOl1ZasokTtQAALqlGjRry9PRUamqqw3hqaqpCQkJcVBUAoLwjnwAA7qa8ZRNNRQDAJXl5eSkiIkJJSUn2sZycHCUlJSkqKsqFlQEAyjPyCQDgbspbNpX5nz+XZt7e3ho7dmyhf8tfWpSX9ZRY17KqLKxrenq6du7cab+ekpKi5ORkBQYGqk6dOoqPj1dsbKxat26tNm3aKCEhQRkZGfYzmqH8KAt/785iXcsm1rV0IZ/grLLw9+6s8rKu5WU9Jda1tCGbzrMZU0Tn8QYAlFrLly9Xly5d8ozHxsZq5syZkqS3335br7zyig4ePKjw8HC9+eabioyMLOFKAQDlCfkEAHA3ZNN5NBUBAAAAAAAAWMIxFQEAAAAAAABYQlMRAAAAAAAAgCU0FQEAAAAAAABYQlPRhRITE1WvXj35+PgoMjJS69atK3DZ999/Xx07dlS1atVUrVo1RUdHX3J5d2NlXS80e/Zs2Ww29enTp3gLLEJW1/X48eMaNmyYatWqJW9vb1199dVavHhxCVV7Zayua0JCgq655hpVqlRJYWFhevzxx3XmzJkSqrbwVq5cqd69eys0NFQ2m00LFiy47H2WL1+u66+/Xt7e3mrUqJH9gL1AaUA+XR755N7KQz6RTSiPyks+kU0FI5vcO5sk8qncMXCJ2bNnGy8vLzN9+nTzyy+/mCFDhpiqVaua1NTUfJe/5557TGJiotm0aZP59ddfTVxcnAkICDB79+4t4cqts7quuVJSUkzt2rVNx44dzW233VYyxV4hq+uamZlpWrdubXr06GFWrVplUlJSzPLly01ycnIJV26d1XX95JNPjLe3t/nkk09MSkqK+eabb0ytWrXM448/XsKVW7d48WLzzDPPmM8//9xIMvPnz7/k8n/88YepXLmyiY+PN1u3bjVvvfWW8fT0NEuWLCmZgoErQD6RT8aQT6Uhn8gmlDflJZ/IJrLJmNKbTcaQT+UNTUUXadOmjRk2bJj9enZ2tgkNDTUTJ0506v7nzp0zfn5+5sMPPyyuEotMYdb13Llzpl27duaDDz4wsbGxpSYYra7rO++8Yxo0aGCysrJKqsQiY3Vdhw0bZrp27eowFh8fb9q3b1+sdRY1Z4LxqaeeMs2bN3cYGzBggImJiSnGyoCiQT6RT8aQT6Utn8gmlAflJZ/IJrLJmLKRTcaQT+UBP392gaysLG3YsEHR0dH2MQ8PD0VHR2vNmjVOzXHq1CmdPXtWgYGBxVVmkSjsuo4fP15BQUEaNGhQSZRZJAqzrl9++aWioqI0bNgwBQcHq0WLFpowYYKys7NLquxCKcy6tmvXThs2bLDv5v/HH39o8eLF6tGjR4nUXJLWrFnj8NxIUkxMjNP/vwFXIZ/Ip1zkU9nLJ7IJpVl5ySeyiWzKVV6ySSKfSrsKri6gPDpy5Iiys7MVHBzsMB4cHKxt27Y5NcfTTz+t0NDQPP/53E1h1nXVqlWaNm2akpOTS6DColOYdf3jjz/0/fff695779XixYu1c+dOPfzwwzp79qzGjh1bEmUXSmHW9Z577tGRI0fUoUMHGWN07tw5/eMf/9C//vWvkii5RB08eDDf5yYtLU2nT59WpUqVXFQZcGnkE/mUi3wqe/lENqE0Ky/5RDaRTbnKSzZJ5FNpx56KpdCkSZM0e/ZszZ8/Xz4+Pq4up0idPHlS999/v95//33VqFHD1eUUu5ycHAUFBem9995TRESEBgwYoGeeeUZTp051dWlFbvny5ZowYYKmTJmijRs36vPPP9eiRYv0/PPPu7o0AEWEfCo7yCfyCShLymo+kU1kE+Bq7KnoAjVq1JCnp6dSU1MdxlNTUxUSEnLJ+7766quaNGmSvvvuO1177bXFWWaRsLquv//+u3bt2qXevXvbx3JyciRJFSpU0Pbt29WwYcPiLbqQCvO61qpVSxUrVpSnp6d9rGnTpjp48KCysrLk5eVVrDUXVmHW9dlnn9X999+vwYMHS5JatmypjIwMPfTQQ3rmmWfk4VF2vuMICQnJ97nx9/fnmza4NfKJfMpFPpW9fCKbUJqVl3wim8imXOUlmyTyqbQrO3+JpYiXl5ciIiKUlJRkH8vJyVFSUpKioqIKvN/LL7+s559/XkuWLFHr1q1LotQrZnVdmzRpoi1btig5Odl+ufXWW9WlSxclJycrLCysJMu3pDCva/v27bVz5057+EvSb7/9plq1arltKEqFW9dTp07lCb/cDwTGmOIr1gWioqIcnhtJ+vbbby/5/xtwB+QT+ZSLfCp7+UQ2oTQrL/lENpFNucpLNknkU6nnyrPElGezZ8823t7eZubMmWbr1q3moYceMlWrVjUHDx40xhhz//33m1GjRtmXnzRpkvHy8jKffvqpOXDggP1y8uRJV62C06yu68VK0xnMrK7r7t27jZ+fnxk+fLjZvn27WbhwoQkKCjIvvPCCq1bBaVbXdezYscbPz8/85z//MX/88YdZunSpadiwoenfv7+rVsFpJ0+eNJs2bTKbNm0ykszkyZPNpk2bzJ9//mmMMWbUqFHm/vvvty//xx9/mMqVK5snn3zS/PrrryYxMdF4enqaJUuWuGoVAKeRT+STMeRTacgnsgnlTXnJJ7KJbDKm9GaTMeRTeUNT0YXeeustU6dOHePl5WXatGlj1q5da7+tU6dOJjY21n69bt26RlKey9ixY0u+8EKwsq4XK03BaIz1df3hhx9MZGSk8fb2Ng0aNDAvvviiOXfuXAlXXThW1vXs2bNm3LhxpmHDhsbHx8eEhYWZhx9+2Pz1118lX7hFy5Yty/f/X+76xcbGmk6dOuW5T3h4uPHy8jINGjQwM2bMKPG6gcIin/5GPpFP7oxsQnlUXvKJbPob2VT6sskY8qm8sRlTxvadBQAAAAAAAFCsOKYiAAAAAAAAAEtoKgIAAAAAAACwhKYiAAAAAAAAAEtoKgIAAAAAAACwhKYiAAAAAAAAAEtoKgIAAAAAAACwhKYiAAAAAAAAAEtoKsKtLV++XDabTcePHy/xx7bZbLLZbKpateollxs3bpzCw8OL9LHj4uLsj79gwYIinRsAcGXIJrIJANwR+UQ+ASWNpiLcRufOnfXYY485jLVr104HDhxQQECAS2qaMWOGfvvttxJ/3DfeeEMHDhwo8ccFADgim84jmwDAfZBP55FPgOtUcHUBwKV4eXkpJCTEZY9ftWpVBQUFlfjjBgQEuOzDAADg0sgmAIA7Ip8AlDT2VIRbiIuL04oVK/TGG2/Yd13ftWtXnl34Z86cqapVq2rhwoW65pprVLlyZd1xxx06deqUPvzwQ9WrV0/VqlXTiBEjlJ2dbZ8/MzNTI0eOVO3atVWlShVFRkZq+fLlhap10qRJCg4Olp+fnwYNGqQzZ8443P7TTz/ppptuUo0aNRQQEKBOnTpp48aN9tsffPBB9erVy+E+Z8+eVVBQkKZNm1aomgAARY9sIpsAwB2RT+QT4C5oKsItvPHGG4qKitKQIUN04MABHThwQGFhYfkue+rUKb355puaPXu2lixZouXLl+v222/X4sWLtXjxYn300Ud699139emnn9rvM3z4cK1Zs0azZ8/W//73P91555265ZZbtGPHDkt1zp07V+PGjdOECRO0fv161apVS1OmTHFY5uTJk4qNjdWqVau0du1aNW7cWD169NDJkyclSYMHD9aSJUscdtFfuHChTp06pQEDBliqBwBQfMgmsgkA3BH5RD4BbsMAbqJTp07m0UcfdRhbtmyZkWT++usvY4wxM2bMMJLMzp077csMHTrUVK5c2Zw8edI+FhMTY4YOHWqMMebPP/80np6eZt++fQ5zd+vWzYwePbrAeiSZ+fPnO4xFRUWZhx9+2GEsMjLStGrVqsB5srOzjZ+fn/nqq6/sY82aNTMvvfSS/Xrv3r1NXFycUzUAAEoO2UQ2AYA7Ip/IJ8AdsKciSp3KlSurYcOG9uvBwcGqV6+efH19HcYOHTokSdqyZYuys7N19dVXy9fX135ZsWKFfv/9d0uP/euvvyoyMtJhLCoqyuF6amqqhgwZosaNGysgIED+/v5KT0/X7t277csMHjxYM2bMsC//9ddf68EHH7RUCwDAfZBNAAB3RD4BKE6cqAWlTsWKFR2u22y2fMdycnIkSenp6fL09NSGDRvk6enpsNyFYVpUYmNjdfToUb3xxhuqW7euvL29FRUVpaysLPsyDzzwgEaNGqU1a9bohx9+UP369dWxY8cirwUAUDLIJgCAOyKfABQnmopwG15eXg4HCC4q1113nbKzs3Xo0KErDp+mTZvqxx9/1AMPPGAfW7t2rcMyq1ev1pQpU9SjRw9J0p49e3TkyBGHZapXr64+ffpoxowZWrNmjQYOHHhFdQEAigfZBABwR+QTAHdAUxFuo169evrxxx+1a9cu+fr6KjAwsEjmvfrqq3XvvffqgQce0GuvvabrrrtOhw8fVlJSkq699lr17NnT6bkeffRRxcXFqXXr1mrfvr0++eQT/fLLL2rQoIF9mcaNG+ujjz5S69atlZaWpieffFKVKlXKM9fgwYPVq1cvZWdnKzY2tkjWFQBQtMgmAIA7Ip8AuAOOqQi3MXLkSHl6eqpZs2aqWbOmw3E0rtSMGTP0wAMP6IknntA111yjPn366KefflKdOnUszTNgwAA9++yzeuqppxQREaE///xT//znPx2WmTZtmv766y9df/31uv/++zVixAgFBQXlmSs6Olq1atVSTEyMQkNDr2j9AADFg2wCALgj8gmAO7AZY4yriwDckc1m0/z589WnT59imT89PV21a9fWjBkz1LdvX5fUAAAoXcgmAIA7Ip+A8ok9FYFLuPvuu3XVVVcV6Zw5OTk6dOiQnn/+eVWtWlW33nprnmX+8Y9/FMuBkAEApR/ZBABwR+QTUP6wpyJQgJ07d0qSPD09Vb9+/SKbd9euXapfv76uuuoqzZw5U926dcuzzKFDh5SWliZJqlWrlqpUqVJkjw8AKL3IJgCAOyKfgPKJpiIAAAAAAAAAS/j5MwAAAAAAAABLaCoCAAAAAAAAsISmIgAAAAAAAABLaCoCAAAAAAAAsISmIgAAAAAAAABLaCoCAAAAAAAAsISmIgAAAAAAAABLaCoCAAAAAAAAsISmIgAAAAAAAABL/h/zpy/zH/d+pQAAAABJRU5ErkJggg==",
217      "text/plain": [
218       "<Figure size 640x480 with 6 Axes>"
219      ]
220     },
221     "metadata": {},
222     "output_type": "display_data"
223    }
224   ],
225   "source": [
226    "plt.subplot(131)\n",
227    "my_sim.plot_time_evolution('h2o_vap',logcb=True)\n",
228    "plt.title('latitude- and longitude-average')\n",
229    "\n",
230    "plt.subplot(132)\n",
231    "my_sim.plot_time_evolution('h2o_vap',logcb=True,lat=0)\n",
232    "plt.title('Equatorial value, longitude-average')\n",
233    "\n",
234    "plt.subplot(133)\n",
235    "my_sim.plot_time_evolution('h2o_vap',logcb=True,lat=0,lon=0)\n",
236    "plt.title('Equatorial value longitude = 0°')\n",
237    "\n",
238    "plt.subplots_adjust(right=2)"
239   ]
240  },
241  {
242   "cell_type": "markdown",
243   "id": "f287c71d-83eb-4bad-a11e-dfb34e679adf",
244   "metadata": {},
245   "source": [
246    "#### Vertical profiles"
247   ]
248  },
249  {
250   "cell_type": "code",
251   "execution_count": 8,
252   "id": "4f544843-012d-41a6-8d7a-c4b40f45a5e1",
253   "metadata": {},
254   "outputs": [
255    {
256     "data": {
257      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAG1CAYAAADjkR6kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACqeklEQVR4nOzdd3xN9//A8dfNnjeTRAhJEImIETOovWuVao2iKP2qalHVakupFh1WW6OlRpXqQJdV1BZirxCECDIQksi+uff8/khzf64YiSZukvt+Ph73wT3z/f7c9c7nfM45KkVRFIQQQgghSiEzYwcghBBCCPGkpJARQgghRKklhYwQQgghSi0pZIQQQghRakkhI4QQQohSSwoZIYQQQpRaUsgIIYQQotSyMHYAxU2n0xEbG4ujoyMqlcrY4QghhBCiABRF4e7du3h5eWFm9vB+lzJfyMTGxuLt7W3sMIQQQgjxBK5evUqlSpUeOr/MFzKOjo5AbkOo1eqHLqfRaPj777/p0KEDlpaWTys8ozPFvE0xZzDNvE0xZzDNvE0xZyjbeaekpODt7a3/HX+YMl/I5B1OUqvVjy1k7OzsUKvVZe7N8CimmLcp5gymmbcp5gymmbcp5gymkffjhoXIYF8hhBBClFpSyAghhBCi1JJCRgghhBClVpkfIyNEYWm1WjQajbHDKHIajQYLCwsyMzPRarXGDuepMMWcwTTzNsWcoXTnbWlpibm5+X/ejhQyQvxLURTi4+NJSkoydijFQlEUPD09uXr1qslcU8kUcwbTzNsUc4bSn7ezszOenp7/KXYpZIT4V14RU758eezs7Erll8Kj6HQ6UlNTcXBweOTFpcoSU8wZTDNvU8wZSm/eiqKQnp7OjRs3AKhQocITb0sKGSHIPZyUV8S4ubkZO5xiodPpyM7OxsbGplR94f0XppgzmGbeppgzlO68bW1tAbhx4wbly5d/4sNMRs3ax8cHlUqV7zFq1CgAMjMzGTVqFG5ubjg4ONC7d28SEhKMGbIoo/LGxNjZ2Rk5EiGEMB1537n/ZVyiUQuZQ4cOERcXp39s3boVgD59+gAwduxY/vzzT3755Rd27dpFbGwsvXr1MmbIoowra4eThBCiJCuK71yjHloqV66cwfOZM2dStWpVWrZsSXJyMt999x2rV6+mTZs2ACxbtozAwEAOHDhAkyZNHrjNrKwssrKy9M9TUlKA3GrvURVf3ryyeLbKo5hi3g/KWaPRoCgKOp0OnU5nrNCKlaIo+n/Lao73M8WcwTTzNsWcofTnrdPpUBQFjUaT79BSQX+XSswYmezsbH744QfGjRuHSqXiyJEjaDQa2rVrp18mICCAypUrExYW9tBCZsaMGUydOjXf9L///rtAhw3yeoVMjSnmfW/OFhYWeHp6kpqaSnZ2thGjKnqvvfYaycnJrFq1CoC7d+8aOaKiFxMTQ506ddi9ezfBwcH55v+XnPfu3Uu3bt2Ijo7GycnpgcusXr2aiRMncuXKlSfeT3EoCa/1zJkz2bBhA3v27Hkq+ysJORtDac07OzubjIwMdu/eTU5OjsG89PT0Am2jxBQyv/32G0lJSbz88stA7hkkVlZWODs7Gyzn4eFBfHz8Q7czceJExo0bp3+ed9OpDh06PPZeS1u3bqV9+/Zl9n4VD2KKeT8o58zMTK5evYqDgwM2NjZGjrDgHjc4bvLkycyfPx9FUXB0dOTu3bs4OjqWuUNoDg4OANjb2xt8zhVF+c85t2vXjuvXr+Ph4fHQbdjY2KBSqR75HfM0FUXeRcXa2hpzc/Nib5uSlPPTVNrzzszMxNbWlhYtWuT77s07ovI4JaaQ+e677+jcuTNeXl7/aTvW1tZYW1vnm25paVmgH+qCLnc/RadDVcpGjN/rSfMuze7NWavVolKpMDMzK1Uj/+Pi4vT//+mnn5g8eTKRkZH6aQ4ODvof+bxu57w8y5K8fO5//f5rzhqNBhsbm8d+L927/5Lg3kMMOp0OCwvjfdXn/bgWd9uU5ff3o5T2vM3MzFCpVA/8DSrob1KJyPrKlSts27aNV155RT/N09OT7OzsfBcnS0hIwNPT8ylHmJ82NY2wZnXZ3SSI7R8HcuzrgcYOSZggT09P/cPJyQmVSmUwzcHBgZdffpmePXvq12nTpg2jR49mzJgxuLi44OHhweLFi0lLS2PIkCE4OjpSrVo1Nm3aZLCv06dP07lzZxwcHPDw8GDgwIHcunWrUPFGRUXRo0cPPDw8cHBwoGHDhmzbts1gGR8fH6ZPn87QoUNxdHSkcuXKfPvttwbLhIeHU69ePWxsbGjQoAHHjh177L7j4uJ49tlnsbW1xdfXl9WrV+Pj48PcuXP1y6hUKhYuXEj37t2xt7fnk08+YefOnahUKoPvouXLl1O5cmXs7Ox47rnnSExMfOz+Dx06RPv27XF3d8fJyYmWLVty9OhR/fz+/fvz4osvGqyj0Whwd3fn+++/B3J/tGbMmIGvry+2trbUqVOHX3/9Vb98XqybNm2iVatW2Nrasnfv3gK1e0HaJykpiVdeeYVy5cqhVqtp06YNJ06cMNjOzJkz8fDwwNHRkWHDhpGZmfnYthHivygRhcyyZcsoX748zz77rH5a/fr1sbS0ZPv27fppkZGRxMTEEBoaaowwDem0OCdmUS5Jh4dyC/Xd88aOSBQxRVFIz84xyiNvAF9xWbFiBe7u7oSHhzN69GhGjhxJnz59aNq0KUePHqVDhw4MHDhQf4w6KSmJNm3aUK9ePQ4fPszmzZtJSEjghRdeKNR+U1NT6dKlC9u3b+fYsWN06tSJbt26ERMTY7DcrFmz9AXKa6+9xsiRI/U9TampqXTt2pWaNWty5MgRpkyZwvjx4x+770GDBhEbG8vOnTtZu3Yt3377rf5iXPeaMmUKzz33HKdOnWLo0KH55h88eJBhw4bx+uuvc/z4cVq3bs3HH3/82P3fvXuXwYMHs3fvXg4cOED16tXp0qWLfmzDgAED+PPPP0lNTdWvs2XLFtLT03nuueeA3DGA33//PYsWLeLMmTOMHTuWl156iV27dhns67333uPDDz/kzJkz1K5du0DtXpD26dOnDzdu3GDTpk0cOXKEkJAQ2rZty+3btwH4+eefmTJlCtOnT+fw4cNUqFCBBQsWPLZthPgvjH5oSafTsWzZMgYPHmzQ/enk5MSwYcMYN24crq6uqNVqRo8eTWho6EMH+j5V9/zQWCgKnpqrudNK4TFK8WAZGi01J28xyr4jPuqInVXxfTzr1KnDBx98AOSOK5s5cybu7u4MHz4cyB1bs3DhQk6ePEmTJk34+uuvqVevHtOnT9dvY+nSpXh7e3P+/Hn8/f0LvN86deron0+