[2060] | 1 | ! |
---|
| 2 | ! |
---|
| 3 | ! |
---|
[2101] | 4 | SUBROUTINE thermcell_plume(itap,ngrid,nlay,ptimestep,ztv, & |
---|
| 5 | zthl,po,zl,rhobarz,zlev,pplev,pphi,zpspsk, & |
---|
| 6 | alim_star,alim_star_tot,lalim,f0,detr_star, & |
---|
| 7 | entr_star,f_star,ztva,ztla,zqla,zqta,zha, & |
---|
| 8 | zw2,w_est,ztva_est,zqsatth,lmix,lmix_bis, & |
---|
| 9 | lmin,lev_out,lunout1,igout) |
---|
[2060] | 10 | |
---|
| 11 | |
---|
| 12 | !============================================================================== |
---|
| 13 | ! thermcell_plume: calcule les valeurs de qt, thetal et w dans l ascendance |
---|
[2069] | 14 | ! AB : ql means "liquid water mass mixing ratio" |
---|
| 15 | ! qt means "total water mass mixing ratio" |
---|
| 16 | ! TP means "potential temperature" |
---|
| 17 | ! TRPV means "virtual potential temperature with latent heat release" |
---|
| 18 | ! TPV means "virtual potential temperature" |
---|
| 19 | ! TR means "temperature with latent heat release" |
---|
[2060] | 20 | !============================================================================== |
---|
| 21 | |
---|
| 22 | USE print_control_mod, ONLY: prt_level |
---|
[2071] | 23 | USE watercommon_h, ONLY: RLvCp, RETV, Psat_water |
---|
[2060] | 24 | USE thermcell_mod |
---|
| 25 | |
---|
| 26 | IMPLICIT NONE |
---|
| 27 | |
---|
| 28 | |
---|
| 29 | !============================================================================== |
---|
| 30 | ! Declaration |
---|
| 31 | !============================================================================== |
---|
| 32 | |
---|
| 33 | ! inputs: |
---|
| 34 | ! ------- |
---|
| 35 | |
---|
| 36 | INTEGER itap |
---|
| 37 | INTEGER ngrid |
---|
[2101] | 38 | INTEGER nlay |
---|
[2060] | 39 | INTEGER lunout1 |
---|
| 40 | INTEGER igout |
---|
| 41 | INTEGER lev_out ! niveau pour les print |
---|
| 42 | |
---|
| 43 | REAL ptimestep ! time step |
---|
[2101] | 44 | REAL ztv(ngrid,nlay) ! TRPV environment |
---|
| 45 | REAL zthl(ngrid,nlay) ! TP environment |
---|
| 46 | REAL po(ngrid,nlay) ! qt environment |
---|
| 47 | REAL zl(ngrid,nlay) ! ql environment |
---|
| 48 | REAL rhobarz(ngrid,nlay) ! levels density |
---|
| 49 | REAL zlev(ngrid,nlay+1) ! levels altitude |
---|
| 50 | REAL pplev(ngrid,nlay+1) ! levels pressure |
---|
| 51 | REAL pphi(ngrid,nlay) ! geopotential |
---|
| 52 | REAL zpspsk(ngrid,nlay) ! Exner function |
---|
[2060] | 53 | |
---|
| 54 | ! outputs: |
---|
| 55 | ! -------- |
---|
| 56 | |
---|
| 57 | INTEGER lmin(ngrid) ! plume base level (first unstable level) |
---|
| 58 | INTEGER lalim(ngrid) ! higher alimentation level |
---|
| 59 | INTEGER lmix(ngrid) ! maximum vertical speed level |
---|
| 60 | INTEGER lmix_bis(ngrid) ! maximum vertical speed level (modified) |
---|
| 61 | |
---|
[2101] | 62 | REAL alim_star(ngrid,nlay) ! normalized alimentation |
---|
[2060] | 63 | REAL alim_star_tot(ngrid) ! integrated alimentation |
---|
| 64 | |
---|
