[2427] | 1 | module turbdiff_mod |
---|
| 2 | |
---|
| 3 | implicit none |
---|
| 4 | |
---|
| 5 | contains |
---|
| 6 | |
---|
[594] | 7 | subroutine turbdiff(ngrid,nlay,nq,rnat, & |
---|
[2427] | 8 | ptimestep,pcapcal, & |
---|
[594] | 9 | pplay,pplev,pzlay,pzlev,pz0, & |
---|
| 10 | pu,pv,pt,ppopsk,pq,ptsrf,pemis,pqsurf, & |
---|
[1477] | 11 | pdtfi,pdqfi,pfluxsrf, & |
---|
[594] | 12 | Pdudif,pdvdif,pdtdif,pdtsrf,sensibFlux,pq2, & |
---|
[2427] | 13 | pdqdif,pdqevap,pdqsdif,flux_u,flux_v) |
---|
[594] | 14 | |
---|
[1993] | 15 | use watercommon_h, only : RLVTT, T_h2O_ice_liq, RCPD, mx_eau_sol,Psat_water, Lcpdqsat_water |
---|
[1194] | 16 | use radcommon_h, only : sigma, glat |
---|
[1283] | 17 | use surfdat_h, only: dryness |
---|
| 18 | use tracer_h, only: igcm_h2o_vap, igcm_h2o_ice |
---|
[1384] | 19 | use comcstfi_mod, only: rcp, g, r, cpp |
---|
[2482] | 20 | use callkeys_mod, only: water,tracer,nosurf,kmixmin |
---|
[1837] | 21 | use turb_mod, only : ustar |
---|
[1834] | 22 | #ifdef MESOSCALE |
---|
| 23 | use comm_wrf, only : comm_LATENT_HF |
---|
| 24 | #endif |
---|
[594] | 25 | implicit none |
---|
| 26 | |
---|
| 27 | !================================================================== |
---|
| 28 | ! |
---|
| 29 | ! Purpose |
---|
| 30 | ! ------- |
---|
| 31 | ! Turbulent diffusion (mixing) for pot. T, U, V and tracers |
---|
| 32 | ! |
---|
| 33 | ! Implicit scheme |
---|
| 34 | ! We start by adding to variables x the physical tendencies |
---|
| 35 | ! already computed. We resolve the equation: |
---|
| 36 | ! |
---|
| 37 | ! x(t+1) = x(t) + dt * (dx/dt)phys(t) + dt * (dx/dt)difv(t+1) |
---|
| 38 | ! |
---|
| 39 | ! Authors |
---|
| 40 | ! ------- |
---|
| 41 | ! F. Hourdin, F. Forget, R. Fournier (199X) |
---|
| 42 | ! R. Wordsworth, B. Charnay (2010) |
---|
| 43 | ! J. Leconte (2012): To f90 |
---|
| 44 | ! - Rewritten the diffusion scheme to conserve total enthalpy |
---|
| 45 | ! by accounting for dissipation of turbulent kinetic energy. |
---|
| 46 | ! - Accounting for lost mean flow kinetic energy should come soon. |
---|
| 47 | ! |
---|
| 48 | !================================================================== |
---|
| 49 | |
---|
| 50 | !----------------------------------------------------------------------- |
---|
| 51 | ! declarations |
---|
| 52 | ! ------------ |
---|
| 53 | |
---|
| 54 | ! arguments |
---|
| 55 | ! --------- |
---|
[1308] | 56 | INTEGER,INTENT(IN) :: ngrid |
---|
| 57 | INTEGER,INTENT(IN) :: nlay |
---|
[1283] | 58 | REAL,INTENT(IN) :: ptimestep |
---|
| 59 | REAL,INTENT(IN) :: pplay(ngrid,nlay),pplev(ngrid,nlay+1) |
---|
| 60 | REAL,INTENT(IN) :: pzlay(ngrid,nlay),pzlev(ngrid,nlay+1) |
---|
| 61 | REAL,INTENT(IN) :: pu(ngrid,nlay),pv(ngrid,nlay) |
---|
| 62 | REAL,INTENT(IN) :: pt(ngrid,nlay),ppopsk(ngrid,nlay) |
---|
| 63 | REAL,INTENT(IN) :: ptsrf(ngrid) ! surface temperature (K) |
---|
| 64 | REAL,INTENT(IN) :: pemis(ngrid) |
---|
| 65 | REAL,INTENT(IN) :: pdtfi(ngrid,nlay) |
---|
| 66 | REAL,INTENT(IN) :: pfluxsrf(ngrid) |
---|
| 67 | REAL,INTENT(OUT) :: pdudif(ngrid,nlay),pdvdif(ngrid,nlay) |
---|
| 68 | REAL,INTENT(OUT) :: pdtdif(ngrid,nlay) |
---|
| 69 | REAL,INTENT(OUT) :: pdtsrf(ngrid) ! tendency (K/s) on surface temperature |
---|
| 70 | REAL,INTENT(OUT) :: sensibFlux(ngrid) |
---|
| 71 | REAL,INTENT(IN) :: pcapcal(ngrid) |
---|
| 72 | REAL,INTENT(INOUT) :: pq2(ngrid,nlay+1) |
---|
[1297] | 73 | REAL,INTENT(OUT) :: flux_u(ngrid),flux_v(ngrid) |
---|
| 74 | REAL,INTENT(IN) :: rnat(ngrid) |
---|
[594] | 75 | |
---|
[1283] | 76 | REAL,INTENT(IN) :: pz0 |
---|
[594] | 77 | |
---|
| 78 | ! Tracers |
---|
| 79 | ! -------- |
---|
[1283] | 80 | integer,intent(in) :: nq |
---|
| 81 | real,intent(in) :: pqsurf(ngrid,nq) |
---|
| 82 | real,intent(in) :: pq(ngrid,nlay,nq), pdqfi(ngrid,nlay,nq) |
---|
| 83 | real,intent(out) :: pdqdif(ngrid,nlay,nq) |
---|
| 84 | real,intent(out) :: pdqsdif(ngrid,nq) |
---|
[594] | 85 | |
---|
| 86 | ! local |
---|
| 87 | ! ----- |
---|
| 88 | integer ilev,ig,ilay,nlev |
---|
| 89 | |
---|
[787] | 90 | REAL z4st,zdplanck(ngrid) |
---|
[1308] | 91 | REAL zkv(ngrid,nlay+1),zkh(ngrid,nlay+1) |
---|
[787] | 92 | REAL zcdv(ngrid),zcdh(ngrid) |
---|
| 93 | REAL zcdv_true(ngrid),zcdh_true(ngrid) |
---|
[1308] | 94 | REAL zu(ngrid,nlay),zv(ngrid,nlay) |
