source: trunk/LMDZ.GENERIC/libf/phystd/vlz_fi.F @ 837

Last change on this file since 837 was 787, checked in by aslmd, 12 years ago

LMDZ.GENERIC. (Sorry for long text but this is a quite major commit)

Paving the path for parallel computations. And moving towards a more flexible code.

Automatic allocation is used within all routines in phystd. No further mention to ngridmx and nqmx.

  1. ngridmx and nqmx are still used in LMDZ.GENERIC in the dyn3d part
  2. if the LMDZ4/LMDZ5 dynamical core is used, there is no more fixed dimensions ngridmx and nqmx --> a fully flexible parallel implementation is now possible (e.g. no need to recompile when changing numbers of processors)

The important stuff :

  • Compilation checked with ifort. OK with and without debug mode. No errors. Checked for: gcm, newstart, rcm1d, kcm1d
  • RUN GCM: Running an Earth test case. Comparison with previous revision --> debug mode : perfect match. bit by bit (diff command). checked with plots --> O1 mode : close match (checked with plots) --> O2 mode : sometimes up to 0.5 K departure.... BUT in this new version O2 and O1 are quite close while in previous version O1 and O2 differed by about, well, typically 0.5 K (pictures available on request)
  • RUN NEWSTART : perfect match (bit-by-bit) in either debug or normal mode.
  • RUN RCM1D : perfect match in normal mode.
  • RUN KCM1D : not tested (I don't know what is the use of kcm1d)

List of main changes :

  • Additional arguments to some subroutines (ngrid and nq)
  • F77 include strategy is obsolete and replaced by F90 module strategy In this new strategy arrays are allocatable and allocated once at first use This has to be done for all common featuring arrays defined with ngridmx or nqmx

surfdat.h >> surfdat_h.F90
tracer.h >> tracer_h.F90
comsaison.h >> comsaison_h.F90
comgeomfi.h >> comgeomfi_h.F90
comsoil.h >> comsoil_h.F90
comdiurn.h >> comdiurn_h.F90
fisice.h >> DELETED. was not used. probably a fossil.
watercap.h >> DELETED. variable put in surfdat_h.F90

  • F77 'save' strategy is obsolete and replaced by F90 'allocatable save' strategy (see previous point and e.g. new version of physiq.F90)
  • Suppressing any mention to advtrac.h which is a common in the dynamics and needs nqmx This was easily solved by adding an argument with tracer names, coming from the dynamics This is probably not a definitive solution, ... but this allows for generic physics to work easily with either LMDZ.GENERIC or LMDZ dynamical cores
  • Removing consistency tests between nq and nqmx ; and ngrid and ngridmx. No use now!
  • Adaptation of rcm1d, kcm1d, newstart given above-mentioned changes

A note on phyetat0 and soil_setting:

  • Now written so that a slice of horizontal size 'ngrid' starting at grid point 'cursor' is read in startfi.nc 'cursor' is defined in dimphys.h and initialized by inifis (or in newstart) this is useful for parallel computations. default behavior is the usual one : sequential runs, cursor is 1, size ngrid is the whole global domain

A note on an additional change :

