[253] | 1 | subroutine vdifc(ngrid,nlay,nq,rnat,ppopsk, |
---|
| 2 | & ptimestep,pcapcal,lecrit, |
---|
| 3 | & pplay,pplev,pzlay,pzlev,pz0, |
---|
| 4 | & pu,pv,ph,pq,ptsrf,pemis,pqsurf, |
---|
| 5 | & pdufi,pdvfi,pdhfi,pdqfi,pfluxsrf, |
---|
[594] | 6 | & pdudif,pdvdif,pdhdif,pdtsrf,sensibFlux,pq2, |
---|
[303] | 7 | & pdqdif,pdqsdif,lastcall) |
---|
[135] | 8 | |
---|
[650] | 9 | use watercommon_h, only : RLVTT, T_h2O_ice_liq, RCPD, mx_eau_sol |
---|
[600] | 10 | use radcommon_h, only : sigma |
---|
[787] | 11 | USE surfdat_h |
---|
| 12 | USE comgeomfi_h |
---|
| 13 | USE tracer_h |
---|
[135] | 14 | |
---|
| 15 | implicit none |
---|
| 16 | |
---|
[253] | 17 | !================================================================== |
---|
| 18 | ! |
---|
| 19 | ! Purpose |
---|
| 20 | ! ------- |
---|
| 21 | ! Turbulent diffusion (mixing) for pot. T, U, V and tracers |
---|
| 22 | ! |
---|
| 23 | ! Implicit scheme |
---|
| 24 | ! We start by adding to variables x the physical tendencies |
---|
| 25 | ! already computed. We resolve the equation: |
---|
| 26 | ! |
---|
| 27 | ! x(t+1) = x(t) + dt * (dx/dt)phys(t) + dt * (dx/dt)difv(t+1) |
---|
| 28 | ! |
---|
| 29 | ! Authors |
---|
| 30 | ! ------- |
---|
| 31 | ! F. Hourdin, F. Forget, R. Fournier (199X) |
---|
| 32 | ! R. Wordsworth, B. Charnay (2010) |
---|
| 33 | ! |
---|
| 34 | !================================================================== |
---|
[135] | 35 | |
---|
[253] | 36 | !----------------------------------------------------------------------- |
---|
| 37 | ! declarations |
---|
| 38 | ! ------------ |
---|
[135] | 39 | |
---|
| 40 | #include "dimensions.h" |
---|
| 41 | #include "dimphys.h" |
---|
| 42 | #include "comcstfi.h" |
---|
| 43 | #include "callkeys.h" |
---|
| 44 | |
---|
[253] | 45 | ! arguments |
---|
| 46 | ! --------- |
---|
[135] | 47 | INTEGER ngrid,nlay |
---|
| 48 | REAL ptimestep |
---|
| 49 | REAL pplay(ngrid,nlay),pplev(ngrid,nlay+1) |
---|
| 50 | REAL pzlay(ngrid,nlay),pzlev(ngrid,nlay+1) |
---|
| 51 | REAL pu(ngrid,nlay),pv(ngrid,nlay),ph(ngrid,nlay) |
---|
| 52 | REAL ptsrf(ngrid),pemis(ngrid) |
---|
| 53 | REAL pdufi(ngrid,nlay),pdvfi(ngrid,nlay),pdhfi(ngrid,nlay) |
---|
| 54 | REAL pfluxsrf(ngrid) |
---|
| 55 | REAL pdudif(ngrid,nlay),pdvdif(ngrid,nlay),pdhdif(ngrid,nlay) |
---|
[594] | 56 | REAL pdtsrf(ngrid),sensibFlux(ngrid),pcapcal(ngrid) |
---|
[135] | 57 | REAL pq2(ngrid,nlay+1) |
---|
[253] | 58 | |
---|
| 59 | integer rnat(ngrid) |
---|
[135] | 60 | |
---|
[253] | 61 | ! Arguments added for condensation |
---|
[135] | 62 | REAL ppopsk(ngrid,nlay) |
---|
| 63 | logical lecrit |
---|
| 64 | REAL pz0 |
---|
| 65 | |
---|
[253] | 66 | ! Tracers |
---|
| 67 | ! -------- |
---|
[135] | 68 | integer nq |
---|
[253] | 69 | real pqsurf(ngrid,nq) |
---|
[135] | 70 | real pq(ngrid,nlay,nq), pdqfi(ngrid,nlay,nq) |
---|
| 71 | real pdqdif(ngrid,nlay,nq) |
---|
| 72 | real pdqsdif(ngrid,nq) |
---|
| 73 | |
---|
[253] | 74 | ! local |
---|
| 75 | ! ----- |
---|
| 76 | integer ilev,ig,ilay,nlev |
---|
[135] | 77 | |
---|
[787] | 78 | REAL z4st,zdplanck(ngrid) |
---|
| 79 | REAL zkv(ngrid,nlayermx+1),zkh(ngrid,nlayermx+1) |
---|
| 80 | REAL zcdv(ngrid),zcdh(ngrid) |
---|
| 81 | REAL zcdv_true(ngrid),zcdh_true(ngrid) |
---|
| 82 | REAL zu(ngrid,nlayermx),zv(ngrid,nlayermx) |
---|
| 83 | REAL zh(ngrid,nlayermx) |
---|
| 84 | REAL ztsrf2(ngrid) |
---|
| 85 | REAL z1(ngrid),z2(ngrid) |
---|
| 86 | REAL za(ngrid,nlayermx),zb(ngrid,nlayermx) |
---|
| 87 | REAL zb0(ngrid,nlayermx) |
---|
| 88 | REAL zc(ngrid,nlayermx),zd(ngrid,nlayermx) |
---|
[135] | 89 | REAL zcst1 |
---|
[253] | 90 | REAL zu2!, a |
---|
[787] | 91 | REAL zcq(ngrid,nlayermx),zdq(ngrid,nlayermx) |
---|
| 92 | REAL evap(ngrid) |
---|
| 93 | REAL zcq0(ngrid),zdq0(ngrid) |
---|