---|
| 95 | REAL zh(ngrid,nlay),zt(ngrid,nlay) |
---|
[787] | 96 | REAL ztsrf(ngrid) |
---|
| 97 | REAL z1(ngrid),z2(ngrid) |
---|
[1308] | 98 | REAL zmass(ngrid,nlay) |
---|
| 99 | REAL zfluxv(ngrid,nlay),zfluxt(ngrid,nlay),zfluxq(ngrid,nlay) |
---|
| 100 | REAL zb0(ngrid,nlay) |
---|
| 101 | REAL zExner(ngrid,nlay),zovExner(ngrid,nlay) |
---|
| 102 | REAL zcv(ngrid,nlay),zdv(ngrid,nlay) !inversion coefficient for winds |
---|
| 103 | REAL zct(ngrid,nlay),zdt(ngrid,nlay) !inversion coefficient for temperature |
---|
| 104 | REAL zcq(ngrid,nlay),zdq(ngrid,nlay) !inversion coefficient for tracers |
---|
[594] | 105 | REAL zcst1 |
---|
| 106 | REAL zu2!, a |
---|
[787] | 107 | REAL zcq0(ngrid),zdq0(ngrid) |
---|
| 108 | REAL zx_alf1(ngrid),zx_alf2(ngrid) |
---|
[2482] | 109 | ! 1D eddy diffusion coefficient |
---|
| 110 | REAL kzz_eddy(nlay) |
---|
| 111 | REAL pmin_kzz |
---|
[594] | 112 | |
---|
[1283] | 113 | LOGICAL,SAVE :: firstcall=.true. |
---|
[1315] | 114 | !$OMP THREADPRIVATE(firstcall) |
---|
[594] | 115 | |
---|
| 116 | ! Tracers |
---|
| 117 | ! ------- |
---|
| 118 | INTEGER iq |
---|
[1308] | 119 | REAL zq(ngrid,nlay,nq) |
---|
| 120 | REAL zqnoevap(ngrid,nlay) !special for water case to compute where evaporated water goes. |
---|
| 121 | REAL pdqevap(ngrid,nlay) !special for water case to compute where evaporated water goes. |
---|
[787] | 122 | REAL zdmassevap(ngrid) |
---|
| 123 | REAL rho(ngrid) ! near-surface air density |
---|
[594] | 124 | |
---|
| 125 | ! Variables added for implicit latent heat inclusion |
---|
| 126 | ! -------------------------------------------------- |
---|
[1993] | 127 | real dqsat(ngrid),psat_temp,qsat(ngrid),psat(ngrid) |
---|
[594] | 128 | |
---|
[728] | 129 | integer, save :: ivap, iliq, iliq_surf,iice_surf ! also make liq for clarity on surface... |
---|
[1315] | 130 | !$OMP THREADPRIVATE(ivap,iliq,iliq_surf,iice_surf) |
---|
[594] | 131 | |
---|
| 132 | real, parameter :: karman=0.4 |
---|
| 133 | real cd0, roughratio |
---|
| 134 | |
---|
| 135 | real dqsdif_total(ngrid) |
---|
| 136 | real zq0(ngrid) |
---|
| 137 | |
---|
| 138 | |
---|
| 139 | ! Coherence test |
---|
| 140 | ! -------------- |
---|
| 141 | |
---|
| 142 | IF (firstcall) THEN |
---|
| 143 | |
---|
| 144 | if(water)then |
---|
[726] | 145 | ivap=igcm_h2o_vap |
---|
| 146 | iliq=igcm_h2o_ice |
---|
| 147 | iliq_surf=igcm_h2o_vap |
---|
| 148 | iice_surf=igcm_h2o_ice ! simply to make the code legible |
---|
| 149 | ! to be generalised |
---|
| 150 | else |
---|
| 151 | ivap=0 |
---|
| 152 | iliq=0 |
---|
| 153 | iliq_surf=0 |
---|
| 154 | iice_surf=0 ! simply to make the code legible |
---|
[594] | 155 | endif |
---|
| 156 | sensibFlux(:)=0. |
---|
| 157 | |
---|
| 158 | firstcall=.false. |
---|
| 159 | ENDIF |
---|
| 160 | |
---|
| 161 | !----------------------------------------------------------------------- |
---|
| 162 | ! 1. Initialisation |
---|
| 163 | ! ----------------- |
---|
| 164 | |
---|
| 165 | nlev=nlay+1 |
---|
| 166 | |
---|
| 167 | ! Calculate rho*dz, (P/Ps)**(R/cp) and dt*rho/dz=dt*rho**2 g/dp |
---|
| 168 | ! with rho=p/RT=p/ (R Theta) (p/ps)**kappa |
---|
| 169 | ! --------------------------------------------- |
---|
| 170 | |
---|
| 171 | DO ilay=1,nlay |
---|
| 172 | DO ig=1,ngrid |
---|
[1194] | 173 | zmass(ig,ilay)=(pplev(ig,ilay)-pplev(ig,ilay+1))/glat(ig) |
---|
[594] | 174 | zExner(ig,ilay)=(pplev(ig,ilay)/pplev(ig,1))**rcp |
---|
| 175 | zovExner(ig,ilay)=1./ppopsk(ig,ilay) |
---|
| 176 | ENDDO |
---|
| 177 | ENDDO |
---|
| 178 | |
---|
| 179 | zcst1=4.*g*ptimestep/(R*R) |
---|
| 180 | DO ilev=2,nlev-1 |
---|
| 181 | DO ig=1,ngrid |
---|
| 182 | zb0(ig,ilev)=pplev(ig,ilev)/(pt(ig,ilev-1)+pt(ig,ilev)) |
---|
| 183 | zb0(ig,ilev)=zcst1*zb0(ig,ilev)*zb0(ig,ilev)/(pplay(ig,ilev-1)-pplay(ig,ilev)) |
---|
| 184 | ENDDO |
---|
| 185 | ENDDO |
---|
| 186 | DO ig=1,ngrid |
---|
| 187 | zb0(ig,1)=ptimestep*pplev(ig,1)/(R*ptsrf(ig)) |
---|
| 188 | ENDDO |
---|
| 189 | dqsdif_total(:)=0.0 |
---|
| 190 | |
---|
| 191 | !----------------------------------------------------------------------- |
---|
| 192 | ! 2. Add the physical tendencies computed so far |
---|
| 193 | ! ---------------------------------------------- |
---|
| 194 | |
---|
| 195 | DO ilev=1,nlay |
---|
| 196 | DO ig=1,ngrid |
