| 1 | ! |
|---|
| 2 | ! |
|---|
| 3 | ! |
|---|
| 4 | SUBROUTINE thermcell_plume(itap,ngrid,klev,ptimestep,ztv, & |
|---|
| 5 | & zthl,po,zl,rhobarz,zlev,pplev,pphi,zpspsk, & |
|---|
| 6 | & alim_star,alim_star_tot,lalim,f0,detr_star, & |
|---|
| 7 | & entr_star,f_star,ztva,ztla,zqla,zqta,zha, & |
|---|
| 8 | & zw2,w_est,ztva_est,zqsatth,lmix,lmix_bis, & |
|---|
| 9 | & lmin,lev_out,lunout1,igout) |
|---|
| 10 | |
|---|
| 11 | |
|---|
| 12 | !============================================================================== |
|---|
| 13 | ! thermcell_plume: calcule les valeurs de qt, thetal et w dans l ascendance |
|---|
| 14 | ! AB : ql means "liquid water mass mixing ratio" |
|---|
| 15 | ! qt means "total water mass mixing ratio" |
|---|
| 16 | ! TP means "potential temperature" |
|---|
| 17 | ! TRPV means "virtual potential temperature with latent heat release" |
|---|
| 18 | ! TPV means "virtual potential temperature" |
|---|
| 19 | ! TR means "temperature with latent heat release" |
|---|
| 20 | !============================================================================== |
|---|
| 21 | |
|---|
| 22 | USE print_control_mod, ONLY: prt_level |
|---|
| 23 | USE watercommon_h, ONLY: RLvCp, RETV, Psat_water |
|---|
| 24 | USE thermcell_mod |
|---|
| 25 | |
|---|
| 26 | IMPLICIT NONE |
|---|
| 27 | |
|---|
| 28 | |
|---|
| 29 | !============================================================================== |
|---|
| 30 | ! Declaration |
|---|
| 31 | !============================================================================== |
|---|
| 32 | |
|---|
| 33 | ! inputs: |
|---|
| 34 | ! ------- |
|---|
| 35 | |
|---|
| 36 | INTEGER itap |
|---|
| 37 | INTEGER ngrid |
|---|
| 38 | INTEGER klev |
|---|
| 39 | INTEGER lunout1 |
|---|
| 40 | INTEGER igout |
|---|
| 41 | INTEGER lev_out ! niveau pour les print |
|---|
| 42 | |
|---|
| 43 | REAL ptimestep ! time step |
|---|
| 44 | REAL ztv(ngrid,klev) ! TRPV environment |
|---|
| 45 | REAL zthl(ngrid,klev) ! TP environment |
|---|
| 46 | REAL po(ngrid,klev) ! qt environment |
|---|
| 47 | REAL zl(ngrid,klev) ! ql environment |
|---|
| 48 | REAL rhobarz(ngrid,klev) ! levels density |
|---|
| 49 | REAL zlev(ngrid,klev+1) ! levels altitude |
|---|
| 50 | REAL pplev(ngrid,klev+1) ! levels pressure |
|---|
| 51 | REAL pphi(ngrid,klev) ! geopotential |
|---|
| 52 | REAL zpspsk(ngrid,klev) ! Exner function |
|---|
| 53 | |
|---|
| 54 | ! outputs: |
|---|
| 55 | ! -------- |
|---|
| 56 | |
|---|
| 57 | INTEGER lmin(ngrid) ! plume base level (first unstable level) |
|---|
| 58 | INTEGER lalim(ngrid) ! higher alimentation level |
|---|
| 59 | INTEGER lmix(ngrid) ! maximum vertical speed level |
|---|
| 60 | INTEGER lmix_bis(ngrid) ! maximum vertical speed level (modified) |
|---|
| 61 | |
|---|
| 62 | REAL alim_star(ngrid,klev) ! normalized alimentation |
|---|
| 63 | REAL alim_star_tot(ngrid) ! integrated alimentation |
|---|
| 64 | |
|---|
| 65 | REAL f0(ngrid) ! previous time step mass flux norm |
|---|
| 66 | |