| 65 | REAL f0(ngrid) ! previous time step mass flux norm |
---|
| 66 | |
---|
[2101] | 67 | REAL detr_star(ngrid,nlay) ! normalized detrainment |
---|
| 68 | REAL entr_star(ngrid,nlay) ! normalized entrainment |
---|
| 69 | REAL f_star(ngrid,nlay+1) ! normalized mass flux |
---|
[2060] | 70 | |
---|
[2101] | 71 | REAL ztva(ngrid,nlay) ! TRPV plume (after mixing) |
---|
| 72 | REAL ztva_est(ngrid,nlay) ! TRPV plume (before mixing) |
---|
| 73 | REAL ztla(ngrid,nlay) ! TP plume |
---|
| 74 | REAL zqla(ngrid,nlay) ! ql plume (after mixing) |
---|
| 75 | REAL zqta(ngrid,nlay) ! qt plume |
---|
| 76 | REAL zha(ngrid,nlay) ! TRPV plume |
---|
[2060] | 77 | |
---|
[2101] | 78 | REAL w_est(ngrid,nlay+1) ! updraft square vertical speed (before mixing) |
---|
| 79 | REAL zw2(ngrid,nlay+1) ! updraft square vertical speed (after mixing) |
---|
[2060] | 80 | |
---|
[2101] | 81 | REAL zqsatth(ngrid,nlay) ! saturation vapor pressure (after mixing) |
---|
[2060] | 82 | |
---|
| 83 | ! local: |
---|
| 84 | ! ------ |
---|
| 85 | |
---|
| 86 | INTEGER ig, l, k |
---|
| 87 | INTEGER lt |
---|
| 88 | INTEGER lm |
---|
| 89 | |
---|
[2101] | 90 | REAL zqla_est(ngrid,nlay) ! ql plume (before mixing) |
---|
| 91 | REAL zta_est(ngrid,nlay) ! TR plume (before mixing) |
---|
| 92 | REAL zbuoy(ngrid,nlay) ! plume buoyancy |
---|
| 93 | REAL zbuoyjam(ngrid,nlay) ! plume buoyancy (modified) |
---|
[2060] | 94 | |
---|
| 95 | REAL ztemp(ngrid) ! temperature for saturation vapor pressure computation in plume |
---|
| 96 | REAL zqsat(ngrid) ! saturation vapor pressure (before mixing) |
---|
| 97 | REAL zdz ! layers height |
---|
[2101] | 98 | REAL ztv2(ngrid,nlay) ! ztv + d_temp * Dirac(l=lmin) |
---|
[2060] | 99 | |
---|
| 100 | REAL zalpha ! |
---|
[2101] | 101 | REAL zdqt(ngrid,nlay) ! |
---|
[2060] | 102 | REAL zbetalpha ! |
---|
| 103 | REAL zdw2 ! |
---|
| 104 | REAL zdw2bis ! |
---|
| 105 | REAL zw2fact ! |
---|
| 106 | REAL zw2factbis ! |
---|
| 107 | REAL zw2m ! |
---|
| 108 | REAL zdzbis ! |
---|
| 109 | REAL coefzlmel ! |
---|
| 110 | REAL zdz2 ! |
---|
| 111 | REAL zdz3 ! |
---|
| 112 | REAL lmel ! |
---|
| 113 | REAL zlmel ! |
---|
| 114 | REAL zlmelup ! |
---|
| 115 | REAL zlmeldwn ! |
---|
| 116 | REAL zlt ! |
---|
| 117 | REAL zltdwn ! |
---|
| 118 | REAL zltup ! useless here |
---|
| 119 | |
---|
[2101] | 120 | REAL psat ! dummy argument for Psat_water() |
---|
[2071] | 121 | |
---|
[2060] | 122 | LOGICAL active(ngrid) ! if the plume is active at ig,l (speed and incoming mass flux > 0 or l=lmin) |
---|
| 123 | LOGICAL activetmp(ngrid) ! if the plus is active at ig,l (active=true and outgoing mass flux > 0) |
---|
| 124 | LOGICAL, SAVE :: first = .true. ! if it is the first time step |
---|
| 125 | |
---|
| 126 | !$OMP THREADPRIVATE(first) |
---|
| 127 | |
---|
| 128 | !============================================================================== |
---|
| 129 | ! Initialization |
---|
