1 | subroutine vdifc(ngrid,nlay,nq,rnat,ppopsk, |
---|
2 | & ptimestep,pcapcal,lecrit, |
---|
3 | & pplay,pplev,pzlay,pzlev,pz0, |
---|
4 | & pu,pv,ph,pq,ptsrf,pemis,pqsurf, |
---|
5 | & pdufi,pdvfi,pdhfi,pdqfi,pfluxsrf, |
---|
6 | & pdudif,pdvdif,pdhdif,pdtsrf,sensibFlux,pq2, |
---|
7 | & pdqdif,pdqsdif,lastcall) |
---|
8 | |
---|
9 | use watercommon_h, only : RLVTT, To, RCPD, mx_eau_sol |
---|
10 | use radcommon_h, only : sigma |
---|
11 | |
---|
12 | implicit none |
---|
13 | |
---|
14 | !================================================================== |
---|
15 | ! |
---|
16 | ! Purpose |
---|
17 | ! ------- |
---|
18 | ! Turbulent diffusion (mixing) for pot. T, U, V and tracers |
---|
19 | ! |
---|
20 | ! Implicit scheme |
---|
21 | ! We start by adding to variables x the physical tendencies |
---|
22 | ! already computed. We resolve the equation: |
---|
23 | ! |
---|
24 | ! x(t+1) = x(t) + dt * (dx/dt)phys(t) + dt * (dx/dt)difv(t+1) |
---|
25 | ! |
---|
26 | ! Authors |
---|
27 | ! ------- |
---|
28 | ! F. Hourdin, F. Forget, R. Fournier (199X) |
---|
29 | ! R. Wordsworth, B. Charnay (2010) |
---|
30 | ! |
---|
31 | !================================================================== |
---|
32 | |
---|
33 | !----------------------------------------------------------------------- |
---|
34 | ! declarations |
---|
35 | ! ------------ |
---|
36 | |
---|
37 | #include "dimensions.h" |
---|
38 | #include "dimphys.h" |
---|
39 | #include "comcstfi.h" |
---|
40 | #include "callkeys.h" |
---|
41 | #include "surfdat.h" |
---|
42 | #include "comgeomfi.h" |
---|
43 | #include "tracer.h" |
---|
44 | |
---|
45 | #include "watercap.h" |
---|
46 | |
---|
47 | ! arguments |
---|
48 | ! --------- |
---|
49 | INTEGER ngrid,nlay |
---|
50 | REAL ptimestep |
---|
51 | REAL pplay(ngrid,nlay),pplev(ngrid,nlay+1) |
---|
52 | REAL pzlay(ngrid,nlay),pzlev(ngrid,nlay+1) |
---|
53 | REAL pu(ngrid,nlay),pv(ngrid,nlay),ph(ngrid,nlay) |
---|
54 | REAL ptsrf(ngrid),pemis(ngrid) |
---|
55 | REAL pdufi(ngrid,nlay),pdvfi(ngrid,nlay),pdhfi(ngrid,nlay) |
---|
56 | REAL pfluxsrf(ngrid) |
---|
57 | REAL pdudif(ngrid,nlay),pdvdif(ngrid,nlay),pdhdif(ngrid,nlay) |
---|
58 | REAL pdtsrf(ngrid),sensibFlux(ngrid),pcapcal(ngrid) |
---|
59 | REAL pq2(ngrid,nlay+1) |
---|
60 | |
---|
61 | integer rnat(ngrid) |
---|
62 | |
---|
63 | ! Arguments added for condensation |
---|
64 | REAL ppopsk(ngrid,nlay) |
---|
65 | logical lecrit |
---|
66 | REAL pz0 |
---|
67 | |
---|
68 | ! Tracers |
---|
69 | ! -------- |
---|
70 | integer nq |
---|
71 | real pqsurf(ngrid,nq) |
---|
72 | real pq(ngrid,nlay,nq), pdqfi(ngrid,nlay,nq) |
---|
73 | real pdqdif(ngrid,nlay,nq) |
---|
74 | real pdqsdif(ngrid,nq) |
---|
75 | |
---|
76 | ! local |
---|
77 | ! ----- |
---|
78 | integer ilev,ig,ilay,nlev |
---|
79 | |
---|
80 | REAL z4st,zdplanck(ngridmx) |
---|
81 | REAL zkv(ngridmx,nlayermx+1),zkh(ngridmx,nlayermx+1) |
---|
82 | REAL zcdv(ngridmx),zcdh(ngridmx) |
---|
83 | REAL zcdv_true(ngridmx),zcdh_true(ngridmx) |
---|
84 | REAL zu(ngridmx,nlayermx),zv(ngridmx,nlayermx) |
---|
85 | REAL zh(ngridmx,nlayermx) |
---|
86 | REAL ztsrf2(ngridmx) |
---|
87 | REAL z1(ngridmx),z2(ngridmx) |
---|
88 | REAL za(ngridmx,nlayermx),zb(ngridmx,nlayermx) |
---|
89 | REAL zb0(ngridmx,nlayermx) |
---|
90 | REAL zc(ngridmx,nlayermx),zd(ngridmx,nlayermx) |
---|
91 | REAL zcst1 |
---|
92 | REAL zu2!, a |
---|
93 | REAL zcq(ngridmx,nlayermx),zdq(ngridmx,nlayermx) |
---|
94 | REAL evap(ngridmx) |
---|