| 94 | REAL zx_alf1(ngrid),zx_alf2(ngrid) |
---|
[135] | 95 | |
---|
| 96 | LOGICAL firstcall |
---|
| 97 | SAVE firstcall |
---|
[303] | 98 | |
---|
| 99 | LOGICAL lastcall |
---|
[135] | 100 | |
---|
[253] | 101 | ! variables added for CO2 condensation |
---|
| 102 | ! ------------------------------------ |
---|
[787] | 103 | REAL hh !, zhcond(ngrid,nlayermx) |
---|
[253] | 104 | ! REAL latcond,tcond1mb |
---|
| 105 | ! REAL acond,bcond |
---|
| 106 | ! SAVE acond,bcond |
---|
| 107 | ! DATA latcond,tcond1mb/5.9e5,136.27/ |
---|
[135] | 108 | |
---|
[253] | 109 | ! Tracers |
---|
| 110 | ! ------- |
---|
[135] | 111 | INTEGER iq |
---|
[787] | 112 | REAL zq(ngrid,nlayermx,nq) |
---|
| 113 | REAL zq1temp(ngrid) |
---|
| 114 | REAL rho(ngrid) ! near-surface air density |
---|
| 115 | REAL qsat(ngrid) |
---|
[135] | 116 | DATA firstcall/.true./ |
---|
| 117 | REAL kmixmin |
---|
| 118 | |
---|
[253] | 119 | ! Variables added for implicit latent heat inclusion |
---|
| 120 | ! -------------------------------------------------- |
---|
[787] | 121 | real latconst, dqsat(ngrid), qsat_temp1, qsat_temp2 |
---|
| 122 | real z1_Tdry(ngrid), z2_Tdry(ngrid) |
---|
| 123 | real z1_T(ngrid), z2_T(ngrid) |
---|
| 124 | real zb_T(ngrid) |
---|
| 125 | real zc_T(ngrid,nlayermx) |
---|
| 126 | real zd_T(ngrid,nlayermx) |
---|
| 127 | real lat1(ngrid), lat2(ngrid) |
---|
[253] | 128 | real surfh2otot |
---|
| 129 | logical surffluxdiag |
---|
| 130 | integer isub ! sub-loop for precision |
---|
[135] | 131 | |
---|
[253] | 132 | integer ivap, iice ! also make liq for clarity on surface... |
---|
| 133 | save ivap, iice |
---|
[135] | 134 | |
---|
[253] | 135 | real, parameter :: karman=0.4 |
---|
| 136 | real cd0, roughratio |
---|
[135] | 137 | |
---|
[253] | 138 | logical forceWC |
---|
| 139 | real masse, Wtot, Wdiff |
---|
[135] | 140 | |
---|
[253] | 141 | real dqsdif_total(ngrid) |
---|
| 142 | real zq0(ngrid) |
---|
[135] | 143 | |
---|
[253] | 144 | forceWC=.true. |
---|
| 145 | ! forceWC=.false. |
---|
[135] | 146 | |
---|
| 147 | |
---|
[253] | 148 | ! Coherence test |
---|
| 149 | ! -------------- |
---|
[135] | 150 | |
---|
[253] | 151 | IF (firstcall) THEN |
---|
| 152 | ! To compute: Tcond= 1./(bcond-acond*log(.0095*p)) (p in pascal) |
---|
| 153 | ! bcond=1./tcond1mb |
---|
| 154 | ! acond=r/latcond |
---|
| 155 | ! PRINT*,'In vdifc: Tcond(P=1mb)=',tcond1mb,' Lcond=',latcond |
---|
| 156 | ! PRINT*,' acond,bcond',acond,bcond |
---|
| 157 | |
---|
| 158 | if(water)then |
---|
| 159 | ! iliq=igcm_h2o_vap |
---|
| 160 | ivap=igcm_h2o_vap |
---|
| 161 | iice=igcm_h2o_ice ! simply to make the code legible |
---|
| 162 | ! to be generalised later |
---|
| 163 | endif |
---|
| 164 | |
---|
| 165 | firstcall=.false. |
---|
| 166 | ENDIF |
---|
| 167 | |
---|
| 168 | !----------------------------------------------------------------------- |
---|
| 169 | ! 1. Initialisation |
---|
| 170 | ! ----------------- |
---|
| 171 | |
---|
[135] | 172 | nlev=nlay+1 |
---|
| 173 | |
---|
[253] | 174 | ! Calculate rho*dz and dt*rho/dz=dt*rho**2 g/dp |
---|
| 175 | ! with rho=p/RT=p/ (R Theta) (p/ps)**kappa |
---|
| 176 | ! --------------------------------------------- |
---|
[135] | 177 | |
---|
| 178 | DO ilay=1,nlay |
---|
| 179 | DO ig=1,ngrid |
---|
| 180 | za(ig,ilay)=(pplev(ig,ilay)-pplev(ig,ilay+1))/g |
---|
| 181 | ENDDO |
---|
| 182 | ENDDO |
---|
| 183 | |
---|
[253] | 184 | zcst1=4.*g*ptimestep/(R*R) |
---|
[135] | 185 | DO ilev=2,nlev-1 |
---|
| 186 | DO ig=1,ngrid |
---|
| 187 | zb0(ig,ilev)=pplev(ig,ilev)* |
---|
[253] | 188 | s (pplev(ig,1)/pplev(ig,ilev))**rcp / |
---|
| 189 | s (ph(ig,ilev-1)+ph(ig,ilev)) |
---|
[135] | 190 | zb0(ig,ilev)=zcst1*zb0(ig,ilev)*zb0(ig,ilev)/ |
---|
[253] | 191 | s (pplay(ig,ilev-1)-pplay(ig,ilev)) |
---|
[135] | 192 | ENDDO |
