| 1 | ! |
|---|
| 2 | ! |
|---|
| 3 | ! |
|---|
| 4 | SUBROUTINE thermcell_plume(ngrid,nlay,nq,ptimestep,ztv, & |
|---|
| 5 | zhl,zqt,zql,rhobarz,zlev,pplev,pphi,zpopsk, & |
|---|
| 6 | detr_star,entr_star,f_star, & |
|---|
| 7 | ztva,zhla,zqla,zqta,zta,zqsa, & |
|---|
| 8 | zw2,lmix,lmin) |
|---|
| 9 | |
|---|
| 10 | |
|---|
| 11 | !=============================================================================== |
|---|
| 12 | ! Purpose: calcule les valeurs de qt, thetal et w dans l ascendance |
|---|
| 13 | ! |
|---|
| 14 | ! Nota Bene |
|---|
| 15 | ! ql means "non-gaseous water mass mixing ratio" (liquid and solid) |
|---|
| 16 | ! qv means "vapor mass mixing ratio" |
|---|
| 17 | ! qt means "total water mass mixing ratio" |
|---|
| 18 | ! TP means "potential temperature" |
|---|
| 19 | ! TRPV means "virtual potential temperature with latent heat release" |
|---|
| 20 | ! TPV means "virtual potential temperature" |
|---|
| 21 | ! TR means "temperature with latent heat release" |
|---|
| 22 | !=============================================================================== |
|---|
| 23 | |
|---|
| 24 | USE print_control_mod, ONLY: prt_level |
|---|
| 25 | USE watercommon_h, ONLY: RLvCp, RETV, Psat_water |
|---|
| 26 | USE tracer_h, ONLY: igcm_h2o_vap |
|---|
| 27 | USE thermcell_mod |
|---|
| 28 | |
|---|
| 29 | IMPLICIT NONE |
|---|
| 30 | |
|---|
| 31 | |
|---|
| 32 | !=============================================================================== |
|---|
| 33 | ! Declaration |
|---|
| 34 | !=============================================================================== |
|---|
| 35 | |
|---|
| 36 | ! Inputs: |
|---|
| 37 | ! ------- |
|---|
| 38 | |
|---|
| 39 | INTEGER ngrid, nlay, nq |
|---|
| 40 | |
|---|
| 41 | REAL ptimestep |
|---|
| 42 | REAL rhobarz(ngrid,nlay) ! Levels density |
|---|
| 43 | REAL zlev(ngrid,nlay+1) ! Levels altitude |
|---|
| 44 | REAL pplev(ngrid,nlay+1) ! Levels pressure |
|---|
| 45 | REAL pphi(ngrid,nlay) ! Geopotential |
|---|
| 46 | REAL zpopsk(ngrid,nlay) ! Exner function |
|---|
| 47 | |
|---|
| 48 | REAL ztv(ngrid,nlay) ! TRPV environment |
|---|
| 49 | REAL zhl(ngrid,nlay) ! TP environment |
|---|
| 50 | REAL zqt(ngrid,nlay) ! qt environment |
|---|
| 51 | REAL zql(ngrid,nlay) ! ql environment |
|---|
| 52 | |
|---|
| 53 | ! Outputs: |
|---|
| 54 | ! -------- |
|---|
| 55 | |
|---|
| 56 | INTEGER lmin(ngrid) ! plume base level (first unstable level) |
|---|
| 57 | INTEGER lmix(ngrid) ! maximum vertical speed level |
|---|
| 58 | |
|---|
| 59 | REAL detr_star(ngrid,nlay) ! normalized detrainment |
|---|
| 60 | REAL entr_star(ngrid,nlay) ! normalized entrainment |
|---|
| 61 | REAL f_star(ngrid,nlay+1) ! normalized mass flux |
|---|
| 62 | |
|---|
| 63 | REAL ztva(ngrid,nlay) ! TRPV plume (after mixing) |
|---|
| 64 | REAL zhla(ngrid,nlay) ! TP plume ? |
|---|
| 65 | REAL zqla(ngrid,nlay) ! ql plume (after mixing) |
|---|
| 66 | REAL zqta(ngrid,nlay) ! qt plume ? |
|---|
| 67 | REAL zqsa(ngrid,nlay) ! qsat plume (after mixing) |
|---|