---|
[1477] | 197 | zu(ig,ilev)=pu(ig,ilev) |
---|
| 198 | zv(ig,ilev)=pv(ig,ilev) |
---|
[594] | 199 | zt(ig,ilev)=pt(ig,ilev)+pdtfi(ig,ilev)*ptimestep |
---|
| 200 | zh(ig,ilev)=pt(ig,ilev)*zovExner(ig,ilev) !for call vdif_kc, but could be moved and computed there |
---|
| 201 | ENDDO |
---|
| 202 | ENDDO |
---|
| 203 | if(tracer) then |
---|
| 204 | DO iq =1, nq |
---|
| 205 | DO ilev=1,nlay |
---|
| 206 | DO ig=1,ngrid |
---|
| 207 | zq(ig,ilev,iq)=pq(ig,ilev,iq) + pdqfi(ig,ilev,iq)*ptimestep |
---|
| 208 | ENDDO |
---|
| 209 | ENDDO |
---|
| 210 | ENDDO |
---|
[728] | 211 | if (water) then |
---|
| 212 | DO ilev=1,nlay |
---|
| 213 | DO ig=1,ngrid |
---|
| 214 | zqnoevap(ig,ilev)=pq(ig,ilev,ivap) + pdqfi(ig,ilev,ivap)*ptimestep |
---|
| 215 | ENDDO |
---|
| 216 | ENDDO |
---|
| 217 | Endif |
---|
[594] | 218 | end if |
---|
| 219 | |
---|
| 220 | !----------------------------------------------------------------------- |
---|
| 221 | ! 3. Turbulence scheme |
---|
| 222 | ! -------------------- |
---|
| 223 | ! |
---|
| 224 | ! Source of turbulent kinetic energy at the surface |
---|
| 225 | ! ------------------------------------------------- |
---|
| 226 | ! Formula is Cd_0 = (karman / log[1+z1/z0])^2 |
---|
| 227 | |
---|
| 228 | DO ig=1,ngrid |
---|
| 229 | roughratio = 1. + pzlay(ig,1)/pz0 |
---|
| 230 | cd0 = karman/log(roughratio) |
---|
| 231 | cd0 = cd0*cd0 |
---|
| 232 | zcdv_true(ig) = cd0 |
---|
| 233 | zcdh_true(ig) = cd0 |
---|
[952] | 234 | if(nosurf)then |
---|
| 235 | zcdv_true(ig)=0.D+0 !JL12 disable atm/surface momentum flux |
---|
| 236 | zcdh_true(ig)=0.D+0 !JL12 disable sensible heat flux |
---|
| 237 | endif |
---|
[594] | 238 | ENDDO |
---|
| 239 | |
---|
| 240 | DO ig=1,ngrid |
---|
| 241 | zu2=pu(ig,1)*pu(ig,1)+pv(ig,1)*pv(ig,1) |
---|
| 242 | zcdv(ig)=zcdv_true(ig)*sqrt(zu2) |
---|
| 243 | zcdh(ig)=zcdh_true(ig)*sqrt(zu2) |
---|
| 244 | ENDDO |
---|
| 245 | |
---|
| 246 | ! Turbulent diffusion coefficients in the boundary layer |
---|
| 247 | ! ------------------------------------------------------ |
---|
| 248 | |
---|
[3236] | 249 | call vdif_kc(ngrid,nlay,nq,ptimestep,g,pzlev,pzlay,pu,pv,pq,zh,zcdv_true,pq2,zkv,zkh) !JL12 why not call vdif_kc with updated winds and temperature |
---|
[1283] | 250 | |
---|
[594] | 251 | ! Adding eddy mixing to mimic 3D general circulation in 1D |
---|
| 252 | ! R. Wordsworth & F. Forget (2010) |
---|
| 253 | if ((ngrid.eq.1)) then |
---|
[2482] | 254 | ! kmixmin minimum eddy mix coeff in 1D |
---|
| 255 | ! set up in inifis_mod.F90 - default value 1.0e-2 |
---|
[594] | 256 | do ilev=1,nlay |
---|
[2482] | 257 | |
---|
| 258 | ! Here to code your specific eddy mix coeff in 1D |
---|
| 259 | ! Earth example that can be uncommented below |
---|
| 260 | ! ------------------------------------------------- |
---|
| 261 | ! *====== Earth kzz from Zahnle et al. 2006 ======* |
---|
| 262 | ! ------------------------------------------------- |
---|
| 263 | ! if(pzlev(1,ilev).le.11.0e3) then |
---|
| 264 | ! kzz_eddy(ilev)=10.0 |
---|
| 265 | ! pmin_kzz=pplev(1,ilev)*exp((pzlev(1,ilev)-11.0e3)*g/(r*zt(1,ilev))) |
---|
| 266 | ! else |
---|
| 267 | ! kzz_eddy(ilev)=0.1*(pplev(1,ilev)/pmin_kzz)**(-0.5) |
---|
| 268 | ! kzz_eddy(ilev)=min(kzz_eddy(ilev),100.0) |
---|
| 269 | ! endif |
---|
| 270 | ! do ig=1,ngrid |
---|
| 271 | ! zkh(ig,ilev) = max(kzz_eddy(ilev),zkh(ig,ilev)) |
---|
| 272 | ! zkv(ig,ilev) = max(kzz_eddy(ilev),zkv(ig,ilev)) |
---|
| 273 | ! end do |
---|
| 274 | |
---|
[594] | 275 | do ig=1,ngrid |
---|
| 276 | zkh(ig,ilev) = max(kmixmin,zkh(ig,ilev)) |
---|
| 277 | zkv(ig,ilev) = max(kmixmin,zkv(ig,ilev)) |
---|
| 278 | end do |
---|
| 279 | end do |
---|
| 280 | end if |
---|
| 281 | |
---|
[728] | 282 | !JL12 change zkv at the surface by zcdv to calculate the surface momentum flux properly |
---|
[594] | 283 | DO ig=1,ngrid |
---|
| 284 | zkv(ig,1)=zcdv(ig) |
---|
| 285 | ENDDO |
---|
| 286 | !we treat only winds, energy and tracers coefficients will be computed with upadted winds |
---|
| 287 | !JL12 calculate the flux coefficients (tables multiplied elements by elements) |
---|
[1308] | 288 | zfluxv(1:ngrid,1:nlay)=zkv(1:ngrid,1:nlay)*zb0(1:ngrid,1:nlay) |
---|
[594] | 289 | |
---|
| 290 | !----------------------------------------------------------------------- |