|---|
| 67 | REAL detr_star(ngrid,klev) ! normalized detrainment |
|---|
| 68 | REAL entr_star(ngrid,klev) ! normalized entrainment |
|---|
| 69 | REAL f_star(ngrid,klev+1) ! normalized mass flux |
|---|
| 70 | |
|---|
| 71 | REAL ztva(ngrid,klev) ! TRPV plume (after mixing) |
|---|
| 72 | REAL ztva_est(ngrid,klev) ! TRPV plume (before mixing) |
|---|
| 73 | REAL ztla(ngrid,klev) ! TP plume |
|---|
| 74 | REAL zqla(ngrid,klev) ! ql plume (after mixing) |
|---|
| 75 | REAL zqta(ngrid,klev) ! qt plume |
|---|
| 76 | REAL zha(ngrid,klev) ! TRPV plume |
|---|
| 77 | |
|---|
| 78 | REAL w_est(ngrid,klev+1) ! updraft square vertical speed (before mixing) |
|---|
| 79 | REAL zw2(ngrid,klev+1) ! updraft square vertical speed (after mixing) |
|---|
| 80 | |
|---|
| 81 | REAL zqsatth(ngrid,klev) ! saturation vapor pressure (after mixing) |
|---|
| 82 | |
|---|
| 83 | ! local: |
|---|
| 84 | ! ------ |
|---|
| 85 | |
|---|
| 86 | INTEGER ig, l, k |
|---|
| 87 | INTEGER lt |
|---|
| 88 | INTEGER lm |
|---|
| 89 | |
|---|
| 90 | REAL zqla_est(ngrid,klev) ! ql plume (before mixing) |
|---|
| 91 | REAL zta_est(ngrid,klev) ! TR plume (before mixing) |
|---|
| 92 | REAL zbuoy(ngrid,klev) ! plume buoyancy |
|---|
| 93 | REAL zbuoyjam(ngrid,klev) ! plume buoyancy (modified) |
|---|
| 94 | |
|---|
| 95 | REAL ztemp(ngrid) ! temperature for saturation vapor pressure computation in plume |
|---|
| 96 | REAL zqsat(ngrid) ! saturation vapor pressure (before mixing) |
|---|
| 97 | REAL zdz ! layers height |
|---|
| 98 | |
|---|
| 99 | REAL zalpha ! |
|---|
| 100 | REAL zdqt(ngrid,klev) ! |
|---|
| 101 | REAL zbetalpha ! |
|---|
| 102 | REAL zdw2 ! |
|---|
| 103 | REAL zdw2bis ! |
|---|
| 104 | REAL zw2fact ! |
|---|
| 105 | REAL zw2factbis ! |
|---|
| 106 | REAL zw2m ! |
|---|
| 107 | REAL zdzbis ! |
|---|
| 108 | REAL coefzlmel ! |
|---|
| 109 | REAL zdz2 ! |
|---|
| 110 | REAL zdz3 ! |
|---|
| 111 | REAL lmel ! |
|---|
| 112 | REAL zlmel ! |
|---|
| 113 | REAL zlmelup ! |
|---|
| 114 | REAL zlmeldwn ! |
|---|
| 115 | REAL zlt ! |
|---|
| 116 | REAL zltdwn ! |
|---|
| 117 | REAL zltup ! useless here |
|---|
| 118 | |
|---|
| 119 | REAL dummy |
|---|
| 120 | |
|---|
| 121 | LOGICAL active(ngrid) ! if the plume is active at ig,l (speed and incoming mass flux > 0 or l=lmin) |
|---|
| 122 | LOGICAL activetmp(ngrid) ! if the plus is active at ig,l (active=true and outgoing mass flux > 0) |
|---|
| 123 | LOGICAL, SAVE :: first = .true. ! if it is the first time step |
|---|
| 124 | |
|---|
| 125 | !$OMP THREADPRIVATE(first) |
|---|
| 126 | |
|---|
| 127 | !============================================================================== |
|---|
| 128 | ! Initialization |
|---|
| 129 | !============================================================================== |
|---|
| 130 | |
|---|
| 131 | zbetalpha = betalpha / (1. + betalpha) |
|---|
| 132 | |
|---|
| 133 | ztva(:,:) = ztv(:,:) ! ztva is set to the virtual potential temperature without latent heat release |
|---|