---|
| 193 | ENDDO |
---|
| 194 | DO ig=1,ngrid |
---|
[253] | 195 | zb0(ig,1)=ptimestep*pplev(ig,1)/(R*ptsrf(ig)) |
---|
[135] | 196 | ENDDO |
---|
| 197 | |
---|
[253] | 198 | dqsdif_total(:)=0.0 |
---|
[135] | 199 | |
---|
[253] | 200 | !----------------------------------------------------------------------- |
---|
| 201 | ! 2. Add the physical tendencies computed so far |
---|
| 202 | ! ---------------------------------------------- |
---|
[135] | 203 | |
---|
| 204 | DO ilev=1,nlay |
---|
| 205 | DO ig=1,ngrid |
---|
| 206 | zu(ig,ilev)=pu(ig,ilev)+pdufi(ig,ilev)*ptimestep |
---|
| 207 | zv(ig,ilev)=pv(ig,ilev)+pdvfi(ig,ilev)*ptimestep |
---|
| 208 | zh(ig,ilev)=ph(ig,ilev)+pdhfi(ig,ilev)*ptimestep |
---|
| 209 | ENDDO |
---|
| 210 | ENDDO |
---|
| 211 | if(tracer) then |
---|
[253] | 212 | DO iq =1, nq |
---|
| 213 | DO ilev=1,nlay |
---|
| 214 | DO ig=1,ngrid |
---|
| 215 | zq(ig,ilev,iq)=pq(ig,ilev,iq) + |
---|
| 216 | & pdqfi(ig,ilev,iq)*ptimestep |
---|
| 217 | ENDDO |
---|
| 218 | ENDDO |
---|
[135] | 219 | ENDDO |
---|
| 220 | end if |
---|
| 221 | |
---|
[253] | 222 | !----------------------------------------------------------------------- |
---|
| 223 | ! 3. Turbulence scheme |
---|
| 224 | ! -------------------- |
---|
| 225 | ! |
---|
| 226 | ! Source of turbulent kinetic energy at the surface |
---|
| 227 | ! ------------------------------------------------- |
---|
| 228 | ! Formula is Cd_0 = (karman / log[1+z1/z0])^2 |
---|
[135] | 229 | |
---|
[253] | 230 | DO ig=1,ngrid |
---|
| 231 | roughratio = 1.E+0 + pzlay(ig,1)/pz0 |
---|
| 232 | cd0 = karman/log(roughratio) |
---|
| 233 | cd0 = cd0*cd0 |
---|
| 234 | zcdv_true(ig) = cd0 |
---|
| 235 | zcdh_true(ig) = cd0 |
---|
[952] | 236 | if (nosurf) then |
---|
| 237 | zcdv_true(ig) = 0. !! disable sensible momentum flux |
---|
| 238 | zcdh_true(ig) = 0. !! disable sensible heat flux |
---|
| 239 | endif |
---|
[253] | 240 | ENDDO |
---|
[135] | 241 | |
---|
| 242 | DO ig=1,ngrid |
---|
[253] | 243 | zu2=pu(ig,1)*pu(ig,1)+pv(ig,1)*pv(ig,1) |
---|
| 244 | zcdv(ig)=zcdv_true(ig)*sqrt(zu2) |
---|
| 245 | zcdh(ig)=zcdh_true(ig)*sqrt(zu2) |
---|
[135] | 246 | ENDDO |
---|
| 247 | |
---|
[253] | 248 | ! Turbulent diffusion coefficients in the boundary layer |
---|
| 249 | ! ------------------------------------------------------ |
---|
[135] | 250 | |
---|
[787] | 251 | call vdif_kc(ngrid,ptimestep,g,pzlev,pzlay |
---|
[253] | 252 | & ,pu,pv,ph,zcdv_true |
---|
| 253 | & ,pq2,zkv,zkh) |
---|
[135] | 254 | |
---|
[253] | 255 | ! Adding eddy mixing to mimic 3D general circulation in 1D |
---|
| 256 | ! R. Wordsworth & F. Forget (2010) |
---|
[135] | 257 | if ((ngrid.eq.1)) then |
---|
[253] | 258 | kmixmin = 1.0e-2 ! minimum eddy mix coeff in 1D |
---|
| 259 | do ilev=1,nlay |
---|
| 260 | do ig=1,ngrid |
---|
| 261 | !zkh(ig,ilev) = 1.0 |
---|
| 262 | zkh(ig,ilev) = max(kmixmin,zkh(ig,ilev)) |
---|
| 263 | zkv(ig,ilev) = max(kmixmin,zkv(ig,ilev)) |
---|
| 264 | end do |
---|
| 265 | end do |
---|
[135] | 266 | end if |
---|
| 267 | |
---|
[253] | 268 | !----------------------------------------------------------------------- |
---|
| 269 | ! 4. Implicit inversion of u |
---|
| 270 | ! -------------------------- |
---|
[135] | 271 | |
---|
[253] | 272 | ! u(t+1) = u(t) + dt * {(du/dt)phys}(t) + dt * {(du/dt)difv}(t+1) |
---|
| 273 | ! avec |
---|
| 274 | ! /zu/ = u(t) + dt * {(du/dt)phys}(t) (voir paragraphe 2.) |
---|
| 275 | ! et |
---|
| 276 | ! dt * {(du/dt)difv}(t+1) = dt * {(d/dz)[ Ku (du/dz) ]}(t+1) |
---|
| 277 | ! donc les entrees sont /zcdv/ pour la condition a la limite sol |
---|
| 278 | ! et /zkv/ = Ku |
---|
| 279 | |
---|
[135] | 280 | CALL multipl((nlay-1)*ngrid,zkv(1,2),zb0(1,2),zb(1,2)) |
---|
| 281 | CALL multipl(ngrid,zcdv,zb0,zb) |
---|
| 282 | |