| 130 | !============================================================================== |
---|
| 131 | |
---|
| 132 | zbetalpha = betalpha / (1. + betalpha) |
---|
| 133 | |
---|
[2069] | 134 | ztva(:,:) = ztv(:,:) ! ztva is set to the virtual potential temperature without latent heat release |
---|
| 135 | ztva_est(:,:) = ztva(:,:) ! ztva_est is set to the virtual potential temperature without latent heat release |
---|
[2066] | 136 | ztla(:,:) = zthl(:,:) ! ztla is set to the potential temperature |
---|
| 137 | zqta(:,:) = po(:,:) ! zqta is set to qt |
---|
| 138 | zqla(:,:) = 0. ! zqla is set to ql |
---|
| 139 | zqla_est(:,:) = 0. ! zqla_est is set to ql |
---|
[2069] | 140 | zha(:,:) = ztva(:,:) ! zha is set to the plume virtual potential temperature without latent heat release |
---|
[2060] | 141 | |
---|
| 142 | zqsat(:) = 0. |
---|
| 143 | zqsatth(:,:) = 0. |
---|
| 144 | |
---|
| 145 | w_est(:,:) = 0. |
---|
| 146 | zw2(:,:) = 0. |
---|
| 147 | |
---|
| 148 | zbuoy(:,:) = 0. |
---|
| 149 | zbuoyjam(:,:) = 0. |
---|
| 150 | |
---|
| 151 | f_star(:,:) = 0. |
---|
| 152 | detr_star(:,:) = 0. |
---|
| 153 | entr_star(:,:) = 0. |
---|
| 154 | alim_star(:,:) = 0. |
---|
| 155 | alim_star_tot(:) = 0. |
---|
| 156 | |
---|
| 157 | lmix(:) = 1 |
---|
| 158 | lmix_bis(:) = 2 |
---|
| 159 | lalim(:) = 1 |
---|
| 160 | lmin(:) = linf |
---|
| 161 | |
---|
[2093] | 162 | ztv2(:,:) = ztv(:,:) |
---|
[2101] | 163 | ztv2(:,linf) = ztv(:,linf) + d_temp |
---|
[2093] | 164 | |
---|
[2060] | 165 | !============================================================================== |
---|
| 166 | ! 0. Calcul de l'alimentation |
---|
| 167 | !============================================================================== |
---|
| 168 | |
---|
| 169 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 170 | ! AB : Convective plumes can go off from every layer above the linf-th and |
---|
| 171 | ! where pressure is lesser than pres_limit (cf. thermcell_plume). |
---|
| 172 | ! The second constraint is added to avoid the parametrization occurs too |
---|
| 173 | ! high when the low atmosphere is stable. |
---|
| 174 | ! However, once there is a triggered plume, it can rise as high as its |
---|
| 175 | ! velocity allows it (it can overshoot). |
---|
| 176 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 177 | DO ig=1,ngrid |
---|
| 178 | active(ig) = .false. |
---|
| 179 | l = linf |
---|
[2101] | 180 | DO WHILE ((.not.active(ig)) .and. pplev(ig,l+1).gt.pres_limit .and. l.lt.nlay) |
---|
[2093] | 181 | IF (ztv2(ig,l).gt.ztv2(ig,l+1)) THEN |
---|
[2060] | 182 | active(ig) = .true. |
---|
| 183 | lmin(ig) = l |
---|
| 184 | ENDIF |
---|
| 185 | l = l + 1 |
---|
| 186 | ENDDO |
---|
| 187 | ENDDO |
---|
| 188 | |
---|
| 189 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[2065] | 190 | ! AB : On pourrait n'appeler thermcell_alim que si la plume est active |
---|
[2060] | 191 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[2101] | 192 | CALL thermcell_alim(ngrid,nlay,ztv2,zlev,alim_star,lalim,lmin) |