---|
| 291 | ! 4. Implicit inversion of u |
---|
| 292 | ! -------------------------- |
---|
| 293 | |
---|
| 294 | ! u(t+1) = u(t) + dt * {(du/dt)phys}(t) + dt * {(du/dt)difv}(t+1) |
---|
| 295 | ! avec |
---|
| 296 | ! /zu/ = u(t) + dt * {(du/dt)phys}(t) (voir paragraphe 2.) |
---|
| 297 | ! et |
---|
| 298 | ! dt * {(du/dt)difv}(t+1) = dt * {(d/dz)[ Ku (du/dz) ]}(t+1) |
---|
| 299 | ! donc les entrees sont /zcdv/ pour la condition a la limite sol |
---|
| 300 | ! et /zkv/ = Ku |
---|
| 301 | |
---|
| 302 | DO ig=1,ngrid |
---|
| 303 | z1(ig)=1./(zmass(ig,nlay)+zfluxv(ig,nlay)) |
---|
| 304 | zcv(ig,nlay)=zmass(ig,nlay)*zu(ig,nlay)*z1(ig) |
---|
| 305 | zdv(ig,nlay)=zfluxv(ig,nlay)*z1(ig) |
---|
| 306 | ENDDO |
---|
| 307 | |
---|
| 308 | DO ilay=nlay-1,1,-1 |
---|
| 309 | DO ig=1,ngrid |
---|
| 310 | z1(ig)=1./(zmass(ig,ilay)+zfluxv(ig,ilay) + zfluxv(ig,ilay+1)*(1.-zdv(ig,ilay+1))) |
---|
| 311 | zcv(ig,ilay)=(zmass(ig,ilay)*zu(ig,ilay)+zfluxv(ig,ilay+1)*zcv(ig,ilay+1))*z1(ig) |
---|
| 312 | zdv(ig,ilay)=zfluxv(ig,ilay)*z1(ig) |
---|
| 313 | ENDDO |
---|
| 314 | ENDDO |
---|
| 315 | |
---|
| 316 | DO ig=1,ngrid |
---|
| 317 | zu(ig,1)=zcv(ig,1) |
---|
| 318 | ENDDO |
---|
| 319 | DO ilay=2,nlay |
---|
| 320 | DO ig=1,ngrid |
---|
| 321 | zu(ig,ilay)=zcv(ig,ilay)+zdv(ig,ilay)*zu(ig,ilay-1) |
---|
| 322 | ENDDO |
---|
| 323 | ENDDO |
---|
| 324 | |
---|
| 325 | !----------------------------------------------------------------------- |
---|
| 326 | ! 5. Implicit inversion of v |
---|
| 327 | ! -------------------------- |
---|
| 328 | |
---|
| 329 | ! v(t+1) = v(t) + dt * {(dv/dt)phys}(t) + dt * {(dv/dt)difv}(t+1) |
---|
| 330 | ! avec |
---|
| 331 | ! /zv/ = v(t) + dt * {(dv/dt)phys}(t) (voir paragraphe 2.) |
---|
| 332 | ! et |
---|
| 333 | ! dt * {(dv/dt)difv}(t+1) = dt * {(d/dz)[ Kv (dv/dz) ]}(t+1) |
---|
| 334 | ! donc les entrees sont /zcdv/ pour la condition a la limite sol |
---|
| 335 | ! et /zkv/ = Kv |
---|
| 336 | |
---|
| 337 | DO ig=1,ngrid |
---|
| 338 | z1(ig)=1./(zmass(ig,nlay)+zfluxv(ig,nlay)) |
---|
| 339 | zcv(ig,nlay)=zmass(ig,nlay)*zv(ig,nlay)*z1(ig) |
---|
| 340 | zdv(ig,nlay)=zfluxv(ig,nlay)*z1(ig) |
---|
| 341 | ENDDO |
---|
| 342 | |
---|
| 343 | DO ilay=nlay-1,1,-1 |
---|
| 344 | DO ig=1,ngrid |
---|
| 345 | z1(ig)=1./(zmass(ig,ilay)+zfluxv(ig,ilay)+zfluxv(ig,ilay+1)*(1.-zdv(ig,ilay+1))) |
---|
| 346 | zcv(ig,ilay)=(zmass(ig,ilay)*zv(ig,ilay)+zfluxv(ig,ilay+1)*zcv(ig,ilay+1))*z1(ig) |
---|
| 347 | zdv(ig,ilay)=zfluxv(ig,ilay)*z1(ig) |
---|
| 348 | ENDDO |
---|
| 349 | ENDDO |
---|
| 350 | |
---|
| 351 | DO ig=1,ngrid |
---|
| 352 | zv(ig,1)=zcv(ig,1) |
---|
| 353 | ENDDO |
---|
| 354 | DO ilay=2,nlay |
---|
| 355 | DO ig=1,ngrid |
---|
| 356 | zv(ig,ilay)=zcv(ig,ilay)+zdv(ig,ilay)*zv(ig,ilay-1) |
---|
| 357 | ENDDO |
---|
| 358 | ENDDO |
---|
| 359 | |
---|
[1297] | 360 | ! Calcul of wind stress |
---|
[594] | 361 | |
---|
[1297] | 362 | DO ig=1,ngrid |
---|
| 363 | flux_u(ig) = zfluxv(ig,1)/ptimestep*zu(ig,1) |
---|
| 364 | flux_v(ig) = zfluxv(ig,1)/ptimestep*zv(ig,1) |
---|
| 365 | ENDDO |
---|
[594] | 366 | |
---|
[1297] | 367 | |
---|
[594] | 368 | !---------------------------------------------------------------------------- |
---|
| 369 | ! 6. Implicit inversion of h, not forgetting the coupling with the ground |
---|
| 370 | |
---|
| 371 | ! h(t+1) = h(t) + dt * {(dh/dt)phys}(t) + dt * {(dh/dt)difv}(t+1) |
---|
| 372 | ! avec |
---|
| 373 | ! /zh/ = h(t) + dt * {(dh/dt)phys}(t) (voir paragraphe 2.) |
---|
| 374 | ! et |
---|
| 375 | ! dt * {(dh/dt)difv}(t+1) = dt * {(d/dz)[ Kh (dh/dz) ]}(t+1) |
---|
| 376 | ! donc les entrees sont /zcdh/ pour la condition de raccord au sol |
---|
| 377 | ! et /zkh/ = Kh |
---|
| 378 | |
---|
| 379 | ! Using the wind modified by friction for lifting and sublimation |
---|
| 380 | ! --------------------------------------------------------------- |
---|
| 381 | DO ig=1,ngrid |
---|
| 382 | zu2 = zu(ig,1)*zu(ig,1)+zv(ig,1)*zv(ig,1) |
---|
| 383 | zcdv(ig) = zcdv_true(ig)*sqrt(zu2) |
---|
| 384 | zcdh(ig) = zcdh_true(ig)*sqrt(zu2) |
---|
[728] | 385 | zkh(ig,1)= zcdh(ig) |
---|
[1834] | 386 | ustar(ig)=sqrt(zcdv_true(ig))*sqrt(zu2) |
---|
[594] | 387 | ENDDO |
---|
| 388 | |
---|
[1834] | 389 | |
---|
