[2427] | 1 | module vdifc_mod |
---|
| 2 | |
---|
| 3 | implicit none |
---|
| 4 | |
---|
| 5 | contains |
---|
| 6 | |
---|
[253] | 7 | subroutine vdifc(ngrid,nlay,nq,rnat,ppopsk, |
---|
| 8 | & ptimestep,pcapcal,lecrit, |
---|
| 9 | & pplay,pplev,pzlay,pzlev,pz0, |
---|
| 10 | & pu,pv,ph,pq,ptsrf,pemis,pqsurf, |
---|
[1477] | 11 | & pdhfi,pdqfi,pfluxsrf, |
---|
[594] | 12 | & pdudif,pdvdif,pdhdif,pdtsrf,sensibFlux,pq2, |
---|
[2427] | 13 | & pdqdif,pdqsdif) |
---|
[135] | 14 | |
---|
[1993] | 15 | use watercommon_h, only : RLVTT, T_h2O_ice_liq, RCPD, mx_eau_sol |
---|
| 16 | & ,Psat_water, Lcpdqsat_water |
---|
[600] | 17 | use radcommon_h, only : sigma |
---|
[2427] | 18 | use surfdat_h, only: dryness |
---|
| 19 | use tracer_h, only: igcm_h2o_vap, igcm_h2o_ice |
---|
[1384] | 20 | use comcstfi_mod, only: g, r, cpp, rcp |
---|
[1397] | 21 | use callkeys_mod, only: water,tracer,nosurf |
---|
[135] | 22 | |
---|
| 23 | implicit none |
---|
| 24 | |
---|
[253] | 25 | !================================================================== |
---|
| 26 | ! |
---|
| 27 | ! Purpose |
---|
| 28 | ! ------- |
---|
| 29 | ! Turbulent diffusion (mixing) for pot. T, U, V and tracers |
---|
| 30 | ! |
---|
| 31 | ! Implicit scheme |
---|
| 32 | ! We start by adding to variables x the physical tendencies |
---|
| 33 | ! already computed. We resolve the equation: |
---|
| 34 | ! |
---|
| 35 | ! x(t+1) = x(t) + dt * (dx/dt)phys(t) + dt * (dx/dt)difv(t+1) |
---|
| 36 | ! |
---|
| 37 | ! Authors |
---|
| 38 | ! ------- |
---|
| 39 | ! F. Hourdin, F. Forget, R. Fournier (199X) |
---|
| 40 | ! R. Wordsworth, B. Charnay (2010) |
---|
| 41 | ! |
---|
| 42 | !================================================================== |
---|
[135] | 43 | |
---|
[253] | 44 | !----------------------------------------------------------------------- |
---|
| 45 | ! declarations |
---|
| 46 | ! ------------ |
---|
[135] | 47 | |
---|
| 48 | |
---|
[253] | 49 | ! arguments |
---|
| 50 | ! --------- |
---|
[2427] | 51 | INTEGER,INTENT(IN) :: ngrid,nlay |
---|
| 52 | REAL,INTENT(IN) :: ptimestep |
---|
| 53 | REAL,INTENT(IN) :: pplay(ngrid,nlay),pplev(ngrid,nlay+1) |
---|
| 54 | REAL,INTENT(IN) :: pzlay(ngrid,nlay),pzlev(ngrid,nlay+1) |
---|
| 55 | REAL,INTENT(IN) :: pu(ngrid,nlay),pv(ngrid,nlay),ph(ngrid,nlay) |
---|
| 56 | REAL,INTENT(IN) :: ptsrf(ngrid),pemis(ngrid) |
---|
| 57 | REAL,INTENT(IN) :: pdhfi(ngrid,nlay) |
---|
| 58 | REAL,INTENT(IN) :: pfluxsrf(ngrid) |
---|
| 59 | REAL,INTENT(OUT) :: pdudif(ngrid,nlay),pdvdif(ngrid,nlay) |
---|
| 60 | REAL,INTENT(OUT) :: pdhdif(ngrid,nlay) |
---|
| 61 | REAL,INTENT(OUT) :: pdtsrf(ngrid),sensibFlux(ngrid) |
---|
| 62 | REAL,INTENT(IN) :: pcapcal(ngrid) |
---|
| 63 | REAL,INTENT(INOUT) :: pq2(ngrid,nlay+1) |
---|
[253] | 64 | |
---|
[2427] | 65 | real,intent(in) :: rnat(ngrid) |
---|
[135] | 66 | |
---|
[253] | 67 | ! Arguments added for condensation |
---|
[2427] | 68 | REAL,INTENT(IN) :: ppopsk(ngrid,nlay) |
---|
| 69 | logical,intent(in) :: lecrit |
---|
| 70 | REAL,INTENT(IN) :: pz0 |
---|
[135] | 71 | |
---|
[253] | 72 | ! Tracers |
---|
| 73 | ! -------- |
---|
[2427] | 74 | integer,intent(in) :: nq |
---|
| 75 | real,intent(in) :: pqsurf(ngrid,nq) |
---|
| 76 | real,intent(in) :: pq(ngrid,nlay,nq), pdqfi(ngrid,nlay,nq) |
---|
| 77 | real,intent(out) :: pdqdif(ngrid,nlay,nq) |
---|
| 78 | real,intent(out) :: pdqsdif(ngrid,nq) |
---|
[135] | 79 | |
---|
[253] | 80 | ! local |
---|
| 81 | ! ----- |
---|
| 82 | integer ilev,ig,ilay,nlev |
---|
[135] | 83 | |
---|
[787] | 84 | REAL z4st,zdplanck(ngrid) |
---|
[1308] | 85 | REAL zkv(ngrid,nlay+1),zkh(ngrid,nlay+1) |
---|
[787] | 86 | REAL zcdv(ngrid),zcdh(ngrid) |
---|
| 87 | REAL zcdv_true(ngrid),zcdh_true(ngrid) |
---|