---|
[2060] | 193 | |
---|
| 194 | !============================================================================== |
---|
| 195 | ! 1. Calcul dans la premiere couche |
---|
| 196 | !============================================================================== |
---|
| 197 | |
---|
| 198 | DO ig=1,ngrid |
---|
| 199 | IF (active(ig)) THEN |
---|
| 200 | |
---|
| 201 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 202 | ! AB : plume takes the environment features for every layer below lmin. |
---|
| 203 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 204 | DO l=1,lmin(ig) |
---|
| 205 | ztla(ig,l) = zthl(ig,l) |
---|
| 206 | zqta(ig,l) = po(ig,l) |
---|
| 207 | zqla(ig,l) = zl(ig,l) |
---|
| 208 | ENDDO |
---|
| 209 | |
---|
| 210 | l = lmin(ig) |
---|
| 211 | f_star(ig,l+1) = alim_star(ig,l) |
---|
| 212 | |
---|
| 213 | zw2(ig,l+1) = 2. * RG * (zlev(ig,l+1) - zlev(ig,l)) & |
---|
[2093] | 214 | & * (ztv2(ig,l) - ztv2(ig,l+1)) / ztv2(ig,l+1) |
---|
[2060] | 215 | |
---|
| 216 | w_est(ig,l+1) = zw2(ig,l+1) |
---|
| 217 | ENDIF |
---|
| 218 | ENDDO |
---|
| 219 | |
---|
| 220 | !============================================================================== |
---|
| 221 | ! 2. Boucle de calcul de la vitesse verticale dans le thermique |
---|
| 222 | !============================================================================== |
---|
| 223 | |
---|
[2101] | 224 | DO l=2,nlay-1 |
---|
[2060] | 225 | |
---|
| 226 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 227 | ! AB : we decide here if the plume is still active or not. When the plume's |
---|
| 228 | ! first level is reached, we set active to "true". Otherwise, it is given |
---|
[2065] | 229 | ! by zw2, f_star, alim_star and entr_star. |
---|
[2060] | 230 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 231 | DO ig=1,ngrid |
---|
| 232 | IF (l==lmin(ig)+1) THEN |
---|
| 233 | active(ig) = .true. |
---|
| 234 | ENDIF |
---|
| 235 | |
---|
| 236 | active(ig) = active(ig) & |
---|
| 237 | & .and. zw2(ig,l)>1.e-10 & |
---|
| 238 | & .and. f_star(ig,l)+alim_star(ig,l)+entr_star(ig,l)>1.e-10 |
---|
| 239 | ENDDO |
---|
| 240 | |
---|
| 241 | ztemp(:) = zpspsk(:,l) * ztla(:,l-1) |
---|
[2065] | 242 | |
---|
[2060] | 243 | DO ig=1,ngrid |
---|
[2101] | 244 | CALL Psat_water(ztemp(ig), pplev(ig,l), psat, zqsat(ig)) |
---|
[2060] | 245 | ENDDO |
---|
| 246 | |
---|
| 247 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 248 | ! AB : we compute thermodynamical values and speed in the plume in the layer l |
---|
| 249 | ! without mixing with environment. |
---|
| 250 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 251 | |
---|
| 252 | DO ig=1,ngrid |
---|
| 253 | IF (active(ig)) THEN |
---|
| 254 | zqla_est(ig,l) = max(0.,zqta(ig,l-1)-zqsat(ig)) ! zqla_est set to ql plume |
---|
| 255 | ztva_est(ig,l) = ztla(ig,l-1)*zpspsk(ig,l)+RLvCp*zqla_est(ig,l) ! ztva_est set to TR plume |