[594] | 390 | ! JL12 calculate the flux coefficients (tables multiplied elements by elements) |
---|
| 391 | ! --------------------------------------------------------------- |
---|
[1308] | 392 | zfluxq(1:ngrid,1:nlay)=zkh(1:ngrid,1:nlay)*zb0(1:ngrid,1:nlay) !JL12 we save zfluxq which doesn't need the Exner factor |
---|
| 393 | zfluxt(1:ngrid,1:nlay)=zfluxq(1:ngrid,1:nlay)*zExner(1:ngrid,1:nlay) |
---|
[594] | 394 | |
---|
| 395 | DO ig=1,ngrid |
---|
| 396 | z1(ig)=1./(zmass(ig,nlay)+zfluxt(ig,nlay)*zovExner(ig,nlay)) |
---|
| 397 | zct(ig,nlay)=zmass(ig,nlay)*zt(ig,nlay)*z1(ig) |
---|
| 398 | zdt(ig,nlay)=zfluxt(ig,nlay)*zovExner(ig,nlay-1)*z1(ig) |
---|
| 399 | ENDDO |
---|
| 400 | |
---|
| 401 | DO ilay=nlay-1,2,-1 |
---|
| 402 | DO ig=1,ngrid |
---|
| 403 | z1(ig)=1./(zmass(ig,ilay)+zfluxt(ig,ilay)*zovExner(ig,ilay)+ & |
---|
| 404 | zfluxt(ig,ilay+1)*(zovExner(ig,ilay)-zdt(ig,ilay+1)*zovExner(ig,ilay+1))) |
---|
| 405 | zct(ig,ilay)=(zmass(ig,ilay)*zt(ig,ilay)+zfluxt(ig,ilay+1)*zct(ig,ilay+1)*zovExner(ig,ilay+1))*z1(ig) |
---|
| 406 | zdt(ig,ilay)=zfluxt(ig,ilay)*z1(ig)*zovExner(ig,ilay-1) |
---|
| 407 | ENDDO |
---|
| 408 | ENDDO |
---|
| 409 | |
---|
| 410 | !JL12 we treat last point afterward because zovExner(ig,ilay-1) does not exist there |
---|
| 411 | DO ig=1,ngrid |
---|
| 412 | z1(ig)=1./(zmass(ig,1)+zfluxt(ig,1)*zovExner(ig,1)+ & |
---|
| 413 | zfluxt(ig,2)*(zovExner(ig,1)-zdt(ig,2)*zovExner(ig,2))) |
---|
| 414 | zct(ig,1)=(zmass(ig,1)*zt(ig,1)+zfluxt(ig,2)*zct(ig,2)*zovExner(ig,2))*z1(ig) |
---|
| 415 | zdt(ig,1)=zfluxt(ig,1)*z1(ig) |
---|
| 416 | ENDDO |
---|
| 417 | |
---|
| 418 | |
---|
| 419 | ! Calculate (d Planck / dT) at the interface temperature |
---|
| 420 | ! ------------------------------------------------------ |
---|
| 421 | |
---|
| 422 | z4st=4.0*sigma*ptimestep |
---|
| 423 | DO ig=1,ngrid |
---|
| 424 | zdplanck(ig)=z4st*pemis(ig)*ptsrf(ig)*ptsrf(ig)*ptsrf(ig) |
---|
| 425 | ENDDO |
---|
| 426 | |
---|
| 427 | ! Calculate temperature tendency at the interface (dry case) |
---|
| 428 | ! ---------------------------------------------------------- |
---|
| 429 | ! Sum of fluxes at interface at time t + \delta t gives change in T: |
---|
| 430 | ! radiative fluxes |
---|
| 431 | ! turbulent convective (sensible) heat flux |
---|
| 432 | ! flux (if any) from subsurface |
---|
| 433 | |
---|
| 434 | if(.not.water) then |
---|
| 435 | |
---|
| 436 | DO ig=1,ngrid |
---|
| 437 | z1(ig)=pcapcal(ig)*ptsrf(ig)+cpp*zfluxt(ig,1)*zct(ig,1)*zovExner(ig,1) & |
---|
| 438 | + pfluxsrf(ig)*ptimestep + zdplanck(ig)*ptsrf(ig) |
---|
| 439 | z2(ig) = pcapcal(ig)+zdplanck(ig)+cpp*zfluxt(ig,1)*(1.-zovExner(ig,1)*zdt(ig,1)) |
---|
| 440 | ztsrf(ig) = z1(ig) / z2(ig) |
---|
| 441 | pdtsrf(ig) = (ztsrf(ig) - ptsrf(ig))/ptimestep |
---|
| 442 | zt(ig,1) = zct(ig,1) + zdt(ig,1)*ztsrf(ig) |
---|
| 443 | ENDDO |
---|
| 444 | ! JL12 note that the black body radiative flux emitted by the surface has been updated by the implicit scheme |
---|
| 445 | |
---|
| 446 | |
---|
| 447 | ! Recalculate temperature to top of atmosphere, starting from ground |
---|
| 448 | ! ------------------------------------------------------------------ |
---|
| 449 | |
---|
| 450 | DO ilay=2,nlay |
---|
| 451 | DO ig=1,ngrid |
---|
| 452 | zt(ig,ilay)=zct(ig,ilay)+zdt(ig,ilay)*zt(ig,ilay-1) |
---|
| 453 | ENDDO |
---|
| 454 | ENDDO |
---|
| 455 | |
---|
| 456 | endif ! not water |
---|
| 457 | |
---|
| 458 | !----------------------------------------------------------------------- |
---|
| 459 | ! TRACERS (no vapour) |
---|
| 460 | ! ------- |
---|
| 461 | |
---|
| 462 | if(tracer) then |
---|
| 463 | |
---|
| 464 | ! Calculate vertical flux from the bottom to the first layer (dust) |
---|
| 465 | ! ----------------------------------------------------------------- |
---|
[787] | 466 | do ig=1,ngrid |
---|
[594] | 467 | rho(ig) = zb0(ig,1) /ptimestep |
---|
| 468 | end do |
---|
| 469 | |
---|
| 470 | pdqsdif(:,:)=0. |
---|
| 471 | |
---|
| 472 | ! Implicit inversion of q |
---|
| 473 | ! ----------------------- |
---|
| 474 | do iq=1,nq |
---|
| 475 | |
---|
| 476 | if (iq.ne.ivap) then |
---|
| 477 | |
---|
| 478 | DO ig=1,ngrid |
---|
| 479 | z1(ig)=1./(zmass(ig,nlay)+zfluxq(ig,nlay)) |
---|
| 480 | zcq(ig,nlay)=zmass(ig,nlay)*zq(ig,nlay,iq)*z1(ig) |
---|
| 481 | zdq(ig,nlay)=zfluxq(ig,nlay)*z1(ig) |