---|
| 283 | DO ig=1,ngrid |
---|
| 284 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
| 285 | zc(ig,nlay)=za(ig,nlay)*zu(ig,nlay)*z1(ig) |
---|
| 286 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
| 287 | ENDDO |
---|
| 288 | |
---|
| 289 | DO ilay=nlay-1,1,-1 |
---|
| 290 | DO ig=1,ngrid |
---|
| 291 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
[253] | 292 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
[135] | 293 | zc(ig,ilay)=(za(ig,ilay)*zu(ig,ilay)+ |
---|
[253] | 294 | $ zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
---|
[135] | 295 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
| 296 | ENDDO |
---|
| 297 | ENDDO |
---|
| 298 | |
---|
| 299 | DO ig=1,ngrid |
---|
| 300 | zu(ig,1)=zc(ig,1) |
---|
| 301 | ENDDO |
---|
| 302 | DO ilay=2,nlay |
---|
| 303 | DO ig=1,ngrid |
---|
| 304 | zu(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*zu(ig,ilay-1) |
---|
| 305 | ENDDO |
---|
| 306 | ENDDO |
---|
| 307 | |
---|
[253] | 308 | !----------------------------------------------------------------------- |
---|
| 309 | ! 5. Implicit inversion of v |
---|
| 310 | ! -------------------------- |
---|
[135] | 311 | |
---|
[253] | 312 | ! v(t+1) = v(t) + dt * {(dv/dt)phys}(t) + dt * {(dv/dt)difv}(t+1) |
---|
| 313 | ! avec |
---|
| 314 | ! /zv/ = v(t) + dt * {(dv/dt)phys}(t) (voir paragraphe 2.) |
---|
| 315 | ! et |
---|
| 316 | ! dt * {(dv/dt)difv}(t+1) = dt * {(d/dz)[ Kv (dv/dz) ]}(t+1) |
---|
| 317 | ! donc les entrees sont /zcdv/ pour la condition a la limite sol |
---|
| 318 | ! et /zkv/ = Kv |
---|
[135] | 319 | |
---|
| 320 | DO ig=1,ngrid |
---|
| 321 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
| 322 | zc(ig,nlay)=za(ig,nlay)*zv(ig,nlay)*z1(ig) |
---|
| 323 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
| 324 | ENDDO |
---|
| 325 | |
---|
| 326 | DO ilay=nlay-1,1,-1 |
---|
| 327 | DO ig=1,ngrid |
---|
| 328 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
[253] | 329 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
[135] | 330 | zc(ig,ilay)=(za(ig,ilay)*zv(ig,ilay)+ |
---|
[253] | 331 | $ zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
---|
[135] | 332 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
| 333 | ENDDO |
---|
| 334 | ENDDO |
---|
| 335 | |
---|
| 336 | DO ig=1,ngrid |
---|
| 337 | zv(ig,1)=zc(ig,1) |
---|
| 338 | ENDDO |
---|
| 339 | DO ilay=2,nlay |
---|
| 340 | DO ig=1,ngrid |
---|
| 341 | zv(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*zv(ig,ilay-1) |
---|
| 342 | ENDDO |
---|
| 343 | ENDDO |
---|
| 344 | |
---|
[253] | 345 | !---------------------------------------------------------------------------- |
---|
| 346 | ! 6. Implicit inversion of h, not forgetting the coupling with the ground |
---|
[135] | 347 | |
---|
[253] | 348 | ! h(t+1) = h(t) + dt * {(dh/dt)phys}(t) + dt * {(dh/dt)difv}(t+1) |
---|
| 349 | ! avec |
---|
| 350 | ! /zh/ = h(t) + dt * {(dh/dt)phys}(t) (voir paragraphe 2.) |
---|
| 351 | ! et |
---|
| 352 | ! dt * {(dh/dt)difv}(t+1) = dt * {(d/dz)[ Kh (dh/dz) ]}(t+1) |
---|
| 353 | ! donc les entrees sont /zcdh/ pour la condition de raccord au sol |
---|
| 354 | ! et /zkh/ = Kh |
---|
[135] | 355 | |
---|
[253] | 356 | ! Using the wind modified by friction for lifting and sublimation |
---|
| 357 | ! --------------------------------------------------------------- |
---|
| 358 | DO ig=1,ngrid |
---|
| 359 | zu2 = zu(ig,1)*zu(ig,1)+zv(ig,1)*zv(ig,1) |
---|
| 360 | zcdv(ig) = zcdv_true(ig)*sqrt(zu2) |
---|
| 361 | zcdh(ig) = zcdh_true(ig)*sqrt(zu2) |
---|
| 362 | ENDDO |
---|
| 363 | |
---|
[135] | 364 | CALL multipl((nlay-1)*ngrid,zkh(1,2),zb0(1,2),zb(1,2)) |
---|
| 365 | CALL multipl(ngrid,zcdh,zb0,zb) |
---|
| 366 | |
---|
| 367 | DO ig=1,ngrid |
---|
| 368 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
