| 1 | module tpindex_mod |
|---|
| 2 | |
|---|
| 3 | implicit none |
|---|
| 4 | |
|---|
| 5 | contains |
|---|
| 6 | |
|---|
| 7 | subroutine tpindex(pw,tw,qvar,pref,tref,wrefvar,LCOEF,MT,MP, |
|---|
| 8 | & NVAR,wratio) |
|---|
| 9 | |
|---|
| 10 | !================================================================== |
|---|
| 11 | ! |
|---|
| 12 | ! Purpose |
|---|
| 13 | ! ------- |
|---|
| 14 | ! Interpolate K-coefficients to the given P,T and Qvar values. |
|---|
| 15 | ! |
|---|
| 16 | ! Notes |
|---|
| 17 | ! ----- |
|---|
| 18 | ! The interpolation is the usual one in two dimensions given |
|---|
| 19 | ! in "Numerical Recipes", where the "X" are P, the "Y" are |
|---|
| 20 | ! T, and the F(X,Y) are the CO2 K-coefficients. |
|---|
| 21 | ! |
|---|
| 22 | ! The interpolating box is: |
|---|
| 23 | ! |
|---|
| 24 | ! (PL,TU) (PR,TU) |
|---|
| 25 | ! |
|---|
| 26 | ! (TW,PW) |
|---|
| 27 | ! |
|---|
| 28 | ! |
|---|
| 29 | ! (PL,TL) (PR,TL) |
|---|
| 30 | ! |
|---|
| 31 | ! PL - Pressure left |
|---|
| 32 | ! PR - Pressure right |
|---|
| 33 | ! TL - Temperature lower |
|---|
| 34 | ! TU - Temperature upper |
|---|
| 35 | ! PW - Pressure wanted |
|---|
| 36 | ! TW - Temperature wanted |
|---|
| 37 | ! |
|---|
| 38 | ! Inputs |
|---|
| 39 | ! ------ |
|---|
| 40 | ! PW - The pressure to interpolate to |
|---|
| 41 | ! TW - The temperature to interpolate to |
|---|
| 42 | ! Qvar - The abundance to interpolate to |
|---|
| 43 | ! Pref - The tabulated (log) pressure grid |
|---|
| 44 | ! Tref - The tabulated temperature grid |
|---|
| 45 | ! WREFVAR - The tabulated abundance grid |
|---|
| 46 | ! |
|---|
| 47 | ! Outputs |
|---|
| 48 | ! ------- |
|---|
| 49 | ! MT - Temperature index (bottom left temperature) |
|---|
| 50 | ! of bounding box |
|---|
| 51 | ! MP - Pressure index (bottom left pressure) |
|---|
| 52 | ! of bounding box |
|---|
| 53 | ! NVAR - index (bottom left ) |
|---|
| 54 | ! of bounding box |
|---|
| 55 | ! LCOEF(4) - Interpolation coefficients |
|---|
| 56 | ! WRATIO - weight for the interpolation of abundance |
|---|
| 57 | ! |
|---|
| 58 | ! Authors |
|---|
| 59 | ! ------- |
|---|
| 60 | ! Adapted from the NASA Ames code by R. Wordsworth (2009) |
|---|
| 61 | ! |
|---|
| 62 | !================================================================== |
|---|
| 63 | |
|---|
| 64 | use radinc_h, only: L_PINT, L_NTREF, L_REFVAR |
|---|
| 65 | |
|---|
| 66 | implicit none |
|---|
| 67 | |
|---|
| 68 | REAL,INTENT(IN) :: Tref(L_NTREF) |
|---|
| 69 | REAL,INTENT(IN) :: pref(L_PINT) |
|---|
| 70 | REAL,INTENT(IN) :: wrefvar(L_REFVAR) |
|---|
| 71 | REAL,INTENT(IN) :: PW, TW, Qvar |
|---|
| 72 | |
|---|
| 73 | INTEGER,INTENT(OUT) :: MT, MP, NVAR |
|---|
| 74 | REAL,INTENT(OUT) :: LCOEF(4), wratio |
|---|
| 75 | |
|---|
| 76 | INTEGER :: N |
|---|
| 77 | REAL :: PWL ! local value for log10(PW) |
|---|
| 78 | REAL :: TWL ! local value for TW |
|---|
| 79 | REAL :: T ! linear interpolation weight along log(pressure) |
|---|
| 80 | REAL :: U ! linear interpolation weight along temperature |
|---|
| 81 | |
|---|
| 82 | ! 1. For the interpolation along temperature |
|---|
| 83 | ! Get the upper and lower temperature grid indicies that bound the |
|---|
| 84 | ! requested temperature. If the sought temperature is below |
|---|
| 85 | ! the T-grid minimum, assume that lower value. If the sought teperature |
|---|
| 86 | ! is above the T-grid maximum, extrapolate. |
|---|
| 87 | ! TW : temperature to interpolate to |
|---|
| 88 | ! TREF : reference temperature array |
|---|
| 89 | ! MT : index of TREF for (lower) bounding temperature |
|---|
| 90 | ! U : weight for interpolation in temperature |
|---|
| 91 | |
|---|
| 92 | TWL = TW |
|---|
| 93 | |
|---|
| 94 | IF(TWL.LT.TREF(1)) THEN |
|---|
| 95 | ! Below lowest tabulated temperature |
|---|
| 96 | MT = 1 |