95 | REAL zcq0(ngridmx),zdq0(ngridmx) |
---|
96 | REAL zx_alf1(ngridmx),zx_alf2(ngridmx) |
---|
97 | |
---|
98 | LOGICAL firstcall |
---|
99 | SAVE firstcall |
---|
100 | |
---|
101 | LOGICAL lastcall |
---|
102 | |
---|
103 | ! variables added for CO2 condensation |
---|
104 | ! ------------------------------------ |
---|
105 | REAL hh !, zhcond(ngridmx,nlayermx) |
---|
106 | ! REAL latcond,tcond1mb |
---|
107 | ! REAL acond,bcond |
---|
108 | ! SAVE acond,bcond |
---|
109 | ! DATA latcond,tcond1mb/5.9e5,136.27/ |
---|
110 | |
---|
111 | ! Tracers |
---|
112 | ! ------- |
---|
113 | INTEGER iq |
---|
114 | REAL zq(ngridmx,nlayermx,nqmx) |
---|
115 | REAL zq1temp(ngridmx) |
---|
116 | REAL rho(ngridmx) ! near-surface air density |
---|
117 | REAL qsat(ngridmx) |
---|
118 | DATA firstcall/.true./ |
---|
119 | REAL kmixmin |
---|
120 | |
---|
121 | ! Variables added for implicit latent heat inclusion |
---|
122 | ! -------------------------------------------------- |
---|
123 | real latconst, dqsat(ngridmx), qsat_temp1, qsat_temp2 |
---|
124 | real z1_Tdry(ngridmx), z2_Tdry(ngridmx) |
---|
125 | real z1_T(ngridmx), z2_T(ngridmx) |
---|
126 | real zb_T(ngridmx) |
---|
127 | real zc_T(ngridmx,nlayermx) |
---|
128 | real zd_T(ngridmx,nlayermx) |
---|
129 | real lat1(ngridmx), lat2(ngridmx) |
---|
130 | real surfh2otot |
---|
131 | logical surffluxdiag |
---|
132 | integer isub ! sub-loop for precision |
---|
133 | |
---|
134 | integer ivap, iice ! also make liq for clarity on surface... |
---|
135 | save ivap, iice |
---|
136 | |
---|
137 | real, parameter :: karman=0.4 |
---|
138 | real cd0, roughratio |
---|
139 | |
---|
140 | logical forceWC |
---|
141 | real masse, Wtot, Wdiff |
---|
142 | |
---|
143 | real dqsdif_total(ngrid) |
---|
144 | real zq0(ngrid) |
---|
145 | |
---|
146 | forceWC=.true. |
---|
147 | ! forceWC=.false. |
---|
148 | |
---|
149 | |
---|
150 | ! Coherence test |
---|
151 | ! -------------- |
---|
152 | |
---|
153 | IF (firstcall) THEN |
---|
154 | ! IF(ngrid.NE.ngridmx) THEN |
---|
155 | ! PRINT*,'STOP dans vdifc' |
---|
156 | ! PRINT*,'probleme de dimensions :' |
---|
157 | ! PRINT*,'ngrid =',ngrid |
---|
158 | ! PRINT*,'ngridmx =',ngridmx |
---|
159 | ! STOP |
---|
160 | ! ENDIF |
---|
161 | ! To compute: Tcond= 1./(bcond-acond*log(.0095*p)) (p in pascal) |
---|
162 | ! bcond=1./tcond1mb |
---|
163 | ! acond=r/latcond |
---|
164 | ! PRINT*,'In vdifc: Tcond(P=1mb)=',tcond1mb,' Lcond=',latcond |
---|
165 | ! PRINT*,' acond,bcond',acond,bcond |
---|
166 | |
---|
167 | if(water)then |
---|
168 | ! iliq=igcm_h2o_vap |
---|
169 | ivap=igcm_h2o_vap |
---|
170 | iice=igcm_h2o_ice ! simply to make the code legible |
---|
171 | ! to be generalised later |
---|
172 | endif |
---|
173 | |
---|
174 | firstcall=.false. |
---|
175 | ENDIF |
---|
176 | |
---|
177 | !----------------------------------------------------------------------- |
---|
178 | ! 1. Initialisation |
---|
179 | ! ----------------- |
---|
180 | |
---|
181 | nlev=nlay+1 |
---|
182 | |
---|
183 | ! Calculate rho*dz and dt*rho/dz=dt*rho**2 g/dp |
---|
184 | ! with rho=p/RT=p/ (R Theta) (p/ps)**kappa |
---|
185 | ! --------------------------------------------- |
---|
186 | |
---|
187 | DO ilay=1,nlay |
---|
188 | DO ig=1,ngrid |
---|
189 | za(ig,ilay)=(pplev(ig,ilay)-pplev(ig,ilay+1))/g |
---|
190 | ENDDO |
---|
191 | ENDDO |
---|
192 | |
---|
193 | zcst1=4.*g*ptimestep/(R*R) |
---|
194 | DO ilev=2,nlev-1 |
---|
195 | DO ig=1,ngrid |
---|
196 | zb0(ig,ilev)=pplev(ig,ilev)* |
---|