bNo3169fzxx9/8Prrr+und+nShddeew2Ad955hzlz5rBjxw5q1KjB6tWr0el0fPfdd9jY2BAUFMS1a9cYOXLkQ/d77tw5tm3bxqFDh2jQoAEAS5YsoXr16vmW7d+/P0OGDNE/v3TpksH8efPm0alTJyZMmACAv78/+/fvZ/PmzY/MPe/syzzffvstzs7O7Nq1i65du9KxY0fs7e1Zv349Awfm9vCuXr2a7t274+joSFZWFtOnT2fbtm36P+b8/PzYu3cv33zzDS1bttRve8qUKbRu3Rq1Wo2ZmRmurq6PbPeCtM/evXsJDw/nxo0b+sP3X3zxBb/99hu//vorI0aMYO7cuQwbNoxhw4YB8PHHH7Nt2zbplRHFyug9Mtu2bSMmJuaBf/nMmTOHrl270rt3b1q0aIGnpyfr1q0zQpQPcG8hgwoHMki6cdWIAQlRcLVr19b/39zcHDc3N4OzfTw8PAD0f5GfOHGCHTt26MfcODg4EBAQAOQeLlq1apXBvIedoZKamsr48eMJDAzE2dkZBwcHzp49m69H5t748g6X5cVy9uxZateubTAw8HG9tJGRkVhYWBASEqKfVq1aNVxcXPItm/dD/jBnz56lcePGBtPu3X9MTIxBW+QVfwkJCQwfPpzq1avj5OSEWq0mNTVVn7uFhQUvvPCC/uyytLQ0fv/9dwYMGADAxYsXSU9Pp3379gbb//7774mKinpkDo9r94K0z4kTJ0hNTdVfoDTvcfnyZf3+H9c2QhQHo/fIdOjQ4aHd6DY2NsyfP5/58+c/5age796Yk3AHYomPOoGzR2XjBSWKlK2lOREfdTTavovT/YPo8gbb3fsc/n8gYWpqKt26dePTTz/Nt60KFSqg0+kMfsAqVqz4wP2OHz+erVu38sUXX1CtWjVsbW15/vnn853y/qD4ntY1Muzt7f/T+l5eXhw/flz/3NXVFYDBgweTmJjIvHnzqFKlCtbW1oSGhhrkPmDAAFq2bMmNGzfYunUrtra2dOrUCUB/yGnDhg352vf+Exzuz6Gg7f4oqampVKhQgZ07d+abd//ZpUI8TUYvZEor5Z4v1bs2FSE9ltRrEUA34wUlipRKpSrWwzulSUhICGvXrsXHx+ehZ8A4Ojo+djv79u3j5Zdf1o/5SE1NJTo6ulCxBAYGsnLlSjIzM/W9MgcOHHjkOjVq1CAnJ4djx45Rv359ILeH486dO4Xad97+Dx48aDDt3v1bWFhQrVq1fOvt27ePBQsW0KVLFwCuXr2ab7B006ZN8fb25qeffmLTpk306dNHX9TVrFkTa2trYmJiDA4jFcTj2r0g7RMSEkJ8fDwWFhb4+Pg8cD95bTNo0CD9tMe9NkL8V0Y/tFRaabT//5eM1sEPAN0tGfAryqZRo0Zx+/Zt+vXrx6FDh4iKimLLli0MGTIErVZb4O1Ur16ddevWcfz4cU6cOEH//v0L3dPSv39/VCoVw4cPJyIigo0bN/LFF188cp2AgADatWvHiBEjCA8P59ixY4wYMQJbW9tCX3vjjTfeYPPmzXzxxRdcuHCBr7/++rHjYyA395UrV3L27FkOHjzIgAED9DfNuz+/RYsWsXXrVv1hJcgtFMePH8/YsWNZsWIFUVFRHD16lK+++ooVK1Y8dt+PaveCtE+7du0IDQ2lZ8+e/P3330RHR7N//37ef/99Dh8+DMCbb77J0qVLWbZsGefPn9cPOBaiOEkh84Sytf9/GwTr8rljBexSLj1scSFKNS8vL/bt24dWq6VDhw4EBwczZswYnJ2dC3XtitmzZ+Pi4kLTpk3p1q0bHTt2NBiXURAODg78+eefnDp1inr16vH+++8/8JDX/b7//ns8PDxo0aIFzz33HMOHD8fR0bHQF0Bs0qQJixcvZt68edSpU4e///5bP3D6Ub777jvu3LlDSEgIAwcO5I033qB8+fL5lhswYAARERFUrFiRZs2aGcybNm0akyZNYsaMGQQGBtKpUyc2bNiAr6/vI/ddkHZ/XPuoVCo2btxIixYtGDJkCP7+/vTt25crV67ox1S9+OKLTJo0iQkTJlC/fn2uXLnyyEHYQhQFlVLc53kaWUpKCk5OTiQnJz/2yr4bN26kS5cuBboIz42r50ls3wMdwIovCdr0PAm44TGldBUzhc27LHhQzpmZmVy+fBlfX99SdWXfwtDpdKSkpOjPZDEFj8r52rVreHt7s23bNtq2bWukCItHUbzWpa19TPH9DaU/70d99xb091sGADwhTc6/PTIqqFgt97RGDxJJv3sHO8f8Z0IIIYzrn3/+ITU1leDgYOLi4pgwYQI+Pj60aNHC2KGVCNI+orQqfeVbCZH9byGjAM5u5bmFMwDXo04bLyghxENpNBree+89goKCeO655yhXrhw7d+40mZ7Ix5H2EaWV9Mg8oWxd7mBf5d9SMMHKG/fsJJJizkDdZ4wYmRDiQTp27EjHjsY5nb40kPYRpZX0yDwhjSbL4HmqY+6ZSzkJ54wRjhBCCGGSpJB5Qtn/nn6t/HtqouKWeylvq6SLRotJCCGEMDVSyDyhvNOvlX8vQeFQMRAA14wrxgpJCCGEMDlSyDwhTY7m3//lVjLlfXPvU1NRG1uoy34LIYQQ4slJIfOEsu85/RqgXKVqZChWWKlyiI2WcTJCCCHE0yCFzBPS5F3Z998xMiozc+IsKgFwK1pOwRZCCCGeBilknpBGl3toSbnnNi1J9j4AZMZJj4woOV5++WV69uxp7DBKHJVKxW+//fbQ+dHR0ahUKoM7WYtcO3fuRKVSkZSUZOxQhJBC5klpcv4dB3PPDedyXHPPXLK4fcEYIQkTpFKpHvmYMmUK8+bNY/ny5cYONZ/bt28zYMAA1Go1zs7ODBs2jNTU1Ke2/7i4ODp37vzU9ieEKB5yQbwn9KBCxtozAKJBnXbZOEEJkxMXF6f//08//cTkyZOJjIzUT3NwcMDBwQGg0HeZLm4DBgwgLi6OrVu3otFoGDJkCCNGjGD16tXFut/s7GysrKzw9PQs1v0UJ41GI1fcFeJf0iPzhDTa/IWMu08tALw0Mei0JetHQ5RNnp6e+oeTkxMqlcpgmoODQ75DS23atGH06NGMGTMGFxcXPDw8WLx4MWlpaQwZMgRHR0eqVavGpk2bDPZ1+vRpOnfujIODAx4eHgwcOJBbt249Udxnz55l8+bNLFmyhMaNG9O8eXO++uor1qxZQ2xsbIG3k5OTwxtvvIGzszNubm688847DB482CDfrl276vN1d3fXX732/kNL4eHh1KtXDxsbGxo0aMCxY8ceu//ExET69etHxYoVsbOzIzg4mB9//FE//9tvv8XLyytfEdmjRw+GDh2qf/77778TEhKCjY0Nfn5+TJ06lZycHP18lUrFwoUL6d69O/b29nzyySdotVqGDRuGr68vtra21KhRg3nz5hW6fXQ6HTNmzNBvp06dOvz6668G29m4cSP+/v7Y2trSunVroqOjH9s2QjwtUsg8oQcVMh4+QegUFc6qNOLirhkpMlFkFAWy04zzKOab0q9YsQJ3d3fCw8MZPXo0I0eOpE+fPjRt2pSjR4/SoUMHBg4cSHp6OgBJSUm0adOGevXqcfjwYTZv3kxCQgIvvPCCfpvTp0/X9wA97BETEwNAWFgYzs7ONGjQQL9+u3btMDMz4+DBgwXO49NPP2XVqlUsW7aMffv2kZKS8sBxL99//z1WVlbs27ePRYsW5ZufmppK165dqVmzJkeOHGHKlCmMHz/+sfvPzMykfv36bNiwgdOnTzNixAgGDhxIeHg4AH369CExMZEdO3bo17l9+zabN29mwIABAOzZs4dBgwbx5ptvEhERwTfffMPy5cv55JNPDPY1ZcoUnnvuOU6dOsXQoUPR6XRUqlSJX375hYiICCZPnsx7773Hzz//rF/ns88+e2z7zJgxg++//55FixZx5swZxo4dy0svvcSuXbsAuHr1Kr169aJbt24cP36cV155hXffffexbSPE0yKHlp7QgwoZCxt74szKU0FJIOHSKSpWqmyk6ESR0KTDdC/j7Pu9WLCyL7bN16lThw8++ACAiRMnMnPmTNzd3Rk+fDgAkydPZuHChZw8eZImTZrw9ddfU69ePaZPn67fxtKlS/H29ub8+fP4+/vzv//9z6CweRAvr9z2jI+Pp3z58gbzLCwscHV1JT4+vsB5fPXVV0ycOJHnnnsOgK+//pqNGzfmW6569ep89tlnD93O6tWr0el0fPfdd9jY2BAUFMS1a9cYOXLkI/dfsWJFg4Jn9OjRbNmyhZ9//plGjRrh4uJC586dWb16NW3btgXg119/xd3dndatWwMwdepU3n33XQYPHgyAn58f06ZNY8KECXz44Yf6bffv358hQ4YY7H/q1Kn6//v6+hIWFsbPP//M888/r2+PR7VPVlYW06dPZ9u2bYSGhur3v3fvXr755htatmzJwoULqVq1KrNmzQKgRo0anDp1ik8//fSRbSPE0yKFzBPKGyNzTx0DwG1bHyqkJ5B6/Szw7NMPTIgCqF27tv7/5ubmuLm5ERwcrJ/m4eEBwI0bNwA4ceIEO3bs0I+3uVdUVBT+/v64urri6upazJH/v+TkZBISEmjUqJF+mrm5OfXr1893KCckJOSR2zp79iy1a9fGxsZGPy3vhz1PUFAQV67kXrn7mWeeYdOmTWi1WqZPn87PP//M9evXyc7OJisrCzs7O/16AwYMYPjw4SxYsABra2tWrVpF3759MTPL7RA/ceIE+/btM+iB0Wq1ZGZmkp6ert/Wvb1XeebPn8/SpUuJiYkhIyOD7Oxs6tatW+D2uXjxIunp6bRv395gu9nZ2dSrV0/fNo0bNzaYf3/bCGFMUsg8IdW/X3jmqVlkXb6Mta8vAJku/pB+EMfLG1GUt1DdX+mI0sPSLrdnxFj7Ls7N3zdQVKVSGUzLe9/m/eClpqbSrVu3B/4VXqFCBSD30NK9PTYPEhERQeXKlfH09NQXSXlycnK4fft2sQzCtbf/771bGzduRKPJveyCra0tAJ9//jnz5s1j7ty5BAcHY29vz5gxYwyu7t2tWzcURWHDhg00bNiQPXv2MGfOHP381NRUpk6dSq9evfLt897C6v4c1qxZw/jx45k1axahoaE4Ojry+eefF+rQXN5ZYhs2bKBixYoG86ytrQu8HSGMSQqZJ9S5+RDC/dZR+5KWk++9QYPVf6BSqajcYRTZS1dTL/sI4Vt/oVGHR3e1ixJMpSrWwzulSUhICGvXrsXHxwcLiwd/bRTm0FJoaChJSUkcOXKE+vXrA/DPP/+g0+ny/fX/ME5OTnh4eHDo0CFatGgB5PZkHD16VN8rUVCBgYGsXLmSzMxMffFw4MABg2WqVKmSb719+/bRo0cPXnrpJSC38Dt//jw1a9bUL2NjY0OvXr1YtWoVFy9epEaNGgY9RCEhIURGRlKtWrVCxbxv3z6aNm3Ka6+9pp8WFRWl/39B2qdmzZpYW1sTExNDy5YtH7ifwMBA/vjjD4Np97eNEMYkg32fkK+zL7qxw8g2B4djF7n6+08AlKsSyKmKL+b+P+wjMrOyjBmmEEVi1KhR3L59m379+nHo0CGioqLYsmULQ4YMQavVAuDq6kq1atUe+cgrggIDA+nUqRPDhw8nPDycffv28frrr9O3b199sVMQo0ePZsaMGfz+++9ERkby5ptvcufOnUL3hPbv3x+VSsXw4cOJiIhg48aNfPHFF49dr3r16mzdupX9+/dz9uxZXn31VRISEvItN2DAADZs2MDSpUv1g3zzTJ48me+//56pU6dy5swZzp49y5o1a/RjmB6178OHD7NlyxbOnz/PpEmTOHTokMEyr7/++iPbx9HRkfHjxzN27FhWrFhBVFQUR48e5auvvmLFihVAboF64cIF3n77bSIjI1m9enWJvC6RMF1SyPwHL7R9g7C2ud3gCTNmkPNvN21g349JwhFf5Srha+caMUIhioaXlxf79u1Dq9XSoUMHgoODGTNmDM7OzvqxHoW1atUqAgICaNu2LV26dKF58+Z8++23BsuoVKpH/mi+88479OvXj0GDBhEaGoqDgwMdO3Y0OCRTEA4ODvz555+cOnWKevXq8f777xdoMOsHH3xASEgIHTt2pFWrVnh6ej7wKspt2rTB1dWVyMhI+vfvbzCvY8eO/PXXX/z99980bNiQJk2aMGfOnAf2AN3r1VdfpVevXrz44os0btyYxMREg94ZgAkTJjy2faZNm8akSZOYMWOGvsDcsGEDvv8eLq9cuTJr167lt99+o06dOixatOixhxCFeJpUilLM53kaWUpKCk5OTiQnJ6NWqx+6nEajYePGjXTp0qVQF5q6mHCWqz1743lH4c5zz9B0Ru4X8fFfP6Xu6ekkKmp44yhubuX+cy7F4UnzLs0elHNmZiaXL1/G19e30D+CpYVOpyMlJQW1Wv3ExcfTdPnyZfz9/YmIiKB69eoFWken0xEYGMgLL7zAtGnTSl3OReVhed/fPmWJvNalM+9HffcW9Pe79GVdwlTzCOTWyJ4AqH/bQ9zx3GPHtXuM5ap5JdxUKZxZM9mIEQpROm3cuJERI0Y8soi5cuUKixcv5vz585w6dYqRI0dy+fLlfL0epkraR5gCKWSKQM+XpnKmthpzBc69NxadVouZpRXpLacA0PjGz1y+IHfEFqIwRo0axfz58x+5jJmZGcuXL6dhw4Y0a9aMU6dOsW3bNgIDA59SlCWbtI8wBVLIFAFLM0tqfTSbTEvwvJTEvsW5XbY1nnmeCNv6WKtyuLlOroQpRFHz9vZm3759JCcnk5KSwv79+/Vn6AhpH2EapJApIgEBzbj2YnMAbL75mVvxl0GlwqnHZ2gVFY0y9nBsb/4rjgohhBDiyUkhU4Q6jp9HvKc1DhkKez54FYCKAQ04Ub47AHb/TDK4EZwQQggh/hspZIqQlY0dHpMnARCw9yq7Ni8GoNqLM0jFlhq6ixz44xtjhiiEEEKUKVLIFLGabXpzvUUNADJnfsmd1Fuo3StyvnruzfiqnZxFyt1kY4YohBBClBlSyBSDZp8sIt3WjMrxOfz+Re7dc4Ofn0i8qjyeJHJ8Tdm6foMQQghhLFLIFAPbcp5YjxoGQPC60+w+/juW1nbcCp0IQINr33P9yiVjhiiEEEKUCVLIFJOgoWNIqloOu2yI/mQKKdkpBLV7mQtWNbFTZRHz60RjhyhMxMsvv/zAy+aLkis6OhqVSsXx48cLvM7TeJ2nTJlS6BtyllatWrVizJgx+uc+Pj7MnTvXaPGUZiqVit9++63Yti+FTDFRmZlRc8Y8dCpoeCqT71eMR2VmhuWzMwFonLKFM0d2GzlKUdqpVKpHPqZMmcK8efNK5E3+bt++zYABA1Cr1Tg7OzNs2DBS/71fWWlUlD903t7exMXFUatWrSLZnhBlmRQyxcipdj10vToCELBsD3sv78CnTkuOO7fHTKWg2/QeOq3OyFGK0iwuLk7/mDt3Lmq12mDa+PHjcXJywtnZ2dih5jNgwADOnDnD1q1b+euvv9i9ezcjRowwdlhGl52djbm5OZ6envq7hQvxpLKzs40dQrEzeiFz/fp1XnrpJdzc3LC1tSU4OJjDhw/r5yuKwuTJk6lQoQK2tra0a9eOCxcuGDHiwqn57jQynWyoeBv2z3qX1OxUvPt8SqZiSXDOKcK3rDR2iKIU8/T01D+cnJxQqVQG0xwcHPIdcmjTpg2jR49mzJgxuLi44OHhweLFi0lLS2PIkCE4OjpSrVo1Nm3aZLCv06dP07lzZxwcHPDw8GDgwIHcunXrieI+e/YsmzdvZsmSJTRu3JjmzZvz1VdfsWbNGmJjYwu1rSVLlhAYGIiNjQ0BAQEsWLDAYP6RI0eoX78+NjY2NGjQgPXr1xsctlm+fHm+Qu+3335DpVLpn0dFRdGjRw88PDxwcHCgYcOGbNu2TT+/VatWXLlyhbFjx+p7w/KsXbuWoKAgrK2t8fHxYdasWQb78vHxYdq0aQwaNAi1Ws2IESPyHVrSarUMGzYMX19fbG1tqVGjBvPmzStwG6WkpGBra5vvNV2/fj2Ojo6kp6cDuXcT9/f3x87ODj8/PyZNmoRGo3nodu8//ALQs2dPXn75Zf3zrKwsxo8fT8WKFbG3t6dx48bs3Lnzodtcvnz5Q3sXIfcmiR999BGVKlXC2tqaunXrsnnzZv36eW23bt06WrdujZ2dHXXq1CEsLEy/TGJiIv369aNixYrY2dkRHBzMjz/++JhW/H9Dhw6la9euBtM0Gg3ly5fnu+++e+h6j2rf8+fPo1KpOHfunME6c+bMoWrVqvrn938OBw0aRGJion5+q1ateP311xkzZgzu7u507Jj7x/Ts2bMJDg7G3t4eb29vXnvttXw9oIsXL8bb2xs7Ozuee+45Zs+ene+z8fvvvxMSEoKNjQ1+fn5MnTrV4PpoFy5coEWLFtjY2FCzZk22bt1agBb9b4xayNy5c4dmzZphaWnJpk2biIiIYNasWbi4uOiX+eyzz/jyyy9ZtGgRBw8exN7eno4dO5KZmWnEyAvO3NGRShM/AKDjzhQWbZ6KW8WqnK4yCICKh2aQkZFhzBDFQyiKQrom3SiP4r4p/YoVK3B3dyc8PJzRo0czcuRI+vTpQ9OmTTl69CgdOnRg4MCB+h+4pKQk2rRpQ7169Th8+DCbN28mISGBF154Qb/N6dOn4+Dg8MhHTEwMAGFhYTg7O9OgQQP9+u3atcPMzIyDBw8WOI9Vq1YxefJkPvnkE86ePcv06dOZNGkSK1asACA1NZW+ffsSGBjIkSNHmDJlCuPHjy90e6WmptKlSxe2b9/OsWPH6NSpE926ddPns27dOipVqsRHH32k7w2D3CLqhRdeoG/fvpw6dYopU6YwadKkfIf6vvjiC+rUqcOxY8eYNGlSvv3rdDoqVarEL7/8QkREBJMnT+a9997j559/LlD8arWarl27snr1aoPpq1atomfPntjZ2QHg6OjI8uXLiYiIYN68eSxevJg5c+YUtrkMvP7664SFhbFmzRpOnjxJnz596NSp00P/IH3xxRcNehV//PFHLCwsaNasGQDz5s1j1qxZfPHFF5w8eZKOHTvSvXv3fNt7//33GT9+PMePH8ff359+/frpf3AzMzOpX78+GzZs4PTp04wYMYKBAwcSHh5eoJxeeeUVNm/erH+dAf766y/S09N58cUXH7reo9rX39+fBg0asGrVKoN1Vq1apb/J58M+h0OGDDFYZ8WKFVhZWbFv3z4WLVoE5N5368svv+TMmTOsWLGCf/75hwkTJujX2bdvH//73/948803OX78OO3bt+eTTz4x2O6ePXsYNGgQb775JhEREXzzzTcsX75cv5xOp6NXr15YWVlx8OBBFi1axDvvvFOgNv1PFCN65513lObNmz90vk6nUzw9PZXPP/9cPy0pKUmxtrZWfvzxxwLtIzk5WQGU5OTkRy6XnZ2t/Pbbb0p2dnbBgi8EnU6nnOz7nBJRI0BZ+WygEnZ9v5Jx945y88MqivKhWtm14sMi32dBFWfeJdWDcs7IyFAiIiKUjIwM/bS07DSl1vJaRnmkZacVOq9ly5YpTk5O+aYPHjxY6dGjh6LVapU7d