---|
| 256 | zta_est(ig,l) = ztva_est(ig,l) ! zta_est set to TR plume |
---|
| 257 | ztva_est(ig,l) = ztva_est(ig,l)/zpspsk(ig,l) ! ztva_est set to TRP plume |
---|
| 258 | ztva_est(ig,l) = ztva_est(ig,l)*(1.+RETV*(zqta(ig,l-1) & ! ztva_est set to TRPV plume |
---|
| 259 | & - zqla_est(ig,l))-zqla_est(ig,l)) |
---|
| 260 | |
---|
| 261 | zbuoy(ig,l) = RG * (ztva_est(ig,l)-ztv(ig,l)) / ztv(ig,l) |
---|
| 262 | zdz = zlev(ig,l+1) - zlev(ig,l) |
---|
| 263 | |
---|
| 264 | !============================================================================== |
---|
| 265 | ! 3. Calcul de la flotabilite modifiee par melange avec l'air au dessus |
---|
| 266 | !============================================================================== |
---|
| 267 | |
---|
| 268 | lmel = fact_thermals_ed_dz * zlev(ig,l) |
---|
| 269 | zlmel = zlev(ig,l) + lmel |
---|
| 270 | lt = l + 1 |
---|
| 271 | zlt = zlev(ig,lt) |
---|
| 272 | zdz2 = zlev(ig,lt) - zlev(ig,l) |
---|
| 273 | |
---|
| 274 | DO while (lmel.gt.zdz2) |
---|
| 275 | lt = lt + 1 |
---|
| 276 | zlt = zlev(ig,lt) |
---|
| 277 | zdz2 = zlev(ig,lt) - zlev(ig,l) |
---|
| 278 | ENDDO |
---|
| 279 | |
---|
| 280 | ! IF (lt-l.gt.1) THEN |
---|
| 281 | ! print *, 'WARNING: lt is greater than l+1!' |
---|
| 282 | ! print *, 'l,lt', l, lt |
---|
| 283 | ! ENDIF |
---|
| 284 | |
---|
| 285 | zdz3 = zlev(ig,lt+1) - zlt |
---|
| 286 | zltdwn = zlev(ig,lt) - zdz3 / 2 |
---|
| 287 | zlmelup = zlmel + (zdz / 2) |
---|
| 288 | coefzlmel = Min(1.,(zlmelup - zltdwn) / zdz) |
---|
| 289 | |
---|
| 290 | zbuoyjam(ig,l) = 1.* RG * (coefzlmel * & |
---|
| 291 | & (ztva_est(ig,l) - ztv(ig,lt)) / ztv(ig,lt) & |
---|
| 292 | & + (1. - coefzlmel) * & |
---|
| 293 | & (ztva_est(ig,l) - ztv(ig,lt-1)) / ztv(ig,lt-1)) & |
---|
| 294 | & + 0. * zbuoy(ig,l) |
---|
| 295 | |
---|
| 296 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 297 | ! AB : initial formulae |
---|
| 298 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 299 | ! zw2fact = fact_epsilon * 2. * zdz / (1. + betalpha) |
---|
| 300 | ! zdw2 = afact * zbuoy(ig,l) / fact_epsilon |
---|
| 301 | ! zdw2bis = afact * zbuoy(ig,l-1) / fact_epsilon |
---|
| 302 | ! w_est(ig,l+1) = Max(0.0001,exp(-zw2fact)*(w_est(ig,l)-zdw2)+zdw2) |
---|
| 303 | ! w_est(ig,l+1) = Max(0.0001,exp(-zw2fact)*(w_est(ig,l)-zdw2bis)+zdw2) |
---|
| 304 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[2065] | 305 | ! AB : own derivation for w_est (Rio 2010 formula with e=d=0) |
---|
[2060] | 306 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 307 | zw2fact = 2. * fact_epsilon * zdz |
---|
| 308 | zdw2 = 2. * afact * zbuoy(ig,l) * zdz |
---|
| 309 | w_est(ig,l+1) = Max(0., exp(-zw2fact) * w_est(ig,l) + zdw2) |
---|
| 310 | |
---|
| 311 | ! IF (w_est(ig,l+1).le.0.) THEN |
---|
| 312 | ! print *, 'WARNING: w_est is negative!' |
---|
| 313 | ! print *, 'l,w_est', l+1, w_est(ig,l+1) |
---|
| 314 | ! ENDIF |
---|
| 315 | ENDIF |
---|
| 316 | ENDDO |
---|