---|
| 482 | ENDDO |
---|
| 483 | |
---|
| 484 | DO ilay=nlay-1,2,-1 |
---|
| 485 | DO ig=1,ngrid |
---|
| 486 | z1(ig)=1./(zmass(ig,ilay)+zfluxq(ig,ilay)+zfluxq(ig,ilay+1)*(1.-zdq(ig,ilay+1))) |
---|
| 487 | zcq(ig,ilay)=(zmass(ig,ilay)*zq(ig,ilay,iq)+zfluxq(ig,ilay+1)*zcq(ig,ilay+1))*z1(ig) |
---|
| 488 | zdq(ig,ilay)=zfluxq(ig,ilay)*z1(ig) |
---|
| 489 | ENDDO |
---|
| 490 | ENDDO |
---|
| 491 | |
---|
| 492 | if ((water).and.(iq.eq.iliq)) then |
---|
| 493 | ! special case for condensed water tracer: do not include |
---|
| 494 | ! h2o ice tracer from surface (which is set when handling |
---|
| 495 | ! h2o vapour case (see further down). |
---|
| 496 | ! zb(ig,1)=0 if iq ne ivap |
---|
| 497 | DO ig=1,ngrid |
---|
| 498 | z1(ig)=1./(zmass(ig,1)+zfluxq(ig,2)*(1.-zdq(ig,2))) |
---|
| 499 | zcq(ig,1)=(zmass(ig,1)*zq(ig,1,iq)+zfluxq(ig,2)*zcq(ig,2))*z1(ig) |
---|
| 500 | ENDDO |
---|
| 501 | else ! general case |
---|
[787] | 502 | do ig=1,ngrid |
---|
[594] | 503 | z1(ig)=1./(zmass(ig,1)+zfluxq(ig,2)*(1.-zdq(ig,2))) |
---|
| 504 | zcq(ig,1)=(zmass(ig,1)*zq(ig,1,iq)+zfluxq(ig,2)*zcq(ig,2)+(-pdqsdif(ig,iq))*ptimestep)*z1(ig) |
---|
| 505 | ! tracer flux from surface |
---|
| 506 | ! currently pdqsdif always zero here, |
---|
| 507 | ! so last line is superfluous |
---|
| 508 | enddo |
---|
| 509 | endif ! of if (water.and.(iq.eq.igcm_h2o_ice)) |
---|
| 510 | |
---|
| 511 | |
---|
| 512 | ! Starting upward calculations for simple tracer mixing (e.g., dust) |
---|
| 513 | do ig=1,ngrid |
---|
| 514 | zq(ig,1,iq)=zcq(ig,1) |
---|
| 515 | end do |
---|
| 516 | |
---|
| 517 | do ilay=2,nlay |
---|
| 518 | do ig=1,ngrid |
---|
| 519 | zq(ig,ilay,iq)=zcq(ig,ilay)+zdq(ig,ilay)*zq(ig,ilay-1,iq) |
---|
| 520 | end do |
---|
| 521 | end do |
---|
| 522 | |
---|
| 523 | endif ! if (iq.ne.ivap) |
---|
| 524 | |
---|
| 525 | ! Calculate temperature tendency including latent heat term |
---|
| 526 | ! and assuming an infinite source of water on the ground |
---|
| 527 | ! ------------------------------------------------------------------ |
---|
| 528 | |
---|
| 529 | if (water.and.(iq.eq.ivap)) then |
---|
| 530 | |
---|
| 531 | ! compute evaporation efficiency |
---|
[787] | 532 | do ig=1,ngrid |
---|
[1297] | 533 | if(nint(rnat(ig)).eq.1)then |
---|
[594] | 534 | dryness(ig)=pqsurf(ig,iliq_surf)+pqsurf(ig,iice_surf) |
---|
| 535 | dryness(ig)=MIN(1.,2*dryness(ig)/mx_eau_sol) |
---|
| 536 | dryness(ig)=MAX(0.,dryness(ig)) |
---|
| 537 | endif |
---|
| 538 | enddo |
---|
| 539 | |
---|
| 540 | do ig=1,ngrid |
---|
| 541 | ! Calculate the value of qsat at the surface (water) |
---|
[728] | 542 | call Psat_water(ptsrf(ig),pplev(ig,1),psat(ig),qsat(ig)) |
---|
[1993] | 543 | call Lcpdqsat_water(ptsrf(ig),pplev(ig,1),psat(ig),qsat(ig),dqsat(ig),psat_temp) |
---|
| 544 | dqsat(ig)=dqsat(ig)*RCPD/RLVTT |
---|
[732] | 545 | enddo |
---|
[594] | 546 | |
---|
| 547 | ! coefficients for q |
---|
| 548 | |
---|
| 549 | do ig=1,ngrid |
---|
| 550 | z1(ig)=1./(zmass(ig,nlay)+zfluxq(ig,nlay)) |
---|
| 551 | zcq(ig,nlay)=zmass(ig,nlay)*zq(ig,nlay,iq)*z1(ig) |
---|
| 552 | zdq(ig,nlay)=zfluxq(ig,nlay)*z1(ig) |
---|
| 553 | enddo |
---|
[787] | 554 | |
---|
[594] | 555 | do ilay=nlay-1,2,-1 |
---|
| 556 | do ig=1,ngrid |
---|
| 557 | z1(ig)=1./(zmass(ig,ilay)+zfluxq(ig,ilay)+zfluxq(ig,ilay+1)*(1.-zdq(ig,ilay+1))) |
---|
| 558 | zcq(ig,ilay)=(zmass(ig,ilay)*zq(ig,ilay,iq)+zfluxq(ig,ilay+1)*zcq(ig,ilay+1))*z1(ig) |
---|
| 559 | zdq(ig,ilay)=zfluxq(ig,ilay)*z1(ig) |
---|
| 560 | enddo |
---|
| 561 | enddo |
---|
| 562 | |
---|
| 563 | do ig=1,ngrid |
---|
| 564 | z1(ig)=1./(zmass(ig,1)+zfluxq(ig,1)*dryness(ig)+zfluxq(ig,2)*(1.-zdq(ig,2))) |
---|
| 565 | zcq(ig,1)=(zmass(ig,1)*zq(ig,1,iq)+zfluxq(ig,2)*zcq(ig,2))*z1(ig) |
---|
| 566 | zdq(ig,1)=dryness(ig)*zfluxq(ig,1)*z1(ig) |
---|
| 567 | enddo |
---|
| 568 | |
---|
| 569 | do ig=1,ngrid |
---|
| 570 | !calculation of surface temperature |
---|
| 571 | zdq0(ig) = dqsat(ig) |
---|
| 572 | zcq0(ig) = qsat(ig)-dqsat(ig)*ptsrf(ig) |
---|
| 573 | |
---|
[1016] | 574 | z1(ig) = pcapcal(ig)*ptsrf(ig) +cpp*zfluxt(ig,1)*zct(ig,1)*zovExner(ig,1) & |
---|
[594] | 575 | + zdplanck(ig)*ptsrf(ig) + pfluxsrf(ig)*ptimestep & |
---|
| 576 | + zfluxq(ig,1)*dryness(ig)*RLVTT*((zdq(ig,1)-1.0)*zcq0(ig)+zcq(ig,1)) |