+4oLVu2NPjc5eTkKPb29srAgQP10+Li4hRACQsLUxRFUaZNm6Z06NDBYLtXr15VACUyMlJRFEVJTExULly48MiHRqNRFEVRPvnkE8Xf3z9frOXKlVMWLFhQ4JyrVq2qrF692mDatGnTlNDQUEVRFGXhwoWKq6urkpb2/+25cOFCBVCOHTumKMqD2239+vXK474eg4KClK+++kr/vEqVKsqcOXMMlunfv7/Svn17g2lvv/22UrNmTYP1evbsabDM5cuXDWJ8kFGjRim9e/fWP897nRVF0b/WWq3WICcHBwd9WyQnJys2NjbKpk2bHrqPzz//XKlfv77++YcffqjUqVNH/7xly5bKm2++abBOjx49lMGDByuKoihXrlxRzM3NlevXrxss07ZtW2XixIkP3W+eixcvKq6urspnn32mn+bl5aV88sknBss1bNhQGTlypHLnzh0lKipKAZQlS5bo5585c0YBlLNnzz50X88++6zy1ltvPTS3+1/fmjVrKp9++qn+ebdu3ZSXX375sTnd6/72nTNnjlK1alX988jISIO4H/Q5vHLlisEyLVu2VOrVq/fYff/yyy+Km5ub/vmLL76oPPvsswbLDBgwwOCz0bZtW2X69OkGy6xcuVKpUKGCoiiKsmXLFsXCwsLg9d60aZMCKOvXr39gHA/67s1T0N9vox6A/eOPP+jYsSN9+vRh165dVKxYkddee43hw3MvHnf58mXi4+Np166dfh0nJycaN25MWFgYffv2zbfNrKwssrKy9M9TUlKA3G6/R3WR5s171DL/hd+UGUT36kX9izqWfDeBwLf+IqbOGNxPfEidqG+JvTaUch4VimXfj1LceZdED8pZo9GgKAo6nQ6dLnfcUt6/xnBvHIVZ595/8yiKon/kPQ8ODtYvp1KpcHNzo1atWvpp5cqVAyA+Ph6dTsfx48fZsWMHDg4O+fZ74cIFqlWrhrOzc4HG4uh0On0sD8qxoLmnpaURFRXFsGHD9N8ZADk5OTg5OaHT6Th79qz+sE7eNhs3bmywnwe12/3TUlNTmTp1Khs3biQuLo6cnBwyMjK4cuWKwXp576E8Z8+epXv37gbTQkNDmTt3LhqNBnNzcwDq16//0P3n/X/BggUsW7aMmJgYMjIyyM7Opm7duvr5ea/xve17bzydOnXC0tKS3377jb59+/LLL7+gVqtp06aNfpmffvqJr7/+mqioKFJTU8nJyUGtVhvs4/62uj/ne+M4ceIEWq0Wf39/g9cuKysLV1fXR77OycnJdO3alS5duvDWW2+h0+lISUkhNjaW0NBQg3WbNm3KiRMnDGK89/3s4eEB5L6f/f390Wq1zJgxg19++YXr16+TnZ1NVlYWtra2j80t7/mwYcNYvHgx48ePJyEhgU2bNrFt2zZ0Oh0jR4406FnJ+x16XPu+8MILjB8/nv3799OkSRN++OEHQkJC8Pf3f+zn8OLFi/p2DgkJyde227Zt49NPP+XcuXOkpKSQk5NDZmYmqamp2NnZERkZSc+ePQ3Wa9iwIX/99Zd+2okTJ9i3b59BT41Wq9VvJyIiAm9vbzw9PR/6ebtf3vv13s9DnoL+Lhm1kLl06RILFy5k3LhxvPfeexw6dIg33ngDKysrBg8eTHx8PPD/b8I8Hh4e+nn3mzFjBlOnTs03/e+//9Z3nz5KcR7Pc36mGeV37qHHn7d4t/JYOqq7oaYy1VQxhK0YR1atgcW278d5GscxS5p7c7awsMDT05PU1FT94DhFUfj72b+NEpsmXUOKKqVQ62RmZqIoiv5LU78tjYacnBzu3r0L5H7x3L+coihotdp866alpZGSkkJSUhKdOnXSj1O4l4eHBykpKcyaNeuxhyHCwsLw9vbGycmJhIQEg/3l5ORw+/ZtnJyc8sXxIDdu3ABg7ty5BoeoAMzNzUlJSdF/EeblDujHBeTllp2drf+RzJP3/7x/x44dy86dO5k2bZp+nMrgwYNJTU3VL6PT6cjMzDTYjlarJSsry2Ba3qHklJQUzM3N0el0+ngfFuPatWt5++23mTZtGo0aNcLBwYEvv/ySI0eOGPyxlpOTY7Cde/MG6N69OytXrqRLly788MMP9OzZU3/4MDw8nIEDB/Luu+/y8ccfo1arWbduHV9//bV+m1lZWQbvE51O98D87O3tSUlJ4ebNm5ibm7Njx458P1J5yzyIVqvlxRdfxN7ens8//zzf65Genm6wbnZ2NlqtVt9medPylslrz7zXa86cOXz99ddMnz6dmjVrYm9vz8SJEw22m5OTY7CN+1/fnj17MnHiRLZt20Z4eDhVqlShTp06pKSkMH78eF599VV9fCkpKQVqXzs7O1q0aMGKFSuoWbMmq1atYujQofr5Bfkc5uTkYGlpadA+MTExdO/enaFDh/Luu+/i4uLCgQMHGD16NImJieTk5DzwvXr/d0pqairvvvsu3bp1y7f/7OxsMjMzH/pZysjIeODrnZ2dTUZGBrt37853L8K89+bjGLWQ0el0NGjQgOnTpwNQr149Tp8+zaJFixg8ePATbXPixImMGzdO/zwlJQVvb286dOiAWq1+6HoajYatW7fSvn17LC0tn2jfj6Nr3ZoL3bpQLiER750H8Px4BDnlP4atg2iXvZ0LPhOoVrNesez7YZ5G3iXNg3LOzMzk6tWrODg4YGNjo1/WCSdjhVloNjY2qFSqfO9zS0tLLCwscHR05O7du5ibm2NlZWWwnJmZGTY2NvnWtbW1Ra1W06hRI9atW0etWrUeeibNm2++ycCBjy7GfXx8sLCwoHXr1iQnJ3PhwgXq168P5P6xodPpaNWq1SM/q3nUajVeXl7Ex8c/9NomtWvX5qeffsLS0hJbW1sgd7Ak5P6QqtVqvL29SU1NxdzcHHt7eyB34GXePgAOHz7MkCFD9GMVUlNTuXr1qkE72tjYYGlpaRB7UFAQhw8fNph27Ngx/P399WMBH9T2eX9x58V47NgxmjZtavDddu3aNczNzfXr5b3OarUaRVG4e/cujo6OBgOPBw8eTMeOHbl69Sq7d+9m+vTp+vVPnjxJlSpV+Oijj/TLL1iwwOA9ZW1tbbBPT09PEhMT9c+1Wi2RkZFUqFABtVpN06ZN0Wq1pKen88wzzzz8xbzPm2++ydmzZwkPD6d8+fL66Xmv+fHjx+ncubN++uHDh2nYsKG+ze5tO/j/HiQ7OzvUajVHjhyhR48e+p48nU7H5cuXCQwM1K9jYWFh8Pre/zqp1Wp69OjBL7/8woEDBxg6dKjBvPsVpH0BfbEzaNAgoqOjGTx4sH7+gz6H97/W98cNEBkZiU6n48svv8TMLHdobN7Ab0dHR9RqNYGBgZw8edJgvVOnThnEFxISwpUrVx76eatbty7Xr18nLS2NChVyjzDkDbLO+y65X2ZmJra2tvoBwvcqyB80YORCpkKFCtSsWdNgWmBgIGvXrgVyPyQACQkJ+kbJe/6whrS2tsba2jrfdEtLywL9UBd0uSdiaUmVD6dx7bXX6HZQYfYfH7Bg+J+c2t+U4LT9ZGx8H4vafxt88TwtxZp3CXVvzlqtFpVKhZmZmf6DXtrkxX1//Pee+XHv8wctd/+0vPZ4/fXXWbJkCQMGDGDChAm4urpy8eJF1qxZw5IlSzA3N8fd3R13d/cCxRoUFESnTp149dVXWbRoERqNhjfeeIO+fftSqVKlAuc8depU3njjDZydnenUqRNZWVkcPnyYO3fuMG7cOPr3788HH3zAq6++ynvvvUd0dDSzZ882yC00NBQ7Ozs++OAD3njjDQ4ePKgfLJzXHtWrV2f9+vV0794dlUrFpEmT0Ol0Bm3m4+PDnj176NevH9bW1ri7uzN+/HgaNmzIJ598wosvvkhYWBjz589nwYIFBm19f9vf+1qamZnh7+/PypUr2bp1K76+vqxcuZJDhw7h6+urX/be1/Xew4b3brdVq1Z4enoycOBAfH19CQ0N1c/z9/cnJiaGn3/+mYYNG7Jhwwb9Rczu3ce9z9u2bcu4cePYtGkTVatWZfbs2SQlJen3GxAQwIABA3j55ZeZNWsW9erV4+bNm2zfvp3atWvz7LPP5ntNly1bxsKFC1m/fj3m5ub6nre8AeNvv/02H374IdWqVaNu3bosW7aM48ePs3Llynwx3v+ZuLc9f/31Vw4cOICLiwuzZ88mISGBmjVrPvJ1uf/58OHD6dq1K1qtlpdffvmR3x0FaV+A559/nlGjRjFq1Chat25t8Hl40Ofw/Pnz/PDDDyxfvlz/fXZ/nP7+/mg0GubPn0+3bt3Yt28f33zzjUGbvPHGG7Ro0YK5c+fSrVs3/vnnHzZv3mywrcmTJ9O1a1eqVKnC888/j5mZGSdOnOD06dN8/PHHdOjQAX9/f4YMGaLvScsbvP6w71YzMzNUKtUDf4MK+ptk1G/sZs2aERkZaTDt/PnzVKlSBQBfX188PT3Zvn27fn5KSgoHDx40+ACWJo5tWmPTqgUWOmj3ZyxLTy+lXO9P0SjmhGSFc2T7L8YOUYh8vLy82LdvH1qtlg4dOhAcHMyYMWNwdnZ+4sJv1apVBAQE0LZtW7p06ULz5s359ttvDZZRqVSPvJjfK6+8wpIlS1i2bBnBwcG0bNmS5cuX4+vrC+T++P3444+cPn2aevXq8f777/Ppp58abMPV1ZUffviBjRs36k/Dvb/rfvbs2bi4uNC0aVO6detGx44dCQkJMVjmo48+Ijo6mqpVq+rHGIWEhPDzzz+zZs0aatWqxeTJk/noo48MTk8uiFdffZVevXrx4osv0rhxYxITE3nttdcKtQ3Ibc9+/fpx4sQJBgwYYDCve/fujB07ltdff526deuyf//+B55Bda+hQ4cyePBgBg0aRMuWLfHz86N169YGyyxbtoxBgwbx1ltvUaNGDXr27MmhQ4eoXLnyA7e5a9cutFot3bt3p0KFCvrHF198AcAbb7zBuHHjeOuttwgODmbz5s388ccfVK9evcDt8MEHHxASEkLHjh31xd2TXBW5Xbt2VKhQgY4dO+Ll5fXIZQvavo6OjnTr1u2Br9GDPofjxo3DycnpkZ/DOnXqMHv2bD799FNq1arFqlWrmDFjhsEyzZo1Y9GiRcyePZs6deqwefNmxo4da9BL0rFjR/766y/+/vtvGjZsSJMmTZgzZ47+N9vMzIz169eTkZFBo0aNeOWVV/Kd+VQsHjkUuJiFh4crFhYWyieffKJcuHBBWbVqlWJnZ6f88MMP+mVmzpypODs7K7///rty8uRJpUePHoqvr+8DRzg/SEk4a+l+WdHRypnAQCWiRoDS54sGSlJmknJo0auK8qFauTKlhpKeVvgzVp6UnLWU61Ej58uKB53JUpJdunRJsbCwUM6fP//E23hQzgU5I6i0K22vdVEwRs53795V1Gq1snbt2qe2z/sVZ96vvPLKI88sLgpFcdaSUXtkGjZsyPr16/nxxx+pVasW06ZNY+7cuQZV6IQJExg9ejQjRoygYcOGpKamsnnz5nzH0koTqypVUHfpAkDHvWmsOLOCoH4zuIULlZU4DsndsYVg48aNjBgxolB/aQvxNOh0Om7cuMG0adNwdname/fuxg6pSHzxxRecOHGCixcv8tVXX7FixYonHq/6NBn9+tddu3bNd4XEe6lUKj766CODAVJlgfvwEdz9awNNzipM3Ps9g2oO4nrDibgfmkDDK0uIufwylX1rGDtMIYxm1KhRxg5BiAeKiYnB19eXSpUqsXz58jJzK4nw8HA+++wz7t69i5+fH19++SWvvPKKscN6rLLR+qWQTQ1/HNq0JvWfHXTcm87yZst5s/MbnDu5koCsUyT88hbeb/9plIG/QpRlPj4+xX7lZFG2ldX3UEGvFF3SlM7TM8oI939vkNfitMLmgz9wJzsJh56zyVHMaJi+hyM71hk5QiGEEKJkk0LGiGzr1sWucWMsdNB+fzrLzyynUmAjjlfoA0D5PR+QmVGwCwIJIYQQpkgKGSNzfzW3V6btcYUNR1aTmJFIzf4zScSZykosh9Z8bOQIhRBCiJJLChkjswsNxSY4GOscaHMgnWWnl2GnduVqg4kA1I9ewrXo80aOUgghhCiZpJAxMpVKpe+V6XRE4Y8Ta7iVcYs6XUYQaVULO1UWcT+/ZeQohRBCiJJJCpkSwKFNG6yqVsUuC1oczmDp6aWozMywe242WkVFw/TdHJWBv0IIIUQ+UsiUACozM9xH5N68rGu4jt9O/8TN9Jt4BzbmmGfuwF+33R+QmZlhzDBFKfXyyy8/0eXXhfFER0ejUqk4fvx4gdd5Gq/zlClTHnqfu+Ik72HxKFLIlBDqLl2wrFgRp3RoejST705/B0Bg/5ncxokqynUOrXkK96wQpcq9N4R80GPKlCnMmzfvkfcrMpbbt28zYMAA1Go1zs7ODBs2jNTUVGOH9cR8fHyYO3dukWzL29ubuLg4atWqVSTbE09HQd7TixcvpkqVKtSrV4+DBw8aKdKyRQqZEkJlaYnbK8MA6HFQx7qIn0lIS8DeyY2Y+u8CEHL5W65fuWjMMEUJExcXp3/MnTsXtVptMG38+PE4OTnh7Oxs7FDzGTBgAGfOnGHr1q389ddf7N69mxH/XlvJlGVnZ2Nubo6np2eZuWKsqXjcezomJobPPvuMNWvW8P777zNkyBAjRlt2SCFTgjj16oW5uxvuKdDoVJa+V6bOs68SaRWEvSqL2J/HGTlKUZJ4enrqH05OTqhUKoNpDg4O+brl27Rpw+jRoxkzZgwuLi54eHiwePFi0tLSGDJkCI6OjlSrVo1NmzYZ7Ov06dN07twZBwcHPDw8GDhwILdu3XqiuM+ePcvmzZtZsmQJjRs3pnnz5nz11VesWbOG2NjYQm1ryZIlBAYGYmNjQ0BAAAsWLDCYf+TIEerXr4+NjQ0NGjRg/fr1Bodtli9fnq/Q++233wyuqh0VFUWPHj3w8PDAwcGBhg0bsm3bNv38Vq1aceXKFcaOHavvDcuzdu1agoKCsLa2xsfHh1mzZhnsy8fHh2nTpjFo0CDUajUjRozId2hJq9UybNgwfH19sbW1pUaNGsybN6/AbZSSkoKtrW2+13T9+vU4OjqSnp57vap33nkHf39/7Ozs8PPzY9KkSWg0modut1WrVowZM8ZgWs+ePQ3u7p2VlcX48eOpWLEi9vb2NG7cmJ07dxY49gfJysrijTfeoHz58tjY2NC8eXMOHTqkn79z505UKhXbt2+nQYMG2NnZ0bRpUyIjI//Tfh+lIO/plJQUnJ2dqV27NvXr1ycjQ4YLFAUpZEoQM2tr3P6t0HuG6Vh77hfi0+JRmZlj23NO7sDftF0c27neyJGaBkVR0KWnG+VR3Jc/X7FiBe7u7oSHhzN69GhGjhxJnz59aNq0KUePHqVDhw4MHDhQ/wOXlJREmzZtqFevHocPH2bz5s0kJCTwwgsv6Lc5ffp0HBwcHvmIiYkBICwsDGdnZxo0aKBfv127dpiZmRWqu33VqlVMnjyZTz75hLNnzzJ9+nQmTZrEihUrAEhNTaVv374EBgZy5MgRpkyZwvjx4wvdXqmpqXTp0oXt27dz7NgxOnXqRLdu3fT5rFu3jkqVKvHRRx/pe8Mgt4h64YUX6Nu3L6dOnWLKlClMmjQp36G+L774gjp16nDs2DEmTZqUb/86nY5KlSrxyy+/EBERweTJk3nvvfcKfEl5tVpN165dWb16tcH0VatW0bNnT+zs7ABwdHRk+fLlREREMG/ePBYvXsycOXMK21wGXn/9dcLCwlizZg0nT56kT58+dOrUiQsXLjzxNidMmMDatWtZsWIFR48epVq1anTu3Jk7d+4YLPf+++8za9YsDh8+jIWFBUOHDn3kdoOCgh75/u3cufND1y3Ie7pWrVrUrl0bJycngoKC+PhjuU5YUZB+yxLG+cW+3PrmWyreTqHeuWyWnFrCB00+oHLNxhz26E2DG7/isusDMpt0wsbG1tjhlmlKRgaRIfWNsu8aR4+g+vfHpTjUqVOHDz74AICJEycyc+ZM3N3dGT48d9D55MmTWbhwISdPnqRJkyZ8/fXX1KtXj+nTp+u3sXTpUry9vTl//jz+/v7873//MyhsHsTLywuA+Ph4ypcvbzDPwsICV1dX4uPjC5zHhx9+yKxZs+jVqxcAvr6+RERE8M033zB48GBWr16NTqdjyZIl2NnZERQUxLVr1xg5cmSB9wG57VWnTh3982nTprF+/Xr++OMPXn/9dVxdXTE3N8fR0RFPT0/9crNnz6Zt27b64sTf35+IiAg+//xzg16LNm3a8NZb/3+ZhejoaIP9W1paMnXqVP1zX19fwsLC+Pnnnx/b5nkGDBigL07t7OxISUlhw4YNrF///38Y5b0nILenaPz48axZs4YJEyYUaB/3i4mJYdmyZcTExOhf+/Hjx7N582aWLVtm8H4qqLS0NBYuXMjy5cv1hcXixYvZunUrK1euNMjhk08+oWXLlgC8++67PPvss2RmZmJjY/PAbW/cuPGRPVC2tg//zi3oe/q7777js88+w87O7pHbEwUnhUwJY+5gj+tLA7i1YCHPhen4IPBXhtUaRgWHCgQM+Izbc/7GR7nGnp9m8MzgsnVHcPH01K5dW/9/c3Nz3NzcCA4O1k/z8PAA4MaNGwCcOHGCHTt24ODgkG9bUVFR+Pv74+rqiqurazFH/v/S0tKIiopi2LBh+gIMICcnBycnJwDOnTtHUFCQwQ9XaGhoofeVmprKlClT2LBhA3FxceTk5JCRkaHvkXmYs2fP0qNHD4NpzZo1Y+7cuWi1WszNzQEM/op/mPnz57N06VJiYmLIyMggOzu7UGcQdenSBUtLS/744w/69u3L2rVrUavVtGvXTr/MTz/9xJdffklUVBSpqank5OSgVqsLvI/7nTp1Cq1Wi7+/v8H0rKws3NzcnmibUVFRaDQamjVrpp9maWlJw4YNOX/e8OKh977PK1SoAOS+pytXrvzAbVepUuWJYiqsJ81dPJgUMiWQy8CBJC5bjl98BkFRGhafWszk0Mk4OLlxLORdXI++R8ilRcTGDMarclVjh1tmqWxtqXH0iNH2XZwsLS0N96dSGUzLG+Oh0+mA3B/ybt268emnn+bbVt4PxPTp0x/7F3ZERASVK1fG09NTXyTlycnJ4fbt2wY9Go+SdzbI4sWLady4scG8vAKhIMzMzPIdyrv/r/Lx48ezdetWvvjiC6pVq4atrS3PP/882dnZBd7Po9jb2z9y/po1axg/fjyzZs0iNDQUR0dHPv/880IdhrOysuL5559n9erV9O3bl9WrV/Piiy/qBxSHhYUxYMAApk6dSseOHXFycmLNmjX5xvTc63Ftl5qairm5OUeOHMn3mjyoKC5qj3pPP0hQUBBXrlx56Pxnnnkm3zijPEXxnhZPRgqZEsjCxQWXF17g9ooVPLdfx8dV1zMseBgVHSpSt+v/OH9qJf6as5z56S283v7N2OGWWSqVqlgP75QmISEhrF27Fh8fn4eeSVOYQ0uhoaEkJSXpB+IC/PPPP+h0unxFycN4eHjg5eXFpUuXGDBgwAOXCQgIYOXKlWRmZurHgRw4cMBgmXLlynH37l3S0tL0BcX912/Zt28fL7/8Ms899xyQ+wN9/+EfKysrtFqtwbTAwED27duXb1v+/v6FKrb27dtH06ZNee211/TToqKiCrx+ngEDBtC+fXvOnDnDP//8YzBGY//+/VSpUoX3339fP+1RP+qQ23Z544Egd1Dy6dOnad26NQD16tVDq9Vy48YNnnnmmULH+yBVq1bFysqKffv26XtQNBoNhw8f5tVXX/1P2/4vh5aK4j0tnowM9i2hXIcOAUtLal6FqjEaFp9cDIDKzBzrHrkDfxul7eDY7j+MHKkwBaNGjeL27dv069ePQ4cOERUVxZYtWxgyZIj+x9vV1ZVq1ao98pFXBAUGBtKpUyeGDx9OeHg4+/bt4/XXX6dv3776Yqcgpk6dyowZM/jyyy85f/48p06dYtmyZcyePRuA/v37o1KpGDFiBBEREWzcuJEvvvjCYBuNGzfGzs6O9957j6ioKFavXp1vMG716tVZt24dx48f58SJE/Tv3z/fX/Y+Pj7s3r2b69ev68/meuutt9i+fTvTpk3j/PnzrFixgq+//rrQA46rV6/O4cOH2bJlC+fPn2fSpEkGZ+kUVIsWLfD09GTAgAH4+voa/MBWr16dmJgY1qxZQ1RUFF9++aXB+JkHadOmDRs2bGDDhg2cO3eOkSNHkpSUpJ/v7+/PgAEDGDRoEOvWrePy5cuEh4czY8YMNmzYUOj4Ibf3auTIkbz99tts3ryZiIgIhg8fTnp6OgMHDnyibeapUqXKI9+/FStWfOi6RfWeFoUnhUwJZenhgfO/p8w+F6bj94u/c+3uNQCq1ArlaPncwY3OO94jKyvTWGEKE+Hl5cW+ffvQarV06NCB4OBgxowZg7OzM2ZmT/Y1smrVKgICAmjbti1dunShefPmfPvttwbLqFSqR17M75VXXmHJkiUsW7aM4OBgWrZsyfLly/H19QVyD1/8+OOPnD59mnr16vH+++/nOzzm6urKDz/8wMaNGwkODubHH39kypQpBsvMnj0bFxcXmjZtSrdu3ejYsSMhISEGy3z00UdER0dTtWpVypUrB+T2ZP3888+sWbOGWrVqMXnyZD766CODgb4F8eqrr9KrVy9efPFFGjduTGJiokHvTEGpVCr69evHiRMn8vVide/enbFjx/L6669Tt25d9u/f/8AzqO41dOhQBg8ezKBBg2jZsiV+fn763pg8y5YtY9CgQbz11lvUqFGDnj17cujQIYNxKo97ne83c+ZMevfuzcCBAwkJCeHixYts2rTJ6NdLKsh7WhQ9lVLc53kaWUpKCk5OTiQnJz9y0JpGo2Hjxo36AXElQfaVK0R17gI6HW8PNSekWS8+apY7wPdu0k00c0NwJYW9fmNoPmjqY7b2YCUx7+L2oJwzMzO5fPkyvr6+Dz2jobTT6XSkpKSgVqufuPh4mi5fvqw/y6d69epPtI0H5RwdHY2vry/Hjh0zyuX2n4bS9FoXxesMpSvnolTa837Ud29Bf79LX9YmxKpKFdSdOgG5vTJ/RP1BTEruWRKOzuW4Ui/3lMh6UYuIvXrJaHEKURw2btzIiBEj/tOPmyj55HUW/5UUMiWc26u5l7cOPadQ4UYO84/P18+r2+01zlsGYK/K5OpPbxsrRCGKxahRo5g/f/7jFxSlmrzO4r+SQqaEs6lRA8f27VApMGKzjk2XNnAgLvesC5WZOVbd56BTVDRO3cbpg9seszUhhI+PD4qilNnDSkKYGilkSgGPiRNR2dkRcE2hzXGFaWHTyMzJHeDrE9yUo25dALDY+h467cOvkSCEEEKUNVLIlAKWXl6UH/MmAAN3KqTEXeHbk/8/Et7vhZmkK9YE5ERyaMNiY4VZJpTxse9CCFGiFMV3rhQypYTLgAHY1KqFXabCy9t0LDu9jPN3ci/H7epZmdN+rwBQ5ehnpKelGDPUUinv7KW8myQKIYQofnnfuf/lrFm5sm8poTI3p8JHU7nc5wWantWyq1Y2U8OmsrLzSsxUZtR54T3iP/sZT+Um+376hGZD819KXjycubk5zs7O+kuM29nZ6S9pXlbodDqys7PJzMwsladpPglTzBlMM29TzBlKb96KopCens6NGzdwdnYu1JWu7yeFTCliU7MmroMHc3vpUob/rTC28gl+jvyZvgF9sbZ1IK7hu3iGv0XdK8tIuP4/PCr6GjvkUiXvfij33y+lrFAUhYyMDGxtbctckfYwppgzmGbeppgzlP68nZ2d//O9qKSQKWXKvT6Ku1u24H79Oi/s0THPfh6tvVvjYe9B3U5DiTy2hBqas5z5+V08xv5k7HBLFZVKRYUKFShfvvwj77dSWmk0Gnbv3k2LFi1M6uKHppYzmGbeppgzlO68LS0t/1NPTB4pZEoZMzs7PKd8yNXhI3j2kMLemneZGT6TOa3noDIzw6zzTPijBw2StnD+2B786xXNjdpMibm5eZF8uEoac3NzcnJysLGxKXVfeE/KFHMG08zbFHMG0837XqXngJrQc3jmGdTPPouZAv/brOOf6K38E/MPANVDWnFE3R4zlULOxndRHnHLeiGEEKK0k0KmlPKY+C5majW+8QqdDytMPzidNE0aAJVemEmGYkVNzWmO/f29kSMVQgghio8UMqWUhbs7HhNyb0vQd7eCLjaer459BYBHpWqcqDwIAM+D08nMSDNanEIIIURxkkKmFHPq3Ru7Bg2w1igM+1vH6ohVnLp5CoDaL07mBq54KQkc/2WmkSMVQgghiocUMqWYSqXC86OpqCwtCYlSaHJOx5SwKWh0GuwcnIiuOx6AWlGLSUy4auRohRBCiKInhUwpZ+3nh9urrwIwdKvC9dhIVkasBKBBt/9xwbw6DqoMon56z5hhCiGEEMVCCpkywG3EcKz8/HBKU+i/U8fC4wu5evcqZubmaNp/AkD9xD+JPnPQyJEKIYQQRUsKmTLAzMqKClOnAND+uIJPdAYfH/gYRVGo2aQjRxxaYq5SSPvjHZCbIgohhChDpJApI+waNsS5z/MAvLpZR3jMPjZc3gCAZ69PyVIsCco6xskda4wZphBCCFGkjFrITJkyBZVKZfAICAjQz8/MzGTUqFG4ubnh4OBA7969SUhIMGLEJVv58eMxd3en4i2FHgcUPj/0OUmZSVT0C+SIVz8AXPd+hCY708iRCiGEEEXD6D0yQUFBxMXF6R979+7Vzxs7dix//vknv/zyC7t27SI2NpZevXoZMdqSzdzJCY+J7wLQe7+C9fVEZh2ZBUCtvlNJxIlKuliOr/3CmGEKIYQQRcbohYyFhQWenp76h7u7OwDJycl89913zJ49mzZt2lC/fn2WLVvG/v37OXDggJGjLrnUXbpg3+IZLLQKIzbr+O3CesLjwlE7uXI+aAwANSIXkHJberaEEEKUfka/aeSFCxfw8vLCxsaG0NBQZsyYQeXKlTly5AgajYZ27drplw0ICKBy5cqEhYXRpEmTB24vKyuLrKws/fOUlBQg9w6hj7qjcd68snDXY/f33iP90HMExWTS+qTCVPVUfuryE3Wf/R8Xz35PNd1lwn+cSL0R35SpvAvKFHMG08zbFHMG08zbFHOGsp13QXNSKYrxTmPZtGkTqamp1KhRg7i4OKZOncr169c5ffo0f/75J0OGDDEoSgAaNWpE69at+fTTTx+4zSlTpjB16tR801evXo2dnV2x5FESuezeTbkNG0mzUfHmCDNCXFvTzrYd6bER9EuYSY5ixm9+n2DpXNHYoQohhBD5pKen079/f5KTk1Gr1Q9dzqiFzP2SkpKoUqUKs2fPxtbW9okKmQf1yHh7e3Pr1q1HNoRGo2Hr1q20b9++TNwKXcnJ4Vr//mSdPceemioWPmfNj51+pKpzVU7O7kb9jDBO2Tai6ujfy1TeBVHWXuuCMsW8TTFnMM28TTFnKNt5p6Sk4O7u/thCxuiHlu7l7OyMv78/Fy9epH379mRnZ5OUlISzs7N+mYSEBDw9PR+6DWtra6ytrfNNt7S0LNCLXNDlSjxLSyp8NI3oF1/kmQgde4Oy+cTtE5Z3Wo5bz0/JXt2a4IxwzoT/BViXnbwLwRRzBtPM2xRzBtPM2xRzhrKZd0HzMfpg33ulpqYSFRVFhQoVqF+/PpaWlmzfvl0/PzIykpiYGEJDQ40YZelhG1wL14EvATBqg8LVqGOsiFiBT406HCrfBwCn3VNQtGXv2KoQQgjTYNRCZvz48ezatYvo6Gj279/Pc889h7m5Of369cPJyYlhw4Yxbtw4duzYwZEjRxgyZAihoaEPHegr8is3diw2NWuiTlcYt07LwkNfcu72OWr2+4RbOFFJdx3LS1uMHaYQQgjxRIxayFy7do1+/fpRo0YNXnjhBdzc3Dhw4ADlypUDYM6cOXTt2pXevXvTokULPD09WbdunTFDLnXMbGyo+OU8zJzUVI+Dl/7OZuKeidg5OXK+9tsAtL77O3fiLhs5UiGEEKLwjFrIrFmzhtjYWLKysrh27Rpr1qyhatWq+vk2NjbMnz+f27dvk5aWxrp16x45PkY8mFWlSlT8/HNQqehwTMFrz3nmHplL4x6jOGMRiJ0qi9hfJxg7TCGEEKLQStQYGVF8HFq0wH3UKABGbNaxZ+dKwhMOonT8FK2iom7KDi4e/MvIUQohhBCFI4WMCXF/bST2LZ7BKgfeWqflk23v4RkYxFar3IsOWv39LjpN1mO2IoQQQpQcUsiYEJWZGRU/+wyLil54JkHfnxOYcXA6SX7Pkaioqay9yom1D74+jxBCCFESSSFjYsydnan05ZcoVpbUv6jg8NMWIi0ucjpwDAD+5+aTnBBj3CCFEEKIApJCxgTZBgXh9eGHALywW0f06d+o3K4XZ81rYE8m0WvGGTlCIYQQomCkkDFRzr17o+7TGzPgf39kMnfL+2R1mIlOUVHnzlYuHZZrywghhCj5pJAxYRU+mIQqoBrqDGi3+BgnLC+xz7kbAOabJ6DkZBs5QiGEEOLRpJAxYWbW1lSe9zVZtlZUi4e7n8/FvOsIkhQHquREc3L9F8YOUQghhHgkKWRMnKWXFzf6DUBRQdtjWravmMwh/9cBqHrmK1JvXTNyhEIIIcTDSSEjyKhRA7sRQwHovj6ei+a3OWdWDQfSufTjeCNHJ4QQQjycFDICAK/X3iCrcTBWWqg55y+O1XkJnaKiduImYo7/Y+zwhBBCiAeSQkYAuRfLC/5yManlHCifDJbfrWCruj0Aug1voWg1Ro5QCCGEyE8KGaFn7uRE9QXforFQEXQ+i/iraSQp9vhoLnHmj7nGDk8IIYTIRwoZYcA5uB5mE0YC0GDzZX6jKQCVT8wh/U6cMUMTQggh8pFCRuRTa9BoYtvVwgwI+j2CsEwf1KRxcfXbxg5NCCGEMCCFjHigZ75YwXVvOxwyFdIPqsjRQu2bfxJ7erexQxNCCCH0pJARD2RlY0fV+Yu4a6vCKy6LLWeqAZD9xzgUbY6RoxNCCCFySSEjHsrXvyG3Jg5CpwK/iHROXnbFJ/sC5zZ8bezQhBBCCEAKGfEYnfu8Q3jXqrlPDtuQcscSr6Ofk5l807iBCSGEEEghIx5DpVLRdcpSTtSwwlILkfvLYZ+VxoUfZeCvEEII45NCRjxWOfvyVJg5g3hncLgLZw+7UTP2N66fkCv+CiGEMC4pZESBtAzswvEx7dGYg8VVK25esoM/XkeXlW7s0IQQQpgwKWREgQ3vNZ2/OjgDcPOYGvfbCZz58T3jBiWEEMKkSSEjCszByoH2b8/luK8KC62K8wdcCbi4nPiz+40dmhBCCBNlUZCF/vjjj0JvuH379tja2hZ6PVGyNfRqzL6xfUh+92ec7lgQd0oN615DeecgKgtrY4cnhBDCxBSokOnZs2ehNqpSqbhw4QJ+fn5PEpMo4f7XZiKT+uxh6Io40iLt8faI5fRPUwgeMMPYoQkhhDAxBT60FB8fj06nK9DDzs6uOGMWRmZjYcOgV+axuYE5ANHhLlQ7uZibUUeNHJkQQghTU6BCZvDgwYU6TPTSSy+hVqufOChR8gWXC8Zq9DBiyoF5phnXw9WkrHkVRasxdmhCCCFMSIEKmWXLluHo6FjgjS5cuBB3d/cnDkqUDiMavM4fg6qRbQGaOGucT1/nzFo5vCSEEOLpkbOWxBOzNLfkzednsaqtJQDxJ9R475vP7SsRRo5MCCGEqSjQYN97ZWZm8tVXX7Fjxw5u3LiBTqczmH/0qIyTMCX+Lv7UGPYGh6Nm0+AixB9Qo1o5HNf39oCZ1MlCCCGKV6ELmWHDhvH333/z/PPP06hRI1QqVXHEJUqRl2sN4X+DtuH32Qlcky1wPnCVM3/MJqjneGOHJoQQoowrdCHz119/sXHjRpo1a1Yc8YhSyNzMnA86fcqHkc/xzqoMki7aU/6vuSQ3eg4nr6rGDk8IIUQZVui+/4oVKxZq4K8wDVXUVejY523+aJzbQ3cr3J7Yb18BRTFyZEIIIcqyQhcys2bN4p133uHKlSvFEY8oxV6s8SKXXgzlkieQbYbtP1c4u2GBscMSQghRhhW6kGnQoAGZmZn4+fnh6OiIq6urwUOYLjOVGVNbfsKSXo5kWkLGDWvUKz/n7s0YY4cmhBCijCr0GJl+/fpx/fp1pk+fjoeHhwz2FQY87T15ucv7LIt+j5EbdaSctCFp9lCCpm8Fea8IIYQoYoUuZPbv309YWBh16tQp0kBmzpzJxIkTefPNN5k7dy6Qe6r3W2+9xZo1a8jKyqJjx44sWLAADw+PIt23KFrdq3Zn+7PbCLu0ndBzYL3tCmebLSaw6whjhyaEEKKMKfShpYCAADIyMoo0iEOHDvHNN99Qu3Ztg+ljx47lzz//5JdffmHXrl3ExsbSq1evIt23KHoqlYoPm07h5x6u3FKD5q4FtvM/I+1OvLFDE0IIUcYUupCZOXMmb731Fjt37iQxMZGUlBSDR2GlpqYyYMAAFi9ejIuLi356cnIy3333HbNnz6ZNmzbUr1+fZcuWsX//fg4cOFDo/Yiny83WjfFtpvBVN3N0QMZlSy5PHmjssIQQQpQxhT601KlTJwDatm1rMF1RFFQqFVqttlDbGzVqFM8++yzt2rXj448/1k8/cuQIGo2Gdu3a6acFBARQuXJlwsLCaNKkyQO3l5WVRVZWlv55XnGl0WjQaB5+Q8O8eY9apiwqzrxberXk7xZdWH/5L3rvV7DYGcPZXxdSrccrRb6vwpDX2nTyNsWcwTTzNsWcoWznXdCcCl3I7Nixo9DBPMyaNWs4evQohw4dyjcvPj4eKysrnJ2dDaZ7eHgQH//wQxQzZsxg6tSp+ab//fff2NnZPTamrVu3Pj7wMqi48g7RhbDgmb0ER9/BP9YMi3lz2KB1RGVj/GsRyWttOkwxZzDNvE0xZyibeaenpxdouUIXMk2bNsXS0vKB827dulXg7Vy9epU333yTrVu3YmNjU9gwHmrixImMGzdO/zwlJQVvb286dOiAWq1+6HoajYatW7fSvn37h+ZXFj2NvCvEVuCj5FF8tlSL3U1zqm5cRsCSzcWyr4KQ19p08jbFnME08zbFnKFs513Q4SqFLmT69u3Lr7/+mu+064SEBNq2bcvp06cLtJ0jR45w48YNQkJC9NO0Wi27d+/m66+/ZsuWLWRnZ5OUlGTQK5OQkICnp+dDt2ttbY21tXW+6ZaWlgV6kQu6XFlTnHm3rNKSlo1f4LvrPzH6Tx0W4deJ/ukbqr/0erHsr6DktTYdppgzmGbeppgzlM28C5pPoQf7xsTE8MorhmMc4uLiaNWqFQEBAQXeTtu2bTl16hTHjx/XPxo0aMCAAQP0/7e0tGT79u36dSIjI4mJiSE0NLSwYQsjG99gPJebVGZPkAoUFbq5X6NJvmPssIQQQpRyhS5kNm7cyP79+/WHb2JjY2nVqhXBwcH8/PPPBd6Oo6MjtWrVMnjY29vj5uZGrVq1cHJyYtiwYYwbN44dO3Zw5MgRhgwZQmho6EMH+oqSy87Sjo+bf8ySDmbccgRdqopz44076FcIIUTpV+hDS+XKlePvv/+mefPmQO7dsENCQli1ahVmZoWuix5pzpw5mJmZ0bt3b4ML4onSqb5HfbrWfoGlHX5iwlodFnvPkHT0IM4hjY0dmhBCiFKq0IUMgLe3N1u3buWZZ56hffv2rFy5skhuVbBz506D5zY2NsyfP5/58+f/522LkmFs/bF0v7qD8FMJNDoP18a/gdO2MFRFXAQLIYQwDQUqZFxcXB5YqKSnp/Pnn3/i5uamn3b79u2ii06UOY5WjnzQ5AOmJbxJcLQW29gUrn/zNZVGvmHs0IQQQpRCBSpk8u59JERRaFu5LX/WaseaFlsZsk1HysJvyHm+Hxblyhk7NCGEEKVMgQqZwYMHF3ccwsS81/g9usfso8XpVKrG67j0zjj8l640dlhCCCFKmQINTCjsPZTu3r37RMEI01HerjzjQ9/h207m6FSg3X+Y1D17jB2WEEKIUqZAhYyLiws3btwo8EYrVqzIpUuXnjgoYRp6Ve+FfUAtNjXIHX8V8+7b6Ir4zupCCCHKtgIdWlIUhSVLluDg4FCgjZbFm1eJomemMmN66xn0T+hB43Ma3BOTuTn/azzGv23s0IQQQpQSBSpkKleuzOLFiwu8UU9PzzJ3qWRRPHydfOlXdxhLO3zLhLU6Epcuw6l7D2z8/Y0dmhBCiFKgQIVMdHR0MYchTNnIBq/RNXItB/1v0fi8wvX338fvp5/k2jJCCCEeS34phNFZmlsyvf1clrczI8MKsk+dJunnX4wdlhBCiFJAChlRItSvEEI9r8asaZH7loz//DNybt40clRCCCFKOilkRInxcbd5HKpjTpQnkJZOwoyZxg5JCCFECSeFjCgx7K0deMX/Nb7tnHttmZSNG+XaMkIIIR5JChlRogxo+T/KuTix8d9ry8RNnSrXlhFCCPFQT1TI7Nmzh5deeonQ0FCuX78OwMqVK9m7d2+RBidM07jWX7K5GdxSQ86169xasNDYIQkhhCihCl3IrF27lo4dO2Jra8uxY8fIysoCIDk5menTpxd5gML0BFWvT2fzWnzXIfftmbh0KZmR540clRBCiJKo0IXMxx9/zKJFi1i8eLHBRe+aNWvG0aNHizQ4Ybpe6b0QVSUtB/1VoNUS/+GHKDqdscMSQghRwhS6kImMjKRFixb5pjs5OZGUlFQUMQmBs6sbPZxeYHVbyLCCjOPH5doyQggh8il0IePp6cnFixfzTd+7dy9+fn5FEpQQAF16f0BnnUp/bZmEL76Qa8sIIYQwUOhCZvjw4bz55pscPHgQlUpFbGwsq1atYvz48YwcObI4YhQmysrKiqY1JxJTS0OUJyipqXJtGSGEEAYKXci8++679O/fn7Zt25KamkqLFi145ZVXePXVVxk9enRxxChMWKP2/RmQ4s6STmZybRkhhBD5FLqQUalUvP/++9y+fZvTp09z4MABbt68ybRp04ojPmHiVGZmVG/3KS1t7/7/tWU++ghFqzVyZEIIIUqCJ74gnpWVFTVr1qRRo0Y4ODgUZUxCGAgIeYammQFsaA4ac8i5eg1NXLyxwxJCCFECWBRkoV69ehV4g+vWrXviYIR4mBz3Orhpr5Bkb0a5FNDeToRKFY0dlhBCCCMrUI+Mk5OT/qFWq9m+fTuHDx