| 369 | zc(ig,nlay)=za(ig,nlay)*zh(ig,nlay)*z1(ig) |
---|
| 370 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
| 371 | ENDDO |
---|
| 372 | |
---|
[253] | 373 | DO ilay=nlay-1,2,-1 |
---|
[135] | 374 | DO ig=1,ngrid |
---|
| 375 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
[253] | 376 | & zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
[135] | 377 | zc(ig,ilay)=(za(ig,ilay)*zh(ig,ilay)+ |
---|
[253] | 378 | & zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
---|
[135] | 379 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
| 380 | ENDDO |
---|
| 381 | ENDDO |
---|
| 382 | |
---|
| 383 | DO ig=1,ngrid |
---|
[253] | 384 | z1(ig)=1./(za(ig,1)+zb(ig,1)+ |
---|
| 385 | & zb(ig,2)*(1.-zd(ig,2))) |
---|
| 386 | zc(ig,1)=(za(ig,1)*zh(ig,1)+ |
---|
| 387 | & zb(ig,2)*zc(ig,2))*z1(ig) |
---|
| 388 | zd(ig,1)=zb(ig,1)*z1(ig) |
---|
[135] | 389 | ENDDO |
---|
| 390 | |
---|
[253] | 391 | ! Calculate (d Planck / dT) at the interface temperature |
---|
| 392 | ! ------------------------------------------------------ |
---|
[135] | 393 | |
---|
[253] | 394 | z4st=4.0*sigma*ptimestep |
---|
[135] | 395 | DO ig=1,ngrid |
---|
[253] | 396 | zdplanck(ig)=z4st*pemis(ig)*ptsrf(ig)*ptsrf(ig)*ptsrf(ig) |
---|
[135] | 397 | ENDDO |
---|
| 398 | |
---|
[253] | 399 | ! Calculate temperature tendency at the interface (dry case) |
---|
| 400 | ! ---------------------------------------------------------- |
---|
| 401 | ! Sum of fluxes at interface at time t + \delta t gives change in T: |
---|
| 402 | ! radiative fluxes |
---|
| 403 | ! turbulent convective (sensible) heat flux |
---|
| 404 | ! flux (if any) from subsurface |
---|
[135] | 405 | |
---|
[253] | 406 | if(.not.water) then |
---|
| 407 | |
---|
[135] | 408 | DO ig=1,ngrid |
---|
[253] | 409 | |
---|
| 410 | z1(ig) = pcapcal(ig)*ptsrf(ig) + cpp*zb(ig,1)*zc(ig,1) |
---|
| 411 | & + zdplanck(ig)*ptsrf(ig) + pfluxsrf(ig)*ptimestep |
---|
| 412 | z2(ig) = pcapcal(ig) + cpp*zb(ig,1)*(1.-zd(ig,1)) |
---|
| 413 | & +zdplanck(ig) |
---|
| 414 | ztsrf2(ig) = z1(ig) / z2(ig) |
---|
| 415 | pdtsrf(ig) = (ztsrf2(ig) - ptsrf(ig))/ptimestep |
---|
| 416 | zh(ig,1) = zc(ig,1) + zd(ig,1)*ztsrf2(ig) |
---|
[135] | 417 | ENDDO |
---|
| 418 | |
---|
[253] | 419 | ! Recalculate temperature to top of atmosphere, starting from ground |
---|
| 420 | ! ------------------------------------------------------------------ |
---|
[135] | 421 | |
---|
[253] | 422 | DO ilay=2,nlay |
---|
| 423 | DO ig=1,ngrid |
---|
| 424 | hh = zh(ig,ilay-1) |
---|
| 425 | zh(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*hh |
---|
| 426 | ENDDO |
---|
| 427 | ENDDO |
---|
[135] | 428 | |
---|
[253] | 429 | endif ! not water |
---|
[135] | 430 | |
---|
[253] | 431 | !----------------------------------------------------------------------- |
---|
| 432 | ! TRACERS (no vapour) |
---|
| 433 | ! ------- |
---|
[135] | 434 | |
---|
[253] | 435 | if(tracer) then |
---|
[135] | 436 | |
---|
[253] | 437 | ! Calculate vertical flux from the bottom to the first layer (dust) |
---|
| 438 | ! ----------------------------------------------------------------- |
---|
[787] | 439 | do ig=1,ngrid |
---|
[253] | 440 | rho(ig) = zb0(ig,1) /ptimestep |
---|
| 441 | end do |
---|
[135] | 442 | |
---|
[253] | 443 | call zerophys(ngrid*nq,pdqsdif) |
---|
[135] | 444 | |
---|
[253] | 445 | ! Implicit inversion of q |
---|
| 446 | ! ----------------------- |
---|
| 447 | do iq=1,nq |
---|
[135] | 448 | |
---|
[253] | 449 | if (iq.ne.igcm_h2o_vap) then |
---|
[135] | 450 | |
---|
| 451 | DO ig=1,ngrid |
---|
[253] | 452 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
| 453 | zcq(ig,nlay)=za(ig,nlay)*zq(ig,nlay,iq)*z1(ig) |
---|
| 454 | zdq(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
| 455 | ENDDO |
---|