| 317 | |
---|
| 318 | !============================================================================== |
---|
| 319 | ! 4. Calcul de l'entrainement et du detrainement |
---|
| 320 | !============================================================================== |
---|
| 321 | |
---|
| 322 | DO ig=1,ngrid |
---|
| 323 | IF (active(ig)) THEN |
---|
| 324 | |
---|
| 325 | zdz = zlev(ig,l+1) - zlev(ig,l) |
---|
| 326 | |
---|
| 327 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[2066] | 328 | ! AB : The next test is added to avoid divisions by zero when w_est vanishes. |
---|
[2065] | 329 | ! Indeed, entr and detr computed here are of no importance because w_est |
---|
| 330 | ! <= 0 means it will be the last layer reached by the plume and then they |
---|
| 331 | ! will be reset in thermcell_flux. |
---|
[2060] | 332 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[2065] | 333 | IF (w_est(ig,l+1).eq.0.) THEN |
---|
| 334 | zw2m = 1. |
---|
[2066] | 335 | zalpha = 0. |
---|
[2060] | 336 | ELSE |
---|
[2065] | 337 | zw2m = w_est(ig,l+1) |
---|
[2066] | 338 | zalpha = f0(ig) * f_star(ig,l) / sqrt(w_est(ig,l+1)) / rhobarz(ig,l) |
---|
[2060] | 339 | ENDIF |
---|
| 340 | |
---|
| 341 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[2065] | 342 | ! AB : The next test is added to avoid a division by zero if there is no water |
---|
| 343 | ! in the environment. |
---|
[2060] | 344 | ! In the case where there is no water in the env. but water in the plume |
---|
| 345 | ! (ascending from depth) we set the effect on detrainment equal to zero |
---|
| 346 | ! but at the next time step, po will be positive thanks to the mixing and |
---|
| 347 | ! then the physical effect of the water gradient will be taken on board. |
---|
| 348 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 349 | IF (po(ig,l).lt.1.e-6) THEN |
---|
[2065] | 350 | ! print *, 'WARNING: po=0 in layer',l,'!' |
---|
[2060] | 351 | ! print *, 'po,zqta', po(ig,l), zqta(ig,l-1) |
---|
| 352 | zdqt(ig,l) = 0.0 |
---|
| 353 | ELSE |
---|
| 354 | zdqt(ig,l) = max(zqta(ig,l-1)-po(ig,l),0.) / po(ig,l) |
---|
| 355 | ENDIF |
---|
| 356 | |
---|
| 357 | !------------------------------------------------------------------------------ |
---|
| 358 | ! Detrainment |
---|
| 359 | !------------------------------------------------------------------------------ |
---|
| 360 | |
---|
| 361 | detr_star(ig,l) = f_star(ig,l) * zdz * ( & |
---|
| 362 | & mix0 * 0.1 / (zalpha + 0.001) & |
---|
| 363 | & + MAX(detr_min, & |
---|
| 364 | & -afact * zbetalpha * zbuoyjam(ig,l) / zw2m & |
---|
| 365 | & + detr_q_coef*(zdqt(ig,l)/zw2m)**detr_q_power) ) |
---|
| 366 | |
---|
| 367 | ! IF (detr_star(ig,l).lt.0.) THEN |
---|
| 368 | ! print *, 'WARNING: detrainment is negative!' |
---|
| 369 | ! print *, 'l,detr', l, detr_star(ig,l) |
---|
| 370 | ! ENDIF |
---|
| 371 | |
---|
| 372 | !------------------------------------------------------------------------------ |
---|
| 373 | ! Entrainment |
---|
| 374 | !------------------------------------------------------------------------------ |
---|
| 375 | |
---|
| 376 | entr_star(ig,l) = f_star(ig,l) * zdz * ( & |
---|
| 377 | & mix0 * 0.1 / (zalpha+0.001) & |
---|
| 378 | & + MAX(entr_min, & |
---|
| 379 | & zbetalpha * afact * zbuoyjam(ig,l) / zw2m & |
---|
| 380 | & - zbetalpha * fact_epsilon) ) |
---|
| 381 | |
---|
| 382 | ! IF (entr_star(ig,l).lt.0.) THEN |
---|
| 383 | ! print *, 'WARNING: entrainment is negative!' |
---|
| 384 | ! print *, 'l,entr', l, entr_star(ig,l) |
---|
| 385 | ! ENDIF |
---|
| 386 | |
---|
| 387 | !------------------------------------------------------------------------------ |
---|
| 388 | ! Alimentation and entrainment |
---|
| 389 | !------------------------------------------------------------------------------ |
---|
| 390 | |
---|
| 391 | IF (l.lt.lalim(ig)) THEN |
---|
| 392 | alim_star(ig,l) = max(alim_star(ig,l),entr_star(ig,l)) |
---|
| 393 | entr_star(ig,l) = 0. |
---|
| 394 | ENDIF |
---|
| 395 | |
---|
| 396 | !------------------------------------------------------------------------------ |
---|
| 397 | ! Mass flux |
---|
| 398 | !------------------------------------------------------------------------------ |
---|
| 399 | |
---|
| 400 | f_star(ig,l+1) = f_star(ig,l) + alim_star(ig,l) & |
---|
| 401 | & + entr_star(ig,l) - detr_star(ig,l) |
---|
| 402 | |
---|
| 403 | ! IF (f_star(ig,l+1).le.0.) THEN |
---|
| 404 | ! print *, 'WARNING: mass flux is negative!' |
---|
| 405 | ! print *, 'l,f_star', l+1, f_star(ig,l+1) |
---|
| 406 | ! ENDIF |
---|
| 407 | |
---|
| 408 | ENDIF |
---|
| 409 | ENDDO |
---|
| 410 | |
---|
| 411 | !============================================================================== |
---|
| 412 | ! 5. Calcul de la vitesse verticale en melangeant Tl et qt du thermique |
---|
| 413 | !============================================================================== |
---|
| 414 | |
---|
| 415 | activetmp(:) = active(:) .and. f_star(:,l+1)>1.e-10 |
---|
| 416 | |
---|
| 417 | !------------------------------------------------------------------------------ |
---|
| 418 | ! Calcul du melange avec l'environnement |
---|
| 419 | !------------------------------------------------------------------------------ |
---|
| 420 | |
---|
| 421 | DO ig=1,ngrid |
---|
| 422 | IF (activetmp(ig)) THEN |
---|
[2065] | 423 | ztla(ig,l) = (f_star(ig,l) * ztla(ig,l-1) & ! ztla is set to TP in plume (mixed) |
---|
| 424 | & + (alim_star(ig,l) + entr_star(ig,l)) * zthl(ig,l)) & |
---|
| 425 | & / (f_star(ig,l+1) + detr_star(ig,l)) |
---|
| 426 | zqta(ig,l) = (f_star(ig,l) * zqta(ig,l-1) + & ! zqta is set to qt in plume (mixed) |
---|
| 427 | & + (alim_star(ig,l) + entr_star(ig,l)) * po(ig,l)) & |
---|
| 428 | & / (f_star(ig,l+1) + detr_star(ig,l)) |
---|
[2060] | 429 | ENDIF |
---|
| 430 | ENDDO |
---|
| 431 | |
---|
| 432 | ztemp(:) = zpspsk(:,l) * ztla(:,l) |
---|
| 433 | |
---|