| 68 | REAL zw2(ngrid,nlay+1) ! w plume (after mixing) |
|---|
| 69 | |
|---|
| 70 | ! Local: |
|---|
| 71 | ! ------ |
|---|
| 72 | |
|---|
| 73 | INTEGER ig, l, k |
|---|
| 74 | |
|---|
| 75 | REAL ztva_est(ngrid,nlay) ! TRPV plume (before mixing) |
|---|
| 76 | REAL zqla_est(ngrid,nlay) ! ql plume (before mixing) |
|---|
| 77 | REAL zta_est(ngrid,nlay) ! TR plume (before mixing) |
|---|
| 78 | REAL zqsa_est(ngrid) ! qsat plume (before mixing) |
|---|
| 79 | REAL zw2_est(ngrid,nlay+1) ! w plume (before mixing) |
|---|
| 80 | |
|---|
| 81 | REAL zta(ngrid,nlay) ! TR plume (after mixing) |
|---|
| 82 | |
|---|
| 83 | REAL zbuoy(ngrid,nlay) ! Plume buoyancy |
|---|
| 84 | REAL ztemp(ngrid) ! Temperature for saturation vapor pressure computation in plume |
|---|
| 85 | REAL zdz ! Layers heights |
|---|
| 86 | REAL ztv2(ngrid,nlay) ! ztv + d_temp * Dirac(l=linf) |
|---|
| 87 | |
|---|
| 88 | REAL zbetalpha ! |
|---|
| 89 | REAL zdw2 ! |
|---|
| 90 | REAL zdw2bis ! |
|---|
| 91 | REAL zw2fact ! |
|---|
| 92 | REAL zw2m ! Average vertical velocity between two successive levels |
|---|
| 93 | REAL gamma ! Plume acceleration term (to compute vertical velocity) |
|---|
| 94 | REAL test ! Test to know how to compute entrainment and detrainment |
|---|
| 95 | |
|---|
| 96 | REAL psat ! Dummy argument for Psat_water() |
|---|
| 97 | |
|---|
| 98 | LOGICAL active(ngrid) ! If the plume is active at ig (speed and incoming mass flux > 0 or l=lmin) |
|---|
| 99 | LOGICAL activetmp(ngrid) ! If the plume is active at ig (active=true and outgoing mass flux > 0) |
|---|
| 100 | |
|---|
| 101 | !=============================================================================== |
|---|
| 102 | ! Initialization |
|---|
| 103 | !=============================================================================== |
|---|
| 104 | |
|---|
| 105 | zbetalpha = betalpha / (1. + betalpha) |
|---|
| 106 | |
|---|
| 107 | ztva(:,:) = ztv(:,:) ! ztva is set to TPV environment |
|---|
| 108 | zhla(:,:) = zhl(:,:) ! zhla is set to TP environment |
|---|
| 109 | zqta(:,:) = zqt(:,:) ! zqta is set to qt environment |
|---|
| 110 | zqla(:,:) = zql(:,:) ! zqla is set to ql environment |
|---|
| 111 | |
|---|
| 112 | zqsa_est(:) = 0. |
|---|
| 113 | zqsa(:,:) = 0. |
|---|
| 114 | |
|---|
| 115 | zw2_est(:,:) = 0. |
|---|
| 116 | zw2(:,:) = 0. |
|---|
| 117 | |
|---|
| 118 | zbuoy(:,:) = 0. |
|---|
| 119 | |
|---|
| 120 | f_star(:,:) = 0. |
|---|
| 121 | detr_star(:,:) = 0. |
|---|
| 122 | entr_star(:,:) = 0. |
|---|
| 123 | |
|---|
| 124 | lmix(:) = 1 |
|---|
| 125 | lmin(:) = 1 |
|---|
| 126 | |
|---|
| 127 | ztv2(:,:) = ztv(:,:) |
|---|
| 128 | ztv2(:,linf) = ztv(:,linf) + d_temp |
|---|
| 129 | |
|---|
| 130 | active(:) = .false. |
|---|
| 131 | |
|---|
| 132 | !=============================================================================== |
|---|
| 133 | ! First layer computation |
|---|
| 134 | !=============================================================================== |
|---|
| 135 | |
|---|
| 136 | DO ig=1,ngrid |
|---|