| 456 | |
---|
| 457 | DO ilay=nlay-1,2,-1 |
---|
| 458 | DO ig=1,ngrid |
---|
| 459 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
| 460 | & zb(ig,ilay+1)*(1.-zdq(ig,ilay+1))) |
---|
| 461 | zcq(ig,ilay)=(za(ig,ilay)*zq(ig,ilay,iq)+ |
---|
| 462 | & zb(ig,ilay+1)*zcq(ig,ilay+1))*z1(ig) |
---|
| 463 | zdq(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
| 464 | ENDDO |
---|
[135] | 465 | ENDDO |
---|
| 466 | |
---|
[253] | 467 | if ((water).and.(iq.eq.iice)) then |
---|
| 468 | ! special case for water ice tracer: do not include |
---|
| 469 | ! h2o ice tracer from surface (which is set when handling |
---|
| 470 | ! h2o vapour case (see further down). |
---|
| 471 | ! zb(ig,1)=0 if iq ne ivap |
---|
| 472 | DO ig=1,ngrid |
---|
| 473 | z1(ig)=1./(za(ig,1)+ |
---|
| 474 | & zb(ig,2)*(1.-zdq(ig,2))) |
---|
| 475 | zcq(ig,1)=(za(ig,1)*zq(ig,1,iq)+ |
---|
| 476 | & zb(ig,2)*zcq(ig,2))*z1(ig) |
---|
| 477 | ENDDO |
---|
| 478 | else ! general case |
---|
| 479 | DO ig=1,ngrid |
---|
| 480 | z1(ig)=1./(za(ig,1)+ |
---|
| 481 | & zb(ig,2)*(1.-zdq(ig,2))) |
---|
| 482 | zcq(ig,1)=(za(ig,1)*zq(ig,1,iq)+ |
---|
| 483 | & zb(ig,2)*zcq(ig,2) |
---|
| 484 | & +(-pdqsdif(ig,iq))*ptimestep)*z1(ig) |
---|
| 485 | ! tracer flux from surface |
---|
| 486 | ! currently pdqsdif always zero here, |
---|
| 487 | ! so last line is superfluous |
---|
| 488 | enddo |
---|
| 489 | endif ! of if (water.and.(iq.eq.igcm_h2o_ice)) |
---|
[135] | 490 | |
---|
| 491 | |
---|
[253] | 492 | ! Starting upward calculations for simple tracer mixing (e.g., dust) |
---|
| 493 | do ig=1,ngrid |
---|
| 494 | zq(ig,1,iq)=zcq(ig,1) |
---|
| 495 | end do |
---|
[135] | 496 | |
---|
[253] | 497 | do ilay=2,nlay |
---|
| 498 | do ig=1,ngrid |
---|
| 499 | zq(ig,ilay,iq)=zcq(ig,ilay)+ |
---|
| 500 | $ zdq(ig,ilay)*zq(ig,ilay-1,iq) |
---|
| 501 | end do |
---|
| 502 | end do |
---|
[135] | 503 | |
---|
[253] | 504 | endif ! if (iq.ne.igcm_h2o_vap) |
---|
[135] | 505 | |
---|
[253] | 506 | ! Calculate temperature tendency including latent heat term |
---|
| 507 | ! and assuming an infinite source of water on the ground |
---|
| 508 | ! ------------------------------------------------------------------ |
---|
[135] | 509 | |
---|
[253] | 510 | if (water.and.(iq.eq.igcm_h2o_vap)) then |
---|
| 511 | |
---|
| 512 | ! compute evaporation efficiency |
---|
| 513 | do ig = 1, ngrid |
---|
| 514 | if(rnat(ig).eq.1)then |
---|
| 515 | dryness(ig)=pqsurf(ig,ivap)+pqsurf(ig,iice) |
---|
| 516 | dryness(ig)=MIN(1.,2*dryness(ig)/mx_eau_sol) |
---|
| 517 | dryness(ig)=MAX(0.,dryness(ig)) |
---|
| 518 | endif |
---|
| 519 | enddo |
---|
[135] | 520 | |
---|
[253] | 521 | do ig=1,ngrid |
---|
[135] | 522 | |
---|
[253] | 523 | ! Calculate the value of qsat at the surface (water) |
---|
| 524 | call watersat(ptsrf(ig),pplev(ig,1),qsat(ig)) |
---|
| 525 | call watersat(ptsrf(ig)-0.0001,pplev(ig,1),qsat_temp1) |
---|
| 526 | call watersat(ptsrf(ig)+0.0001,pplev(ig,1),qsat_temp2) |
---|
| 527 | dqsat(ig)=(qsat_temp2-qsat_temp1)/0.0002 |
---|
| 528 | ! calculate dQsat / dT by finite differences |
---|
| 529 | ! we cannot use the updated temperature value yet... |
---|
| 530 | |
---|
| 531 | enddo |
---|
| 532 | |
---|
| 533 | ! coefficients for q |
---|
| 534 | |
---|
| 535 | do ig=1,ngrid |
---|
| 536 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
| 537 | zcq(ig,nlay)=za(ig,nlay)*zq(ig,nlay,iq)*z1(ig) |
---|
| 538 | zdq(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
| 539 | enddo |
---|
| 540 | |
---|
| 541 | do ilay=nlay-1,2,-1 |
---|
| 542 | do ig=1,ngrid |
---|
| 543 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
| 544 | $ zb(ig,ilay+1)*(1.-zdq(ig,ilay+1))) |
---|
| 545 | zcq(ig,ilay)=(za(ig,ilay)*zq(ig,ilay,iq)+ |
---|
| 546 | $ zb(ig,ilay+1)*zcq(ig,ilay+1))*z1(ig) |