197 | s (pplev(ig,1)/pplev(ig,ilev))**rcp / |
---|
198 | s (ph(ig,ilev-1)+ph(ig,ilev)) |
---|
199 | zb0(ig,ilev)=zcst1*zb0(ig,ilev)*zb0(ig,ilev)/ |
---|
200 | s (pplay(ig,ilev-1)-pplay(ig,ilev)) |
---|
201 | ENDDO |
---|
202 | ENDDO |
---|
203 | DO ig=1,ngrid |
---|
204 | zb0(ig,1)=ptimestep*pplev(ig,1)/(R*ptsrf(ig)) |
---|
205 | ENDDO |
---|
206 | |
---|
207 | dqsdif_total(:)=0.0 |
---|
208 | |
---|
209 | !----------------------------------------------------------------------- |
---|
210 | ! 2. Add the physical tendencies computed so far |
---|
211 | ! ---------------------------------------------- |
---|
212 | |
---|
213 | DO ilev=1,nlay |
---|
214 | DO ig=1,ngrid |
---|
215 | zu(ig,ilev)=pu(ig,ilev)+pdufi(ig,ilev)*ptimestep |
---|
216 | zv(ig,ilev)=pv(ig,ilev)+pdvfi(ig,ilev)*ptimestep |
---|
217 | zh(ig,ilev)=ph(ig,ilev)+pdhfi(ig,ilev)*ptimestep |
---|
218 | ENDDO |
---|
219 | ENDDO |
---|
220 | if(tracer) then |
---|
221 | DO iq =1, nq |
---|
222 | DO ilev=1,nlay |
---|
223 | DO ig=1,ngrid |
---|
224 | zq(ig,ilev,iq)=pq(ig,ilev,iq) + |
---|
225 | & pdqfi(ig,ilev,iq)*ptimestep |
---|
226 | ENDDO |
---|
227 | ENDDO |
---|
228 | ENDDO |
---|
229 | end if |
---|
230 | |
---|
231 | !----------------------------------------------------------------------- |
---|
232 | ! 3. Turbulence scheme |
---|
233 | ! -------------------- |
---|
234 | ! |
---|
235 | ! Source of turbulent kinetic energy at the surface |
---|
236 | ! ------------------------------------------------- |
---|
237 | ! Formula is Cd_0 = (karman / log[1+z1/z0])^2 |
---|
238 | |
---|
239 | DO ig=1,ngrid |
---|
240 | roughratio = 1.E+0 + pzlay(ig,1)/pz0 |
---|
241 | cd0 = karman/log(roughratio) |
---|
242 | cd0 = cd0*cd0 |
---|
243 | zcdv_true(ig) = cd0 |
---|
244 | zcdh_true(ig) = cd0 |
---|
245 | ENDDO |
---|
246 | |
---|
247 | DO ig=1,ngrid |
---|
248 | zu2=pu(ig,1)*pu(ig,1)+pv(ig,1)*pv(ig,1) |
---|
249 | zcdv(ig)=zcdv_true(ig)*sqrt(zu2) |
---|
250 | zcdh(ig)=zcdh_true(ig)*sqrt(zu2) |
---|
251 | ENDDO |
---|
252 | |
---|
253 | ! Turbulent diffusion coefficients in the boundary layer |
---|
254 | ! ------------------------------------------------------ |
---|
255 | |
---|
256 | call vdif_kc(ptimestep,g,pzlev,pzlay |
---|
257 | & ,pu,pv,ph,zcdv_true |
---|
258 | & ,pq2,zkv,zkh) |
---|
259 | |
---|
260 | ! Adding eddy mixing to mimic 3D general circulation in 1D |
---|
261 | ! R. Wordsworth & F. Forget (2010) |
---|
262 | if ((ngrid.eq.1)) then |
---|
263 | kmixmin = 1.0e-2 ! minimum eddy mix coeff in 1D |
---|
264 | do ilev=1,nlay |
---|
265 | do ig=1,ngrid |
---|
266 | !zkh(ig,ilev) = 1.0 |
---|
267 | zkh(ig,ilev) = max(kmixmin,zkh(ig,ilev)) |
---|
268 | zkv(ig,ilev) = max(kmixmin,zkv(ig,ilev)) |
---|
269 | end do |
---|
270 | end do |
---|
271 | end if |
---|
272 | |
---|
273 | !----------------------------------------------------------------------- |
---|
274 | ! 4. Implicit inversion of u |
---|
275 | ! -------------------------- |
---|
276 | |
---|
277 | ! u(t+1) = u(t) + dt * {(du/dt)phys}(t) + dt * {(du/dt)difv}(t+1) |
---|
278 | ! avec |
---|
279 | ! /zu/ = u(t) + dt * {(du/dt)phys}(t) (voir paragraphe 2.) |
---|
280 | ! et |
---|
281 | ! dt * {(du/dt)difv}(t+1) = dt * {(d/dz)[ Ku (du/dz) ]}(t+1) |
---|
282 | ! donc les entrees sont /zcdv/ pour la condition a la limite sol |
---|
283 | ! et /zkv/ = Ku |
---|
284 | |
---|
285 | CALL multipl((nlay-1)*ngrid,zkv(1,2),zb0(1,2),zb(1,2)) |
---|
286 | CALL multipl(ngrid,zcdv,zb0,zb) |
---|
287 | |
---|
288 | DO ig=1,ngrid |