[1308] | 88 | REAL zu(ngrid,nlay),zv(ngrid,nlay) |
---|
| 89 | REAL zh(ngrid,nlay) |
---|
[787] | 90 | REAL ztsrf2(ngrid) |
---|
| 91 | REAL z1(ngrid),z2(ngrid) |
---|
[1308] | 92 | REAL za(ngrid,nlay),zb(ngrid,nlay) |
---|
| 93 | REAL zb0(ngrid,nlay) |
---|
| 94 | REAL zc(ngrid,nlay),zd(ngrid,nlay) |
---|
[135] | 95 | REAL zcst1 |
---|
[253] | 96 | REAL zu2!, a |
---|
[1308] | 97 | REAL zcq(ngrid,nlay),zdq(ngrid,nlay) |
---|
[787] | 98 | REAL evap(ngrid) |
---|
| 99 | REAL zcq0(ngrid),zdq0(ngrid) |
---|
| 100 | REAL zx_alf1(ngrid),zx_alf2(ngrid) |
---|
[135] | 101 | |
---|
| 102 | LOGICAL firstcall |
---|
| 103 | SAVE firstcall |
---|
[1315] | 104 | !$OMP THREADPRIVATE(firstcall) |
---|
[303] | 105 | |
---|
[253] | 106 | ! variables added for CO2 condensation |
---|
| 107 | ! ------------------------------------ |
---|
[1308] | 108 | REAL hh !, zhcond(ngrid,nlay) |
---|
[253] | 109 | ! REAL latcond,tcond1mb |
---|
| 110 | ! REAL acond,bcond |
---|
| 111 | ! SAVE acond,bcond |
---|
[1315] | 112 | !!$OMP THREADPRIVATE(acond,bcond) |
---|
[253] | 113 | ! DATA latcond,tcond1mb/5.9e5,136.27/ |
---|
[135] | 114 | |
---|
[253] | 115 | ! Tracers |
---|
| 116 | ! ------- |
---|
[135] | 117 | INTEGER iq |
---|
[1308] | 118 | REAL zq(ngrid,nlay,nq) |
---|
[787] | 119 | REAL zq1temp(ngrid) |
---|
| 120 | REAL rho(ngrid) ! near-surface air density |
---|
[135] | 121 | DATA firstcall/.true./ |
---|
| 122 | REAL kmixmin |
---|
| 123 | |
---|
[253] | 124 | ! Variables added for implicit latent heat inclusion |
---|
| 125 | ! -------------------------------------------------- |
---|
[1993] | 126 | real dqsat(ngrid),psat_temp,qsat(ngrid),psat(ngrid) |
---|
[135] | 127 | |
---|
[253] | 128 | integer ivap, iice ! also make liq for clarity on surface... |
---|
| 129 | save ivap, iice |
---|
[1315] | 130 | !$OMP THREADPRIVATE(ivap,iice) |
---|
[135] | 131 | |
---|
[253] | 132 | real, parameter :: karman=0.4 |
---|
| 133 | real cd0, roughratio |
---|
[135] | 134 | |
---|
[253] | 135 | logical forceWC |
---|
| 136 | real masse, Wtot, Wdiff |
---|
[135] | 137 | |
---|
[253] | 138 | real dqsdif_total(ngrid) |
---|
| 139 | real zq0(ngrid) |
---|
[135] | 140 | |
---|
[253] | 141 | forceWC=.true. |
---|
| 142 | ! forceWC=.false. |
---|
[135] | 143 | |
---|
| 144 | |
---|
[253] | 145 | ! Coherence test |
---|
| 146 | ! -------------- |
---|
[135] | 147 | |
---|
[253] | 148 | IF (firstcall) THEN |
---|
| 149 | ! To compute: Tcond= 1./(bcond-acond*log(.0095*p)) (p in pascal) |
---|
| 150 | ! bcond=1./tcond1mb |
---|
| 151 | ! acond=r/latcond |
---|
| 152 | ! PRINT*,'In vdifc: Tcond(P=1mb)=',tcond1mb,' Lcond=',latcond |
---|
| 153 | ! PRINT*,' acond,bcond',acond,bcond |
---|
| 154 | |
---|
| 155 | if(water)then |
---|
| 156 | ! iliq=igcm_h2o_vap |
---|
| 157 | ivap=igcm_h2o_vap |
---|
| 158 | iice=igcm_h2o_ice ! simply to make the code legible |
---|
| 159 | ! to be generalised later |
---|
| 160 | endif |
---|
| 161 | |
---|
| 162 | firstcall=.false. |
---|
| 163 | ENDIF |
---|
| 164 | |
---|
| 165 | !----------------------------------------------------------------------- |
---|
| 166 | ! 1. Initialisation |
---|
| 167 | ! ----------------- |
---|
| 168 | |
---|
[135] | 169 | nlev=nlay+1 |
---|
| 170 | |
---|
[253] | 171 | ! Calculate rho*dz and dt*rho/dz=dt*rho**2 g/dp |
---|
| 172 | ! with rho=p/RT=p/ (R Theta) (p/ps)**kappa |
---|
| 173 | ! --------------------------------------------- |
---|
[135] | 174 | |
---|
| 175 | DO ilay=1,nlay |
---|
| 176 | DO ig=1,ngrid |
---|
| 177 | za(ig,ilay)=(pplev(ig,ilay)-pplev(ig,ilay+1))/g |
---|
| 178 | ENDDO |
---|
| 179 | ENDDO |
---|
| 180 | |
---|
[253] | 181 | zcst1=4.*g*ptimestep/(R*R) |
---|
[135] | 182 | DO ilev=2,nlev-1 |
---|
| 183 | DO ig=1,ngrid |
---|
| 184 | zb0(ig,ilev)=pplev(ig,ilev)* |