| 134 | ztva_est(:,:) = ztva(:,:) ! ztva_est is set to the virtual potential temperature without latent heat release |
|---|
| 135 | ztla(:,:) = zthl(:,:) ! ztla is set to the potential temperature |
|---|
| 136 | zqta(:,:) = po(:,:) ! zqta is set to qt |
|---|
| 137 | zqla(:,:) = 0. ! zqla is set to ql |
|---|
| 138 | zqla_est(:,:) = 0. ! zqla_est is set to ql |
|---|
| 139 | zha(:,:) = ztva(:,:) ! zha is set to the plume virtual potential temperature without latent heat release |
|---|
| 140 | |
|---|
| 141 | zqsat(:) = 0. |
|---|
| 142 | zqsatth(:,:) = 0. |
|---|
| 143 | |
|---|
| 144 | w_est(:,:) = 0. |
|---|
| 145 | zw2(:,:) = 0. |
|---|
| 146 | |
|---|
| 147 | zbuoy(:,:) = 0. |
|---|
| 148 | zbuoyjam(:,:) = 0. |
|---|
| 149 | |
|---|
| 150 | f_star(:,:) = 0. |
|---|
| 151 | detr_star(:,:) = 0. |
|---|
| 152 | entr_star(:,:) = 0. |
|---|
| 153 | alim_star(:,:) = 0. |
|---|
| 154 | alim_star_tot(:) = 0. |
|---|
| 155 | |
|---|
| 156 | lmix(:) = 1 |
|---|
| 157 | lmix_bis(:) = 2 |
|---|
| 158 | lalim(:) = 1 |
|---|
| 159 | lmin(:) = linf |
|---|
| 160 | |
|---|
| 161 | !============================================================================== |
|---|
| 162 | ! 0. Calcul de l'alimentation |
|---|
| 163 | !============================================================================== |
|---|
| 164 | |
|---|
| 165 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 166 | ! AB : Convective plumes can go off from every layer above the linf-th and |
|---|
| 167 | ! where pressure is lesser than pres_limit (cf. thermcell_plume). |
|---|
| 168 | ! The second constraint is added to avoid the parametrization occurs too |
|---|
| 169 | ! high when the low atmosphere is stable. |
|---|
| 170 | ! However, once there is a triggered plume, it can rise as high as its |
|---|
| 171 | ! velocity allows it (it can overshoot). |
|---|
| 172 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 173 | DO ig=1,ngrid |
|---|
| 174 | active(ig) = .false. |
|---|
| 175 | l = linf |
|---|
| 176 | DO WHILE ((.not.active(ig)) .and. pplev(ig,l+1).gt.pres_limit .and. l.lt.klev) |
|---|
| 177 | IF (ztv(ig,l).gt.ztv(ig,l+1)) THEN |
|---|
| 178 | active(ig) = .true. |
|---|
| 179 | lmin(ig) = l |
|---|
| 180 | ENDIF |
|---|
| 181 | l = l + 1 |
|---|
| 182 | ENDDO |
|---|
| 183 | ENDDO |
|---|
| 184 | |
|---|
| 185 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 186 | ! AB : On pourrait n'appeler thermcell_alim que si la plume est active |
|---|
| 187 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 188 | CALL thermcell_alim(ngrid,klev,ztv,zlev,alim_star,lalim,lmin) |
|---|
| 189 | |
|---|
| 190 | !============================================================================== |
|---|
| 191 | ! 1. Calcul dans la premiere couche |
|---|
| 192 | !============================================================================== |
|---|
| 193 | |
|---|
| 194 | DO ig=1,ngrid |
|---|
| 195 | IF (active(ig)) THEN |
|---|
| 196 | |
|---|