---|
289 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
290 | zc(ig,nlay)=za(ig,nlay)*zu(ig,nlay)*z1(ig) |
---|
291 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
292 | ENDDO |
---|
293 | |
---|
294 | DO ilay=nlay-1,1,-1 |
---|
295 | DO ig=1,ngrid |
---|
296 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
297 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
298 | zc(ig,ilay)=(za(ig,ilay)*zu(ig,ilay)+ |
---|
299 | $ zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
---|
300 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
301 | ENDDO |
---|
302 | ENDDO |
---|
303 | |
---|
304 | DO ig=1,ngrid |
---|
305 | zu(ig,1)=zc(ig,1) |
---|
306 | ENDDO |
---|
307 | DO ilay=2,nlay |
---|
308 | DO ig=1,ngrid |
---|
309 | zu(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*zu(ig,ilay-1) |
---|
310 | ENDDO |
---|
311 | ENDDO |
---|
312 | |
---|
313 | !----------------------------------------------------------------------- |
---|
314 | ! 5. Implicit inversion of v |
---|
315 | ! -------------------------- |
---|
316 | |
---|
317 | ! v(t+1) = v(t) + dt * {(dv/dt)phys}(t) + dt * {(dv/dt)difv}(t+1) |
---|
318 | ! avec |
---|
319 | ! /zv/ = v(t) + dt * {(dv/dt)phys}(t) (voir paragraphe 2.) |
---|
320 | ! et |
---|
321 | ! dt * {(dv/dt)difv}(t+1) = dt * {(d/dz)[ Kv (dv/dz) ]}(t+1) |
---|
322 | ! donc les entrees sont /zcdv/ pour la condition a la limite sol |
---|
323 | ! et /zkv/ = Kv |
---|
324 | |
---|
325 | DO ig=1,ngrid |
---|
326 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
327 | zc(ig,nlay)=za(ig,nlay)*zv(ig,nlay)*z1(ig) |
---|
328 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
329 | ENDDO |
---|
330 | |
---|
331 | DO ilay=nlay-1,1,-1 |
---|
332 | DO ig=1,ngrid |
---|
333 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
334 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
335 | zc(ig,ilay)=(za(ig,ilay)*zv(ig,ilay)+ |
---|
336 | $ zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
---|
337 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
338 | ENDDO |
---|
339 | ENDDO |
---|
340 | |
---|
341 | DO ig=1,ngrid |
---|
342 | zv(ig,1)=zc(ig,1) |
---|
343 | ENDDO |
---|
344 | DO ilay=2,nlay |
---|
345 | DO ig=1,ngrid |
---|
346 | zv(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*zv(ig,ilay-1) |
---|
347 | ENDDO |
---|
348 | ENDDO |
---|
349 | |
---|
350 | !---------------------------------------------------------------------------- |
---|
351 | ! 6. Implicit inversion of h, not forgetting the coupling with the ground |
---|
352 | |
---|
353 | ! h(t+1) = h(t) + dt * {(dh/dt)phys}(t) + dt * {(dh/dt)difv}(t+1) |
---|
354 | ! avec |
---|
355 | ! /zh/ = h(t) + dt * {(dh/dt)phys}(t) (voir paragraphe 2.) |
---|
356 | ! et |
---|
357 | ! dt * {(dh/dt)difv}(t+1) = dt * {(d/dz)[ Kh (dh/dz) ]}(t+1) |
---|
358 | ! donc les entrees sont /zcdh/ pour la condition de raccord au sol |
---|
359 | ! et /zkh/ = Kh |
---|
360 | |
---|
361 | ! Using the wind modified by friction for lifting and sublimation |
---|
362 | ! --------------------------------------------------------------- |
---|
363 | DO ig=1,ngrid |
---|
364 | zu2 = zu(ig,1)*zu(ig,1)+zv(ig,1)*zv(ig,1) |
---|
365 | zcdv(ig) = zcdv_true(ig)*sqrt(zu2) |
---|
366 | zcdh(ig) = zcdh_true(ig)*sqrt(zu2) |
---|
367 | ENDDO |
---|
368 | |
---|
369 | CALL multipl((nlay-1)*ngrid,zkh(1,2),zb0(1,2),zb(1,2)) |
---|
370 | CALL multipl(ngrid,zcdh,zb0,zb) |
---|
371 | |
---|
372 | DO ig=1,ngrid |
---|
373 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