---|
[253] | 185 | s (pplev(ig,1)/pplev(ig,ilev))**rcp / |
---|
| 186 | s (ph(ig,ilev-1)+ph(ig,ilev)) |
---|
[135] | 187 | zb0(ig,ilev)=zcst1*zb0(ig,ilev)*zb0(ig,ilev)/ |
---|
[253] | 188 | s (pplay(ig,ilev-1)-pplay(ig,ilev)) |
---|
[135] | 189 | ENDDO |
---|
| 190 | ENDDO |
---|
| 191 | DO ig=1,ngrid |
---|
[253] | 192 | zb0(ig,1)=ptimestep*pplev(ig,1)/(R*ptsrf(ig)) |
---|
[135] | 193 | ENDDO |
---|
| 194 | |
---|
[253] | 195 | dqsdif_total(:)=0.0 |
---|
[135] | 196 | |
---|
[253] | 197 | !----------------------------------------------------------------------- |
---|
| 198 | ! 2. Add the physical tendencies computed so far |
---|
| 199 | ! ---------------------------------------------- |
---|
[135] | 200 | |
---|
| 201 | DO ilev=1,nlay |
---|
| 202 | DO ig=1,ngrid |
---|
[1477] | 203 | zu(ig,ilev)=pu(ig,ilev) |
---|
| 204 | zv(ig,ilev)=pv(ig,ilev) |
---|
[135] | 205 | zh(ig,ilev)=ph(ig,ilev)+pdhfi(ig,ilev)*ptimestep |
---|
| 206 | ENDDO |
---|
| 207 | ENDDO |
---|
| 208 | if(tracer) then |
---|
[253] | 209 | DO iq =1, nq |
---|
| 210 | DO ilev=1,nlay |
---|
| 211 | DO ig=1,ngrid |
---|
| 212 | zq(ig,ilev,iq)=pq(ig,ilev,iq) + |
---|
| 213 | & pdqfi(ig,ilev,iq)*ptimestep |
---|
| 214 | ENDDO |
---|
| 215 | ENDDO |
---|
[135] | 216 | ENDDO |
---|
| 217 | end if |
---|
| 218 | |
---|
[253] | 219 | !----------------------------------------------------------------------- |
---|
| 220 | ! 3. Turbulence scheme |
---|
| 221 | ! -------------------- |
---|
| 222 | ! |
---|
| 223 | ! Source of turbulent kinetic energy at the surface |
---|
| 224 | ! ------------------------------------------------- |
---|
| 225 | ! Formula is Cd_0 = (karman / log[1+z1/z0])^2 |
---|
[135] | 226 | |
---|
[253] | 227 | DO ig=1,ngrid |
---|
| 228 | roughratio = 1.E+0 + pzlay(ig,1)/pz0 |
---|
| 229 | cd0 = karman/log(roughratio) |
---|
| 230 | cd0 = cd0*cd0 |
---|
| 231 | zcdv_true(ig) = cd0 |
---|
| 232 | zcdh_true(ig) = cd0 |
---|
[952] | 233 | if (nosurf) then |
---|
| 234 | zcdv_true(ig) = 0. !! disable sensible momentum flux |
---|
| 235 | zcdh_true(ig) = 0. !! disable sensible heat flux |
---|
| 236 | endif |
---|
[253] | 237 | ENDDO |
---|
[135] | 238 | |
---|
| 239 | DO ig=1,ngrid |
---|
[253] | 240 | zu2=pu(ig,1)*pu(ig,1)+pv(ig,1)*pv(ig,1) |
---|
| 241 | zcdv(ig)=zcdv_true(ig)*sqrt(zu2) |
---|
| 242 | zcdh(ig)=zcdh_true(ig)*sqrt(zu2) |
---|
[135] | 243 | ENDDO |
---|
| 244 | |
---|
[253] | 245 | ! Turbulent diffusion coefficients in the boundary layer |
---|
| 246 | ! ------------------------------------------------------ |
---|
[135] | 247 | |
---|
[3236] | 248 | call vdif_kc(ngrid,nlay,nq,ptimestep,g,pzlev,pzlay |
---|
| 249 | & ,pu,pv,pq,ph,zcdv_true |
---|
[253] | 250 | & ,pq2,zkv,zkh) |
---|
[135] | 251 | |
---|
[253] | 252 | ! Adding eddy mixing to mimic 3D general circulation in 1D |
---|
| 253 | ! R. Wordsworth & F. Forget (2010) |
---|
[135] | 254 | if ((ngrid.eq.1)) then |
---|
[253] | 255 | kmixmin = 1.0e-2 ! minimum eddy mix coeff in 1D |
---|
| 256 | do ilev=1,nlay |
---|
| 257 | do ig=1,ngrid |
---|
| 258 | !zkh(ig,ilev) = 1.0 |
---|
| 259 | zkh(ig,ilev) = max(kmixmin,zkh(ig,ilev)) |
---|
| 260 | zkv(ig,ilev) = max(kmixmin,zkv(ig,ilev)) |
---|
| 261 | end do |
---|
| 262 | end do |
---|
[135] | 263 | end if |
---|
| 264 | |
---|
[253] | 265 | !----------------------------------------------------------------------- |
---|
| 266 | ! 4. Implicit inversion of u |
---|
| 267 | ! -------------------------- |
---|
[135] | 268 | |
---|
[253] | 269 | ! u(t+1) = u(t) + dt * {(du/dt)phys}(t) + dt * {(du/dt)difv}(t+1) |
---|
| 270 | ! avec |
---|
| 271 | ! /zu/ = u(t) + dt * {(du/dt)phys}(t) (voir paragraphe 2.) |
---|
| 272 | ! et |
---|
| 273 | ! dt * {(du/dt)difv}(t+1) = dt * {(d/dz)[ Ku (du/dz) ]}(t+1) |