---|
| 577 | |
---|
[1016] | 578 | z2(ig) = pcapcal(ig) + cpp*zfluxt(ig,1)*(1.-zovExner(ig,1)*zdt(ig,1)) & |
---|
[594] | 579 | + zdplanck(ig)+zfluxq(ig,1)*dryness(ig)*RLVTT*zdq0(ig)*(1.0-zdq(ig,1)) |
---|
| 580 | |
---|
| 581 | ztsrf(ig) = z1(ig) / z2(ig) |
---|
| 582 | |
---|
| 583 | ! calculation of qs and q1 |
---|
| 584 | zq0(ig) = zcq0(ig)+zdq0(ig)*ztsrf(ig) |
---|
| 585 | zq(ig,1,iq) = zcq(ig,1)+zdq(ig,1)*zq0(ig) |
---|
| 586 | |
---|
| 587 | ! calculation of evaporation |
---|
| 588 | dqsdif_total(ig)=zfluxq(ig,1)*dryness(ig)*(zq(ig,1,ivap)-zq0(ig)) |
---|
| 589 | |
---|
| 590 | ! -------------------------------------------------------- |
---|
| 591 | ! Now check if we've taken too much water from the surface |
---|
| 592 | ! This can only occur on the continent |
---|
| 593 | ! If we do, we recompute Tsurf, T1 and q1 accordingly |
---|
| 594 | if((-dqsdif_total(ig).gt.(pqsurf(ig,iice_surf)+pqsurf(ig,iliq_surf))).and.rnat(ig).eq.1)then |
---|
| 595 | !water flux * ptimestep |
---|
| 596 | dqsdif_total(ig)=-(pqsurf(ig,iice_surf)+pqsurf(ig,iliq_surf)) |
---|
| 597 | |
---|
| 598 | !recompute surface temperature |
---|
| 599 | z1(ig) = pcapcal(ig)*ptsrf(ig) +cpp*zfluxq(ig,1)*zct(ig,1)*zovExner(ig,1) & |
---|
| 600 | + zdplanck(ig)*ptsrf(ig) + pfluxsrf(ig)*ptimestep & |
---|
| 601 | + RLVTT*dqsdif_total(ig) |
---|
| 602 | z2(ig) = pcapcal(ig) + cpp*zfluxq(ig,1)*(1.-zovExner(ig,1)*zdt(ig,1)) & |
---|
| 603 | + zdplanck(ig) |
---|
| 604 | ztsrf(ig) = z1(ig) / z2(ig) |
---|
| 605 | |
---|
| 606 | !recompute q1 with new water flux from surface |
---|
| 607 | zq(ig,1,iq) = (zmass(ig,1)*(pq(ig,1,iq)+ptimestep*pdqfi(ig,1,iq)) & |
---|
[736] | 608 | +zfluxq(ig,2)*zcq(ig,2)-dqsdif_total(ig)) & |
---|
[594] | 609 | / (zmass(ig,1)+(1.-zdq(ig,2))*zfluxq(ig,2)) |
---|
| 610 | end if |
---|
| 611 | |
---|
| 612 | ! calculation surface T tendency and T(1) |
---|
| 613 | pdtsrf(ig) = (ztsrf(ig) - ptsrf(ig))/ptimestep |
---|
| 614 | zt(ig,1) = zct(ig,1) + zdt(ig,1)*ztsrf(ig) |
---|
| 615 | enddo |
---|
| 616 | |
---|
| 617 | |
---|
| 618 | ! recalculate temperature and q(vap) to top of atmosphere, starting from ground |
---|
| 619 | do ilay=2,nlay |
---|
| 620 | do ig=1,ngrid |
---|
| 621 | zq(ig,ilay,iq)=zcq(ig,ilay)+zdq(ig,ilay)*zq(ig,ilay-1,iq) |
---|
| 622 | zt(ig,ilay)=zct(ig,ilay)+zdt(ig,ilay)*zt(ig,ilay-1) |
---|
| 623 | end do |
---|
| 624 | end do |
---|
| 625 | |
---|
| 626 | |
---|
| 627 | do ig=1,ngrid |
---|
| 628 | ! -------------------------------------------------------------------------- |
---|
| 629 | ! On the ocean, if T > 0 C then the vapour tendency must replace the ice one |
---|
| 630 | ! The surface vapour tracer is actually liquid. To make things difficult. |
---|
| 631 | |
---|
[1297] | 632 | if (nint(rnat(ig)).eq.0) then ! unfrozen ocean |
---|
[594] | 633 | |
---|
| 634 | pdqsdif(ig,iliq_surf)=dqsdif_total(ig)/ptimestep |
---|
| 635 | pdqsdif(ig,iice_surf)=0.0 |
---|
| 636 | |
---|
[1297] | 637 | elseif (nint(rnat(ig)).eq.1) then ! (continent) |
---|
[594] | 638 | ! If water is evaporating / subliming, we take it from ice before liquid |
---|
| 639 | ! -- is this valid?? |
---|
| 640 | if(dqsdif_total(ig).lt.0)then |
---|
| 641 | if (-dqsdif_total(ig).gt.pqsurf(ig,iice_surf))then |
---|
| 642 | pdqsdif(ig,iice_surf) = -pqsurf(ig,iice_surf)/ptimestep ! removes all the ice! |
---|
| 643 | pdqsdif(ig,iliq_surf) = dqsdif_total(ig)/ptimestep- pdqsdif(ig,iice_surf) ! take the remainder from the liquid instead |
---|
| 644 | else |
---|
| 645 | pdqsdif(ig,iice_surf)=dqsdif_total(ig)/ptimestep |
---|
| 646 | pdqsdif(ig,iliq_surf)=0. |
---|
| 647 | end if |
---|
| 648 | else !dqsdif_total(ig).ge.0 |
---|
| 649 | !If water vapour is condensing, we must decide whether it forms ice or liquid. |
---|
[650] | 650 | if(ztsrf(ig).gt.T_h2O_ice_liq)then |
---|
[594] | 651 | pdqsdif(ig,iice_surf)=0.0 |
---|
| 652 | pdqsdif(ig,iliq_surf)=dqsdif_total(ig)/ptimestep |
---|
| 653 | else |
---|
| 654 | pdqsdif(ig,iice_surf)=dqsdif_total(ig)/ptimestep |
---|
| 655 | pdqsdif(ig,iliq_surf)=0.0 |
---|
| 656 | endif |
---|
| 657 | endif |
---|
| 658 | |
---|
[1297] | 659 | elseif (nint(rnat(ig)).eq.2) then ! (continental glaciers) |
---|
[594] | 660 | pdqsdif(ig,iliq_surf)=0.0 |
---|
| 661 | pdqsdif(ig,iice_surf)=dqsdif_total(ig)/ptimestep |