| 197 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 198 | ! AB : plume takes the environment features for every layer below lmin. |
|---|
| 199 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 200 | DO l=1,lmin(ig) |
|---|
| 201 | ztla(ig,l) = zthl(ig,l) |
|---|
| 202 | zqta(ig,l) = po(ig,l) |
|---|
| 203 | zqla(ig,l) = zl(ig,l) |
|---|
| 204 | ENDDO |
|---|
| 205 | |
|---|
| 206 | l = lmin(ig) |
|---|
| 207 | f_star(ig,l+1) = alim_star(ig,l) |
|---|
| 208 | |
|---|
| 209 | zw2(ig,l+1) = 2. * RG * (zlev(ig,l+1) - zlev(ig,l)) & |
|---|
| 210 | & * (ztv(ig,l) - ztv(ig,l+1)) / ztv(ig,l+1) |
|---|
| 211 | |
|---|
| 212 | w_est(ig,l+1) = zw2(ig,l+1) |
|---|
| 213 | |
|---|
| 214 | ENDIF |
|---|
| 215 | ENDDO |
|---|
| 216 | |
|---|
| 217 | !============================================================================== |
|---|
| 218 | ! 2. Boucle de calcul de la vitesse verticale dans le thermique |
|---|
| 219 | !============================================================================== |
|---|
| 220 | |
|---|
| 221 | DO l=2,klev-1 |
|---|
| 222 | |
|---|
| 223 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 224 | ! AB : we decide here if the plume is still active or not. When the plume's |
|---|
| 225 | ! first level is reached, we set active to "true". Otherwise, it is given |
|---|
| 226 | ! by zw2, f_star, alim_star and entr_star. |
|---|
| 227 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 228 | DO ig=1,ngrid |
|---|
| 229 | IF (l==lmin(ig)+1) THEN |
|---|
| 230 | active(ig) = .true. |
|---|
| 231 | ENDIF |
|---|
| 232 | |
|---|
| 233 | active(ig) = active(ig) & |
|---|
| 234 | & .and. zw2(ig,l)>1.e-10 & |
|---|
| 235 | & .and. f_star(ig,l)+alim_star(ig,l)+entr_star(ig,l)>1.e-10 |
|---|
| 236 | ENDDO |
|---|
| 237 | |
|---|
| 238 | ztemp(:) = zpspsk(:,l) * ztla(:,l-1) |
|---|
| 239 | |
|---|
| 240 | DO ig=1,ngrid |
|---|
| 241 | CALL Psat_water(ztemp(ig), pplev(ig,l), dummy, zqsat(ig)) |
|---|
| 242 | ENDDO |
|---|
| 243 | |
|---|
| 244 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 245 | ! AB : we compute thermodynamical values and speed in the plume in the layer l |
|---|
| 246 | ! without mixing with environment. |
|---|
| 247 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 248 | |
|---|
| 249 | DO ig=1,ngrid |
|---|
| 250 | IF (active(ig)) THEN |
|---|
| 251 | zqla_est(ig,l) = max(0.,zqta(ig,l-1)-zqsat(ig)) ! zqla_est set to ql plume |
|---|
| 252 | ztva_est(ig,l) = ztla(ig,l-1)*zpspsk(ig,l)+RLvCp*zqla_est(ig,l) ! ztva_est set to TR plume |
|---|
| 253 | zta_est(ig,l) = ztva_est(ig,l) ! zta_est set to TR plume |
|---|
| 254 | ztva_est(ig,l) = ztva_est(ig,l)/zpspsk(ig,l) ! ztva_est set to TRP plume |
|---|
| 255 | ztva_est(ig,l) = ztva_est(ig,l)*(1.+RETV*(zqta(ig,l-1) & ! ztva_est set to TRPV plume |
|---|
| 256 | & - zqla_est(ig,l))-zqla_est(ig,l)) |
|---|
| 257 | |
|---|
| 258 | zbuoy(ig,l) = RG * (ztva_est(ig,l)-ztv(ig,l)) / ztv(ig,l) |
|---|
| 259 | zdz = zlev(ig,l+1) - zlev(ig,l) |
|---|
| 260 | |
|---|