---|
| 274 | ! donc les entrees sont /zcdv/ pour la condition a la limite sol |
---|
| 275 | ! et /zkv/ = Ku |
---|
| 276 | |
---|
[135] | 277 | CALL multipl((nlay-1)*ngrid,zkv(1,2),zb0(1,2),zb(1,2)) |
---|
| 278 | CALL multipl(ngrid,zcdv,zb0,zb) |
---|
| 279 | |
---|
| 280 | DO ig=1,ngrid |
---|
| 281 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
| 282 | zc(ig,nlay)=za(ig,nlay)*zu(ig,nlay)*z1(ig) |
---|
| 283 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
| 284 | ENDDO |
---|
| 285 | |
---|
| 286 | DO ilay=nlay-1,1,-1 |
---|
| 287 | DO ig=1,ngrid |
---|
| 288 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
[253] | 289 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
[135] | 290 | zc(ig,ilay)=(za(ig,ilay)*zu(ig,ilay)+ |
---|
[253] | 291 | $ zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
---|
[135] | 292 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
| 293 | ENDDO |
---|
| 294 | ENDDO |
---|
| 295 | |
---|
| 296 | DO ig=1,ngrid |
---|
| 297 | zu(ig,1)=zc(ig,1) |
---|
| 298 | ENDDO |
---|
| 299 | DO ilay=2,nlay |
---|
| 300 | DO ig=1,ngrid |
---|
| 301 | zu(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*zu(ig,ilay-1) |
---|
| 302 | ENDDO |
---|
| 303 | ENDDO |
---|
| 304 | |
---|
[253] | 305 | !----------------------------------------------------------------------- |
---|
| 306 | ! 5. Implicit inversion of v |
---|
| 307 | ! -------------------------- |
---|
[135] | 308 | |
---|
[253] | 309 | ! v(t+1) = v(t) + dt * {(dv/dt)phys}(t) + dt * {(dv/dt)difv}(t+1) |
---|
| 310 | ! avec |
---|
| 311 | ! /zv/ = v(t) + dt * {(dv/dt)phys}(t) (voir paragraphe 2.) |
---|
| 312 | ! et |
---|
| 313 | ! dt * {(dv/dt)difv}(t+1) = dt * {(d/dz)[ Kv (dv/dz) ]}(t+1) |
---|
| 314 | ! donc les entrees sont /zcdv/ pour la condition a la limite sol |
---|
| 315 | ! et /zkv/ = Kv |
---|
[135] | 316 | |
---|
| 317 | DO ig=1,ngrid |
---|
| 318 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
| 319 | zc(ig,nlay)=za(ig,nlay)*zv(ig,nlay)*z1(ig) |
---|
| 320 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
| 321 | ENDDO |
---|
| 322 | |
---|
| 323 | DO ilay=nlay-1,1,-1 |
---|
| 324 | DO ig=1,ngrid |
---|
| 325 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
[253] | 326 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
[135] | 327 | zc(ig,ilay)=(za(ig,ilay)*zv(ig,ilay)+ |
---|
[253] | 328 | $ zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
---|
[135] | 329 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
| 330 | ENDDO |
---|
| 331 | ENDDO |
---|
| 332 | |
---|
| 333 | DO ig=1,ngrid |
---|
| 334 | zv(ig,1)=zc(ig,1) |
---|
| 335 | ENDDO |
---|
| 336 | DO ilay=2,nlay |
---|
| 337 | DO ig=1,ngrid |
---|
| 338 | zv(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*zv(ig,ilay-1) |
---|
| 339 | ENDDO |
---|
| 340 | ENDDO |
---|
| 341 | |
---|
[253] | 342 | !---------------------------------------------------------------------------- |
---|
| 343 | ! 6. Implicit inversion of h, not forgetting the coupling with the ground |
---|
[135] | 344 | |
---|
[253] | 345 | ! h(t+1) = h(t) + dt * {(dh/dt)phys}(t) + dt * {(dh/dt)difv}(t+1) |
---|
| 346 | ! avec |
---|
| 347 | ! /zh/ = h(t) + dt * {(dh/dt)phys}(t) (voir paragraphe 2.) |
---|
| 348 | ! et |
---|
| 349 | ! dt * {(dh/dt)difv}(t+1) = dt * {(d/dz)[ Kh (dh/dz) ]}(t+1) |
---|
| 350 | ! donc les entrees sont /zcdh/ pour la condition de raccord au sol |
---|
| 351 | ! et /zkh/ = Kh |
---|
[135] | 352 | |
---|
[253] | 353 | ! Using the wind modified by friction for lifting and sublimation |
---|
| 354 | ! --------------------------------------------------------------- |
---|
| 355 | DO ig=1,ngrid |
---|
| 356 | zu2 = zu(ig,1)*zu(ig,1)+zv(ig,1)*zv(ig,1) |
---|
| 357 | zcdv(ig) = zcdv_true(ig)*sqrt(zu2) |