| 137 | l = linf |
|---|
| 138 | DO WHILE (.not.active(ig).and.(pplev(ig,l+1) > pres_limit).and.(l < nlay)) |
|---|
| 139 | zbuoy(ig,l) = RG * (ztv2(ig,l) - ztv2(ig,l+1)) / ztv2(ig,l+1) |
|---|
| 140 | zdz = zlev(ig,l+1) - zlev(ig,l) |
|---|
| 141 | zw2m = afact * zbuoy(ig,l) * zdz / (1. + betalpha) |
|---|
| 142 | ! gamma = afact * zbuoy(ig,l) - fact_epsilon * zw2m |
|---|
| 143 | ! test = gamma / zw2m - nu |
|---|
| 144 | test = zbuoy(ig,l) |
|---|
| 145 | IF (test > 0.) THEN |
|---|
| 146 | lmin(ig) = l |
|---|
| 147 | ! entr_star(ig,l) = zdz * f_star(ig,l) * zbetalpha * gamma / zw2m - nu ! Problem because f*(ig,l) = 0 |
|---|
| 148 | ! detr_star(ig,l) = f_star(ig,l) * nu ! Problem because f*(ig,l) = 0 |
|---|
| 149 | ! f_star(ig,l+1) = entr_star(ig,l) - detr_star(ig,l) |
|---|
| 150 | entr_star(ig,l) = 1. |
|---|
| 151 | f_star(ig,l+1) = 1. |
|---|
| 152 | zw2_est(ig,l+1) = zw2m * 2. |
|---|
| 153 | zw2(ig,l+1) = zw2_est(ig,l+1) |
|---|
| 154 | active(ig) = .true. |
|---|
| 155 | ENDIF |
|---|
| 156 | l = l + 1 |
|---|
| 157 | ENDDO |
|---|
| 158 | ENDDO |
|---|
| 159 | |
|---|
| 160 | !=============================================================================== |
|---|
| 161 | ! Thermal plumes computations |
|---|
| 162 | !=============================================================================== |
|---|
| 163 | |
|---|
| 164 | DO l=2,nlay-1 |
|---|
| 165 | |
|---|
| 166 | !------------------------------------------------------------------------------- |
|---|
| 167 | ! Is thermal plume (still) active ? |
|---|
| 168 | !------------------------------------------------------------------------------- |
|---|
| 169 | |
|---|
| 170 | DO ig=1,ngrid |
|---|
| 171 | active(ig) = (active(ig).or.(l == lmin(ig)+1)) & |
|---|
| 172 | & .and.(zw2(ig,l) > 1.e-10) & |
|---|
| 173 | & .and.(f_star(ig,l) > 1.e-10) |
|---|
| 174 | ENDDO |
|---|
| 175 | |
|---|
| 176 | !------------------------------------------------------------------------------- |
|---|
| 177 | ! Latent heat release (before mixing) |
|---|
| 178 | !------------------------------------------------------------------------------- |
|---|
| 179 | |
|---|
| 180 | ztemp(:) = zpopsk(:,l) * zhla(:,l-1) |
|---|
| 181 | |
|---|
| 182 | DO ig=1,ngrid |
|---|
| 183 | CALL Psat_water(ztemp(ig), pplev(ig,l), psat, zqsa_est(ig)) |
|---|
| 184 | ENDDO |
|---|
| 185 | |
|---|
| 186 | !------------------------------------------------------------------------------- |
|---|
| 187 | ! Vertical speed (before mixing) |
|---|
| 188 | !------------------------------------------------------------------------------- |
|---|
| 189 | |
|---|
| 190 | DO ig=1,ngrid |
|---|
| 191 | IF (active(ig)) THEN |
|---|
| 192 | zqla_est(ig,l) = MAX(0.,zqta(ig,l-1) - zqsa_est(ig)) ! zqla_est set to ql plume |
|---|
| 193 | zta_est(ig,l) = zhla(ig,l-1) * zpopsk(ig,l) & ! zta_est set to TR plume |
|---|
| 194 | & + RLvCp * zqla_est(ig,l) |
|---|
| 195 | ztva_est(ig,l) = zta_est(ig,l) / zpopsk(ig,l) & ! ztva_est set to TRPV plume |
|---|