---|
| 547 | zdq(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
| 548 | enddo |
---|
| 549 | enddo |
---|
| 550 | |
---|
| 551 | do ig=1,ngrid |
---|
| 552 | z1(ig)=1./(za(ig,1)+zb(ig,1)*dryness(ig)+ |
---|
| 553 | $ zb(ig,2)*(1.-zdq(ig,2))) |
---|
| 554 | zcq(ig,1)=(za(ig,1)*zq(ig,1,iq)+ |
---|
| 555 | $ zb(ig,2)*zcq(ig,2))*z1(ig) |
---|
| 556 | zdq(ig,1)=dryness(ig)*zb(ig,1)*z1(ig) |
---|
| 557 | enddo |
---|
| 558 | |
---|
| 559 | ! calculation of h0 and h1 |
---|
| 560 | do ig=1,ngrid |
---|
| 561 | zdq0(ig) = dqsat(ig) |
---|
| 562 | zcq0(ig) = qsat(ig)-dqsat(ig)*ptsrf(ig) |
---|
| 563 | |
---|
| 564 | z1(ig) = pcapcal(ig)*ptsrf(ig) +cpp*zb(ig,1)*zc(ig,1) |
---|
| 565 | & + zdplanck(ig)*ptsrf(ig) + pfluxsrf(ig)*ptimestep |
---|
| 566 | & + zb(ig,1)*dryness(ig)*RLVTT* |
---|
| 567 | & ((zdq(ig,1)-1.0)*zcq0(ig)+zcq(ig,1)) |
---|
| 568 | |
---|
| 569 | z2(ig) = pcapcal(ig) + cpp*zb(ig,1)*(1.-zd(ig,1)) |
---|
| 570 | & +zdplanck(ig) |
---|
| 571 | & +zb(ig,1)*dryness(ig)*RLVTT*zdq0(ig)* |
---|
| 572 | & (1.0-zdq(ig,1)) |
---|
| 573 | |
---|
| 574 | ztsrf2(ig) = z1(ig) / z2(ig) |
---|
| 575 | pdtsrf(ig) = (ztsrf2(ig) - ptsrf(ig))/ptimestep |
---|
| 576 | zh(ig,1) = zc(ig,1) + zd(ig,1)*ztsrf2(ig) |
---|
| 577 | enddo |
---|
| 578 | |
---|
| 579 | ! calculation of qs and q1 |
---|
| 580 | do ig=1,ngrid |
---|
| 581 | zq0(ig) = zcq0(ig)+zdq0(ig)*ztsrf2(ig) |
---|
| 582 | zq(ig,1,iq) = zcq(ig,1)+zdq(ig,1)*zq0(ig) |
---|
| 583 | enddo |
---|
| 584 | |
---|
| 585 | ! calculation of evaporation |
---|
| 586 | do ig=1,ngrid |
---|
| 587 | evap(ig)= zb(ig,1)*dryness(ig)*(zq(ig,1,ivap)-zq0(ig)) |
---|
| 588 | dqsdif_total(ig)=evap(ig) |
---|
| 589 | enddo |
---|
| 590 | |
---|
| 591 | ! recalculate temperature and q(vap) to top of atmosphere, starting from ground |
---|
| 592 | do ilay=2,nlay |
---|
| 593 | do ig=1,ngrid |
---|
| 594 | zq(ig,ilay,iq)=zcq(ig,ilay) |
---|
| 595 | & +zdq(ig,ilay)*zq(ig,ilay-1,iq) |
---|
| 596 | zh(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*zh(ig,ilay-1) |
---|
| 597 | end do |
---|
| 598 | end do |
---|
| 599 | |
---|
| 600 | do ig=1,ngrid |
---|
| 601 | |
---|
| 602 | ! -------------------------------------------------------------------------- |
---|
| 603 | ! On the ocean, if T > 0 C then the vapour tendency must replace the ice one |
---|
| 604 | ! The surface vapour tracer is actually liquid. To make things difficult. |
---|
| 605 | |
---|
| 606 | if (rnat(ig).eq.0) then ! unfrozen ocean |
---|
| 607 | |
---|
| 608 | pdqsdif(ig,ivap)=dqsdif_total(ig)/ptimestep |
---|
| 609 | pdqsdif(ig,iice)=0.0 |
---|
| 610 | |
---|
| 611 | |
---|
| 612 | elseif (rnat(ig).eq.1) then ! (continent) |
---|
| 613 | |
---|
| 614 | ! -------------------------------------------------------- |
---|
| 615 | ! Now check if we've taken too much water from the surface |
---|
| 616 | ! This can only occur on the continent |
---|
| 617 | |
---|
| 618 | ! If water is evaporating / subliming, we take it from ice before liquid |
---|
| 619 | ! -- is this valid?? |
---|
| 620 | if(dqsdif_total(ig).lt.0)then |
---|
| 621 | pdqsdif(ig,iice)=dqsdif_total(ig)/ptimestep |
---|
| 622 | pdqsdif(ig,iice)=max(-pqsurf(ig,iice)/ptimestep |
---|
| 623 | & ,pdqsdif(ig,iice)) |
---|
| 624 | endif |
---|
| 625 | ! sublimation only greater than qsurf(ice) |
---|
| 626 | ! ---------------------------------------- |
---|
| 627 | ! we just convert some liquid to vapour too |
---|
| 628 | ! if latent heats are the same, no big deal |
---|
| 629 | if (-dqsdif_total(ig).gt.pqsurf(ig,iice))then |
---|
| 630 | pdqsdif(ig,iice) = -pqsurf(ig,iice)/ptimestep ! removes all the ice! |
---|
| 631 | pdqsdif(ig,ivap) = dqsdif_total(ig)/ptimestep |
---|
| 632 | & - pdqsdif(ig,iice) ! take the remainder from the liquid instead |
---|