374 | zc(ig,nlay)=za(ig,nlay)*zh(ig,nlay)*z1(ig) |
---|
375 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
376 | ENDDO |
---|
377 | |
---|
378 | DO ilay=nlay-1,2,-1 |
---|
379 | DO ig=1,ngrid |
---|
380 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
381 | & zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
382 | zc(ig,ilay)=(za(ig,ilay)*zh(ig,ilay)+ |
---|
383 | & zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
---|
384 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
385 | ENDDO |
---|
386 | ENDDO |
---|
387 | |
---|
388 | DO ig=1,ngrid |
---|
389 | z1(ig)=1./(za(ig,1)+zb(ig,1)+ |
---|
390 | & zb(ig,2)*(1.-zd(ig,2))) |
---|
391 | zc(ig,1)=(za(ig,1)*zh(ig,1)+ |
---|
392 | & zb(ig,2)*zc(ig,2))*z1(ig) |
---|
393 | zd(ig,1)=zb(ig,1)*z1(ig) |
---|
394 | ENDDO |
---|
395 | |
---|
396 | ! Calculate (d Planck / dT) at the interface temperature |
---|
397 | ! ------------------------------------------------------ |
---|
398 | |
---|
399 | z4st=4.0*sigma*ptimestep |
---|
400 | DO ig=1,ngrid |
---|
401 | zdplanck(ig)=z4st*pemis(ig)*ptsrf(ig)*ptsrf(ig)*ptsrf(ig) |
---|
402 | ENDDO |
---|
403 | |
---|
404 | ! Calculate temperature tendency at the interface (dry case) |
---|
405 | ! ---------------------------------------------------------- |
---|
406 | ! Sum of fluxes at interface at time t + \delta t gives change in T: |
---|
407 | ! radiative fluxes |
---|
408 | ! turbulent convective (sensible) heat flux |
---|
409 | ! flux (if any) from subsurface |
---|
410 | |
---|
411 | if(.not.water) then |
---|
412 | |
---|
413 | DO ig=1,ngrid |
---|
414 | |
---|
415 | z1(ig) = pcapcal(ig)*ptsrf(ig) + cpp*zb(ig,1)*zc(ig,1) |
---|
416 | & + zdplanck(ig)*ptsrf(ig) + pfluxsrf(ig)*ptimestep |
---|
417 | z2(ig) = pcapcal(ig) + cpp*zb(ig,1)*(1.-zd(ig,1)) |
---|
418 | & +zdplanck(ig) |
---|
419 | ztsrf2(ig) = z1(ig) / z2(ig) |
---|
420 | pdtsrf(ig) = (ztsrf2(ig) - ptsrf(ig))/ptimestep |
---|
421 | zh(ig,1) = zc(ig,1) + zd(ig,1)*ztsrf2(ig) |
---|
422 | ENDDO |
---|
423 | |
---|
424 | ! Recalculate temperature to top of atmosphere, starting from ground |
---|
425 | ! ------------------------------------------------------------------ |
---|
426 | |
---|
427 | DO ilay=2,nlay |
---|
428 | DO ig=1,ngrid |
---|
429 | hh = zh(ig,ilay-1) |
---|
430 | zh(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*hh |
---|
431 | ENDDO |
---|
432 | ENDDO |
---|
433 | |
---|
434 | endif ! not water |
---|
435 | |
---|
436 | !----------------------------------------------------------------------- |
---|
437 | ! TRACERS (no vapour) |
---|
438 | ! ------- |
---|
439 | |
---|
440 | if(tracer) then |
---|
441 | |
---|
442 | ! Calculate vertical flux from the bottom to the first layer (dust) |
---|
443 | ! ----------------------------------------------------------------- |
---|
444 | do ig=1,ngridmx |
---|
445 | rho(ig) = zb0(ig,1) /ptimestep |
---|
446 | end do |
---|
447 | |
---|
448 | call zerophys(ngrid*nq,pdqsdif) |
---|
449 | |
---|
450 | ! Implicit inversion of q |
---|
451 | ! ----------------------- |
---|
452 | do iq=1,nq |
---|
453 | |
---|
454 | if (iq.ne.igcm_h2o_vap) then |
---|
455 | |
---|
456 | DO ig=1,ngrid |
---|
457 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
458 | zcq(ig,nlay)=za(ig,nlay)*zq(ig,nlay,iq)*z1(ig) |
---|
459 | zdq(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
460 | ENDDO |
---|
461 | |
---|
462 | DO ilay=nlay-1,2,-1 |
---|
463 | DO ig=1,ngrid |
---|
464 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