| 196 | & * (1. + RETV * (zqta(ig,l-1)-zqla_est(ig,l)) - zqla_est(ig,l)) |
|---|
| 197 | |
|---|
| 198 | zbuoy(ig,l) = RG * (ztva_est(ig,l) - ztv(ig,l)) / ztv(ig,l) |
|---|
| 199 | zdz = zlev(ig,l+1) - zlev(ig,l) |
|---|
| 200 | |
|---|
| 201 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 202 | ! AB: initial formulae |
|---|
| 203 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 204 | ! zw2fact = fact_epsilon * 2. * zdz / (1. + betalpha) |
|---|
| 205 | ! zdw2 = afact * zbuoy(ig,l) / fact_epsilon |
|---|
| 206 | ! zdw2bis = afact * zbuoy(ig,l-1) / fact_epsilon |
|---|
| 207 | ! zw2_est(ig,l+1) = Max(0.0001,exp(-zw2fact)*(zw2_est(ig,l)-zdw2)+zdw2) |
|---|
| 208 | ! zw2_est(ig,l+1) = Max(0.0001,exp(-zw2fact)*(zw2_est(ig,l)-zdw2bis)+zdw2) |
|---|
| 209 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 210 | ! AB: own derivation for zw2_est (Rio et al. 2010) |
|---|
| 211 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 212 | ! zw2fact = 2. * fact_epsilon * zdz |
|---|
| 213 | ! zdw2 = 2. * afact * zbuoy(ig,l) * zdz |
|---|
| 214 | zw2fact = 2. * fact_epsilon * zdz / (1. + betalpha) |
|---|
| 215 | zdw2 = 2. * afact * zbuoy(ig,l) * zdz / (1. + betalpha) |
|---|
| 216 | zw2_est(ig,l+1) = Max(0., exp(-zw2fact) * zw2_est(ig,l) + zdw2) |
|---|
| 217 | ENDIF |
|---|
| 218 | ENDDO |
|---|
| 219 | |
|---|
| 220 | !------------------------------------------------------------------------------- |
|---|
| 221 | ! Mass flux, entrainment and detrainment |
|---|
| 222 | !------------------------------------------------------------------------------- |
|---|
| 223 | |
|---|
| 224 | DO ig=1,ngrid |
|---|
| 225 | IF (active(ig)) THEN |
|---|
| 226 | |
|---|
| 227 | zdz = zlev(ig,l+1) - zlev(ig,l) |
|---|
| 228 | zw2m = (zw2_est(ig,l+1) + zw2_est(ig,l)) / 2. |
|---|
| 229 | gamma = afact * zbuoy(ig,l) - fact_epsilon * zw2m |
|---|
| 230 | |
|---|
| 231 | IF (zw2_est(ig,l) > 0.) THEN |
|---|
| 232 | test = gamma / zw2m - nu |
|---|
| 233 | ELSE |
|---|
| 234 | print *, 'ERROR: zw2_est is negative while plume is active!' |
|---|
| 235 | print *, 'ig,l', ig, l |
|---|
| 236 | print *, 'zw2_est', zw2_est(ig,l) |
|---|
| 237 | call abort |
|---|
| 238 | ENDIF |
|---|
| 239 | |
|---|
| 240 | IF (test > 0.) THEN |
|---|
| 241 | detr_star(ig,l) = zdz * f_star(ig,l) * nu |
|---|
| 242 | entr_star(ig,l) = zdz * f_star(ig,l) * (zbetalpha * gamma / zw2m + nu) |
|---|
| 243 | ELSE |
|---|
| 244 | detr_star(ig,l) = zdz * f_star(ig,l) * (nu - betalpha * gamma / zw2m) |
|---|
| 245 | entr_star(ig,l) = zdz * f_star(ig,l) * nu |
|---|
| 246 | ENDIF |
|---|
| 247 | |
|---|
| 248 | f_star(ig,l+1) = f_star(ig,l) + entr_star(ig,l) - detr_star(ig,l) |
|---|
| 249 | |
|---|
| 250 | ENDIF |
|---|
| 251 | ENDDO |
|---|
| 252 | |
|---|
| 253 | !------------------------------------------------------------------------------- |
|---|
| 254 | ! Mixing between thermal plume and environment |
|---|
| 255 | !------------------------------------------------------------------------------- |
|---|
| 256 | |
|---|
| 257 | activetmp(:) = active(:).and.(f_star(:,l+1) > 1.e-10) |
