[2060] | 1 | ! |
---|
| 2 | ! |
---|
| 3 | ! |
---|
| 4 | SUBROUTINE thermcell_plume(itap,ngrid,klev,ptimestep,ztv, & |
---|
| 5 | & zthl,po,zl,rhobarz,zlev,pplev,pphi,zpspsk, & |
---|
| 6 | & alim_star,alim_star_tot,lalim,f0,detr_star, & |
---|
| 7 | & entr_star,f_star,ztva,ztla,zqla,zqta,zha, & |
---|
| 8 | & zw2,w_est,ztva_est,zqsatth,lmix,lmix_bis, & |
---|
| 9 | & lmin,lev_out,lunout1,igout) |
---|
| 10 | |
---|
| 11 | |
---|
| 12 | !============================================================================== |
---|
| 13 | ! thermcell_plume: calcule les valeurs de qt, thetal et w dans l ascendance |
---|
| 14 | !============================================================================== |
---|
| 15 | |
---|
| 16 | USE IOIPSL, ONLY : getin |
---|
| 17 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
| 18 | USE print_control_mod, ONLY: prt_level |
---|
| 19 | USE watercommon_h, ONLY: RLvCp, RETV, watersat |
---|
| 20 | USE thermcell_mod |
---|
| 21 | |
---|
| 22 | IMPLICIT NONE |
---|
| 23 | |
---|
| 24 | |
---|
| 25 | !============================================================================== |
---|
| 26 | ! Declaration |
---|
| 27 | !============================================================================== |
---|
| 28 | |
---|
| 29 | ! inputs: |
---|
| 30 | ! ------- |
---|
| 31 | |
---|
| 32 | INTEGER itap |
---|
| 33 | INTEGER ngrid |
---|
| 34 | INTEGER klev |
---|
| 35 | INTEGER lunout1 |
---|
| 36 | INTEGER igout |
---|
| 37 | INTEGER lev_out ! niveau pour les print |
---|
| 38 | |
---|
| 39 | REAL ptimestep ! time step |
---|
| 40 | REAL ztv(ngrid,klev) ! TRPV environment |
---|
| 41 | REAL zthl(ngrid,klev) ! TP environment |
---|
| 42 | REAL po(ngrid,klev) ! qt environment |
---|
| 43 | REAL zl(ngrid,klev) ! ql environment |
---|
| 44 | REAL rhobarz(ngrid,klev) ! levels density |
---|
| 45 | REAL zlev(ngrid,klev+1) ! levels altitude |
---|
| 46 | REAL pplev(ngrid,klev+1) ! levels pressure |
---|
| 47 | REAL pphi(ngrid,klev) ! geopotential |
---|
| 48 | REAL zpspsk(ngrid,klev) ! Exner function |
---|
| 49 | |
---|
| 50 | ! outputs: |
---|
| 51 | ! -------- |
---|
| 52 | |
---|
| 53 | INTEGER lmin(ngrid) ! plume base level (first unstable level) |
---|
| 54 | INTEGER lalim(ngrid) ! higher alimentation level |
---|
| 55 | INTEGER lmix(ngrid) ! maximum vertical speed level |
---|
| 56 | INTEGER lmix_bis(ngrid) ! maximum vertical speed level (modified) |
---|
| 57 | |
---|
| 58 | REAL alim_star(ngrid,klev) ! normalized alimentation |
---|
| 59 | REAL alim_star_tot(ngrid) ! integrated alimentation |
---|
| 60 | |
---|
| 61 | REAL f0(ngrid) ! previous time step mass flux norm |
---|
| 62 | |
---|
| 63 | REAL detr_star(ngrid,klev) ! normalized detrainment |
---|
| 64 | REAL entr_star(ngrid,klev) ! normalized entrainment |
---|
| 65 | REAL f_star(ngrid,klev+1) ! normalized mass flux |
---|
| 66 | |
---|
| 67 | REAL ztva(ngrid,klev) ! TRPV plume (after mixing) |
---|
| 68 | REAL ztva_est(ngrid,klev) ! TRPV plume (before mixing) |
---|
| 69 | REAL ztla(ngrid,klev) ! TP plume |
---|
| 70 | REAL zqla(ngrid,klev) ! ql plume (after mixing) |
---|
| 71 | REAL zqta(ngrid,klev) ! qt plume |
---|
| 72 | REAL zha(ngrid,klev) ! TRPV plume |