/Wzz9y5Ajbt2/Hycmp2AIVps26QhAeWi3JdrnPc24lGjcgIYQQJUKBemSWLVum//8777zDCy+8wKJFizA3NwdAq9Xy2muvoVariydKYfJc/eriEZVDsr0VoJCTeMvYIQkhhCgBCj1GZunSpYwfP15fxACYm5szbtw4li5dWqTBCZGnkl9N3HIUku1zn2sTpUdGCCHEExQyOTk5nDt3Lt/0c+fOoZNLyItiYmVlhaXOSV/IyKElIYQQUMBDS/caMmQIw4YNIyoqikaNGgFw8OBBZs6cyZAhQ4o8QCHyWFlUIMn+GnJoSQghRJ5CFzJffPEFnp6ezJo1i7i4OAAqVKjA22+/zVtvvVXkAQqRx1FdjWT7awBoE28bORohhBAlQaELGTMzMyZMmMCECRNISUkBkEG+4qnw9Awh+epOADS35J5LQgghnqCQuZcUMOJp8q7WiOxTCgCaW3JoSQghxBMUMr6+vqhUqofOv3Tp0n8KSIiHqegTgKV1biFDyl0UjQaVpaVxgxJCCGFUhS5kxowZY/Bco9Fw7NgxNm/ezNtvv11UcQmRj4WlJZZWFmhVOZgrkHP7NpYeHsYOSwghhBEVupB58803Hzh9/vz5Blf7FaI4OJipSba/jWsq5Ny6JYWMEEKYuCe+aeT9OnfuzNq1a4tqc0I8kJON5/9fFO+2nLkkhBCmrsgKmV9//RVXV9ei2pwQD1TeyY9ku9wxWnJRPCGEEIU+tFSvXj2Dwb6KohAfH8/NmzdZsGBBkQYnxP18K9Xlhv0GADQ3EowcjRBCCGMrdCHTo0cPg0LGzMyMcuXK0apVKwICAoo0OCHuF1ClLhf+PbSUfOk85YwbjhBCCCMrdCEzZcqUItv5woULWbhwIdHR0QAEBQUxefJkOnfuDEBmZiZvvfUWa9asISsri44dO7JgwQI8ZICnyarg6EWyvQpQSL922djhCCGEMLJCj5ExNzfnxo0b+aYnJiYa3BG7ICpVqsTMmTM5cuQIhw8fpk2bNvTo0YMzZ84AMHbsWP78809++eUXdu3aRWxsLL169SpsyKIMcbZ25u6/Y2Q0t+KNHI0QQghjK3SPjKIoD5yelZWFlZVVobbVrVs3g+effPIJCxcu5MCBA1SqVInvvvuO1atX06ZNGwCWLVtGYGAgBw4coEmTJoUNXZQBKpUKrb01kI4qNdXY4QghhDCyAhcyX375JZD7Q7JkyRIcHBz087RaLbt37/5PY2S0Wi2//PILaWlphIaGcuTIETQaDe3atdMvExAQQOXKlQkLC3toIZOVlUVWVpb+ed79oDQaDRqN5qH7z5v3qGXKotKYt5mzC5CORfqjX9OHKY05FwVTzNsUcwbTzNsUc4aynXdBcypwITNnzhwgt0dm0aJFBoeRrKys8PHxYdGiRYUME06dOkVoaCiZmZk4ODiwfv16atasyfHjx7GyssLZ2dlgeQ8PD+LjH35IYcaMGUydOjXf9L///hs7O7vHxrN169ZC51AWlKa8M61zi2iLTIW/fvsNs0L2BOYpTTkXJVPM2xRzBtPM2xRzhrKZd3p6eoGWK3Ahc/ly7sDK1q1bs27dOlxcXJ4ssvvUqFGD48ePk5yczK+//srgwYPZtWvXE29v4sSJjBs3Tv88JSUFb29vOnTo8MibXGo0GrZu3Ur79u2xNKH795TGvCMPnAYiUSkqQqp74xVUv1Drl8aci4Ip5m2KOYNp5m2KOUPZzjvviMrjFHqMzI4dOwodzKNYWVlRrVo1AOrXr8+hQ4eYN28eL774ItnZ2SQlJRn0yiQkJODp6fnQ7VlbW2NtbZ1vuqWlZYFe5IIuV9aUprxt7nnbKhbmTxx3acq5KJli3qaYM5hm3qaYM5TNvAuaT4EKmXHjxjFt2jTs7e0NejseZPbs2QXa8cPodDqysrKoX78+lpaWbN++nd69ewMQGRlJTEwMoaGh/2kfonSz0uQOOFdUClolx8jRCCGEMKYCFTLHjh3TD7o5evSowQXx/ouJEyfSuXNnKleuzN27d1m9ejU7d+5ky5YtODk5MWzYMMaNG4erqytqtZrRo0cTGhoqZyyZOIvs3OJFaw66nGwjRyOEEMKYClTI3Hs4aefOnUW28xs3bjBo0CDi4uJwcnKidu3abNmyhfbt2wO5A4zNzMzo3bu3wQXxhGmz+LdHJscStJqsxywthBCiLCv0GJmhQ4cyb948HB0dDaanpaUxevRoli5dWuBtfffdd4+cb2Njw/z585k/f35hwxRlmGW2FgCtuYJWIz0yQghhygp9Zd8VK1aQkZGRb3pGRgbff/99kQQlxKNYaHRAbo+MTnpkhBDCpBW4RyYlJQVFUVAUhbt372JjY6Ofp9Vq2bhxI+XLly+WIIW4l3lej4yFjJERQghTV+BCxtnZGZVKhUqlwt/fP998lUr1wAvRCVHULLL/7ZGxAF2O9MgIIYQpK3Ahs2PHDhRFoU2bNqxduxZXV1f9PCsrK6pUqYKXl1exBCnEvfLOWsotZMreZbmFEEIUXIELmZYtWwK5V/itXLlykZ2CLURh5R1a0lgo0iMjhBAmrkCFzMmTJw2enzp16qHL1q5d+79FJMRj5BUyORagyBgZIYQwaQUqZOrWrYtKpUJRlEcup1Kp0Gq1RRKYEA+jP7RkCYpWChkhhDBlBSpk8m4YKURJYP5vIaORHhkhhDB5BSpkqlSpUtxxCFFgZvoxMqBoZbCvEEKYskJf2TdPREQEMTExZGcb/kXcvXv3/xyUEI9invVvj4wlIIeWhBDCpBW6kLl06RLPPfccp06dMhg3k3cWk4yREcXNLDu3FybbAilkhBDCxBX6FgVvvvkmvr6+3LhxAzs7O86cOcPu3btp0KBBkd5QUoiHMcv6/zEyUsgIIYRpK3SPTFhYGP/88w/u7u6YmZlhZmZG8+bNmTFjBm+88QbHjh0rjjiF0NP3yFiCSsbICCGESSt0j4xWq9Xf+drd3Z3Y2Fggd0BwZGRk0UYnxAPc2yOj0kkhI4QQpqzQPTK1atXixIkT+Pr60rhxYz777DOsrKz49ttv8fPzK44YhTBgZmYOgOVdM2xTrxo5GiGEEMZU6B6ZDz74AJ0u96Z9H330EZcvX+aZZ55h48aNfPnll0UeoBD38+j9AgChR1U4ph8n4bpc50gIIUxVoXtkOnbsqP9/tWrVOHfuHLdv38bFxUXuvySeCs+efbg89zNcbmVyPlqN49bFeLw83dhhCSGEMIJC98g8iKurqxQx4qlRWViQ3K89AG6nrKgUtQ6dVmfkqIQQQhhDkRQyQjxttQeMJt4Z7DNUmF28y6mwTcYOSQghhBFIISNKpYrO3oR1qAjAnbMOZOxdauSIhBBCGIMUMqLUcu3ekwRnsMg0w+fYIW4n3jJ2SEIIIZ4yKWREqdXKrx3rmua+hZPP2XBmw2IjRySEEOJpk0JGlFo1XGpwoXFFEpxBl2WO2+Y1+nt/CSGEMA1SyIhSS6VS0dK3DetDc9/GFhEZnA7fY+SohBBCPE1SyIhSrY13G3YFq7ilBm2mORnfzjR2SEIIIZ4iKWREqRbiEYK9rRNrm+W+lZ2ORJF0K9HIUQkhhHhapJARpZqFmQUtK7VkZ7CKNAcFXaYZ5z+dZOywhBBCPCVSyIhSr03lNmjNVfzRzAYA+2270GVlGTkqIYQQT4MUMqLUa+rVFCszK/6okwN2WswydER+/bWxwxJCCPEUSCEjSj07SztCvULRmqs41sgOAO3qldIrI4QQJkAKGVEmtPZuDcDaUBcsbLWYp2Vxc81PRo5KCCFEcZNCRpQJLb1bokLFeW5BrWwAbi6Yjy4728iRCSGEKE5SyIgywd3Wnbrl6wKwoVlgbq9McgpJv/5q3MCEEEIUKylkRJmRd3jpB/sEdjXKvVVB/MfTONX3eZI2bZYxM0IIUQZJISPKjK5+XfFR+5Cl07CgkTUnfFSodGBx/AxxY8cS0agh0e+8Q8ahw6DTGTtcIYQQRcDC2AEIUVTK2ZXjj55/EHE7gu1XtrPC4U9UMXE8c0ZH8zMK7nc1ZPz+B9d//4PKantuXbiIS88e2Pj7Gzt0IYQQT0gKGVGmqFQqgtyCCHILYnS90UQlRbH5/B98em4d9lfu8MwZhdBzCnYpaSQtXUrS0qWoqvtRrmdv1F2fxdLDw9gpCCGEKASjHlqaMWMGDRs2xNHRkfLly9OzZ08iIyMNlsnMzGTUqFG4ubnh4OBA7969SUhIMFLEojRRqVRUc6nG643H8dfgvXz2xp+kv9SRmf+zYdZzZoT7q8gxA+XCJW58/jkXWrUicmA/ktatR5uaauzwhRBCFIBRC5ldu3YxatQoDhw4wNatW9FoNHTo0IG0tDT9MmPHjuXPP//kl19+YdeuXcTGxtKrVy8jRi1KqyrOfkzoNofVr4TTvOYQ4rpX48sRCos7qjhbCVQK6A4dJ+699zgb2oRzrw/n7j87UDQaY4cuhBDiIYx6aGnz5s0Gz5cvX0758uU5cuQILVq0IDk5me+++47Vq1fTpk0bAJYtW0ZgYCAHDhygSZMmxghblAEu6uoM6PImiiaDsE1fcc7nJ8Ky0rG/ZEXz0woVb2tRtu3l2ra9ZDtYY9GhFb59Xsa2bh1UKpWxwxdCCPGvEjVGJjk5GQBXV1cAjhw5gkajoV27dvplAgICqFy5MmFhYQ8sZLKyssi65zTblJQUADQaDZpH/GWdN+9Ry5RFppj3vTlbWtrStPsEmipvE31sGzet55NQ7Ti/pNvicNGK0LMKzqlZsG4LV9ZtIbW8I5ad2lD1+SHY+PoZOZPCMfXX2pSYYt6mmDOU7bwLmpNKURSlmGMpEJ1OR/fu3UlKSmLv3r0ArF69miFDhhgUJgCNGjWidevWfPrpp/m2M2XKFKZOnZpv+urVq7Gzsyue4EWZoku/jd21HdRM28EZ2xzOJtrhGGVF/fNgc8/nKraiA3fqBmNZrxU4OhkrXCGEKJPS09Pp378/ycnJqNXqhy5XYnpkRo0axenTp/VFzJOaOHEi48aN0z9PSUnB29ubDh06PLIhNBoNW7dupX379lhaWv6nGEoTU8y7YDm/hDY7E69dq6l6fBnetc9xIMSGw/H2qKOsCbqs4HU9Fa/rYWg3hhEX5IHds50I7vkKtg4ls6iR19o0cgbTzNsUc4aynXfeEZXHKRGFzOuvv85ff/3F7t27qVSpkn66p6cn2dnZJCUl4ezsrJ+ekJCAp6fnA7dlbW2NtbV1vumWlpYFepELulxZY4p5Py5nS0tLand5Fbq8yrUz+3Da/jWDsrdi5qbhUCNbLl5zwi3KHL84hUqnE+D0Ci7OWcH1kEqou3ejQZch2Ns4PsWMCkZea9NhinmbYs5QNvMuaD5GLWQURWH06NGsX7+enTt34uvrazC/fv36WFpasn37dnr37g1AZGQkMTExhIaGGiNkYaIqBTWjUlAzUu8kcH7TfKpeWE3TSvFoK8HRTDsiYz2ofF5DuSQd1Q5cgwMLOTF9ETGNK+PSoydNWvbDybpk9tQIIURpZtRCZtSoUaxevZrff/8dR0dH4uPjAXBycsLW1hYnJyeGDRvGuHHjcHV1Ra1WM3r0aEJDQ+WMJWEUDi4ehPT/CEU7iXO7f4Xwb2nIURr6XUbrC7tTvEhMcMXnbBIuqTpctl+B7fMId/+SmNAqlOvem+YNe+Fq42rsVIQQokwwaiGzcOFCAFq1amUwfdmyZbz88ssAzJkzBzMzM3r37k1WVhYdO3ZkwYIFTzlSIQypzC0JaN0PWvfjxqUTXNvyJTUS/qK1Uyw4xZLiZ8ue9LpYxOVQ4VQslW4pVPozGv6cxU7v2cQ09aVC1160qtkVD3u5mrAQQjwpox9aehwbGxvmz5/P/Pnzn0JEQhReeb86lB/5HZmpdzi+5VvcI76nEtd4Vh0GajjuX5tYbRC2Z6NwirhG4FWFwJ8uofn1CzZVncXVpr5U7vgcbat1opJjpcfvUAghhF6JGOwrRFlg4+BC3d7vQK8JXDy4gYx9C6mZso+6qpNgcZK4YHcuPNMd52xnNNu3Y3flJo3PKzQ+f4nUNbNYHzCbmFBfqrfsTjuf9vg5l67r1AghhDFIISNEUVOpqNakKzTpyp3rF7i0+SuqXl1HBW5RIWkpWYolRzq0wbLycBwvXiblr79wSLxLu+MKHL/EzVVzWRM0j8tNKlO70bO0r9KeGi415IrCQgjxAFLICFGMXCpWp/6wL8nJnMGpbStwOPEdvpqLNL27Bc5sIcK8Bndf7YIrFbE+fY6Mbdspl5LFc2EKhF3hkscC1vgv4k7Vcvg0aUuQT2Nql6uNh52HFDZCCIEUMkI8FRY29gR3fQ2eHcnVk7u4vXM+NW9vp6Y2Ei7l3vE91daWi88Fkn63EjZXUrE4cwG/BC1+CTrYkwDLVxPruprfK6iIr+KIRXAgFeqEEuwVQpBbEHaWcuVqIYTpkUJGiKdJpcK7Tiu867TibuJ1Tv69GOuYvVTJOIOjKp262qNgdxQCId3XkujYymQmO8KtdGwTU/G6DV63FTiTAhsPojE/SHR52Otlxt1qntjVqYtfUCjB5evg5+SHuZm5sTMWQohiJYWMEEbi6FaR+v2mAKBoc4g5d4gbp3dicS0M77sncLNJoqZflH55TaYZ0UneJKWVR5uiw/b6baxSs6geB9XjdHAkFn6KJdVmI0c8VayrZElOoB8u9RpSo1pjAp0DjZSpEEIUHylkhCgBVOYWVA4KpXLQv1esVhTioyOIPbEd3ZUwKiQdpaJNPNU9rwBXchepC9fSPbiZ7osm3Q7zmynYXEnAIVNLnWiFOtHZsPcccI4bTivZXEHF1Yq2RCasp0KD5gRVDCHQLRBbC1tjpS2EEP+ZFDJClEQqFZ6+QXj6BgFvAHAnIYYrx7aTfWkf7olH8Mm5jLd9At72CbnrVIGbIc5czfJHl+0Jd3Mwv3Id62s3KZ8M5ZMVQs+lw/aDaFUHuVoO9nuZkVq9Ana161CldnOCPevgo/bBTGVmvNyFEKIQpJARopRw8aiMS6chwBAAUpNvE33sH9Iu7EF94xBVsyMpZ5ZEOdtwsAWcILWiLZfMA8nS+WGZZc+ds5G4JCRifScNnxvgc0MHx6/DL9fJtNzI0QrwW0VrtAG+ONVvSECNZtQqFyy3VBBClFhSyAhRSjk4uVKr1fPQ6nkAsjLTiDyxhzvndmMXF45f5mkcVBnU1h0FjoI1ZNWx4JKVP8k2zbHDC6vUbDIizmARGY1NpoagGAiKyYKwc7DsHHfsV/KXl4obPk6YBwXgUb8ZQT4NCXQNxMrcyrgNIIQQSCEjRJlhbWNPjcadoHEnALQ5OVyKCOfmmR1YXj9IldQTuKmSCNREgCYCAJ2i4nItH241b4CVfQBuOjVpF86SceoU1tHxuKQpNLygwIUk2HoAOMA1NzjgZf7vIanaeNd7htoVQvB29JZr2wghnjopZIQoo8wtLPCr3RS/2k0ByM7K4uefllPZLh3zawepkHyMSsRTVXuZqomXITF3vet2nqR2qEdGhWcpb1cF8/ib3DoahvZMJLY3UqiUCJUStXDqGqy7Rrb5Ro55wB/eNuQE+OEc0oDqQc9Qq1wwTtZORmwBIYQpkEJGCBOhMjPD2smT+l26YGk5FoCbsVe4cnw7OZf34X77KH45l6lIPBWTNkHSJgAScUZXtQ7alt2xrhSCW5YVN48dIPnYISzOXcYqLRv/WPCPzYSDEbAigrs237PBS8UtH2fMagVQvn5TgqqF4u/ij6WZpTGbQQhRxkghI4QJK+dVhXJeQ4GhACTfSeTyse2kX9yL883DVMuOxE2VhFvqLji3C85BKrZk2gah7dAIhzdepZKrH5kREcQf2kPGyZPYXIrDMVNHvUsKXLoD/4QBYSQ4w8F/D0nZ1q5N5fotqVWpPl72XnJISgjxxKSQEULoObm4UbfNC9DmBQAy0tM4dXw3dyN3Yx8fTtXMMzioMqiVcRguH4bLC8hWLLhmXYO0Kg1waP8qVWo9g1nsLW4fOcCNI/vRnjmLfWwSHkngkaSFiGvw+zW0qo0cLw9/eduSE+iLc90GVK3Tklrla+Ng5WDchhBClBpSyAghHsrWzp7gpp2haWcANBoNkacPkhixE6vrB/FJP4G7Kpka2Wfg+hm4vgLdPyquWPiS6BaCVddn8Js0BQcbZzJOnSLu0G6Sjh3G4uwlbFIy8UsAv4QMOBwBKyNIt/qeTRVU3PJxwaxWDco3aEbNGs2p6lwVCzP5uhJC5CffDEKIArO0tKRGveZQrzkAOq2OyxdPEX9qB6qYMCqlHKeSKh5f7SV8b1yCG79CGMSaVSDeuR4q31Cq9PyIcpUDyYmPJ+X4EWLDd5N+8gS2F2Oxy9ZS64oCV27DrtxDUjcdvyDcy0J/SKpSgxYEV2mMh72HcRtDCFEiSCEjhHhiZuZm+Naog2+NOsAYFEXh+rVorh3fjjZ6H+XvHMNPG42XLg6v23FweyMcm0QizlxzrIO2UhPKPd+ToPc/QaUyIysqipuH93Pj8D60Z85hfzURt7vgFpkDkVfhr6vo2MAJd7hW2ZacGr6oQxpQLaQtwZ51sDa3NnaTCCGeMilkhBBFRqVSUdHbl4rerwCvAJB46waXj/1DZtReXG4doZrmfO4A4ru74OwuOPspmYolMdbVSHGtjVWVhlQZ8xbulQPQZWSQfvo0sYd2cedoOObnLmGfmI73LfC+lQFHI+DH3ENS6yuZkRTghX39+lRt2om6lRphiZwhJURZJ4WMEKJYubmXx619X2jfF4C7qXeJOLabu+f34JhwCL+sszip0vDPPgvxZyH+JzgIyThwzTaQ9PJ1cAhqTFDf/ji4VSTn5k2Sjh3mevhO0k+ewO78NewytdS5pINL12DjNXLMfmdrBRW3qpfjtqcHTr5m1A9ohaOVo5FbQwhR1KSQEUI8VY4OjtR75ll45lkAcnJyuHj+NDfO7UO5dgTX5NP45UThpErFKeMQXDkEV5bATohXlSfeMQitZz2cO7YhcNz7WFrbk3nuHNf3b+fWwT1YnrqIXXIm/tcV/K/fAG7AmgmEuatIqOqCWb1aVGzaljrB7XGxdTFqWwgh/jspZIQQRmVhYUG1mnWpVrOuflpaejoXTh8k6eIBLOKO4ZF6hiq663hyA8+UG5CyA86D9i8VVyyqcNs5GFWl+ni/NZ4K1euRE5fA9X3biN/3DznHTuN+KxPvWwret27Dwd2waDdnHD/kmp8aJbgGHk1bEdzoWco5yABiIUobKWSEECWOvZ0dtRq1hkat9dNu3bpJzOl9pF0Kx/bmcbwzzuKhuo2PNhqfxGhI/BNOQAZWxFhV565bbWw7t+BykxY0bNuNm4f3cn3/NnKOn8Y5+t9BxCdS4MQh+OEQV6w/Z28VOzTBVXFr/Aw1m/eggmtl4zWCEKJApJARQpQK7u7lcG/VE1r1BEBRFK5eiSI2Yh/ZMYdRJ57ELzsSR1VG7nVt4s5A3I/UBZIuTCXZLhAL/7o4dxpDxWr1Sb14kSt7NpN19BhOFxKwz9IRcD4dzp+Ctae4ab6Ao5Wsyajpg1PDxgS07EklrwC5CrEQJYwUMkKIUkmlUuHtUw1vn2rAYACyNTmcjzzBzcj9cP0Ibkmn8