| 434 | DO ig=1,ngrid |
---|
| 435 | IF (activetmp(ig)) THEN |
---|
[2101] | 436 | CALL Psat_water(ztemp(ig), pplev(ig,l), psat, zqsatth(ig,l)) |
---|
[2060] | 437 | ENDIF |
---|
| 438 | ENDDO |
---|
| 439 | |
---|
| 440 | !------------------------------------------------------------------------------ |
---|
| 441 | ! Calcul de la vitesse verticale zw2 apres le melange |
---|
| 442 | !------------------------------------------------------------------------------ |
---|
| 443 | |
---|
| 444 | DO ig=1,ngrid |
---|
| 445 | IF (activetmp(ig)) THEN |
---|
| 446 | zqla(ig,l) = max(0.,zqta(ig,l)-zqsatth(ig,l)) ! zqla is set to ql plume (mixed) |
---|
| 447 | ztva(ig,l) = ztla(ig,l) * zpspsk(ig,l)+RLvCp*zqla(ig,l) ! ztva is set to TR plume (mixed) |
---|
| 448 | ztva(ig,l) = ztva(ig,l) / zpspsk(ig,l) ! ztva is set to TRP plume (mixed) |
---|
| 449 | zha(ig,l) = ztva(ig,l) ! zha is set to TRP plume (mixed) |
---|
| 450 | ztva(ig,l) = ztva(ig,l) * (1. + RETV*(zqta(ig,l)-zqla(ig,l)) & ! ztva is set to TRPV plume (mixed) |
---|
| 451 | & - zqla(ig,l)) |
---|
| 452 | |
---|
| 453 | zbuoy(ig,l) = RG * (ztva(ig,l) - ztv(ig,l)) / ztv(ig,l) |
---|
| 454 | zdz = zlev(ig,l+1) - zlev(ig,l) |
---|
| 455 | |
---|
| 456 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[2065] | 457 | ! AB : initial formula |
---|
[2060] | 458 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 459 | ! zw2fact = fact_epsilon * 2. * zdz / (1. + betalpha) |
---|
| 460 | ! zdw2 = afact * zbuoy(ig,l) / fact_epsilon |
---|
| 461 | ! zdw2bis = afact * zbuoy(ig,l-1) / fact_epsilon |
---|
| 462 | ! zw2(ig,l+1) = Max(0.0001,exp(-zw2fact)*(zw2(ig,l)-zdw2)+zdw2) |
---|
| 463 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[2065] | 464 | ! AB : own derivation for zw2 (Rio 2010 formula) |
---|
[2060] | 465 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 466 | zw2fact = 2. * (fact_epsilon * zdz + entr_star(ig,l) / f_star(ig,l)) |
---|
| 467 | zdw2 = 2. * afact * zbuoy(ig,l) * zdz |
---|
| 468 | zw2(ig,l+1) = Max(0., exp(-zw2fact) * zw2(ig,l) + zdw2) |
---|
| 469 | |
---|
| 470 | ! IF (zw2(ig,l+1).le.0.) THEN |
---|
| 471 | ! print *, 'WARNING: zw2 is negative!' |
---|
| 472 | ! print *, 'l,zw2', l+1, zw2(ig,l+1) |
---|
| 473 | ! ENDIF |
---|
| 474 | ENDIF |
---|
| 475 | ENDDO |
---|
| 476 | |
---|
| 477 | ENDDO |
---|
| 478 | |
---|
| 479 | !============================================================================== |
---|
| 480 | ! 6. New computation of alim_star_tot |
---|
| 481 | !============================================================================== |
---|
| 482 | |
---|
| 483 | DO ig=1,ngrid |
---|
[2065] | 484 | alim_star_tot(ig) = 0. |
---|
[2060] | 485 | ENDDO |
---|
| 486 | |
---|
| 487 | DO ig=1,ngrid |
---|
| 488 | DO l=1,lalim(ig)-1 |
---|
| 489 | alim_star_tot(ig) = alim_star_tot(ig) + alim_star(ig,l) |
---|
| 490 | ENDDO |
---|
| 491 | ENDDO |
---|
| 492 | |
---|
| 493 | |
---|
| 494 | RETURN |
---|
| 495 | END |
---|