---|
| 662 | |
---|
| 663 | endif !rnat |
---|
| 664 | end do ! of DO ig=1,ngrid |
---|
| 665 | |
---|
| 666 | endif ! if (water et iq=ivap) |
---|
| 667 | end do ! of do iq=1,nq |
---|
| 668 | |
---|
[728] | 669 | if (water) then ! special case where we recompute water mixing without any evaporation. |
---|
| 670 | ! The difference with the first calculation then tells us where evaporated water has gone |
---|
[594] | 671 | |
---|
[728] | 672 | DO ig=1,ngrid |
---|
| 673 | z1(ig)=1./(zmass(ig,nlay)+zfluxq(ig,nlay)) |
---|
| 674 | zcq(ig,nlay)=zmass(ig,nlay)*zqnoevap(ig,nlay)*z1(ig) |
---|
| 675 | zdq(ig,nlay)=zfluxq(ig,nlay)*z1(ig) |
---|
| 676 | ENDDO |
---|
| 677 | |
---|
| 678 | DO ilay=nlay-1,2,-1 |
---|
| 679 | DO ig=1,ngrid |
---|
| 680 | z1(ig)=1./(zmass(ig,ilay)+zfluxq(ig,ilay)+zfluxq(ig,ilay+1)*(1.-zdq(ig,ilay+1))) |
---|
| 681 | zcq(ig,ilay)=(zmass(ig,ilay)*zqnoevap(ig,ilay)+zfluxq(ig,ilay+1)*zcq(ig,ilay+1))*z1(ig) |
---|
| 682 | zdq(ig,ilay)=zfluxq(ig,ilay)*z1(ig) |
---|
| 683 | ENDDO |
---|
| 684 | ENDDO |
---|
| 685 | |
---|
[787] | 686 | do ig=1,ngrid |
---|
[728] | 687 | z1(ig)=1./(zmass(ig,1)+zfluxq(ig,2)*(1.-zdq(ig,2))) |
---|
| 688 | zcq(ig,1)=(zmass(ig,1)*zqnoevap(ig,1)+zfluxq(ig,2)*zcq(ig,2))*z1(ig) |
---|
| 689 | enddo |
---|
| 690 | |
---|
| 691 | ! Starting upward calculations for simple tracer mixing (e.g., dust) |
---|
| 692 | do ig=1,ngrid |
---|
| 693 | zqnoevap(ig,1)=zcq(ig,1) |
---|
| 694 | end do |
---|
| 695 | |
---|
| 696 | do ilay=2,nlay |
---|
| 697 | do ig=1,ngrid |
---|
| 698 | zqnoevap(ig,ilay)=zcq(ig,ilay)+zdq(ig,ilay)*zqnoevap(ig,ilay-1) |
---|
| 699 | end do |
---|
| 700 | end do |
---|
| 701 | |
---|
| 702 | endif ! if water |
---|
| 703 | |
---|
| 704 | |
---|
| 705 | endif ! tracer |
---|
| 706 | |
---|
| 707 | |
---|
[594] | 708 | !----------------------------------------------------------------------- |
---|
| 709 | ! 8. Final calculation of the vertical diffusion tendencies |
---|
| 710 | ! ----------------------------------------------------------------- |
---|
| 711 | |
---|
| 712 | do ilev = 1, nlay |
---|
| 713 | do ig=1,ngrid |
---|
[1477] | 714 | pdudif(ig,ilev)=(zu(ig,ilev)-(pu(ig,ilev)))/ptimestep |
---|
| 715 | pdvdif(ig,ilev)=(zv(ig,ilev)-(pv(ig,ilev)))/ptimestep |
---|
[594] | 716 | pdtdif(ig,ilev)=( zt(ig,ilev)- pt(ig,ilev))/ptimestep-pdtfi(ig,ilev) |
---|
| 717 | enddo |
---|
| 718 | enddo |
---|
| 719 | |
---|
[787] | 720 | DO ig=1,ngrid ! computing sensible heat flux (atm => surface) |
---|
[594] | 721 | sensibFlux(ig)=cpp*zfluxt(ig,1)/ptimestep*(zt(ig,1)*zovExner(ig,1)-ztsrf(ig)) |
---|
| 722 | ENDDO |
---|
| 723 | |
---|
| 724 | if (tracer) then |
---|
| 725 | do iq = 1, nq |
---|
| 726 | do ilev = 1, nlay |
---|
| 727 | do ig=1,ngrid |
---|
| 728 | pdqdif(ig,ilev,iq)=(zq(ig,ilev,iq)-(pq(ig,ilev,iq)+pdqfi(ig,ilev,iq)*ptimestep))/ptimestep |
---|
| 729 | enddo |
---|
| 730 | enddo |
---|
| 731 | enddo |
---|
[728] | 732 | if (water) then |
---|
| 733 | do ilev = 1, nlay |
---|
| 734 | do ig=1,ngrid |
---|
| 735 | pdqevap(ig,ilev)=(zq(ig,ilev,ivap)-zqnoevap(ig,ilev))/ptimestep |
---|
| 736 | enddo |
---|
| 737 | enddo |
---|
[787] | 738 | do ig=1,ngrid |
---|
[728] | 739 | zdmassevap(ig)=SUM(pdqevap(ig,:)*zmass(ig,:))*ptimestep |
---|
| 740 | end do |
---|
| 741 | endif |
---|
[594] | 742 | endif |
---|
| 743 | |
---|
| 744 | if(water)then |
---|
[1834] | 745 | #ifndef MESOSCALE |
---|
[728] | 746 | call writediagfi(ngrid,'beta','Dryness coefficient',' ',2,dryness) |
---|
[1834] | 747 | #endif |
---|
[728] | 748 | if (tracer) then |
---|
[1834] | 749 | #ifndef MESOSCALE |
---|
[1863] | 750 | call writediagfi(ngrid,'evap_surf_flux','surface latent heat flux','W.m-2',2,RLVTT*dqsdif_total/ptimestep) |
---|
| 751 | call writediagfi(ngrid,'fluxsurf_rad','total IR and VIS surface flux','W.m-2',2,pfluxsrf) |
---|
[728] | 752 | call writediagfi(ngrid,'dqevap','evaporated water vapor specific concentration','s-1',3,pdqevap) |
---|
[1834] | 753 | #else |
---|
| 754 | comm_LATENT_HF(:)=0.0 |
---|
| 755 | comm_LATENT_HF(1:ngrid)=RLVTT*dqsdif_total(1:ngrid)/ptimestep |
---|
| 756 | #endif |
---|
[728] | 757 | endif |
---|
[594] | 758 | endif |
---|
| 759 | |
---|
[2427] | 760 | end subroutine turbdiff |
---|
| 761 | |
---|
| 762 | end module turbdiff_mod |
---|