|---|
| 258 | |
|---|
| 259 | DO ig=1,ngrid |
|---|
| 260 | IF (activetmp(ig)) THEN |
|---|
| 261 | zhla(ig,l) = (f_star(ig,l) * zhla(ig,l-1) & ! zhla is set to TP in plume (mixed) |
|---|
| 262 | & + entr_star(ig,l) * zhl(ig,l)) & |
|---|
| 263 | & / (f_star(ig,l+1) + detr_star(ig,l)) |
|---|
| 264 | zqta(ig,l) = (f_star(ig,l) * zqta(ig,l-1) + & ! zqta is set to qt in plume (mixed) |
|---|
| 265 | & + entr_star(ig,l) * zqt(ig,l)) & |
|---|
| 266 | & / (f_star(ig,l+1) + detr_star(ig,l)) |
|---|
| 267 | ENDIF |
|---|
| 268 | ENDDO |
|---|
| 269 | |
|---|
| 270 | !------------------------------------------------------------------------------- |
|---|
| 271 | ! Latent heat release (after mixing) |
|---|
| 272 | !------------------------------------------------------------------------------- |
|---|
| 273 | |
|---|
| 274 | ztemp(:) = zpopsk(:,l) * zhla(:,l) |
|---|
| 275 | |
|---|
| 276 | DO ig=1,ngrid |
|---|
| 277 | IF (activetmp(ig)) THEN |
|---|
| 278 | CALL Psat_water(ztemp(ig), pplev(ig,l), psat, zqsa(ig,l)) |
|---|
| 279 | ENDIF |
|---|
| 280 | ENDDO |
|---|
| 281 | |
|---|
| 282 | !------------------------------------------------------------------------------- |
|---|
| 283 | ! Vertical speed (after mixing) |
|---|
| 284 | !------------------------------------------------------------------------------- |
|---|
| 285 | |
|---|
| 286 | DO ig=1,ngrid |
|---|
| 287 | IF (activetmp(ig)) THEN |
|---|
| 288 | zqla(ig,l) = MAX(0.,zqta(ig,l) - zqsa(ig,l)) ! zqla is set to ql plume (mixed) |
|---|
| 289 | zta(ig,l) = zhla(ig,l) * zpopsk(ig,l) & ! ztva is set to TR plume (mixed) |
|---|
| 290 | & + RLvCp * zqla(ig,l) |
|---|
| 291 | ztva(ig,l) = zta(ig,l) / zpopsk(ig,l) & ! ztva is set to TRPV plume (mixed) |
|---|
| 292 | & * (1. + RETV*(zqta(ig,l)-zqla(ig,l)) - zqla(ig,l)) |
|---|
| 293 | |
|---|
| 294 | zbuoy(ig,l) = RG * (ztva(ig,l) - ztv(ig,l)) / ztv(ig,l) |
|---|
| 295 | zdz = zlev(ig,l+1) - zlev(ig,l) |
|---|
| 296 | |
|---|
| 297 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 298 | ! AB: initial formula |
|---|
| 299 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 300 | ! zw2fact = fact_epsilon * 2. * zdz / (1. + betalpha) |
|---|
| 301 | ! zdw2 = afact * zbuoy(ig,l) / fact_epsilon |
|---|
| 302 | ! zw2(ig,l+1) = Max(0.0001,exp(-zw2fact)*(zw2(ig,l)-zdw2)+zdw2) |
|---|
| 303 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 304 | ! AB: own derivation for zw2 (Rio et al. 2010) |
|---|
| 305 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 306 | ! zw2fact = 2. * (fact_epsilon * zdz + entr_star(ig,l) / f_star(ig,l)) |
|---|
| 307 | ! zdw2 = 2. * afact * zbuoy(ig,l) * zdz |
|---|
| 308 | zw2fact = 2. * fact_epsilon * zdz / (1. + betalpha) |
|---|
| 309 | zdw2 = 2. * afact * zbuoy(ig,l) * zdz / (1. + betalpha) |
|---|
| 310 | zw2(ig,l+1) = Max(0., exp(-zw2fact) * zw2(ig,l) + zdw2) |
|---|
| 311 | ENDIF |
|---|
| 312 | ENDDO |
|---|
| 313 | |
|---|
| 314 | ENDDO |
|---|
| 315 | |
|---|
| 316 | |
|---|
| 317 | RETURN |
|---|
| 318 | END |
|---|