465 | & zb(ig,ilay+1)*(1.-zdq(ig,ilay+1))) |
---|
466 | zcq(ig,ilay)=(za(ig,ilay)*zq(ig,ilay,iq)+ |
---|
467 | & zb(ig,ilay+1)*zcq(ig,ilay+1))*z1(ig) |
---|
468 | zdq(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
469 | ENDDO |
---|
470 | ENDDO |
---|
471 | |
---|
472 | if ((water).and.(iq.eq.iice)) then |
---|
473 | ! special case for water ice tracer: do not include |
---|
474 | ! h2o ice tracer from surface (which is set when handling |
---|
475 | ! h2o vapour case (see further down). |
---|
476 | ! zb(ig,1)=0 if iq ne ivap |
---|
477 | DO ig=1,ngrid |
---|
478 | z1(ig)=1./(za(ig,1)+ |
---|
479 | & zb(ig,2)*(1.-zdq(ig,2))) |
---|
480 | zcq(ig,1)=(za(ig,1)*zq(ig,1,iq)+ |
---|
481 | & zb(ig,2)*zcq(ig,2))*z1(ig) |
---|
482 | ENDDO |
---|
483 | else ! general case |
---|
484 | DO ig=1,ngrid |
---|
485 | z1(ig)=1./(za(ig,1)+ |
---|
486 | & zb(ig,2)*(1.-zdq(ig,2))) |
---|
487 | zcq(ig,1)=(za(ig,1)*zq(ig,1,iq)+ |
---|
488 | & zb(ig,2)*zcq(ig,2) |
---|
489 | & +(-pdqsdif(ig,iq))*ptimestep)*z1(ig) |
---|
490 | ! tracer flux from surface |
---|
491 | ! currently pdqsdif always zero here, |
---|
492 | ! so last line is superfluous |
---|
493 | enddo |
---|
494 | endif ! of if (water.and.(iq.eq.igcm_h2o_ice)) |
---|
495 | |
---|
496 | |
---|
497 | ! Starting upward calculations for simple tracer mixing (e.g., dust) |
---|
498 | do ig=1,ngrid |
---|
499 | zq(ig,1,iq)=zcq(ig,1) |
---|
500 | end do |
---|
501 | |
---|
502 | do ilay=2,nlay |
---|
503 | do ig=1,ngrid |
---|
504 | zq(ig,ilay,iq)=zcq(ig,ilay)+ |
---|
505 | $ zdq(ig,ilay)*zq(ig,ilay-1,iq) |
---|
506 | end do |
---|
507 | end do |
---|
508 | |
---|
509 | endif ! if (iq.ne.igcm_h2o_vap) |
---|
510 | |
---|
511 | ! Calculate temperature tendency including latent heat term |
---|
512 | ! and assuming an infinite source of water on the ground |
---|
513 | ! ------------------------------------------------------------------ |
---|
514 | |
---|
515 | if (water.and.(iq.eq.igcm_h2o_vap)) then |
---|
516 | |
---|
517 | ! compute evaporation efficiency |
---|
518 | do ig = 1, ngrid |
---|
519 | if(rnat(ig).eq.1)then |
---|
520 | dryness(ig)=pqsurf(ig,ivap)+pqsurf(ig,iice) |
---|
521 | dryness(ig)=MIN(1.,2*dryness(ig)/mx_eau_sol) |
---|
522 | dryness(ig)=MAX(0.,dryness(ig)) |
---|
523 | endif |
---|
524 | enddo |
---|
525 | |
---|
526 | do ig=1,ngrid |
---|
527 | |
---|
528 | ! Calculate the value of qsat at the surface (water) |
---|
529 | call watersat(ptsrf(ig),pplev(ig,1),qsat(ig)) |
---|
530 | call watersat(ptsrf(ig)-0.0001,pplev(ig,1),qsat_temp1) |
---|
531 | call watersat(ptsrf(ig)+0.0001,pplev(ig,1),qsat_temp2) |
---|
532 | dqsat(ig)=(qsat_temp2-qsat_temp1)/0.0002 |
---|
533 | ! calculate dQsat / dT by finite differences |
---|
534 | ! we cannot use the updated temperature value yet... |
---|
535 | |
---|
536 | enddo |
---|
537 | |
---|
538 | ! coefficients for q |
---|
539 | |
---|
540 | do ig=1,ngrid |
---|
541 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
542 | zcq(ig,nlay)=za(ig,nlay)*zq(ig,nlay,iq)*z1(ig) |
---|
543 | zdq(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
544 | enddo |
---|
545 | |
---|
546 | do ilay=nlay-1,2,-1 |
---|
547 | do ig=1,ngrid |
---|
548 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
549 | $ zb(ig,ilay+1)*(1.-zdq(ig,ilay+1))) |
---|
550 | zcq(ig,ilay)=(za(ig,ilay)*zq(ig,ilay,iq)+ |
---|
551 | $ zb(ig,ilay+1)*zcq(ig,ilay+1))*z1(ig) |
---|
552 | zdq(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
553 | enddo |
---|