| 261 | !============================================================================== |
|---|
| 262 | ! 3. Calcul de la flotabilite modifiee par melange avec l'air au dessus |
|---|
| 263 | !============================================================================== |
|---|
| 264 | |
|---|
| 265 | lmel = fact_thermals_ed_dz * zlev(ig,l) |
|---|
| 266 | zlmel = zlev(ig,l) + lmel |
|---|
| 267 | lt = l + 1 |
|---|
| 268 | zlt = zlev(ig,lt) |
|---|
| 269 | zdz2 = zlev(ig,lt) - zlev(ig,l) |
|---|
| 270 | |
|---|
| 271 | DO while (lmel.gt.zdz2) |
|---|
| 272 | lt = lt + 1 |
|---|
| 273 | zlt = zlev(ig,lt) |
|---|
| 274 | zdz2 = zlev(ig,lt) - zlev(ig,l) |
|---|
| 275 | ENDDO |
|---|
| 276 | |
|---|
| 277 | ! IF (lt-l.gt.1) THEN |
|---|
| 278 | ! print *, 'WARNING: lt is greater than l+1!' |
|---|
| 279 | ! print *, 'l,lt', l, lt |
|---|
| 280 | ! ENDIF |
|---|
| 281 | |
|---|
| 282 | zdz3 = zlev(ig,lt+1) - zlt |
|---|
| 283 | zltdwn = zlev(ig,lt) - zdz3 / 2 |
|---|
| 284 | zlmelup = zlmel + (zdz / 2) |
|---|
| 285 | coefzlmel = Min(1.,(zlmelup - zltdwn) / zdz) |
|---|
| 286 | |
|---|
| 287 | zbuoyjam(ig,l) = 1.* RG * (coefzlmel * & |
|---|
| 288 | & (ztva_est(ig,l) - ztv(ig,lt)) / ztv(ig,lt) & |
|---|
| 289 | & + (1. - coefzlmel) * & |
|---|
| 290 | & (ztva_est(ig,l) - ztv(ig,lt-1)) / ztv(ig,lt-1)) & |
|---|
| 291 | & + 0. * zbuoy(ig,l) |
|---|
| 292 | |
|---|
| 293 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 294 | ! AB : initial formulae |
|---|
| 295 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 296 | ! zw2fact = fact_epsilon * 2. * zdz / (1. + betalpha) |
|---|
| 297 | ! zdw2 = afact * zbuoy(ig,l) / fact_epsilon |
|---|
| 298 | ! zdw2bis = afact * zbuoy(ig,l-1) / fact_epsilon |
|---|
| 299 | ! w_est(ig,l+1) = Max(0.0001,exp(-zw2fact)*(w_est(ig,l)-zdw2)+zdw2) |
|---|
| 300 | ! w_est(ig,l+1) = Max(0.0001,exp(-zw2fact)*(w_est(ig,l)-zdw2bis)+zdw2) |
|---|
| 301 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 302 | ! AB : own derivation for w_est (Rio 2010 formula with e=d=0) |
|---|
| 303 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 304 | zw2fact = 2. * fact_epsilon * zdz |
|---|
| 305 | zdw2 = 2. * afact * zbuoy(ig,l) * zdz |
|---|
| 306 | w_est(ig,l+1) = Max(0., exp(-zw2fact) * w_est(ig,l) + zdw2) |
|---|
| 307 | |
|---|
| 308 | ! IF (w_est(ig,l+1).le.0.) THEN |
|---|
| 309 | ! print *, 'WARNING: w_est is negative!' |
|---|
| 310 | ! print *, 'l,w_est', l+1, w_est(ig,l+1) |
|---|
| 311 | ! ENDIF |
|---|
| 312 | ENDIF |
|---|
| 313 | ENDDO |
|---|
| 314 | |
|---|
| 315 | !============================================================================== |
|---|
| 316 | ! 4. Calcul de l'entrainement et du detrainement |
|---|
| 317 | !============================================================================== |
|---|
| 318 | |
|---|
| 319 | DO ig=1,ngrid |
|---|
| 320 | IF (active(ig)) THEN |
|---|
| 321 | |
|---|
| 322 | zdz = zlev(ig,l+1) - zlev(ig,l) |
|---|
| 323 | |
|---|
| 324 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 325 | ! AB : The next test is added to avoid divisions by zero when w_est vanishes. |