---|
| 358 | zcdh(ig) = zcdh_true(ig)*sqrt(zu2) |
---|
| 359 | ENDDO |
---|
| 360 | |
---|
[135] | 361 | CALL multipl((nlay-1)*ngrid,zkh(1,2),zb0(1,2),zb(1,2)) |
---|
| 362 | CALL multipl(ngrid,zcdh,zb0,zb) |
---|
| 363 | |
---|
| 364 | DO ig=1,ngrid |
---|
| 365 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
| 366 | zc(ig,nlay)=za(ig,nlay)*zh(ig,nlay)*z1(ig) |
---|
| 367 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
| 368 | ENDDO |
---|
| 369 | |
---|
[253] | 370 | DO ilay=nlay-1,2,-1 |
---|
[135] | 371 | DO ig=1,ngrid |
---|
| 372 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
[253] | 373 | & zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
[135] | 374 | zc(ig,ilay)=(za(ig,ilay)*zh(ig,ilay)+ |
---|
[253] | 375 | & zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
---|
[135] | 376 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
| 377 | ENDDO |
---|
| 378 | ENDDO |
---|
| 379 | |
---|
| 380 | DO ig=1,ngrid |
---|
[253] | 381 | z1(ig)=1./(za(ig,1)+zb(ig,1)+ |
---|
| 382 | & zb(ig,2)*(1.-zd(ig,2))) |
---|
| 383 | zc(ig,1)=(za(ig,1)*zh(ig,1)+ |
---|
| 384 | & zb(ig,2)*zc(ig,2))*z1(ig) |
---|
| 385 | zd(ig,1)=zb(ig,1)*z1(ig) |
---|
[135] | 386 | ENDDO |
---|
| 387 | |
---|
[253] | 388 | ! Calculate (d Planck / dT) at the interface temperature |
---|
| 389 | ! ------------------------------------------------------ |
---|
[135] | 390 | |
---|
[253] | 391 | z4st=4.0*sigma*ptimestep |
---|
[135] | 392 | DO ig=1,ngrid |
---|
[253] | 393 | zdplanck(ig)=z4st*pemis(ig)*ptsrf(ig)*ptsrf(ig)*ptsrf(ig) |
---|
[135] | 394 | ENDDO |
---|
| 395 | |
---|
[253] | 396 | ! Calculate temperature tendency at the interface (dry case) |
---|
| 397 | ! ---------------------------------------------------------- |
---|
| 398 | ! Sum of fluxes at interface at time t + \delta t gives change in T: |
---|
| 399 | ! radiative fluxes |
---|
| 400 | ! turbulent convective (sensible) heat flux |
---|
| 401 | ! flux (if any) from subsurface |
---|
[135] | 402 | |
---|
[253] | 403 | if(.not.water) then |
---|
| 404 | |
---|
[135] | 405 | DO ig=1,ngrid |
---|
[253] | 406 | |
---|
| 407 | z1(ig) = pcapcal(ig)*ptsrf(ig) + cpp*zb(ig,1)*zc(ig,1) |
---|
| 408 | & + zdplanck(ig)*ptsrf(ig) + pfluxsrf(ig)*ptimestep |
---|
| 409 | z2(ig) = pcapcal(ig) + cpp*zb(ig,1)*(1.-zd(ig,1)) |
---|
| 410 | & +zdplanck(ig) |
---|
| 411 | ztsrf2(ig) = z1(ig) / z2(ig) |
---|
| 412 | pdtsrf(ig) = (ztsrf2(ig) - ptsrf(ig))/ptimestep |
---|
| 413 | zh(ig,1) = zc(ig,1) + zd(ig,1)*ztsrf2(ig) |
---|
[135] | 414 | ENDDO |
---|
| 415 | |
---|
[253] | 416 | ! Recalculate temperature to top of atmosphere, starting from ground |
---|
| 417 | ! ------------------------------------------------------------------ |
---|
[135] | 418 | |
---|
[253] | 419 | DO ilay=2,nlay |
---|
| 420 | DO ig=1,ngrid |
---|
| 421 | hh = zh(ig,ilay-1) |
---|
| 422 | zh(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*hh |
---|
| 423 | ENDDO |
---|
| 424 | ENDDO |
---|
[135] | 425 | |
---|
[253] | 426 | endif ! not water |
---|
[135] | 427 | |
---|
[253] | 428 | !----------------------------------------------------------------------- |
---|
| 429 | ! TRACERS (no vapour) |
---|
| 430 | ! ------- |
---|
[135] | 431 | |
---|
[253] | 432 | if(tracer) then |
---|
[135] | 433 | |
---|
[253] | 434 | ! Calculate vertical flux from the bottom to the first layer (dust) |
---|
| 435 | ! ----------------------------------------------------------------- |
---|
[787] | 436 | do ig=1,ngrid |
---|
[253] | 437 | rho(ig) = zb0(ig,1) /ptimestep |
---|
| 438 | end do |
---|
[135] | 439 | |
---|
[2278] | 440 | pdqsdif(1:ngrid,1:nq)=0 |
---|
[135] | 441 | |
---|
[253] | 442 | ! Implicit inversion of q |
---|
| 443 | ! ----------------------- |
---|
| 444 | do iq=1,nq |
---|