  • nueffrad is now an argument to callcorrk as is the case for reffrad both are saved in physiq this is for consistency and lisibility (previously nueffrad was saved in callcorrk) ... but there is a call to a function which modifies nueffrad in physiq ... previously this was not modifying nueffrad (although it was quite cumbersome to detect this) ... to be conservative I kept this behaviour and highlighted it with an array nueffrad_dummy ... I added a comment because someone might want to change this
File size: 5.5 KB
Line 
1      SUBROUTINE vlz_fi(ngrid,q,pente_max,masse,w,wq)
2c
3c     Auteurs:   P.Le Van, F.Hourdin, F.Forget
4c
5c    ********************************************************************
6c     Shema  d'advection " pseudo amont " dans la verticale
7c    pour appel dans la physique (sedimentation)
8c    ********************************************************************
9c    q rapport de melange (kg/kg)...
10c    masse : masse de la couche Dp/g
11c    w : masse d'atm ``transferee'' a chaque pas de temps (kg.m-2)
12c    pente_max = 2 conseillee
13c
14c
15c   --------------------------------------------------------------------
16      IMPLICIT NONE
17c
18#include "dimensions.h"
19#include "dimphys.h"
20
21c
22c
23c   Arguments:
24c   ----------
25      integer ngrid
26      real masse(ngrid,llm),pente_max
27      REAL q(ngrid,llm)
28      REAL w(ngrid,llm)
29      REAL wq(ngrid,llm+1)
30c
31c      Local
32c   ---------
33c
34      INTEGER i,ij,l,j,ii
35c
36
37      real dzq(ngrid,llm),dzqw(ngrid,llm),adzqw(ngrid,llm),dzqmax
38      real newmasse
39      real sigw, Mtot, MQtot
40      integer m
41
42      REAL      SSUM,CVMGP,CVMGT
43      integer ismax,ismin
44
45
46c    On oriente tout dans le sens de la pression c'est a dire dans le
47c    sens de W
48
49      do l=2,llm
50         do ij=1,ngrid
51            dzqw(ij,l)=q(ij,l-1)-q(ij,l)
52            adzqw(ij,l)=abs(dzqw(ij,l))
53         enddo
54      enddo
55
56      do l=2,llm-1
57         do ij=1,ngrid
58#ifdef CRAY
59            dzq(ij,l)=0.5*
60     ,      cvmgp(dzqw(ij,l)+dzqw(ij,l+1),0.,dzqw(ij,l)*dzqw(ij,l+1))
61#else
62            if(dzqw(ij,l)*dzqw(ij,l+1).gt.0.) then
63                dzq(ij,l)=0.5*(dzqw(ij,l)+dzqw(ij,l+1))
64            else
65                dzq(ij,l)=0.
66            endif
67#endif
68            dzqmax=pente_max*min(adzqw(ij,l),adzqw(ij,l+1))
69            dzq(ij,l)=sign(min(abs(dzq(ij,l)),dzqmax),dzq(ij,l))
70         enddo
71      enddo
72
73      do ij=1,ngrid
74         dzq(ij,1)=0.
75         dzq(ij,llm)=0.
76      enddo
77c ---------------------------------------------------------------
78c   .... calcul des termes d'advection verticale  .......
79c ---------------------------------------------------------------
80
81c calcul de  - d( q   * w )/ d(sigma)    qu'on ajoute a  dq pour calculer dq
82c
83c      No flux at the model top:
84       do ij=1,ngrid
85          wq(ij,llm+1)=0.
86       enddo
87
88c      1) Compute wq where w > 0 (down) (ALWAYS FOR SEDIMENTATION)     
89c      ===============================
90
91       do l = 1,llm          ! loop different than when w<0
92        do ij=1,ngrid
93
94         if(w(ij,l).gt.0.)then
95
96c         Regular scheme (transfered mass < 1 layer)
97c         ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
98          if(w(ij,l).le.masse(ij,l))then
99            sigw=w(ij,l)/masse(ij,l)
100            wq(ij,l)=w(ij,l)*(q(ij,l)+0.5*(1.-sigw)*dzq(ij,l))
101           
102
103c         Extended scheme (transfered mass > 1 layer)
104c         ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
105          else
106            m=l
107            Mtot = masse(ij,m)
108            MQtot = masse(ij,m)*q(ij,m)
109            if(m.ge.llm)goto 88
110            do while(w(ij,l).gt.(Mtot+masse(ij,m+1)))
111                m=m+1
112                Mtot = Mtot + masse(ij,m)
113                MQtot = MQtot + masse(ij,m)*q(ij,m)
114                if(m.ge.llm)goto 88
115            end do
116 88         continue
117            if (m.lt.llm) then
118                sigw=(w(ij,l)-Mtot)/masse(ij,m+1)
119                wq(ij,l)=(MQtot + (w(ij,l)-Mtot)*
120     &          (q(ij,m+1)+0.5*(1.-sigw)*dzq(ij,m+1)) )
121            else
122                w(ij,l) = Mtot
123                wq(ij,l) = Mqtot
124            end if
125          end if
126         end if
127        enddo
128       enddo
129
130c      2) Compute wq where w < 0 (up) (NOT USEFUL FOR SEDIMENTATION)     
131c      ===============================
132       goto 99 ! SKIPPING THIS PART FOR SEDIMENTATION
133
134c      Surface flux up:
135       do ij=1,ngrid
136         if(w(ij,1).lt.0.) wq(ij,1)=0. ! warning : not always valid
137       end do
138
139       do l = 1,llm-1  ! loop different than when w>0
140        do ij=1,ngrid
141         if(w(ij,l+1).le.0)then
142
143c         Regular scheme (transfered mass < 1 layer)
144c         ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
145          if(-w(ij,l+1).le.masse(ij,l))then
146            sigw=w(ij,l+1)/masse(ij,l)
147            wq(ij,l+1)=w(ij,l+1)*(q(ij,l)-0.5*(1.+sigw)*dzq(ij,l))
148c         Extended scheme (transfered mass > 1 layer)
149c         ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
150          else
151             m = l-1
152             Mtot = masse(ij,m+1)
153             MQtot = masse(ij,m+1)*q(ij,m+1)
154             if (m.le.0)goto 77
155             do while(-w(ij,l+1).gt.(Mtot+masse(ij,m)))
156                m=m-1
157                Mtot = Mtot + masse(ij,m+1)
158                MQtot = MQtot + masse(ij,m+1)*q(ij,m+1)
159                if (m.le.0)goto 77
160             end do
161 77          continue
162
163             if (m.gt.0) then
164                sigw=(w(ij,l+1)+Mtot)/masse(ij,m)
165                wq(ij,l+1)= (MQtot + (-w(ij,l+1)-Mtot)*
166     &          (q(ij,m)-0.5*(1.+sigw)*dzq(ij,m))  )
167             else
168c               wq(ij,l+1)= (MQtot + (-w(ij,l+1)-Mtot)*qm(ij,1))
169                write(*,*) 'a rather weird situation in vlz_fi !'
170                stop
171             end if
172          endif
173         endif
174        enddo
175       enddo
176 99    continue
177
178      do l=1,llm
179         do ij=1,ngrid
180
181cccccccc lines below not used for sedimentation (No real flux)
182ccccc       newmasse=masse(ij,l)+w(ij,l+1)-w(ij,l)
183ccccc       q(ij,l)=(q(ij,l)*masse(ij,l)+wq(ij,l+1)-wq(ij,l))
184ccccc&         /newmasse
185ccccc       masse(ij,l)=newmasse
186
187            q(ij,l)=q(ij,l) +  (wq(ij,l+1)-wq(ij,l))/masse(ij,l)
188
189         enddo
190      enddo
191
192
193
194      return
195      end
Note: See TracBrowser for help on using the repository browser.