|---|
| 326 | ! Indeed, entr and detr computed here are of no importance because w_est |
|---|
| 327 | ! <= 0 means it will be the last layer reached by the plume and then they |
|---|
| 328 | ! will be reset in thermcell_flux. |
|---|
| 329 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 330 | IF (w_est(ig,l+1).eq.0.) THEN |
|---|
| 331 | zw2m = 1. |
|---|
| 332 | zalpha = 0. |
|---|
| 333 | ELSE |
|---|
| 334 | zw2m = w_est(ig,l+1) |
|---|
| 335 | zalpha = f0(ig) * f_star(ig,l) / sqrt(w_est(ig,l+1)) / rhobarz(ig,l) |
|---|
| 336 | ENDIF |
|---|
| 337 | |
|---|
| 338 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 339 | ! AB : The next test is added to avoid a division by zero if there is no water |
|---|
| 340 | ! in the environment. |
|---|
| 341 | ! In the case where there is no water in the env. but water in the plume |
|---|
| 342 | ! (ascending from depth) we set the effect on detrainment equal to zero |
|---|
| 343 | ! but at the next time step, po will be positive thanks to the mixing and |
|---|
| 344 | ! then the physical effect of the water gradient will be taken on board. |
|---|
| 345 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 346 | IF (po(ig,l).lt.1.e-6) THEN |
|---|
| 347 | ! print *, 'WARNING: po=0 in layer',l,'!' |
|---|
| 348 | ! print *, 'po,zqta', po(ig,l), zqta(ig,l-1) |
|---|
| 349 | zdqt(ig,l) = 0.0 |
|---|
| 350 | ELSE |
|---|
| 351 | zdqt(ig,l) = max(zqta(ig,l-1)-po(ig,l),0.) / po(ig,l) |
|---|
| 352 | ENDIF |
|---|
| 353 | |
|---|
| 354 | !------------------------------------------------------------------------------ |
|---|
| 355 | ! Detrainment |
|---|
| 356 | !------------------------------------------------------------------------------ |
|---|
| 357 | |
|---|
| 358 | detr_star(ig,l) = f_star(ig,l) * zdz * ( & |
|---|
| 359 | & mix0 * 0.1 / (zalpha + 0.001) & |
|---|
| 360 | & + MAX(detr_min, & |
|---|
| 361 | & -afact * zbetalpha * zbuoyjam(ig,l) / zw2m & |
|---|
| 362 | & + detr_q_coef*(zdqt(ig,l)/zw2m)**detr_q_power) ) |
|---|
| 363 | |
|---|
| 364 | ! IF (detr_star(ig,l).lt.0.) THEN |
|---|
| 365 | ! print *, 'WARNING: detrainment is negative!' |
|---|
| 366 | ! print *, 'l,detr', l, detr_star(ig,l) |
|---|
| 367 | ! ENDIF |
|---|
| 368 | |
|---|
| 369 | !------------------------------------------------------------------------------ |
|---|
| 370 | ! Entrainment |
|---|
| 371 | !------------------------------------------------------------------------------ |
|---|
| 372 | |
|---|
| 373 | entr_star(ig,l) = f_star(ig,l) * zdz * ( & |
|---|
| 374 | & mix0 * 0.1 / (zalpha+0.001) & |
|---|
| 375 | & + MAX(entr_min, & |
|---|
| 376 | & zbetalpha * afact * zbuoyjam(ig,l) / zw2m & |
|---|
| 377 | & - zbetalpha * fact_epsilon) ) |
|---|
| 378 | |
|---|
| 379 | ! IF (entr_star(ig,l).lt.0.) THEN |
|---|
| 380 | ! print *, 'WARNING: entrainment is negative!' |
|---|
| 381 | ! print *, 'l,entr', l, entr_star(ig,l) |
|---|
| 382 | ! ENDIF |
|---|