[135] | 445 | |
---|
[253] | 446 | if (iq.ne.igcm_h2o_vap) then |
---|
[135] | 447 | |
---|
| 448 | DO ig=1,ngrid |
---|
[253] | 449 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
| 450 | zcq(ig,nlay)=za(ig,nlay)*zq(ig,nlay,iq)*z1(ig) |
---|
| 451 | zdq(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
| 452 | ENDDO |
---|
| 453 | |
---|
| 454 | DO ilay=nlay-1,2,-1 |
---|
| 455 | DO ig=1,ngrid |
---|
| 456 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
| 457 | & zb(ig,ilay+1)*(1.-zdq(ig,ilay+1))) |
---|
| 458 | zcq(ig,ilay)=(za(ig,ilay)*zq(ig,ilay,iq)+ |
---|
| 459 | & zb(ig,ilay+1)*zcq(ig,ilay+1))*z1(ig) |
---|
| 460 | zdq(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
| 461 | ENDDO |
---|
[135] | 462 | ENDDO |
---|
| 463 | |
---|
[253] | 464 | if ((water).and.(iq.eq.iice)) then |
---|
| 465 | ! special case for water ice tracer: do not include |
---|
| 466 | ! h2o ice tracer from surface (which is set when handling |
---|
| 467 | ! h2o vapour case (see further down). |
---|
| 468 | ! zb(ig,1)=0 if iq ne ivap |
---|
| 469 | DO ig=1,ngrid |
---|
| 470 | z1(ig)=1./(za(ig,1)+ |
---|
| 471 | & zb(ig,2)*(1.-zdq(ig,2))) |
---|
| 472 | zcq(ig,1)=(za(ig,1)*zq(ig,1,iq)+ |
---|
| 473 | & zb(ig,2)*zcq(ig,2))*z1(ig) |
---|
| 474 | ENDDO |
---|
| 475 | else ! general case |
---|
| 476 | DO ig=1,ngrid |
---|
| 477 | z1(ig)=1./(za(ig,1)+ |
---|
| 478 | & zb(ig,2)*(1.-zdq(ig,2))) |
---|
| 479 | zcq(ig,1)=(za(ig,1)*zq(ig,1,iq)+ |
---|
| 480 | & zb(ig,2)*zcq(ig,2) |
---|
| 481 | & +(-pdqsdif(ig,iq))*ptimestep)*z1(ig) |
---|
| 482 | ! tracer flux from surface |
---|
| 483 | ! currently pdqsdif always zero here, |
---|
| 484 | ! so last line is superfluous |
---|
| 485 | enddo |
---|
| 486 | endif ! of if (water.and.(iq.eq.igcm_h2o_ice)) |
---|
[135] | 487 | |
---|
| 488 | |
---|
[253] | 489 | ! Starting upward calculations for simple tracer mixing (e.g., dust) |
---|
| 490 | do ig=1,ngrid |
---|
| 491 | zq(ig,1,iq)=zcq(ig,1) |
---|
| 492 | end do |
---|
[135] | 493 | |
---|
[253] | 494 | do ilay=2,nlay |
---|
| 495 | do ig=1,ngrid |
---|
| 496 | zq(ig,ilay,iq)=zcq(ig,ilay)+ |
---|
| 497 | $ zdq(ig,ilay)*zq(ig,ilay-1,iq) |
---|
| 498 | end do |
---|
| 499 | end do |
---|
[135] | 500 | |
---|
[253] | 501 | endif ! if (iq.ne.igcm_h2o_vap) |
---|
[135] | 502 | |
---|
[253] | 503 | ! Calculate temperature tendency including latent heat term |
---|
| 504 | ! and assuming an infinite source of water on the ground |
---|
| 505 | ! ------------------------------------------------------------------ |
---|
[135] | 506 | |
---|
[253] | 507 | if (water.and.(iq.eq.igcm_h2o_vap)) then |
---|
| 508 | |
---|
| 509 | ! compute evaporation efficiency |
---|
| 510 | do ig = 1, ngrid |
---|
[1297] | 511 | if(nint(rnat(ig)).eq.1)then |
---|
[253] | 512 | dryness(ig)=pqsurf(ig,ivap)+pqsurf(ig,iice) |
---|
| 513 | dryness(ig)=MIN(1.,2*dryness(ig)/mx_eau_sol) |
---|
| 514 | dryness(ig)=MAX(0.,dryness(ig)) |
---|
| 515 | endif |
---|
| 516 | enddo |
---|
[135] | 517 | |
---|
[253] | 518 | do ig=1,ngrid |
---|
| 519 | ! Calculate the value of qsat at the surface (water) |
---|
[1993] | 520 | call Psat_water(ptsrf(ig),pplev(ig,1),psat(ig),qsat(ig)) |
---|
| 521 | call Lcpdqsat_water(ptsrf(ig),pplev(ig,1),psat(ig), |
---|
| 522 | & qsat(ig),dqsat(ig),psat_temp) |
---|
| 523 | dqsat(ig)=dqsat(ig)*RCPD/RLVTT |
---|
[253] | 524 | enddo |
---|
| 525 | |
---|
| 526 | ! coefficients for q |
---|
| 527 | |
---|
| 528 | do ig=1,ngrid |
---|
| 529 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
| 530 | zcq(ig,nlay)=za(ig,nlay)*zq(ig,nlay,iq)*z1(ig) |
---|
| 531 | zdq(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
| 532 | enddo |
---|
| 533 | |
---|
| 534 | do ilay=nlay-1,2,-1 |
---|
| 535 | do ig=1,ngrid |