| 633 | pdqsdif(ig,ivap) = max(-pqsurf(ig,ivap)/ptimestep |
---|
| 634 | & ,pdqsdif(ig,ivap)) |
---|
| 635 | endif |
---|
| 636 | |
---|
| 637 | endif ! if (rnat.ne.1) |
---|
| 638 | |
---|
| 639 | ! If water vapour is condensing, we must decide whether it forms ice or liquid. |
---|
| 640 | if(dqsdif_total(ig).gt.0)then ! a bug was here! |
---|
[650] | 641 | if(ztsrf2(ig).gt.T_h2O_ice_liq)then |
---|
[253] | 642 | pdqsdif(ig,iice)=0.0 |
---|
| 643 | pdqsdif(ig,ivap)=dqsdif_total(ig)/ptimestep |
---|
| 644 | else |
---|
| 645 | pdqsdif(ig,iice)=dqsdif_total(ig)/ptimestep |
---|
| 646 | pdqsdif(ig,ivap)=0.0 |
---|
| 647 | endif |
---|
| 648 | endif |
---|
| 649 | |
---|
| 650 | end do ! of DO ig=1,ngrid |
---|
| 651 | endif ! if (water et iq=ivap) |
---|
| 652 | end do ! of do iq=1,nq |
---|
| 653 | endif ! traceur |
---|
| 654 | |
---|
| 655 | |
---|
| 656 | !----------------------------------------------------------------------- |
---|
| 657 | ! 8. Final calculation of the vertical diffusion tendencies |
---|
| 658 | ! ----------------------------------------------------------------- |
---|
| 659 | |
---|
| 660 | do ilev = 1, nlay |
---|
| 661 | do ig=1,ngrid |
---|
| 662 | pdudif(ig,ilev)=(zu(ig,ilev)- |
---|
| 663 | & (pu(ig,ilev)+pdufi(ig,ilev)*ptimestep))/ptimestep |
---|
| 664 | pdvdif(ig,ilev)=(zv(ig,ilev)- |
---|
| 665 | & (pv(ig,ilev)+pdvfi(ig,ilev)*ptimestep))/ptimestep |
---|
| 666 | hh = ph(ig,ilev)+pdhfi(ig,ilev)*ptimestep |
---|
| 667 | |
---|
[135] | 668 | pdhdif(ig,ilev)=( zh(ig,ilev)- hh )/ptimestep |
---|
[253] | 669 | enddo |
---|
| 670 | enddo |
---|
[594] | 671 | |
---|
| 672 | DO ig=1,ngrid ! computing sensible heat flux (atm => surface) |
---|
| 673 | sensibFlux(ig)=cpp*zb(ig,1)/ptimestep*(zh(ig,1)-ztsrf2(ig)) |
---|
| 674 | ENDDO |
---|
| 675 | |
---|
[253] | 676 | if (tracer) then |
---|
| 677 | do iq = 1, nq |
---|
| 678 | do ilev = 1, nlay |
---|
| 679 | do ig=1,ngrid |
---|
| 680 | pdqdif(ig,ilev,iq)=(zq(ig,ilev,iq)- |
---|
| 681 | & (pq(ig,ilev,iq)+pdqfi(ig,ilev,iq)*ptimestep))/ |
---|
| 682 | & ptimestep |
---|
| 683 | enddo |
---|
| 684 | enddo |
---|
| 685 | enddo |
---|
[135] | 686 | |
---|
[253] | 687 | if(water.and.forceWC)then ! force water conservation in model |
---|
| 688 | ! we calculate the difference and add it to the ground |
---|
| 689 | ! this is ugly and should be improved in the future |
---|
| 690 | do ig=1,ngrid |
---|
| 691 | Wtot=0.0 |
---|
| 692 | do ilay=1,nlay |
---|
| 693 | masse = (pplev(ig,ilay) - pplev(ig,ilay+1))/g |
---|
| 694 | ! Wtot=Wtot+masse*(zq(ig,ilay,iice)- |
---|
| 695 | ! & (pq(ig,ilay,iice)+pdqfi(ig,ilay,iice)*ptimestep)) |
---|
| 696 | Wtot=Wtot+masse*(zq(ig,ilay,ivap)- |
---|
| 697 | & (pq(ig,ilay,ivap)+pdqfi(ig,ilay,ivap)*ptimestep)) |
---|
| 698 | enddo |
---|
| 699 | Wdiff=Wtot/ptimestep+pdqsdif(ig,ivap)+pdqsdif(ig,iice) |
---|
[135] | 700 | |
---|
[650] | 701 | if(ztsrf2(ig).gt.T_h2O_ice_liq)then |
---|
[253] | 702 | pdqsdif(ig,ivap)=pdqsdif(ig,ivap)-Wdiff |
---|
| 703 | else |
---|
| 704 | pdqsdif(ig,iice)=pdqsdif(ig,iice)-Wdiff |
---|
| 705 | endif |
---|
| 706 | enddo |
---|
[135] | 707 | |
---|
[253] | 708 | endif |
---|
[135] | 709 | |
---|
[253] | 710 | endif |
---|
[135] | 711 | |
---|
[253] | 712 | if(water)then |
---|
| 713 | call writediagfi(ngrid,'beta','Dryness coefficient',' ',2,dryness) |
---|
| 714 | endif |
---|
| 715 | |
---|
[303] | 716 | ! if(lastcall)then |
---|
| 717 | ! if(ngrid.eq.1)then |
---|
| 718 | ! print*,'Saving k.out...' |
---|
| 719 | ! OPEN(12,file='k.out',form='formatted') |
---|
| 720 | ! DO ilay=1,nlay |
---|
| 721 | ! write(12,*) zkh(1,ilay), pplay(1,ilay) |
---|
| 722 | ! ENDDO |
---|
| 723 | ! CLOSE(12) |
---|
| 724 | ! endif |
---|
| 725 | ! endif |
---|
| 726 | |
---|
| 727 | |
---|
[253] | 728 | return |
---|
| 729 | end |
---|