| 383 | |
|---|
| 384 | !------------------------------------------------------------------------------ |
|---|
| 385 | ! Alimentation and entrainment |
|---|
| 386 | !------------------------------------------------------------------------------ |
|---|
| 387 | |
|---|
| 388 | IF (l.lt.lalim(ig)) THEN |
|---|
| 389 | alim_star(ig,l) = max(alim_star(ig,l),entr_star(ig,l)) |
|---|
| 390 | entr_star(ig,l) = 0. |
|---|
| 391 | ENDIF |
|---|
| 392 | |
|---|
| 393 | !------------------------------------------------------------------------------ |
|---|
| 394 | ! Mass flux |
|---|
| 395 | !------------------------------------------------------------------------------ |
|---|
| 396 | |
|---|
| 397 | f_star(ig,l+1) = f_star(ig,l) + alim_star(ig,l) & |
|---|
| 398 | & + entr_star(ig,l) - detr_star(ig,l) |
|---|
| 399 | |
|---|
| 400 | ! IF (f_star(ig,l+1).le.0.) THEN |
|---|
| 401 | ! print *, 'WARNING: mass flux is negative!' |
|---|
| 402 | ! print *, 'l,f_star', l+1, f_star(ig,l+1) |
|---|
| 403 | ! ENDIF |
|---|
| 404 | |
|---|
| 405 | ENDIF |
|---|
| 406 | ENDDO |
|---|
| 407 | |
|---|
| 408 | !============================================================================== |
|---|
| 409 | ! 5. Calcul de la vitesse verticale en melangeant Tl et qt du thermique |
|---|
| 410 | !============================================================================== |
|---|
| 411 | |
|---|
| 412 | activetmp(:) = active(:) .and. f_star(:,l+1)>1.e-10 |
|---|
| 413 | |
|---|
| 414 | !------------------------------------------------------------------------------ |
|---|
| 415 | ! Calcul du melange avec l'environnement |
|---|
| 416 | !------------------------------------------------------------------------------ |
|---|
| 417 | |
|---|
| 418 | DO ig=1,ngrid |
|---|
| 419 | IF (activetmp(ig)) THEN |
|---|
| 420 | ztla(ig,l) = (f_star(ig,l) * ztla(ig,l-1) & ! ztla is set to TP in plume (mixed) |
|---|
| 421 | & + (alim_star(ig,l) + entr_star(ig,l)) * zthl(ig,l)) & |
|---|
| 422 | & / (f_star(ig,l+1) + detr_star(ig,l)) |
|---|
| 423 | zqta(ig,l) = (f_star(ig,l) * zqta(ig,l-1) + & ! zqta is set to qt in plume (mixed) |
|---|
| 424 | & + (alim_star(ig,l) + entr_star(ig,l)) * po(ig,l)) & |
|---|
| 425 | & / (f_star(ig,l+1) + detr_star(ig,l)) |
|---|
| 426 | ENDIF |
|---|
| 427 | ENDDO |
|---|
| 428 | |
|---|
| 429 | ztemp(:) = zpspsk(:,l) * ztla(:,l) |
|---|
| 430 | |
|---|
| 431 | DO ig=1,ngrid |
|---|
| 432 | IF (activetmp(ig)) THEN |
|---|
| 433 | CALL Psat_water(ztemp(ig), pplev(ig,l), dummy, zqsatth(ig,l)) |
|---|
| 434 | ENDIF |
|---|
| 435 | ENDDO |
|---|
| 436 | |
|---|
| 437 | !------------------------------------------------------------------------------ |
|---|
| 438 | ! Calcul de la vitesse verticale zw2 apres le melange |
|---|
| 439 | !------------------------------------------------------------------------------ |
|---|
| 440 | |
|---|
| 441 | DO ig=1,ngrid |
|---|
| 442 | IF (activetmp(ig)) THEN |
|---|
| 443 | zqla(ig,l) = max(0.,zqta(ig,l)-zqsatth(ig,l)) ! zqla is set to ql plume (mixed) |