---|
| 536 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
| 537 | $ zb(ig,ilay+1)*(1.-zdq(ig,ilay+1))) |
---|
| 538 | zcq(ig,ilay)=(za(ig,ilay)*zq(ig,ilay,iq)+ |
---|
| 539 | $ zb(ig,ilay+1)*zcq(ig,ilay+1))*z1(ig) |
---|
| 540 | zdq(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
| 541 | enddo |
---|
| 542 | enddo |
---|
| 543 | |
---|
| 544 | do ig=1,ngrid |
---|
| 545 | z1(ig)=1./(za(ig,1)+zb(ig,1)*dryness(ig)+ |
---|
| 546 | $ zb(ig,2)*(1.-zdq(ig,2))) |
---|
| 547 | zcq(ig,1)=(za(ig,1)*zq(ig,1,iq)+ |
---|
| 548 | $ zb(ig,2)*zcq(ig,2))*z1(ig) |
---|
| 549 | zdq(ig,1)=dryness(ig)*zb(ig,1)*z1(ig) |
---|
| 550 | enddo |
---|
| 551 | |
---|
| 552 | ! calculation of h0 and h1 |
---|
| 553 | do ig=1,ngrid |
---|
| 554 | zdq0(ig) = dqsat(ig) |
---|
| 555 | zcq0(ig) = qsat(ig)-dqsat(ig)*ptsrf(ig) |
---|
| 556 | |
---|
| 557 | z1(ig) = pcapcal(ig)*ptsrf(ig) +cpp*zb(ig,1)*zc(ig,1) |
---|
| 558 | & + zdplanck(ig)*ptsrf(ig) + pfluxsrf(ig)*ptimestep |
---|
| 559 | & + zb(ig,1)*dryness(ig)*RLVTT* |
---|
| 560 | & ((zdq(ig,1)-1.0)*zcq0(ig)+zcq(ig,1)) |
---|
| 561 | |
---|
| 562 | z2(ig) = pcapcal(ig) + cpp*zb(ig,1)*(1.-zd(ig,1)) |
---|
| 563 | & +zdplanck(ig) |
---|
| 564 | & +zb(ig,1)*dryness(ig)*RLVTT*zdq0(ig)* |
---|
| 565 | & (1.0-zdq(ig,1)) |
---|
| 566 | |
---|
| 567 | ztsrf2(ig) = z1(ig) / z2(ig) |
---|
| 568 | pdtsrf(ig) = (ztsrf2(ig) - ptsrf(ig))/ptimestep |
---|
| 569 | zh(ig,1) = zc(ig,1) + zd(ig,1)*ztsrf2(ig) |
---|
| 570 | enddo |
---|
| 571 | |
---|
| 572 | ! calculation of qs and q1 |
---|
| 573 | do ig=1,ngrid |
---|
| 574 | zq0(ig) = zcq0(ig)+zdq0(ig)*ztsrf2(ig) |
---|
| 575 | zq(ig,1,iq) = zcq(ig,1)+zdq(ig,1)*zq0(ig) |
---|
| 576 | enddo |
---|
| 577 | |
---|
| 578 | ! calculation of evaporation |
---|
| 579 | do ig=1,ngrid |
---|
| 580 | evap(ig)= zb(ig,1)*dryness(ig)*(zq(ig,1,ivap)-zq0(ig)) |
---|
| 581 | dqsdif_total(ig)=evap(ig) |
---|
| 582 | enddo |
---|
| 583 | |
---|
| 584 | ! recalculate temperature and q(vap) to top of atmosphere, starting from ground |
---|
| 585 | do ilay=2,nlay |
---|
| 586 | do ig=1,ngrid |
---|
| 587 | zq(ig,ilay,iq)=zcq(ig,ilay) |
---|
| 588 | & +zdq(ig,ilay)*zq(ig,ilay-1,iq) |
---|
| 589 | zh(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*zh(ig,ilay-1) |
---|
| 590 | end do |
---|
| 591 | end do |
---|
| 592 | |
---|
| 593 | do ig=1,ngrid |
---|
| 594 | |
---|
| 595 | ! -------------------------------------------------------------------------- |
---|
| 596 | ! On the ocean, if T > 0 C then the vapour tendency must replace the ice one |
---|
| 597 | ! The surface vapour tracer is actually liquid. To make things difficult. |
---|
| 598 | |
---|
[1297] | 599 | if (nint(rnat(ig)).eq.0) then ! unfrozen ocean |
---|
[253] | 600 | |
---|
| 601 | pdqsdif(ig,ivap)=dqsdif_total(ig)/ptimestep |
---|
| 602 | pdqsdif(ig,iice)=0.0 |
---|
| 603 | |
---|
| 604 | |
---|
[1297] | 605 | elseif (nint(rnat(ig)).eq.1) then ! (continent) |
---|
[253] | 606 | |
---|
| 607 | ! -------------------------------------------------------- |
---|
| 608 | ! Now check if we've taken too much water from the surface |
---|
| 609 | ! This can only occur on the continent |
---|
| 610 | |
---|
| 611 | ! If water is evaporating / subliming, we take it from ice before liquid |
---|
| 612 | ! -- is this valid?? |
---|
| 613 | if(dqsdif_total(ig).lt.0)then |
---|
| 614 | pdqsdif(ig,iice)=dqsdif_total(ig)/ptimestep |
---|
| 615 | pdqsdif(ig,iice)=max(-pqsurf(ig,iice)/ptimestep |
---|
| 616 | & ,pdqsdif(ig,iice)) |
---|
| 617 | endif |
---|
| 618 | ! sublimation only greater than qsurf(ice) |
---|
| 619 | ! ---------------------------------------- |
---|
| 620 | ! we just convert some liquid to vapour too |
---|
| 621 | ! if latent heats are the same, no big deal |
---|