554 | enddo |
---|
555 | |
---|
556 | do ig=1,ngrid |
---|
557 | z1(ig)=1./(za(ig,1)+zb(ig,1)*dryness(ig)+ |
---|
558 | $ zb(ig,2)*(1.-zdq(ig,2))) |
---|
559 | zcq(ig,1)=(za(ig,1)*zq(ig,1,iq)+ |
---|
560 | $ zb(ig,2)*zcq(ig,2))*z1(ig) |
---|
561 | zdq(ig,1)=dryness(ig)*zb(ig,1)*z1(ig) |
---|
562 | enddo |
---|
563 | |
---|
564 | ! calculation of h0 and h1 |
---|
565 | do ig=1,ngrid |
---|
566 | zdq0(ig) = dqsat(ig) |
---|
567 | zcq0(ig) = qsat(ig)-dqsat(ig)*ptsrf(ig) |
---|
568 | |
---|
569 | z1(ig) = pcapcal(ig)*ptsrf(ig) +cpp*zb(ig,1)*zc(ig,1) |
---|
570 | & + zdplanck(ig)*ptsrf(ig) + pfluxsrf(ig)*ptimestep |
---|
571 | & + zb(ig,1)*dryness(ig)*RLVTT* |
---|
572 | & ((zdq(ig,1)-1.0)*zcq0(ig)+zcq(ig,1)) |
---|
573 | |
---|
574 | z2(ig) = pcapcal(ig) + cpp*zb(ig,1)*(1.-zd(ig,1)) |
---|
575 | & +zdplanck(ig) |
---|
576 | & +zb(ig,1)*dryness(ig)*RLVTT*zdq0(ig)* |
---|
577 | & (1.0-zdq(ig,1)) |
---|
578 | |
---|
579 | ztsrf2(ig) = z1(ig) / z2(ig) |
---|
580 | pdtsrf(ig) = (ztsrf2(ig) - ptsrf(ig))/ptimestep |
---|
581 | zh(ig,1) = zc(ig,1) + zd(ig,1)*ztsrf2(ig) |
---|
582 | enddo |
---|
583 | |
---|
584 | ! calculation of qs and q1 |
---|
585 | do ig=1,ngrid |
---|
586 | zq0(ig) = zcq0(ig)+zdq0(ig)*ztsrf2(ig) |
---|
587 | zq(ig,1,iq) = zcq(ig,1)+zdq(ig,1)*zq0(ig) |
---|
588 | enddo |
---|
589 | |
---|
590 | ! calculation of evaporation |
---|
591 | do ig=1,ngrid |
---|
592 | evap(ig)= zb(ig,1)*dryness(ig)*(zq(ig,1,ivap)-zq0(ig)) |
---|
593 | dqsdif_total(ig)=evap(ig) |
---|
594 | enddo |
---|
595 | |
---|
596 | ! recalculate temperature and q(vap) to top of atmosphere, starting from ground |
---|
597 | do ilay=2,nlay |
---|
598 | do ig=1,ngrid |
---|
599 | zq(ig,ilay,iq)=zcq(ig,ilay) |
---|
600 | & +zdq(ig,ilay)*zq(ig,ilay-1,iq) |
---|
601 | zh(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*zh(ig,ilay-1) |
---|
602 | end do |
---|
603 | end do |
---|
604 | |
---|
605 | do ig=1,ngrid |
---|
606 | |
---|
607 | ! -------------------------------------------------------------------------- |
---|
608 | ! On the ocean, if T > 0 C then the vapour tendency must replace the ice one |
---|
609 | ! The surface vapour tracer is actually liquid. To make things difficult. |
---|
610 | |
---|
611 | if (rnat(ig).eq.0) then ! unfrozen ocean |
---|
612 | |
---|
613 | pdqsdif(ig,ivap)=dqsdif_total(ig)/ptimestep |
---|
614 | pdqsdif(ig,iice)=0.0 |
---|
615 | |
---|
616 | |
---|
617 | elseif (rnat(ig).eq.1) then ! (continent) |
---|
618 | |
---|
619 | ! -------------------------------------------------------- |
---|
620 | ! Now check if we've taken too much water from the surface |
---|
621 | ! This can only occur on the continent |
---|
622 | |
---|
623 | ! If water is evaporating / subliming, we take it from ice before liquid |
---|
624 | ! -- is this valid?? |
---|
625 | if(dqsdif_total(ig).lt.0)then |
---|
626 | pdqsdif(ig,iice)=dqsdif_total(ig)/ptimestep |
---|
627 | pdqsdif(ig,iice)=max(-pqsurf(ig,iice)/ptimestep |
---|
628 | & ,pdqsdif(ig,iice)) |
---|
629 | endif |
---|
630 | ! sublimation only greater than qsurf(ice) |
---|
631 | ! ---------------------------------------- |
---|
632 | ! we just convert some liquid to vapour too |
---|
633 | ! if latent heats are the same, no big deal |
---|
634 | if (-dqsdif_total(ig).gt.pqsurf(ig,iice))then |
---|
635 | pdqsdif(ig,iice) = -pqsurf(ig,iice)/ptimestep ! removes all the ice! |
---|
636 | pdqsdif(ig,ivap) = dqsdif_total(ig)/ptimestep |
---|
637 | & - pdqsdif(ig,iice) ! take the remainder from the liquid instead |