dNewll1F+f0cIgOh+hv4R9IVXlgow7Csk9r1FUbYquzIebAdlIPH0Z97hoOd3Pwu5IFVyJhUySpfM8/HhbcDaiEfYMGVG3RFV//RlLYCGFkUsgIIcoMK0sL/GvVx79WfSD3SsS//fY71SqqSb10CMv4Y1RIi6CKcp0KSgIVkhMg+R84BzmKGZmWPlg2Dsasd0csHLy5HX2elMPh2J65jNvNLLwSciAhGnZFkzXrV/Y7mXG7hifW9eri07wTVUNaY24uX6tCPE3yiRNClGlWVpbUatgay6Yd9NNu3Egg5vQ+0i+HY3fzOFUyzlJOlYRvziV8b12CW78DkIE1MVX8uRvSlDSXGmQmp5AWcQbL0xcpfzUN12QdruGxEB6L9puNHLNRcauaG+Z1g6nYrB3VQztjaWNrrNSFMAlSyAghTE758h6Ub9ML6AXk3mohOuYicWf2kRNzGKc7J/HLPo+DKpMaWacg9hTE5q57R63mevua3HVuTkqWBTnX4jA/ewmPS0nYZyrYn74Fp3fADzs4a/4+N3ycUGoH4BnamuotumLj7Ga8xIUog6SQEUKYPDNzM3x8/fHx9QeGAJCVnc3Zc8dJjAxDdf0I7imn8dNG46JKwSXtAKQdyF3ZBmLrVyC2RSAXcSH7VipWl2Ipd/E2TmkKFaOSIeogrD9IFDNJ9LJHU6sa7k2eoXrL7thV9DZe4kKUAVLICCHEA1hbWRFYuxHUbqSflnz3LtGnD5By8QCWCceokBpBFeJy7yV1N+7fFSEnwIxLtaoQaV6ZlBSwvn4Ht6jbeN7WUS42DWJPwN8nuMLXJLlak1nTB6eGTajaqhvq6oGozMyMlLUQpY8UMkIIUUBOjo7UCW0Poe2B3FPA42/EcfXUPjKiD2F/8wRVMs/irkrGX3sZf+1lsAGqQmpVG8JUvsSl22OWkIn7lWS847U4386CvZGwN5LYOSuIsjPnbkAlHBo0xPeZLrjUqY/Kysq4iQtRgkkhI4QQT0ilUuHp4YWnRx+gDwBarY5Ll88TH7GPnKuHcblzEj/NBRxUmbRXzoIt4AOKDxxXuXIqvTw5t1S4XE/D53oOtulabI9egaNXSPj2V65ZqEip5oF1SF2qNO+EW6NmmDs4GDFrIUoWKWSEEKIImZub4VctAL9qAcAwADKzsjlz9ii3I8MwiztCuZQz+Gmjqcdt6tneBm9QvOGqmQUH0sqTlGSHY7wG36sanNIV3M7Fw7nNJK7ezE0V3PV2xbJ+Xaq0ehaX0OaYq9XGTVoII5JCRgghipmNtRVBdZtA3Sb6aXeSkog+c5C7UQewSjhGxbSzVNbFU9k2NrfXpgLE1jfnQLYr8cnO2CVoqBKTjWcSOMXchph/uLn+HxJUkOpbHrvGjfFu1Rl1g0Ygh6KECZFCRgghjMDF2RmXZh2hWUcgd7xNbNx1rp7eS2bUflxvHcY/J5JeFjfB7Sa4wc1gM/bpXIlOccEmTkPVK9lUSgT1pRtw6U/ifvyTa2Yq0v0rYlOhIunu7jg2aICZtbWRsxWi+EghI4QQJYBKpcLLqxJeXn2BvgDcSUrmxLGdpJ/fjcvNcGpoztJTdQscb4EjXK1pzj6dM9duO+EYqyHgipbyyQqO567heO4asTsOkmNpRnZNP9yataL8M22wrVULlaWlcZMVoghJISOEECWUi7MTjVr3gNY9AEhJTeXMsV2kRu5CnRCOf3YEfVWJ4JyIzhnO1bXkgEbNjURHXK9rqHlFwTVVh8WJi2ScuMiVBUvIsbFAG1yD8s+0xaVZC2wCAlCZmxs3USH+AylkhBCilFA7OFD/mWfhmWcBSE3P4NjxvaSc24lD/EH8s05TU5UIrolkuqk43sCKHVmOJN2yo8I1LTWvKKgzcrA4dIbkQ2dInv0lGntrzEKC8XimHerQplhVqyY3whSlilELmd27d/P5559z5MgR4uLiWL9+PT179tTPVxSFDz/8kMWLF5OUlESzZs1YuHAh1atXN17QQghRQjjY2VKvaXtomntdm4zMbE6c2MftiH+wjtlLzcxImqhugTsklzcjPNSa/ekOpN+wofJVHTWvKtilZcGew9zac5hbgMbZHquGIXg0b4d9k8ZYVq4shY0o0YxayKSlpVGnTh2GDh1Kr1698s3/7LPP+PLLL1mxYgW+vr5MmjSJjh07EhERgY2NjREiFkKIksvWxoo6jVujCWnOxo0bsWjfgVNnj3D7zA5s4w5QP/0E7VU3wQOuVzTnQAsbLty1JyfBimoxCgHXFKyT0lC27iF+6x4ANOWcsG/cBLfmrbBv3BjLChWMnKUQhoxayHTu3JnOnTs/cJ6iKMydO5cPPviAHj1yjw9///33eHh48Ntvv9G3b9+nGaoQQpQ61pYWBNdvDvWbA6DJ0RJx5gi3Tv+D9fUwWqQdp7f5DXRecN7HkoOWNkQn22IeZ0VgjA7/62B5M5nsv7YQ99cWAHK8yuHUtDnOTZtj17gxFm5yE0xhXCV2jMzly5eJj4+nXbt2+mlOTk40btyYsLCwhxYyWVlZZGVl6Z+npKQAoNFo0Gg0D91f3rxHLVMWmWLeppgzmGbeppgzPDrv6jXrUb1mPQBycrScOX+KW2d2YHX9AB3TjuNpcYPs/2vvvsOiutP+j79nBpgCggUR6SoWioIFkEiMBVGIJWYTE3V/saRsTGJ0jWvK7pPErGnGuD6bdWOSTd0YN8W1rIVYYkFRQClqBDtNFFCU3jnPH8b5LcGCMjDA3K/r8ro83zlz5v6co3L7PWfOcYeU3lr2WOm4UKDHLkeDb6aC9wWwysmn9Id1lP6wDoBaL1c6ht6LbchQ9EOGoHEwz8355Fi3v9yNzaRSFEVp5loaRaVS1btGJjY2lmHDhpGTk0P3/5rKnDJlCiqVim+//faG23n99ddZvHhxg/FvvvkGg8HQLLULIUR7UFenUFqYj6bgBE6lafStScNNlU+hWsUhnY4EtY7Ll3Q4nVfjn6HglVf//YoKSlycqOrVl3Jvb8q9vFDkHjbiLpWVlTFt2jQKCwuxv8Xdq1vtjMzdevnll1mwYIFxuaioCHd3dyIiIm65I6qrq9m+fTtjxozB2oLusWCJuS0xM1hmbkvMDKbLrSgKJ8+d5OLRXegyY5lalISn7gIX+mg4GKBjDTqK8rV4Zanwy1BwuwwdzufB+TzYG4OiUaPx7YdDaBj6kGB0AQHNdnM+OdbtL/f1Myq302obGWdnZwByc3Przcjk5uYSGBh40/dptVq0N/iLYm1t3aiD3Nj12htLzG2JmcEyc1tiZjBN7j59/enT1x+Yi6IoZGScITt5J07p+5hVmIiXPpuTftYcHKLjx1od1bk29M4C/wyFblfrqDt6nCtHj3Pl449RrK3QBgbgcM8wDCFD0fc3/c355Fi3H43N02obmR49euDs7MzOnTuNjUtRURFxcXHMmTPHvMUJIYQFUqlUeHp54+nlDfzu2mMVzmdxOWkHPc/tY1jxYTzt0kkZqOVgqI7vq3RYX7DCNxP8MhQ6l9RQlXCY/ITDwF9Br8N+dDgub72JSp4PJe6SWRuZkpISTp8+bVw+d+4cycnJdO7cGQ8PD+bPn8+SJUvo3bu38evXLi4u9e41I4QQwjxUKhWubh64us0GZgNw4WIONYk7CDwbQ0TRYZwczpEUomXvcB2nKnR0zNEwIF0h5IQC5RUUbt5E/AN9GDHkITrpOpk3kGiTzNrIHDp0iJEjRxqXr1/bMmPGDL744gsWLVpEaWkpTz31FFevXiUsLIzo6Gi5h4wQQrRS3Z1d6B71GPAYAPn5eegSohl+fBNzyvZR3rmC9NOdAWvqgE8j1Gw/81eszq4k1OUeonpGMcp9FAZr+XKGaByzNjIjRozgVl+aUqlUvPHGG7zxxhstWJUQQghT6drVia5Rj0HUYxRfLiD/qVl0PHMSVAod7ilkgKeG7EpbUrU2xJyPIeZ8DDqNlhHuI4nqEUWYaxjWmvZ17YcwrVZ7jYwQQoj2o7a4mMvznsf655OodDq6vvceZzSl9Dryb/52fg8lNpfYamvLFjsDmUB0ejTR6dHY23RgjGcEUT2iGNxtMBq1POBS1CeNjBBCiGZVc/kymU88SWVqKuoOHXBf9SGGwYPpAjBqEpXV1WQe2I5/yjomZ+/kis1lNtsZiLY1kE8xa0+tZe2ptXTVORLZM4qonlH4dvaVZ0AJQBoZIYQQzaj6/HkyH3+CqvR0NF264PGPT9D5+NRbR2ttzZDhUTA8iqrqWi4m7CIkaS1TsnaSp7vMFjtbthkM5Fdc4qvjX/HV8a/wsHXjfu8JRPaIpIdDDzOlE62BNDJCCCGaReXZs2TOfpyaixexdnHB47NPsfHyuuV7bKw1DLonHO4Jp6amlqtJ+xlx6AemZe7gvCGfLbYGdhv0ZJZm82HKh3yY8iF9HbyJ6jkBqzr5kWaJ5KgLIYQwufKjx8h66ilqr1zBplcvPD79B9a/3Oi0saysNAQGDYeg4dTWKVQeiScq7jsey9pGhv4SW+xsidXrOFF4mhNJf0GlwPatW5nY70EiPCNw0Do0UzrRmkgjI4QQwqRK4+LJnjOHurIydP7+uH/yMVadmnaPGI1aRf/AEAgMoa5OQfNzIg/Hfc+M7B9J1+exxc5Aok5H8pVjJB84xpsHljC062Am9nuIEe4j5Ovc7Zg0MkIIIUym+KefOD//9yhVVRhCQnBbuRKNna1JP0OtVuHbfzC+/QejKG/TMe0YXWO/ZUbmFtLt8thia8sJrQ378xPYn5+AFg33dgvlAb9HCXUJxUYjdxFuT6SREUIIYRLVOTlkPz8PamoAUOt0XPnnV2j79UPn64uVk5PJv2mkUqno69Ofnt792Lw5iHv6edMjbi3lOZs5rb/AVjsD2dawI3cfO3L3ocWKYOcg7vMczTDXYbh1cDNpPaLlSSMjhBDCJNR2dmh796YyNRWAkj17KNmzx/i6plMndD790Pr4oOvng87XBxsvL1Qa09wbRqWCXr360K/fq8CrnEs/i3/Mvyi4sIlTuhy22+rJt4KYiweIuXgAAK8OnoS53UuYaxhDnIeg1TTP07lF85FGRgghhElo7O3pue7f1Fy5QuWJE1QcT6UiLZXK1DQqz56l9soVSmMPUBp7wPgelU6Htk8fdD4+6Hz6ofPxQdunD2q9vsn19PDqSQ+vV4BXOHfuNMG7v6IqZyPndZeJMehI0WpJL84gPTWDr1O/RqfRMcR5CGGuYYS5huFp79nkGkTzk0ZGCCGESVl16oTV0KHYDh1qHKurqKDy1OlfGptUKlLTqDhxAqWsjIojR6g4cuT/b0CtxsbLy9jcaH180Pn4YNW5813X1KOHNz16vIGiLObnlHh6x/6T7plbydCVss+gZ59eRx4V7Du/j33n9wHg3sHd2NQEOQeht2p6cyVMTxoZIYQQzU6t06Hv74++v79xTKmtpSozk8q0tF9mb9KoSE2l9tIlqs6epersWYo2bzaub+XkdG3GxqcfOh9fdD79sHZzQ6VWN7oOlUqF/y/ffqqqrqEoNpoxid+wIH8XuTbV7DPo2K/Xk6jTkVWcxZq0NaxJW4ON2oYhzkMY5jKMMLcwetj3kDsLtxLSyAghhDALlUaDtkcPtD16YB8ZaRyvyc+/1tRcPzV1PJWqzExq8vIoycurd92N2s4Obb++2PTpi31VFZU9eqDp1w+1ze2/mWRjbcWQ+8bDfeMpLinm0u4fGHDsO357NY5qdR0H9Tr26fXsNthzyaqK2JxYYnNiee/Qe7jauV5ralzDCOkeIl/vNiNpZIQQQrQqVl27Yte1K3b33mscqy0ppfLkSSpSjxtncCpPnaKupITyQ4cpP3QYZyDrhx/A2hptr17o+vVD5+tz7VtT/fqhsbe/6Wd2sOvAPeNnwfhZ5OVe4ORP/8T5zDpeKzvOq5cLOGdtxU96O3Z06MYJmyrOl5znu5Pf8d3J77BSWzHYaTBhrmEMcx2Gd0dvma1pQdLICCGEaPU0drYYBg3EMGigcUyprqby3DkqU1Mp+/k4Ofv3Y5efT11REZVpaVSmpVG4fr1xfWs3twbfmrLq1q1B0+HUrTtOUxcBi0g//TNZe77CI/s/PFF0nieKrlKmUvGTrhPbuvTkuG0tuVWXibsYR9zFON4//D7dDN2M19YM7T4UOxu7FtpLlkkaGSGEEG2SytoaXZ8+6Pr0wRAVRbyfL5GRkaguXaLi+gXFv5yaqs7JoTo7m+rsbIq37zBuQ9Oxo/GaG8PgQRiCgurN3Hh5++Hl/S5K3dscT9zL1YNf0/fSNsaXFzA+uwAFiLN2YadLf844ajlSmEpuWa7xid1WKisCnAK41/VeIjwjcLd3N8Oeat+kkRFCCNFuqFQqrF1csHZxocPo0cbx2sJCKtJOXDs1lXrtouLKM2eovXqVsgMHKTtwkILPPgO1Gp2vL7ZDQzCEDMUweBBqgwGVWo3vkBEwZARVVVUkxaynJvlf+BfFMLQ6h6EZOZABidoAUvqEc97ZwMG8eDKKMjice5jDuYdZkbgC3y6+jPUaS4RnhNyMz0SkkRFCCNHuaRwcsA0JxjYk2DhWV1lJ5enTVKamUn7sGGXxCVSdPUvFsWNUHDvG5X98CtbW6AcMwDYkBMPQEPSBgdjY2DBw9BQYPYXiwgLid63BkPod/pXJDKpMYdDRFEqO6DneeTRlg17mgiP8lLWL+IvxHL98nOOXj/OXw3/Bv4v/tabGKwIXOxcz7p22TRoZIYQQFkmt1aL380Pv50fHhx4CoDo3j7L4OEoPXpulqc7JofzwYcoPH4a//x2VVnvtFFTIUGyHhmDn50fwA8/CA8+Sk36CjJ8+xTNrPS7kEnxlE+zcRKbKBS+vybwQ9jlHak6zLX0bCbkJHLt8jGOXj/H+4fcZ4DiACK8IxnqNxdn2zp4SbumkkRFCCCF+Yd3NCYcJE3CYMAGAquxsyg4epPRgHKVxB6nNv2S8O3E+oLa1xRAUhGFoCJ1DQ+k+8x0U5W2Ox/1IafyX+F3ZhQc5eJxbSe3Zv1OlH0wP/6ksnvAq+3IP8GPGjxy6eIgjl45w5NIRlh1aRkDXAMZ6jWWM5xhpahpBGhkhhBDiJmzc3LB56CE6PvQQiqJQdeYMpQfjKIs7SGl8AnWFhZTs3k3J7t3AtedJGUJC6D40BMOkd6ju7EDCT6uxS/0XPlXHGFBxCA4doijBFk/HMfwhdCaOYe+wI2snP6b/SGJuIin5KaTkp7A0YSkDnQYamxong5N5d0YrJY2MEEII0QgqlQqttzdab286/3Y6Sm0tFWlplP0yW1N26DC1V65QHB1NcXQ0AFbduuE6NARDyEKyu3ci++cN9Di/kW5cYujl9bBpPelb3PHwepB3wxej6qhne8Z2tqVvIzEvkaS8JJLykng3/l1jUxPhFYGj3tG8O6MVkUZGCCGEuAsqjcZ4jU2Xx2ejVFdTfvTYtdmag3GUJyZSk5tL4YaNFG7YCICjhwe1QVM5bq+ioiwJH+UgXmThdfZ/qfnoA47qg+kzYCq/GbWKq7WF7MjYwY/pP5Kcn0xiXiKJeYm8E/8OQ5yH8Jvev2GU6ygz7wXzk0ZGCCGEMAGVtbXxpn2Oc+ZQV1FBeVLStVNRBw9SfuwY1ZmZFGZmogL0QGanPlQ522Otz8WjcxYBnQ6ijj9IQfyfONs1kpCwx5keOZ3csly2pW/jx4wfOZJ/hISLCSRcTKC7bXcG1Q1iZM1IrK2tzb0LzEIaGSGEEKIZqHU6bENDsQ0NBaC2pISyhATKDh2iPCmZiqNHqbtyBasrV1CADLqiaNRYd6rGwbGM/l03oM/6gdMbe5Dv/TDjw2fxmN9j5JTksPHMRtakreFC6QU2s5l96/cx1WcqU/tNpbPu7p8S3hZJIyOEEEK0AI2dHR1GjqTDyJEA1FVVUXHsZ8qTEilLTKI8KYnaggJqLmm4fKkDpF17n02HYrwcV1G35W8c9uiPZvRsnrj3cWb6zWTdyXWsOryKgqoCVqWs4vNjn/OA9wPM8JuBewfLuIuwNDJCCCGEGahtbIynoro8DoqiUJ2R8UtTk0hZUhJVp89QVWxFVbEVnANDQgaa//wP6Y5/orBnP4LGPYpe9yzaQR34MvVLfr78M9+e+JbvT35PhGcEM/1n4tfFz9xRm5U0MkIIIUQroFKpsPHywsbLi44PTga49giF5GTKE5MoiNlN3cnT1FZBbQ4Yck5Rve/P9FFDrYsT7w0fRX7f4XxtfYjtxQlEp0cTnR5NSPcQZvvPJrR7aLt8Krc0MkIIIUQrpenYkQ4jRtBhxAicFvwepaqK4pQU0td+jibpINa5JdRWaLDKzqPkm3+hB54EnnrmMb4YWEj0uWjiLsQRdyGOgU4D+Z+h/0PvTr3NHcuk1OYuQAghhBCNo7KxwT4oiAHv/B2/HxOxXf8fzk0ZjHYodPQuRetQDUDdP/7JIwU92ThhPb/1+S16Kz1JeUlM+c8U/pr4VypqKsycxHSkkRFCCCHaKCfXnlQPfhi3j5K5/NLfKHywL1aGGlRVCj3Wvor+f0dy388FfHHPh4x0H0mNUsMnRz9h8obJxObEmrt8k5BGRgghhGjjVGo1/mETGfjiZqynPQFA/kl7HJUChmaswvuLMcxMymKR20ycDE5kl2Tzu+2/48W9L3K5/LKZq28aaWSEEEKIdsTt8adQabXUXNWQ5DifNCsfbFS1DCr+if8X8wb/e+ISY2z8UKvUbDm3hYnrJ/LDyR+oU+rMXfpdkUZGCCGEaEesOnXCPjISANcyW/r96SAnH9hMXMf7KVds8K9JZ/mJrfw9uwgPxZ6iqiIWH1jMzOiZnLpyyszV3zlpZIQQQoh2RuvdC4DaggIA+gSGETL/GyrmHiO253wu4siwqgI2pB9j/uUitIraeDHwisMrKK8pN2f5d0QaGSGEEKKdUTs4AFBbWFhvvJNjN+55bDGdXz5OwuClnNP04vGiq2zKymJkaRk1Sg2fHvuUyRsmE5MdY47S75g0MkIIIUQ7o7lJI3OdjVZL0ITf4f3HQxwbs5qLNkH8Ne8Sf83Nx7mmhvMl53lm5zMs2PV78svyW7L0O9YmGpmVK1fi5eWFTqcjJCSE+Ph4c5ckhBBCtFpqvR6Auspb3y9GpVbjP2w8gS/+SMaju7DVhfNt1iVmFBahURS2Z+7g/u8j+OLwx1TXVbdE6Xes1Tcy3377LQsWLOC1114jMTGRgIAAxo4dS15enrlLE0IIIVollbUNAEpVVaPf49lvEMHPfw3PJDOsw6N8mFOKX2Ul5dTw/rEPuO/LISxaO5vjeceaq+y70uobmeXLl/Pkk08ya9YsfH19WbVqFQaDgc8++8zcpQkhhBDtTmcnV0JnvcugBT8zv+tzzC7Q0KWmlmJ1HVtLEnhk61SiPgvinQ0LyMw7be5yW/ezlqqqqjh8+DAvv/yycUytVhMeHs6BAwdu+J7KykoqKyuNy0VFRQBUV1dTXX3zabHrr91qnfbIEnNbYmawzNyWmBksM7clZoab5665fkpJrbnrfaLWWDN4/BwGM4eIoweIif+An2uPsN/WmixNBauvbmfNlm30rIKpXR5l8sQXm5Tl1xpbt0pRFMWkn2xCOTk5uLq6EhsbS2hoqHF80aJF7Nmzh7i4uAbvef3111m8eHGD8W+++QaDwdCs9QohhBCtge3x47h++RXl7u5kPfesybZbW1tDYW4KWZUxHNXnkaa7dmLn+aJxOHmEmexzAMrKypg2bRqFhYXY29vfdL1WPSNzN15++WUWLFhgXC4qKsLd3Z2IiIhb7ojq6mq2b9/OmDFjsLa2bolSWwVLzG2JmcEyc1tiZrDM3JaYGW6euzYsjOqICFQ2NvTv18/EnzrR+LuTGckcPPkj9495jC5du5v0U66fUbmdVt3IODo6otFoyM3NrTeem5uLs7PzDd+j1WrRarUNxq2trRv1h7ux67U3lpjbEjODZea2xMxgmbktMTM0zG3dpQu6Ll2a/XP9vIPw8w5qlm039ji26ot9bWxsGDx4MDt37jSO1dXVsXPnznqnmoQQQghhmVr1jAzAggULmDFjBkOGDCE4OJgVK1ZQWlrKrFmzzF2aEEIIIcys1TcyjzzyCPn5+bz66qtcvHiRwMBAoqOj6datm7lLE0IIIYSZtfpGBuC5557jueeeM3cZQgghhGhlWvU1MkIIIYQQtyKNjBBCCCHaLGlkhBBCCNFmSSMjhBBCiDZLGhkhhBBCtFnSyAghhBCizZJGRgghhBBtljQyQgghhGizpJERQgghRJvVJu7s2xSKogC3fxx4dXU1ZWVlFBUVWdSTUy0xtyVmBsvMbYmZwTJzW2JmaN+5r//cvv5z/GbafSNTXFwMgLu7u5krEUIIIcSdKi4uxsHB4aavq5TbtTptXF1dHTk5OYwaNYpDhw4BEBQUREJCQr3fFxUV4e7uTlZWFvb29k3+3P/+jKasd7PXbzT+67FbLTdH7sZmbsy6jc19u/0gx1qOtRxrOdZ3Q45109Y1xbFWFIXi4mJcXFxQq29+JUy7n5FRq9W4ublhZWVlPMgajeaGvwewt7c3yV+CX2/3bte72es3Gv/12K2WmyN3YzM3Zt3G5r7dfpBjLcca5Fg3hRzrpq0nx/rW47fbD7eaibnOYi72ffbZZ2/7++b6vKasd7PXbzT+67FbLTdH7jvZpqly324/yLGWY21Kcqybtq4c61uPy7G+8zrAAk4tNVZRUREODg4UFhaapJtvKywxtyVmBsvMbYmZwTJzW2JmsNzc/81iZmRuR6vV8tprr6HVas1dSouyxNyWmBksM7clZgbLzG2JmcFyc/83mZERQgghRJslMzJCCCGEaLOkkRFCCCFEmyWNjBBCCCHaLGlkhBBCCNFmSSMjhBBCiDZLGplGmjx5Mp06deKhhx5q8NqmTZvo27cvvXv35h//+IcZqmsZy5Ytw8/PD39/f77++mtzl9Mi/vKXv+Dn54evry/PP//8bR9e1h6cOHGCwMBA4y+9Xs/69evNXVazO3fuHCNHjsTX15f+/ftTWlpq7pJahJeXFwMGDCAwMJCRI0eau5wWU1ZWhqenJwsXLjR3KS3i6tWrDBkyhMDAQPz9/fnkk0/MXZLpKKJRdu3apWzcuFH5zW9+U2+8urpa6d27t5Kdna0UFxcrffr0US5dumSmKpvPkSNHlIEDByrl5eVKWVmZEhISoly5csXcZTWrvLw8pWfPnkp5eblSU1Oj3HPPPUpsbKy5y2pRxcXFSpcuXZSSkhJzl9Lshg8fruzdu1dRFEW5fPmyUl1dbeaKWoanp6dSXFxs7jJa3CuvvKJMmTJFeeGFF8xdSouoqalRSktLFUVRlJKSEsXLy6vd/KySGZlGGjFiBB06dGgwHh8fj5+fH66urtjZ2REZGcm2bdvMUGHzSk1NJTQ0FJ1Oh16vJyAggOjoaHOX1exqamqoqKigurqa6upqnJyczF1Si9q4cSOjR4/G1tbW3KU0q59//hlra2vuvfdeADp37oyVVbt/FJ3FOnXqFGlpaURGRpq7lBaj0WgwGAwAVFZWoihKu5lhbheNzN69e5kwYQIuLi6oVKobToOvXLkSLy8vdDodISEhxMfHm+Szc3JycHV1NS67urpy/vx5k2z7TjT3PvD392f37t1cvXqVK1eusHv3brPk/G/Nnblr164sXLgQDw8PXFxcCA8Pp1evXiZMcHda8s/7d999xyOPPNLEipuuuTOfOnUKOzs7JkyYwKBBg3jrrbdMWP3da4ljrVKpuO+++wgKCmL16tUmqvzutUTmhQsX8vbbb5uoYtNoidxXr14lICAANzc3/vCHP+Do6Gii6s2rXfyXo7S0lICAAGbPns2DDz7Y4PVvv/2WBQsWsGrVKkJCQlixYgVjx47lxIkTxv9hBwYGUlNT0+C927Ztw8XFpdkzNFVz74Pr14iMGjUKBwcHhg4dikajafZct9LcmfV6PZs2bSI9PR29Xk9kZCR79+5l+PDhzZ7tVlrqz3tRURGxsbH861//at5AjdDcmWtqaoiJiSE5ORknJyfGjRtHUFAQY8aMafZst9ISx3rfvn24urpy4cIFwsPD6d+/PwMGDGj2bDfT3JkTEhLo06cPffr0ITY2ttnzNFZLHOuOHTuSkpJCbm4uDz74IA899BDdunVr9mzNztzntkwNUNatW1dvLDg4WHn22WeNy7W1tYqLi4vy9ttv39G2d+3a1eAamf379ysPPPCAcXnevHnK6tWr77xwE2rOfXDd448/rmzatKkpZZpUc2T+7rvvlGeeeca4vHTpUuXdd981Sb2m0pzH+quvvlKmT59uijJNqjkyx8bGKhEREcblpUuXKkuXLjVJvabSEn+vFy5cqHz++edNqNK0miPzSy+9pLi5uSmenp5Kly5dFHt7e2Xx4sWmLLvJWuJYz5kzR/n++++bUmar0S5OLd1KVVUVhw8fJjw83DimVqsJDw/nwIEDTd5+cHAwx44d4/z585SUlLB161bGjh3b5O2akqn2QV5eHnDtWy3x8fGtLud/M0Vmd3d3YmNjqaiooLa2lt27d9O3b9/mKtkkTPnnvbWcVrodU2QOCgoiLy+PK1euUFdXx969e/Hx8Wmukk3CFLlLS0spLi4GoKSkhJ9++gk/P79mqdcUTJH57bffJisri/T0dJYtW8aTTz7Jq6++2lwlm4Qpcufm5hqPdWFhIXv37m31/541Vrs4tXQrly5dora2tsH0Wbdu3UhLS2v0dsLDw0lJSaG0tBQ3Nze+//57QkNDsbKy4v3332fkyJHU1dWxaNEiunTpYuoYTWKqfTBp0iQKCwuxtbXl888/b9UXQ5oi89ChQ4mKimLgwIGo1WpGjx7NxIkTm6NckzHVsS4sLCQ+Pp61a9eaukSTM0VmKysr3nrrLYYPH46iKERERDB+/PjmKNdkTJE7NzeXyZMnA1BbW8uTTz5JUFCQyWs1FVP9+W5rTJE7IyODp556yniR79y5c+nfv39zlNviWu9PolZmx44dN31t4sSJrf4HnCmYYgarrXnzzTd58803zV1Gi3NwcCA3N9fcZbSoyMhIi/oWC0DPnj1JSUkxdxlmM3PmTHOX0GKCg4NJTk42dxnNot2fWnJ0dESj0TT4Rzk3NxdnZ2czVdWyLHEfWGJmsMzclpgZLDO3JWYGy83dWO2+kbGxsWHw4MHs3LnTOFZXV8fOnTsJDQ01Y2UtxxL3gSVmBsvMbYmZwTJzW2JmsNzcjdUuTi2VlJRw+vRp4/K5c+dITk6mc+fOeHh4sGDBAmbMmMGQIUMIDg5mxYoVlJaWMmvWLDNWbVqWuA8sMTNYZm5LzAyWmdsSM4Pl5jYJM39ryiR27dqlAA1+zZgxw7jOBx98oHh4eCg2NjZKcHCwcvDgQfMV3AwscR9YYmZFsczclphZUSwztyVmVhTLzW0KKkVpJ/coFkIIIYTFaffXyAghhBCi/ZJGRgghhBBtljQyQgghhGizpJERQgghRJsljYwQQggh2ixpZIQQQgjRZkkjI4QQQog2SxoZIYQQQrRZ0sgIIYQQos2SRkYICzBixAjmz59v7jLMYubMmahUKlQqFevXrwcgPT0dlUpFcnKyST/r9ddfJzAwsEnb+OKLL4z1WuoxE+JOSCMjhKCgoIC5c+fSt29f9Ho9Hh4ePP/88xQWFpq7NJMYN24cFy5cIDIy0uTbLi8vx9bWtt4D/5rikUce4cKFC/JUYyEaqV08/VoI0TQ5OTnk5OSwbNkyfH19ycjI4OmnnyYnJ4cffvjB3OU1mVarxdnZuVm2vX37djw9PfH29jbJ9vR6PXq9HhsbG5NsT4j2TmZkhLAQdXV1LFq0iM6dO+Ps7Mzrr79ufM3f35+1a9cyYcIEevXqxahRo3jzzTf5z3/+Q01NjXG9PXv2EBwcjFarpXv37rz00kv1Xr+Zjz/+GBcXF+rq6uqNT5o0idmzZwNw5swZJk2aRLdu3bCzsyMoKIgdO3bUW9/Ly4s///nPTJ06FVtbW1xdXVm5cmUT9so1tbW1zJ49m379+pGZmQlAWloaYWFh6HQ6fH192bFjR73TU9dt2LCBiRMn3nC7Z86coWfPnjz33HNcfz7vJ598gru7OwaDgcmTJ7N8+XI6duzY5AxCWCppZISwEF9++SW2trbExcWxdOlS3njjDbZv337T9QsLC7G3t8fK6trE7fnz54mKiiIoKIiUlBQ+/PBDPv30U5YsWXLbz3744Ye5fPkyu3btMo4VFBQQHR3N9OnTASgpKSEqKoqdO3eSlJTEuHHjmDBhgrGxuO69994jICCApKQkXnrpJebNm3fLHLdTWVnJww8/THJyMjExMXh4eFBbW8sDDzyAwWAgLi6Ojz/+mD/+8Y8N3ltXV8emTZuYNGlSg9eOHDlCWFgY06ZN429/+xsqlYr9+/fz9NNPM2/ePJKTkxkzZgxvvvnmXdcuhAAUIUS7d9999ylhYWH1xoKCgpQXX3zxhuvn5+crHh4eyiuvvGIce+WVV5S+ffsqdXV1xrGVK1cqdnZ2Sm1t7W1rmDRpkjJ79mzj8kcffaS4uLjc8r1+fn7KBx98YFz29PRUxo0bV2+dRx55RImMjLzpNmbMmKFMmjSp3ti5c+cUQImJiVFGjx6thIWFKVevXjW+vnXrVsXKykq5cOGCcWz79u0KoKxbt844tn//fsXJycmY4bXXXlMCAgKU/fv3K506dVKWLVvWoNb777+/3tj06dMVBweHBnXfd999yrx5826aSwhxjczICGEhBgwYUG+5e/fu5OXlNVivqKiI+++/H19f33qnn1JTUwkNDUWlUhnHhg0bRklJCdnZ2bf9/OnTp7N27VoqKysBWL16NY8++ihq9bV/hkpKSli4cCE+Pj507NgROzs7UlNTG8zI/Poi2NDQUFJTU2/7+TcydepUSktL2bZtGw4ODsbxEydO4O7uXu+6muDg4Abv37BhA+PHjzdmAMjMzGTMmDG8+uqrvPDCC/XWP3HiRIPt3Gi7QojGk0ZGCAthbW1db1mlUjW4ZqW4uJhx48bRoUMH1q1b1+A9TTFhwgQURWHz5s1kZWURExNjPK0EsHDhQtatW8dbb71FTEwMycnJ9O/fn6qqKpPV8GtRUVEcOXKEAwcO3NX7N27c2OD6mK5duxIcHMyaNWsoKioyRZlCiFuQRkYIAVybiYmIiMDGxoaNGzei0+nqve7j48OBAweMF60C7N+/nw4dOuDm5nbb7et0Oh588EFWr17NmjVr6Nu3L4MGDaq3rZkzZzJ58mT69++Ps7Mz6enpDbZz8ODBBss+Pj53mPaaOXPm8M477zBx4kT27NljHO/bty9ZWVnk5uYaxxISEuq999SpU2RkZDBmzJh643q9nk2bNqHT6Rg7dizFxcX1tvvr7fx6WQhxZ6SREUIYm5jS0lI+/fRTioqKuHjxIhcvXqS2thaAZ555hqysLObOnUtaWhobNmzgtddeY8GCBfVOrdzK9OnT2bx5M5999lm92RiA3r178+9//5vk5GRSUlKYNm1agxkjuNbwLF26lJMnT7Jy5Uq+//575s2bd9fZ586dy5IlSxg/fjz79u0DYMyYMfTq1YsZM2Zw5MgR9u/fz5/+9CcA46m1DRs2EB4ejsFgaLBNW1tbNm/ejJWVFZGRkZSUlBg/a8uWLSxfvpxTp07x0UcfsXXr1nqn64QQd0YaGSEEiYmJxMXFcfToUby9venevbvxV1ZWFgCurq5s2bKF+Ph4AgICePrpp3n88ceNP+AbY9SoUXTu3JkTJ04wbdq0eq8tX76cTp06cc899zBhwgTGjh1bb8bmuhdeeIFDhw4xcOBAlixZwvLlyxk7dmyT8s+fP5/FixcTFRVFbGwsGo2G9evXU1JSQlBQEE888YTxW0vXZ6pu9bVrADs7O7Zu3YqiKNx///2UlpYybNgwVq1axfLlywkICCA6Oprf//73DWa/hBCNp1L+e55YCCFaMS8vL+bPn39Ht+6fOXMmV69ebXD/lzu1f/9+wsLCOH36NA4ODnTv3p3s7Gy6devWpO0++eSTpKWlERMTU298xIgRBAYGsmLFiiZtX4j2TmZkhBDt3qZNm7Czs2PTpk2Nfs+6devYvn076enp7Nixg6eeeophw4bRq1cvCgoKWL58+V01McuWLSMlJYXTp0/zwQcf8OWXXzJjxgzj66tXr8bOzq5BYyOEuDGZkRFCNFlmZia+vr43ff348eN4eHg0+XPuZkYmLy/P+O2h7t27Y2tr26j3ffXVVyxZsoTMzEwcHR0JDw/n/fffp0uXLndTutGUKVPYvXs3xcXF9OzZk7lz5/L0008bXy8uLjZeZNyxY0ccHR2b9HlCtHfSyAghmqympuaG3zC6zsvLy3iHYCGEMCVpZIQQQgjRZsk1MkIIIYRos6SREUIIIUSbJY2MEEIIIdosaWSEEEII0WZJIyOEEEKINksaGSGEEEK0WdLICCGEEKLN+j+h5mk4JriZNAAAAABJRU5ErkJggg==",
258      "text/plain": [
259       "<Figure size 640x480 with 1 Axes>"
260      ]
261     },
262     "metadata": {},
263     "output_type": "display_data"
264    }
265   ],
266   "source": [
267    "my_sim.plot_profile('h2o_vap',logx=True,label='Time- and grid-averaged')\n",
268    "my_sim.plot_profile('h2o_vap',t=0,logx=True,label='Time=0, grid-averaged')\n",
269    "my_sim.plot_profile('h2o_vap',t=0,lat=0,logx=True,label='Time=0, equatorial value zonally-averaged')\n",
270    "my_sim.plot_profile('h2o_vap',t=0,lat=0,lon=0,logx=True,label='Time=0, equatorial value, lon = 0°')\n",
271    "plt.legend()\n",
272    "plt.grid()"
273   ]
274  },
275  {
276   "cell_type": "markdown",
277   "id": "e73804b8-98f3-4283-8c5d-153465db88e7",
278   "metadata": {},
279   "source": [
280    "## Interactive visualization\n",
281    "Now we go fancy!"
282   ]
283  },
284  {
285   "cell_type": "markdown",
286   "id": "7f745af6-fe37-4075-b433-abb03ad3492e",
287   "metadata": {},
288   "source": [
289    "#### Define widgets\n",
290    "Let's define some widgets (see [here](https://ipywidgets.readthedocs.io/en/latest/) for documenttion on jupyter's widgets):"
291   ]
292  },
293  {
294   "cell_type": "code",
295   "execution_count": 9,
296   "id": "56b07967-3900-4454-ac0d-29cfae7cc1f9",
297   "metadata": {},
298   "outputs": [],
299   "source": [
300    "import ipywidgets as widgets\n",
301    "\n",
302    "# Coordinates\n",
303    "w_lat = widgets.FloatSlider(min=-90, max=90, step=1, description=\"latitude\")\n",
304    "w_lon = widgets.FloatSlider(min=-180, max=180, step=1, description=\"longitude\")\n",
305    "w_alt = widgets.FloatSlider(min=0, max=max(my_sim.data[\"altitude\"]), step=1, description=\"altitude\")\n",
306    "w_time = widgets.FloatSlider(min=0, max=max(my_sim[\"Time\"]), step=0.1, description=\"time\")\n",
307    "\n",
308    "# Fields\n",
309    "w_single_sp   = widgets.Select(options=my_sim.network.species, value=\"h2o_vap\", description=\"species\")\n",
310    "w_multiple_sp = widgets.SelectMultiple(options=my_sim.network.species, value=[\"h2o_vap\"], description=\"species\")\n",
311    "w_reactions   = widgets.SelectMultiple(options=my_sim.network.reactions.keys(), value=[\"co2 + hv -> co + o\"], description=\"reactions\")\n",
312    "\n",
313    "# Miscelaneous\n",
314    "w_average = widgets.Checkbox(description='show average')"
315   ]
316  },
317  {
318   "cell_type": "markdown",
319   "id": "ddeec0ba-12c2-4bd9-a38f-98a0e1949f3b",
320   "metadata": {},
321   "source": [
322    "#### OH meridional slice at various longitudes\n",
323    "OH is a photolysis product with a short lifetime, so it exist only on the dayside. Scrolling through the longitudes will exhibit this dichotomy."