|---|
| 97 | TWL=TREF(1)*1.00 |
|---|
| 98 | write(*,*) 'tpindex: Caution! Temperature of upper levels lower |
|---|
| 99 | $ than ref temperature for k-coef: k-coeff fixed for upper levels' |
|---|
| 100 | write(*,*) " TW=",TWL |
|---|
| 101 | write(*,*) " TREF(1)=",TREF(1) |
|---|
| 102 | ELSEIF(TWL.GE.TREF(L_NTREF)) THEN |
|---|
| 103 | ! Above highest tabulated temperature |
|---|
| 104 | MT = L_NTREF-1 |
|---|
| 105 | ELSE |
|---|
| 106 | ! Regular case, find encompassing tabulated temperatures |
|---|
| 107 | do n=1,L_NTREF-1 |
|---|
| 108 | IF (TWL.GE.TREF(N) .and. TWL.LT.TREF(N+1)) THEN |
|---|
| 109 | MT = n |
|---|
| 110 | EXIT |
|---|
| 111 | END IF |
|---|
| 112 | END DO |
|---|
| 113 | |
|---|
| 114 | END IF |
|---|
| 115 | |
|---|
| 116 | ! weight for the temperature interpolation |
|---|
| 117 | U = (TWL-TREF(MT))/(TREF(MT+1)-TREF(MT)) |
|---|
| 118 | |
|---|
| 119 | ! 2. For interpolation along pressure |
|---|
| 120 | ! Get the upper and lower pressure grid indicies that bound the |
|---|
| 121 | ! requested pressure. If the sought pressure is below |
|---|
| 122 | ! the P-grid minimum, assume that lower value. If the sought pressure |
|---|
| 123 | ! is above the P-grid maximum, extrapolate. |
|---|
| 124 | |
|---|
| 125 | PWL = log10(PW) |
|---|
| 126 | |
|---|
| 127 | IF(PWL.LT.PREF(1)) THEN |
|---|
| 128 | ! Below lowest tabulated pressure |
|---|
| 129 | MP = 1 |
|---|
| 130 | PWL=Pref(1)*1.00 |
|---|
| 131 | write(*,*) 'tpindex: Caution! Pressure of upper levels lower |
|---|
| 132 | $than ref pressure for k-coef: k-coeff fixed for upper levels' |
|---|
| 133 | write(*,*) " PWL=",PWL |
|---|
| 134 | write(*,*) " PREF(1)=",PREF(1) |
|---|
| 135 | ELSEIF(PWL.GE.PREF(L_PINT)) THEN |
|---|
| 136 | ! Above highest tabulated pressure |
|---|
| 137 | MP = L_PINT-1 |
|---|
| 138 | ELSE |
|---|
| 139 | ! Regular case, find encompassing tabulated pressures |
|---|
| 140 | do n=1,L_PINT-1 |
|---|
| 141 | IF (PWL.GE.PREF(N) .and. PWL.LT.PREF(N+1)) THEN |
|---|
| 142 | MP = n |
|---|
| 143 | EXIT |
|---|
| 144 | END IF |
|---|
| 145 | END DO |
|---|
| 146 | |
|---|
| 147 | END IF |
|---|
| 148 | |
|---|
| 149 | ! weight for the pressure interpolation |
|---|
| 150 | T = (PWL-PREF(MP))/(PREF(MP+1)-PREF(MP)) |
|---|
| 151 | |
|---|
| 152 | ! Build the interpolation coefficients (bilinear in temperature-log(pressure)) |
|---|
| 153 | LCOEF(1) = (1.0-T)*(1.0-U) |
|---|
| 154 | LCOEF(2) = T*(1.0-U) |
|---|
| 155 | LCOEF(3) = T*U |
|---|
| 156 | LCOEF(4) = (1.0-T)*U |
|---|
| 157 | |
|---|
| 158 | ! 3. For interpolation along abundances |
|---|
| 159 | ! Get the indicies for abundance of the varying species. There are 10 sets of |
|---|
| 160 | ! k-coefficients with differing amounts of variable vs. constant gas. |
|---|
| 161 | |
|---|
| 162 | IF(QVAR.LE.WREFVAR(1)) THEN |
|---|
| 163 | ! Below lowest tabulated abundance |
|---|
| 164 | NVAR = 1 |
|---|
| 165 | WRATIO = 0.0D0 ! put all the weight on the first point |
|---|
| 166 | ELSEIF(QVAR.GE.WREFVAR(L_REFVAR)) THEN |
|---|
| 167 | ! Above highest tabulated abundance |
|---|
| 168 | NVAR = L_REFVAR-1 ! TB16 in order to not oversize NVAr when doing |
|---|
| 169 | !NVAR+1 |
|---|
| 170 | WRATIO = 1.00D0 ! put all the weight on the last point |
|---|
| 171 | ELSE |
|---|
| 172 | ! Regular case, find encompassing tabulated abundances |
|---|
| 173 | ! and compute corresponding weight |
|---|
| 174 | DO N=2,L_REFVAR |
|---|
| 175 | IF(QVAR.GE.WREFVAR(N-1) .and. QVAR.LT.WREFVAR(N)) THEN |
|---|
| 176 | NVAR = N-1 |
|---|
| 177 | WRATIO = (QVAR - WREFVAR(N-1))/(WREFVAR(N) - WREFVAR(N-1)) |
|---|
| 178 | EXIT |
|---|
| 179 | END IF |
|---|
| 180 | END DO |
|---|
| 181 | END IF |
|---|
| 182 | |
|---|
| 183 | end subroutine tpindex |
|---|
| 184 | |
|---|
| 185 | end module tpindex_mod |
|---|
| 186 | |
|---|