---|
638 | pdqsdif(ig,ivap) = max(-pqsurf(ig,ivap)/ptimestep |
---|
639 | & ,pdqsdif(ig,ivap)) |
---|
640 | endif |
---|
641 | |
---|
642 | endif ! if (rnat.ne.1) |
---|
643 | |
---|
644 | ! If water vapour is condensing, we must decide whether it forms ice or liquid. |
---|
645 | if(dqsdif_total(ig).gt.0)then ! a bug was here! |
---|
646 | if(ztsrf2(ig).gt.To)then |
---|
647 | pdqsdif(ig,iice)=0.0 |
---|
648 | pdqsdif(ig,ivap)=dqsdif_total(ig)/ptimestep |
---|
649 | else |
---|
650 | pdqsdif(ig,iice)=dqsdif_total(ig)/ptimestep |
---|
651 | pdqsdif(ig,ivap)=0.0 |
---|
652 | endif |
---|
653 | endif |
---|
654 | |
---|
655 | end do ! of DO ig=1,ngrid |
---|
656 | endif ! if (water et iq=ivap) |
---|
657 | end do ! of do iq=1,nq |
---|
658 | endif ! traceur |
---|
659 | |
---|
660 | |
---|
661 | !----------------------------------------------------------------------- |
---|
662 | ! 8. Final calculation of the vertical diffusion tendencies |
---|
663 | ! ----------------------------------------------------------------- |
---|
664 | |
---|
665 | do ilev = 1, nlay |
---|
666 | do ig=1,ngrid |
---|
667 | pdudif(ig,ilev)=(zu(ig,ilev)- |
---|
668 | & (pu(ig,ilev)+pdufi(ig,ilev)*ptimestep))/ptimestep |
---|
669 | pdvdif(ig,ilev)=(zv(ig,ilev)- |
---|
670 | & (pv(ig,ilev)+pdvfi(ig,ilev)*ptimestep))/ptimestep |
---|
671 | hh = ph(ig,ilev)+pdhfi(ig,ilev)*ptimestep |
---|
672 | |
---|
673 | pdhdif(ig,ilev)=( zh(ig,ilev)- hh )/ptimestep |
---|
674 | enddo |
---|
675 | enddo |
---|
676 | |
---|
677 | DO ig=1,ngrid ! computing sensible heat flux (atm => surface) |
---|
678 | sensibFlux(ig)=cpp*zb(ig,1)/ptimestep*(zh(ig,1)-ztsrf2(ig)) |
---|
679 | ENDDO |
---|
680 | |
---|
681 | if (tracer) then |
---|
682 | do iq = 1, nq |
---|
683 | do ilev = 1, nlay |
---|
684 | do ig=1,ngrid |
---|
685 | pdqdif(ig,ilev,iq)=(zq(ig,ilev,iq)- |
---|
686 | & (pq(ig,ilev,iq)+pdqfi(ig,ilev,iq)*ptimestep))/ |
---|
687 | & ptimestep |
---|
688 | enddo |
---|
689 | enddo |
---|
690 | enddo |
---|
691 | |
---|
692 | if(water.and.forceWC)then ! force water conservation in model |
---|
693 | ! we calculate the difference and add it to the ground |
---|
694 | ! this is ugly and should be improved in the future |
---|
695 | do ig=1,ngrid |
---|
696 | Wtot=0.0 |
---|
697 | do ilay=1,nlay |
---|
698 | masse = (pplev(ig,ilay) - pplev(ig,ilay+1))/g |
---|
699 | ! Wtot=Wtot+masse*(zq(ig,ilay,iice)- |
---|
700 | ! & (pq(ig,ilay,iice)+pdqfi(ig,ilay,iice)*ptimestep)) |
---|
701 | Wtot=Wtot+masse*(zq(ig,ilay,ivap)- |
---|
702 | & (pq(ig,ilay,ivap)+pdqfi(ig,ilay,ivap)*ptimestep)) |
---|
703 | enddo |
---|
704 | Wdiff=Wtot/ptimestep+pdqsdif(ig,ivap)+pdqsdif(ig,iice) |
---|
705 | |
---|
706 | if(ztsrf2(ig).gt.To)then |
---|
707 | pdqsdif(ig,ivap)=pdqsdif(ig,ivap)-Wdiff |
---|
708 | else |
---|
709 | pdqsdif(ig,iice)=pdqsdif(ig,iice)-Wdiff |
---|
710 | endif |
---|
711 | enddo |
---|
712 | |
---|
713 | endif |
---|
714 | |
---|
715 | endif |
---|
716 | |
---|
717 | if(water)then |
---|
718 | call writediagfi(ngrid,'beta','Dryness coefficient',' ',2,dryness) |
---|
719 | endif |
---|
720 | |
---|
721 | ! if(lastcall)then |
---|
722 | ! if(ngrid.eq.1)then |
---|
723 | ! print*,'Saving k.out...' |
---|
724 | ! OPEN(12,file='k.out',form='formatted') |
---|
725 | ! DO ilay=1,nlay |
---|
726 | ! write(12,*) zkh(1,ilay), pplay(1,ilay) |
---|
727 | ! ENDDO |
---|
728 | ! CLOSE(12) |
---|
729 | ! endif |
---|
730 | ! endif |
---|
731 | |
---|
732 | |
---|
733 | return |
---|
734 | end |
---|