324   ]
325  },
326  {
327   "cell_type": "code",
328   "execution_count": 10,
329   "id": "56e81d82-fd55-464c-a746-66cf23822957",
330   "metadata": {},
331   "outputs": [
332    {
333     "data": {
334      "application/vnd.jupyter.widget-view+json": {
335       "model_id": "14ac96bee52944c99e53df9d8fd6ed33",
336       "version_major": 2,
337       "version_minor": 0
338      },
339      "text/plain": [
340       "VBox(children=(FloatSlider(value=0.0, description='longitude', max=180.0, min=-180.0, step=1.0), Output()))"
341      ]
342     },
343     "execution_count": 10,
344     "metadata": {},
345     "output_type": "execute_result"
346    }
347   ],
348   "source": [
349    "# Slice plotting unction\n",
350    "def make_slice(lon):\n",
351    "    my_sim.plot_meridional_slice('oh',t=0,lon=lon,logcb=True)\n",
352    "\n",
353    "# Define interactive output\n",
354    "out = widgets.interactive_output(make_slice,{'lon':w_lon})\n",
355    "\n",
356    "# Build the output frame\n",
357    "widgets.VBox([w_lon,out])"
358   ]
359  },
360  {
361   "cell_type": "markdown",
362   "id": "3379c31a-95c6-4ab3-b178-20b706eed1f3",
363   "metadata": {},
364   "source": [
365    "#### Water vapor atlas\n",
366    "We can have several action widgets"
367   ]
368  },
369  {
370   "cell_type": "code",
371   "execution_count": 11,
372   "id": "fd7b4103-0436-4bda-bb39-96666c39f332",
373   "metadata": {},
374   "outputs": [
375    {
376     "data": {
377      "application/vnd.jupyter.widget-view+json": {
378       "model_id": "7931087537c2471289e1e968f1d99fc2",
379       "version_major": 2,
380       "version_minor": 0
381      },
382      "text/plain": [
383       "VBox(children=(FloatSlider(value=0.0, description='time', max=1.0), FloatSlider(value=0.0, description='altitu…"
384      ]
385     },
386     "execution_count": 11,
387     "metadata": {},
388     "output_type": "execute_result"
389    }
390   ],
391   "source": [
392    "# Atlas plotting function\n",
393    "def make_atlas(t,alt):\n",
394    "    my_sim.plot_atlas('h2o_vap',t=t,alt=alt)\n",
395    "    plt.title('t='+str(int(t))+' sol, altitude='+str(int(alt))+' km')\n",
396    "\n",
397    "# Define interactive output\n",
398    "out = widgets.interactive_output(make_atlas,{'t':w_time,'alt':w_alt})\n",
399    "\n",
400    "# Build the output frame\n",
401    "widgets.VBox([w_time,w_alt,out])"
402   ]
403  },
404  {
405   "cell_type": "markdown",
406   "id": "4b6bb2f8-1aff-4872-9580-7c4bd9598c31",
407   "metadata": {},
408   "source": [
409    "#### Temperature profile at various times and locations"
410   ]
411  },
412  {
413   "cell_type": "code",
414   "execution_count": 12,
415   "id": "e4691cae-637b-4555-ac87-d556521a4c3f",
416   "metadata": {},
417   "outputs": [
418    {
419     "data": {
420      "application/vnd.jupyter.widget-view+json": {
421       "model_id": "be3fdd341c364ae6a89147d4941723b6",
422       "version_major": 2,
423       "version_minor": 0
424      },
425      "text/plain": [
426       "HBox(children=(VBox(children=(FloatSlider(value=0.0, description='time', max=1.0), FloatSlider(value=0.0, desc…"
427      ]
428     },
429     "execution_count": 12,
430     "metadata": {},
431     "output_type": "execute_result"
432    }
433   ],
434   "source": [
435    "# Profile plotting unction\n",
436    "def make_prof(t,lon,lat,avg):\n",
437    "    my_sim.plot_profile('temp',t=t,lon=lon,lat=lat,label='lon='+str(int(lon))+'°, lat='+str(int(lat))+'°')\n",
438    "    if avg:\n",
439    "        my_sim.plot_profile('temp',t=t,label='average')\n",
440    "    plt.legend()\n",
441    "    plt.grid()\n",
442    "\n",
443    "# Define interactive output\n",
444    "out = widgets.interactive_output(make_prof,{'t':w_time,'lon':w_lon,'lat':w_lat,'avg':w_average})\n",
445    "\n",
446    "# Build the output frame\n",
447    "widgets.HBox([widgets.VBox([w_time,w_lon,w_lat,w_average]),out])"
448   ]
449  },
450  {
451   "cell_type": "markdown",
452   "id": "9ad5a23a-7ed6-4f56-abbf-3cf16daa087a",
453   "metadata": {},
454   "source": [
455    "#### Extensive species visualizer\n",
456    "Combining the above examples for arbitrary species"
457   ]
458  },
459  {
460   "cell_type": "code",
461   "execution_count": 13,
462   "id": "e4db2d8b-6183-4fbe-8ca1-940ef15aaa28",
463   "metadata": {},
464   "outputs": [
465    {
466     "data": {
467      "application/vnd.jupyter.widget-view+json": {
468       "model_id": "ec9ab05df80e4da2964b3ee2dc436940",
469       "version_major": 2,
470       "version_minor": 0
471      },
472      "text/plain": [
473       "HBox(children=(VBox(children=(Select(description='species', index=6, options=('o2', 'o', 'o1d', 'o3', 'h2o2', …"
474      ]
475     },
476     "execution_count": 13,
477     "metadata": {},
478     "output_type": "execute_result"
479    }
480   ],
481   "source": [
482    "def make_visualizer(sp,t,alt):\n",
483    "    \n",
484    "    plt.subplot(131) # zonal average\n",
485    "    my_sim.plot_meridional_slice(sp,t=t,logcb=True)\n",
486    "    plt.plot([-90,90],[alt,alt],ls='--',lw=3,c='white')\n",
487    "\n",
488    "    plt.subplot(132) # atlas\n",
489    "    my_sim.plot_atlas(sp,t=t,alt=alt)\n",
490    "    plt.title('t='+str(int(t))+' sol, altitude='+str(int(alt))+' km')\n",
491    "\n",
492    "    plt.subplot(133) # profile\n",
493    "    my_sim.plot_profile('temp',t=t)\n",
494    "    plt.grid()\n",
495    "\n",
496    "    plt.subplots_adjust(right=2)\n",
497    "\n",
498    "out = widgets.interactive_output(make_visualizer,{'sp':w_single_sp,'t':w_time,'alt':w_alt})\n",
499    "\n",
500    "widgets.HBox([widgets.VBox([w_single_sp,w_time,w_alt]),out])"
501   ]
502  },
503  {
504   "cell_type": "markdown",
505   "id": "b8d39b59-07f2-4988-8e5c-558221c825a1",
506   "metadata": {},
507   "source": [
508    "#### Multi-species profiles\n",
509    "Shift+click to select multiple species (Command+click on Mac)"
510   ]
511  },
512  {
513   "cell_type": "code",
514   "execution_count": 14,
515   "id": "9dd59a1c-58c4-41f0-9730-9e97d2607c6a",
516   "metadata": {},
517   "outputs": [
518    {
519     "data": {
520      "application/vnd.jupyter.widget-view+json": {
521       "model_id": "07740f3642a44b72bbd6bf3777dad80f",
522       "version_major": 2,
523       "version_minor": 0
524      },
525      "text/plain": [
526       "HBox(children=(VBox(children=(SelectMultiple(description='species', index=(6,), options=('o2', 'o', 'o1d', 'o3…"
527      ]
528     },
529     "execution_count": 14,
530     "metadata": {},
531     "output_type": "execute_result"
532    }
533   ],
534   "source": [
535    "cmap = plt.get_cmap(\"tab10\")\n",
536    "def make_sp_prof(sps,t,lon,lat,avg):\n",
537    "\n",
538    "    for i,sp in enumerate(sps):\n",
539    "        my_sim.plot_profile(sp,t=t,lon=lon,lat=lat,logx=True,label=sp,c=cmap(i))\n",
540    "        if avg:\n",
541    "            my_sim.plot_profile(sp,t=t,logx=True,c=cmap(i),ls='--')\n",
542    "    if avg: # just for the legend\n",
543    "        plt.plot([],[],c='k',label='lon='+str(int(lon))+'°, lat='+str(int(lat))+'°')\n",
544    "        plt.plot([],[],ls='--',c='k',label='average')\n",
545    "        \n",
546    "    plt.legend()\n",
547    "    plt.grid()\n",
548    "\n",
549    "out = widgets.interactive_output(make_sp_prof,{'sps':w_multiple_sp,'t':w_time,'lon':w_lon,'lat':w_lat,'avg':w_average})\n",
550    "\n",
551    "widgets.HBox([widgets.VBox([w_multiple_sp,w_time,w_lon,w_lat,w_average]),out])"
552   ]
553  },
554  {
555   "cell_type": "markdown",
556   "id": "5fb2c987-345d-4a74-b4bf-fb368eeaac2b",
557   "metadata": {},
558   "source": [
559    "#### Species-specific reaction rates"
560   ]
561  },
562  {
563   "cell_type": "code",
564   "execution_count": 15,
565   "id": "ff21a3dc-d44a-4f0e-9aa4-211741bb592d",
566   "metadata": {},
567   "outputs": [
568    {
569     "data": {
570      "application/vnd.jupyter.widget-view+json": {
571       "model_id": "42b9e7928f514fed9754edfcbce8e897",
572       "version_major": 2,
573       "version_minor": 0
574      },
575      "text/plain": [
576       "HBox(children=(VBox(children=(Select(description='species', index=6, options=('o2', 'o', 'o1d', 'o3', 'h2o2', …"
577      ]
578     },
579     "execution_count": 15,
580     "metadata": {},
581     "output_type": "execute_result"
582    }
583   ],
584   "source": [
585    "def make_reaction_rate_viz(sp,t):\n",
586    "\n",
587    "    for r in my_sim.network.get_subnetwork({'species':[sp]}):\n",
588    "        if sp in r.products:\n",
589    "            my_sim.plot_profile('rate ('+r.formula+')',t=t,logx=True,label=r.formula)\n",
590    "        elif sp in r.reactants:\n",
591    "            my_sim.plot_profile('rate ('+r.formula+')',t=t,logx=True,ls='--',label=r.formula)\n",
592    "\n",
593    "    plt.legend()\n",
594    "    plt.grid()\n",
595    "\n",
596    "out=widgets.interactive_output(make_reaction_rate_viz,{'sp':w_single_sp,'t':w_time})\n",
597    "\n",
598    "widgets.HBox([widgets.VBox([w_single_sp,w_time]),out])"
599   ]
600  },
601  {
602   "cell_type": "markdown",
603   "id": "7e0b725d-58f5-4b4e-b170-125b4707df03",
604   "metadata": {},
605   "source": [
606    "#### Profile with atlas locator\n",
607    "Here the atlas shows the column mass"
608   ]
609  },
610  {
611   "cell_type": "code",
612   "execution_count": 16,
613   "id": "b5b73171-0101-4656-b2ce-7e398070ebbb",
614   "metadata": {},
615   "outputs": [
616    {
617     "data": {
618      "application/vnd.jupyter.widget-view+json": {
619       "model_id": "71f016cdee32419b92bbaee7409e9925",
620       "version_major": 2,
621       "version_minor": 0
622      },
623      "text/plain": [
624       "HBox(children=(VBox(children=(SelectMultiple(description='species', index=(6,), options=('o2', 'o', 'o1d', 'o3…"
625      ]
626     },
627     "execution_count": 16,
628     "metadata": {},
629     "output_type": "execute_result"
630    }
631   ],
632   "source": [
633    "def make_sp_prof_atlas(sps,t,lon,lat,avg):\n",
634    "\n",
635    "    plt.subplot(121) # Vertical profile\n",
636    "    for i,sp in enumerate(sps):\n",
637    "        my_sim.plot_profile(sp,t=t,lon=lon,lat=lat,logx=True,label=sp,c=cmap(i))\n",
638    "        if avg:\n",
639    "            my_sim.plot_profile(sp,t=t,logx=True,c=cmap(i),ls='--')\n",
640    "    if avg: # just for the legend\n",
641    "        plt.plot([],[],c='k',label='lon='+str(int(lon))+'°, lat='+str(int(lat))+'°')\n",
642    "        plt.plot([],[],ls='--',c='k',label='average')\n",
643    "\n",
644    "    plt.legend()\n",
645    "    plt.grid()\n",
646    "\n",
647    "    plt.subplot(122) # Atlas\n",
648    "    my_sim.plot_atlas(sp+'_col',t=t)\n",
649    "    plt.scatter([lon],[lat],marker='o',s=[100],c=['tab:red'])\n",
650    "\n",
651    "    plt.subplots_adjust(right=2)\n",
652    "\n",
653    "out = widgets.interactive_output(make_sp_prof_atlas,{'sps':w_multiple_sp,'t':w_time,'lon':w_lon,'lat':w_lat,'avg':w_average})\n",
654    "\n",
655    "widgets.HBox([widgets.VBox([w_multiple_sp,w_time,w_lon,w_lat,w_average]),out])"
656   ]
657  },
658  {
659   "cell_type": "markdown",
660   "id": "239adb94-d3b7-4a9a-81fc-297e72e63639",
661   "metadata": {},
662   "source": [
663    "#### Species-specific reaction rates with atlas locator"
664   ]
665  },
666  {
667   "cell_type": "code",
668   "execution_count": 17,
669   "id": "c849fda1-3969-4709-bb17-fdcaff5cbf86",
670   "metadata": {},
671   "outputs": [
672    {
673     "data": {
674      "application/vnd.jupyter.widget-view+json": {
675       "model_id": "5066b8d918a54391973628bb36173d9e",
676       "version_major": 2,
677       "version_minor": 0
678      },
679      "text/plain": [
680       "HBox(children=(VBox(children=(Select(description='species', index=6, options=('o2', 'o', 'o1d', 'o3', 'h2o2', …"
681      ]
682     },
683     "execution_count": 17,
684     "metadata": {},
685     "output_type": "execute_result"
686    }
687   ],
688   "source": [
689    "def make_sp_rate_atlas(sp,t,lon,lat,avg):\n",
690    "        \n",
691    "    plt.subplot(121) # Vertical profile\n",
692    "    for r in my_sim.network:\n",
693    "        if sp in r.products:\n",
694    "            my_sim.plot_profile('rate ('+r.formula+')',t=t,lon=lon if not avg else 'avg',lat=lat if not avg else 'avg',logx=True,label=r.formula)\n",
695    "        elif sp in r.reactants:\n",
696    "            my_sim.plot_profile('rate ('+r.formula+')',t=t,lon=lon if not avg else 'avg',lat=lat if not avg else 'avg',logx=True,ls='--',label=r.formula)\n",
697    "        \n",
698    "    plt.legend()\n",
699    "    plt.grid()\n",
700    "\n",
701    "    plt.subplot(122) # Atlas\n",
702    "    my_sim.plot_atlas(sp+'_col',t=t)\n",
703    "    plt.scatter([lon],[lat],marker='o',s=[100],c=['tab:red'])\n",
704    "\n",
705    "    plt.subplots_adjust(right=1.5)\n",
706    "\n",
707    "out = widgets.interactive_output(make_sp_rate_atlas,{'sp':w_single_sp,'t':w_time,'lon':w_lon,'lat':w_lat,'avg':w_average})\n",
708    "\n",
709    "widgets.HBox([widgets.VBox([w_single_sp,w_time,w_lon,w_lat,w_average]),out])"
710   ]
711  },
712  {
713   "cell_type": "markdown",
714   "id": "ff6ad79c-d07b-4d81-83d8-fc02e24ba6d4",
715   "metadata": {},
716   "source": [
717    "## Chemical network processing"
718   ]
719  },
720  {
721   "cell_type": "markdown",
722   "id": "da719183-d81b-4dfd-948a-a275e41ae32a",
723   "metadata": {},
724   "source": [
725    "### Working with other formats"
726   ]
727  },
728  {
729   "cell_type": "markdown",
730   "id": "fd6c578a-7a59-4f1f-b180-bc514d4482a4",
731   "metadata": {},
732   "source": [
733    "We can import and export chemical network from and into various formats, not only Generic-PCM style."
734   ]
735  },
736  {
737   "cell_type": "code",
738   "execution_count": 18,
739   "id": "e25768d8-914b-4409-947d-b3aa3f3d9c87",
740   "metadata": {},
741   "outputs": [
742    {
743     "name": "stdout",
744     "output_type": "stream",
745     "text": [
746      "co + oh -> co2 + h has a custom reaction constant: add it manually\n",
747      "o2 + hv -> o + o is a photolysis: you need to add the branching ratio manually\n",
748      "o2 + hv -> o + o1d is a photolysis: you need to add the branching ratio manually\n",
749      "o3 + hv -> o2 + o1d is a photolysis: you need to add the branching ratio manually\n",
750      "o3 + hv -> o2 + o is a photolysis: you need to add the branching ratio manually\n",
751      "h2o2 + hv -> oh + oh is a photolysis: you need to add the branching ratio manually\n",
752      "h2o_vap + hv -> h + oh is a photolysis: you need to add the branching ratio manually\n",
753      "co2 + hv -> co + o is a photolysis: you need to add the branching ratio manually\n",
754      "co2 + hv -> co + o1d is a photolysis: you need to add the branching ratio manually\n",
755      "ho2 + hv -> oh + o is a photolysis: you need to add the branching ratio manually\n"
756     ]
757    }
758   ],
759   "source": [
760    "# Let's export our simulation's network into a file readable by the VULCAN model\n",
761    "my_sim.network.to_file('photochem_example/VULCAN_network.txt',format='vulcan')"
762   ]
763  },
764  {
765   "cell_type": "markdown",
766   "id": "e12f6270-65ba-44d3-8ec7-28292fb50cce",
767   "metadata": {},
768   "source": [
769    "Some notifications have been issued because one has to manually add some extra informations for some reactions. But you the file ***photochem_example/VULCAN_network.txt*** should have been correctly written, and you can use it to run a VULCAN simulation once you have added the required informations."
770   ]
771  },
772  {
773   "cell_type": "markdown",
774   "id": "0b258f20-f574-4382-b394-afcf171d1993",
775   "metadata": {},
776   "source": [
777    "### Making subnetwork"
778   ]
779  },
780  {
781   "cell_type": "markdown",
782   "id": "819b6abf-0ec5-4b53-8af5-31da362f6b86",
783   "metadata": {},
784   "source": [
785    "We can also use these tools to design and export subnetworks:"
786   ]
787  },
788  {
789   "cell_type": "code",
790   "execution_count": 19,
791   "id": "1e1585ff-dc78-44ae-9e38-3025fde45a59",
792   "metadata": {},
793   "outputs": [
794    {
795     "name": "stdout",
796     "output_type": "stream",
797     "text": [
798      "Photolysis sub-network:\n",
799      "=======================\n",
800      "o2 + hv -> o + o\n",
801      "o2 + hv -> o + o1d\n",
802      "o3 + hv -> o2 + o1d\n",
803      "o3 + hv -> o2 + o\n",
804      "h2o2 + hv -> oh + oh\n",
805      "h2o_vap + hv -> h + oh\n",
806      "co2 + hv -> co + o\n",
807      "co2 + hv -> co + o1d\n",
808      "ho2 + hv -> oh + o\n",
809      "\n",
810      "HOx sub-network:\n",
811      "=================\n",
812      "h2o2 + hv -> oh + oh\n",
813      "h2o_vap + hv -> h + oh\n",
814      "ho2 + hv -> oh + o\n",
815      "o1d + h2o_vap -> oh + oh\n",
816      "o1d + h2 -> oh + h\n",
817      "o + h2 -> oh + h\n",
818      "o + ho2 -> oh + o2\n",
819      "o + oh -> o2 + h\n",
820      "h + o3 -> oh + o2\n",
821      "h + ho2 -> oh + oh\n",
822      "h + ho2 -> h2 + o2\n",
823      "h + ho2 -> h2o_vap + o\n",
824      "oh + ho2 -> h2o_vap + o2\n",
825      "oh + h2o2 -> h2o_vap + ho2\n",
826      "oh + h2 -> h2o_vap + h\n",
827      "o + h2o2 -> oh + ho2\n",
828      "oh + o3 -> ho2 + o2\n",
829      "ho2 + o3 -> oh + o2 + o2\n",
830      "ho2 + ho2 -> h2o2 + o2\n",
831      "oh + oh -> h2o_vap + o\n",
832      "h + o2 + M -> ho2 + M\n",
833      "h + oh + M -> h2o_vap + M\n",
834      "oh + oh + M -> h2o2 + M\n",
835      "h + h + M -> h2 + M\n",
836      "ho2 + ho2 + M -> h2o2 + o2 + M\n",
837      "co + oh -> co2 + h\n",
838      "\n",
839      "C sub-network:\n",
840      "===============\n",
841      "co2 + hv -> co + o\n",
842      "co2 + hv -> co + o1d\n",
843      "o1d + co -> o + co\n",
844      "o1d + co2 -> o + co2\n",
845      "co + o + M -> co2 + M\n",
846      "co + oh -> co2 + h\n"
847     ]
848    }
849   ],
850   "source": [
851    "# Select by type:\n",
852    "print('Photolysis sub-network:')\n",
853    "print('=======================')\n",
854    "for r in my_sim.network.get_subnetwork({'type':[pcpp.photolysis]}):\n",
855    "    print(r.formula)\n",
856    "\n",
857    "# Select by species:\n",
858    "print('')\n",
859    "print('HOx sub-network:')\n",
860    "print('=================')\n",
861    "for r in my_sim.network.get_subnetwork({'species':['h','oh','ho2']}):\n",
862    "    print(r.formula)\n",
863    "\n",
864    "# Select by element:\n",
865    "print('')\n",
866    "print('C sub-network:')\n",
867    "print('===============')\n",
868    "for r in my_sim.network.get_subnetwork({'elements':['c']}):\n",
869    "    print(r.formula)"
870   ]
871  },
872  {
873   "cell_type": "markdown",
874   "id": "4ea46279-9234-4a53-800d-891efa4ec9d1",
875   "metadata": {},
876   "source": [
877    "### Exporting custom subnetwork\n",
878    "You can make your own custom chemical network (ideally selecting reactions from a large database - here we just work with our original simulation's reduced network). You may want to save the associated ***traceur.def*** file (notice that you'll have to add manually parameters, but at least you won't forget tracers.)"
879   ]
880  },
881  {
882   "cell_type": "code",
883   "execution_count": 20,
884   "id": "513f6d4e-a0e2-4095-9a7c-acafc79a465b",
885   "metadata": {},
886   "outputs": [
887    {
888     "data": {
889      "application/vnd.jupyter.widget-view+json": {
890       "model_id": "93b44294c8a743239d62dda010335241",
891       "version_major": 2,
892       "version_minor": 0
893      },
894      "text/plain": [
895       "HBox(children=(SelectMultiple(layout=Layout(height='400px'), options=('o2 + hv -> o + o', 'o2 + hv -> o + o1d'…"
896      ]
897     },
898     "execution_count": 20,
899     "metadata": {},
900     "output_type": "execute_result"
901    }
902   ],
903   "source": [
904    "from ipywidgets import Layout\n",
905    "\n",
906    "def select_reactions(reactions,net_filename,trac_filename,format):\n",
907    "    save_network_button = widgets.Button(description='Save reactfile')\n",
908    "    save_tracers_button = widgets.Button(description='Save tracfile')\n",
909    "    \n",
910    "    def on_save_network_button_clicked(b):\n",
911    "        to_save = pcpp.network()\n",
912    "        for r in reactions:\n",
913    "            to_save.append(my_sim.network[r])\n",
914    "        to_save.to_file(net_filename,format=format)\n",
915    "        \n",
916    "    def on_save_tracers_button_clicked(b):\n",
917    "        to_save = pcpp.network()\n",
918    "        for r in reactions:\n",
919    "            to_save.append(my_sim.network[r])\n",
920    "        to_save.save_traceur_file(trac_filename)\n",
921    "        \n",
922    "    save_network_button.on_click(on_save_network_button_clicked)\n",
923    "    save_tracers_button.on_click(on_save_tracers_button_clicked)\n",
924    "    display(save_network_button, widgets.Output())\n",
925    "    display(save_tracers_button, widgets.Output())\n",
926    "    \n",
927    "w_reactions         = widgets.SelectMultiple(options=my_sim.network.reactions.keys(),layout=Layout(height='400px'))\n",
928    "w_network_filename  = widgets.Text(value='photochem_example/my_custom_network.def',description='network filename:',disabled=False)\n",
929    "w_tracers_filename  = widgets.Text(value='photochem_example/my_custom_traceur.def',description='tracers filename:',disabled=False)\n",
930    "w_format            = widgets.Select(options=['GPCM','vulcan'],value='GPCM',description='format:')\n",
931    "\n",
932    "out = widgets.interactive_output(select_reactions,{'reactions':w_reactions,'net_filename':w_network_filename,\n",
933    "                                                   'trac_filename':w_tracers_filename,'format':w_format})\n",
934    "widgets.HBox([w_reactions,widgets.VBox([w_format,w_network_filename,w_tracers_filename,out])])"
935   ]
936  }
937 ],
938 "metadata": {
939  "kernelspec": {
940   "display_name": "Python 3 (ipykernel)",
941   "language": "python",
942   "name": "python3"
943  },
944  "language_info": {
945   "codemirror_mode": {
946    "name": "ipython",
947    "version": 3
948   },
949   "file_extension": ".py",
950   "mimetype": "text/x-python",
951   "name": "python",
952   "nbconvert_exporter": "python",
953   "pygments_lexer": "ipython3",
954   "version": "3.11.7"
955  }
956 },
957 "nbformat": 4,
958 "nbformat_minor": 5
959}
Note: See TracBrowser for help on using the repository browser.