|---|
| 444 | ztva(ig,l) = ztla(ig,l) * zpspsk(ig,l)+RLvCp*zqla(ig,l) ! ztva is set to TR plume (mixed) |
|---|
| 445 | ztva(ig,l) = ztva(ig,l) / zpspsk(ig,l) ! ztva is set to TRP plume (mixed) |
|---|
| 446 | zha(ig,l) = ztva(ig,l) ! zha is set to TRP plume (mixed) |
|---|
| 447 | ztva(ig,l) = ztva(ig,l) * (1. + RETV*(zqta(ig,l)-zqla(ig,l)) & ! ztva is set to TRPV plume (mixed) |
|---|
| 448 | & - zqla(ig,l)) |
|---|
| 449 | |
|---|
| 450 | zbuoy(ig,l) = RG * (ztva(ig,l) - ztv(ig,l)) / ztv(ig,l) |
|---|
| 451 | zdz = zlev(ig,l+1) - zlev(ig,l) |
|---|
| 452 | |
|---|
| 453 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 454 | ! AB : initial formula |
|---|
| 455 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 456 | ! zw2fact = fact_epsilon * 2. * zdz / (1. + betalpha) |
|---|
| 457 | ! zdw2 = afact * zbuoy(ig,l) / fact_epsilon |
|---|
| 458 | ! zdw2bis = afact * zbuoy(ig,l-1) / fact_epsilon |
|---|
| 459 | ! zw2(ig,l+1) = Max(0.0001,exp(-zw2fact)*(zw2(ig,l)-zdw2)+zdw2) |
|---|
| 460 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 461 | ! AB : own derivation for zw2 (Rio 2010 formula) |
|---|
| 462 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 463 | zw2fact = 2. * (fact_epsilon * zdz + entr_star(ig,l) / f_star(ig,l)) |
|---|
| 464 | zdw2 = 2. * afact * zbuoy(ig,l) * zdz |
|---|
| 465 | zw2(ig,l+1) = Max(0., exp(-zw2fact) * zw2(ig,l) + zdw2) |
|---|
| 466 | |
|---|
| 467 | ! IF (zw2(ig,l+1).le.0.) THEN |
|---|
| 468 | ! print *, 'WARNING: zw2 is negative!' |
|---|
| 469 | ! print *, 'l,zw2', l+1, zw2(ig,l+1) |
|---|
| 470 | ! ENDIF |
|---|
| 471 | ENDIF |
|---|
| 472 | ENDDO |
|---|
| 473 | |
|---|
| 474 | ENDDO |
|---|
| 475 | |
|---|
| 476 | !============================================================================== |
|---|
| 477 | ! 6. New computation of alim_star_tot |
|---|
| 478 | !============================================================================== |
|---|
| 479 | |
|---|
| 480 | DO ig=1,ngrid |
|---|
| 481 | alim_star_tot(ig) = 0. |
|---|
| 482 | ENDDO |
|---|
| 483 | |
|---|
| 484 | DO ig=1,ngrid |
|---|
| 485 | DO l=1,lalim(ig)-1 |
|---|
| 486 | alim_star_tot(ig) = alim_star_tot(ig) + alim_star(ig,l) |
|---|
| 487 | ENDDO |
|---|
| 488 | ENDDO |
|---|
| 489 | |
|---|
| 490 | #undef wrgrads_thermcell |
|---|
| 491 | #ifdef wrgrads_thermcell |
|---|
| 492 | call wrgradsfi(1,klev,entr_star(igout,1:klev),'esta ','esta ') |
|---|
| 493 | call wrgradsfi(1,klev,detr_star(igout,1:klev),'dsta ','dsta ') |
|---|
| 494 | call wrgradsfi(1,klev,zbuoy(igout,1:klev) ,'buoy ','buoy ') |
|---|
| 495 | call wrgradsfi(1,klev,zdqt(igout,1:klev) ,'dqt ','dqt ') |
|---|
| 496 | call wrgradsfi(1,klev,w_est(igout,1:klev) ,'w_est ','w_est ') |
|---|
| 497 | call wrgradsfi(1,klev,w_est(igout,2:klev+1) ,'w_es2 ','w_es2 ') |
|---|
| 498 | call wrgradsfi(1,klev,zw2(igout,1:klev) ,'zw2A ','zw2A ') |
|---|
| 499 | #endif |
|---|
| 500 | |
|---|
| 501 | |
|---|
| 502 | RETURN |
|---|
| 503 | END |
|---|