| 622 | if (-dqsdif_total(ig).gt.pqsurf(ig,iice))then |
---|
| 623 | pdqsdif(ig,iice) = -pqsurf(ig,iice)/ptimestep ! removes all the ice! |
---|
| 624 | pdqsdif(ig,ivap) = dqsdif_total(ig)/ptimestep |
---|
| 625 | & - pdqsdif(ig,iice) ! take the remainder from the liquid instead |
---|
| 626 | pdqsdif(ig,ivap) = max(-pqsurf(ig,ivap)/ptimestep |
---|
| 627 | & ,pdqsdif(ig,ivap)) |
---|
| 628 | endif |
---|
| 629 | |
---|
| 630 | endif ! if (rnat.ne.1) |
---|
| 631 | |
---|
| 632 | ! If water vapour is condensing, we must decide whether it forms ice or liquid. |
---|
| 633 | if(dqsdif_total(ig).gt.0)then ! a bug was here! |
---|
[650] | 634 | if(ztsrf2(ig).gt.T_h2O_ice_liq)then |
---|
[253] | 635 | pdqsdif(ig,iice)=0.0 |
---|
| 636 | pdqsdif(ig,ivap)=dqsdif_total(ig)/ptimestep |
---|
| 637 | else |
---|
| 638 | pdqsdif(ig,iice)=dqsdif_total(ig)/ptimestep |
---|
| 639 | pdqsdif(ig,ivap)=0.0 |
---|
| 640 | endif |
---|
| 641 | endif |
---|
| 642 | |
---|
| 643 | end do ! of DO ig=1,ngrid |
---|
| 644 | endif ! if (water et iq=ivap) |
---|
| 645 | end do ! of do iq=1,nq |
---|
| 646 | endif ! traceur |
---|
| 647 | |
---|
| 648 | |
---|
| 649 | !----------------------------------------------------------------------- |
---|
| 650 | ! 8. Final calculation of the vertical diffusion tendencies |
---|
| 651 | ! ----------------------------------------------------------------- |
---|
| 652 | |
---|
| 653 | do ilev = 1, nlay |
---|
| 654 | do ig=1,ngrid |
---|
| 655 | pdudif(ig,ilev)=(zu(ig,ilev)- |
---|
[1477] | 656 | & (pu(ig,ilev)))/ptimestep |
---|
[253] | 657 | pdvdif(ig,ilev)=(zv(ig,ilev)- |
---|
[1477] | 658 | & (pv(ig,ilev)))/ptimestep |
---|
[253] | 659 | hh = ph(ig,ilev)+pdhfi(ig,ilev)*ptimestep |
---|
| 660 | |
---|
[135] | 661 | pdhdif(ig,ilev)=( zh(ig,ilev)- hh )/ptimestep |
---|
[253] | 662 | enddo |
---|
| 663 | enddo |
---|
[594] | 664 | |
---|
| 665 | DO ig=1,ngrid ! computing sensible heat flux (atm => surface) |
---|
| 666 | sensibFlux(ig)=cpp*zb(ig,1)/ptimestep*(zh(ig,1)-ztsrf2(ig)) |
---|
| 667 | ENDDO |
---|
| 668 | |
---|
[253] | 669 | if (tracer) then |
---|
| 670 | do iq = 1, nq |
---|
| 671 | do ilev = 1, nlay |
---|
| 672 | do ig=1,ngrid |
---|
| 673 | pdqdif(ig,ilev,iq)=(zq(ig,ilev,iq)- |
---|
| 674 | & (pq(ig,ilev,iq)+pdqfi(ig,ilev,iq)*ptimestep))/ |
---|
| 675 | & ptimestep |
---|
| 676 | enddo |
---|
| 677 | enddo |
---|
| 678 | enddo |
---|
[135] | 679 | |
---|
[253] | 680 | if(water.and.forceWC)then ! force water conservation in model |
---|
| 681 | ! we calculate the difference and add it to the ground |
---|
| 682 | ! this is ugly and should be improved in the future |
---|
| 683 | do ig=1,ngrid |
---|
| 684 | Wtot=0.0 |
---|
| 685 | do ilay=1,nlay |
---|
| 686 | masse = (pplev(ig,ilay) - pplev(ig,ilay+1))/g |
---|
| 687 | ! Wtot=Wtot+masse*(zq(ig,ilay,iice)- |
---|
| 688 | ! & (pq(ig,ilay,iice)+pdqfi(ig,ilay,iice)*ptimestep)) |
---|
| 689 | Wtot=Wtot+masse*(zq(ig,ilay,ivap)- |
---|
| 690 | & (pq(ig,ilay,ivap)+pdqfi(ig,ilay,ivap)*ptimestep)) |
---|
| 691 | enddo |
---|
| 692 | Wdiff=Wtot/ptimestep+pdqsdif(ig,ivap)+pdqsdif(ig,iice) |
---|
[135] | 693 | |
---|
[650] | 694 | if(ztsrf2(ig).gt.T_h2O_ice_liq)then |
---|
[253] | 695 | pdqsdif(ig,ivap)=pdqsdif(ig,ivap)-Wdiff |
---|
| 696 | else |
---|
| 697 | pdqsdif(ig,iice)=pdqsdif(ig,iice)-Wdiff |
---|
| 698 | endif |
---|
| 699 | enddo |
---|
[135] | 700 | |
---|
[253] | 701 | endif |
---|
[135] | 702 | |
---|
[253] | 703 | endif |
---|
[135] | 704 | |
---|
[253] | 705 | if(water)then |
---|
| 706 | call writediagfi(ngrid,'beta','Dryness coefficient',' ',2,dryness) |
---|
| 707 | endif |
---|
| 708 | |
---|
[303] | 709 | |
---|
[2427] | 710 | end subroutine vdifc |
---|
[303] | 711 | |
---|
[2427] | 712 | end module vdifc_mod |
---|