---|
| 73 | |
---|
| 74 | REAL w_est(ngrid,klev+1) ! updraft square vertical speed (before mixing) |
---|
| 75 | REAL zw2(ngrid,klev+1) ! updraft square vertical speed (after mixing) |
---|
| 76 | |
---|
| 77 | REAL zqsatth(ngrid,klev) ! saturation vapor pressure (after mixing) |
---|
| 78 | |
---|
| 79 | ! local: |
---|
| 80 | ! ------ |
---|
| 81 | |
---|
| 82 | INTEGER ig, l, k |
---|
| 83 | INTEGER lt |
---|
| 84 | INTEGER lm |
---|
| 85 | |
---|
| 86 | REAL zqla_est(ngrid,klev) ! ql plume (before mixing) |
---|
| 87 | REAL zta_est(ngrid,klev) ! TR plume (before mixing) |
---|
| 88 | REAL zbuoy(ngrid,klev) ! B plume |
---|
| 89 | REAL zbuoyjam(ngrid,klev) ! B plume (modified) |
---|
| 90 | |
---|
| 91 | REAL ztemp(ngrid) ! temperature for saturation vapor pressure computation in plume |
---|
| 92 | REAL zqsat(ngrid) ! saturation vapor pressure (before mixing) |
---|
| 93 | REAL zdz ! layers height |
---|
| 94 | |
---|
| 95 | REAL zalpha ! |
---|
| 96 | REAL zdqt(ngrid,klev) ! |
---|
| 97 | REAL zbetalpha ! |
---|
| 98 | REAL zdw2 ! |
---|
| 99 | REAL zdw2bis ! |
---|
| 100 | REAL zw2fact ! |
---|
| 101 | REAL zw2factbis ! |
---|
| 102 | REAL zw2m ! |
---|
| 103 | REAL zdzbis ! |
---|
| 104 | REAL d_temp(ngrid) ! |
---|
| 105 | REAL coefzlmel ! |
---|
| 106 | REAL zdz2 ! |
---|
| 107 | REAL zdz3 ! |
---|
| 108 | REAL lmel ! |
---|
| 109 | REAL zlmel ! |
---|
| 110 | REAL zlmelup ! |
---|
| 111 | REAL zlmeldwn ! |
---|
| 112 | REAL zlt ! |
---|
| 113 | REAL zltdwn ! |
---|
| 114 | REAL zltup ! useless here |
---|
| 115 | |
---|
| 116 | LOGICAL active(ngrid) ! if the plume is active at ig,l (speed and incoming mass flux > 0 or l=lmin) |
---|
| 117 | LOGICAL activetmp(ngrid) ! if the plus is active at ig,l (active=true and outgoing mass flux > 0) |
---|
| 118 | LOGICAL, SAVE :: first = .true. ! if it is the first time step |
---|
| 119 | |
---|
| 120 | !$OMP THREADPRIVATE(first) |
---|
| 121 | |
---|
| 122 | !============================================================================== |
---|
| 123 | ! Initialization |
---|
| 124 | !============================================================================== |
---|
| 125 | |
---|
| 126 | zbetalpha = betalpha / (1. + betalpha) |
---|
| 127 | |
---|
| 128 | ztva(:,:) = ztv(:,:) ! ztva is set to the virtual potential temperature withour latent heat release |
---|
| 129 | ztva_est(:,:) = ztva(:,:) ! ztva_est is set to the virtual potential temperature withour latent heat release |
---|
| 130 | ztla(:,:) = zthl(:,:) ! ztla is set to the potential temperature |
---|
| 131 | zqta(:,:) = po(:,:) ! zqta is set to qt |
---|
| 132 | zqla(:,:) = 0. ! zqla is set to ql |
---|
| 133 | zqla_est(:,:) = 0. ! zqla_est is set to ql |
---|
| 134 | zha(:,:) = ztva(:,:) ! zha is set to the plume virtual potential temperature withour latent heat release |
---|
| 135 | |
---|
| 136 | zqsat(:) = 0. |
---|
| 137 | zqsatth(:,:) = 0. |
---|
| 138 | |
---|
| 139 | w_est(:,:) = 0. |
---|
| 140 | zw2(:,:) = 0. |
---|
| 141 | |
---|
| 142 | zbuoy(:,:) = 0. |
---|
| 143 | zbuoyjam(:,:) = 0. |
---|
| 144 | |
---|
| 145 | f_star(:,:) = 0. |
---|
| 146 | detr_star(:,:) = 0. |
---|
| 147 | entr_star(:,:) = 0. |
---|
| 148 | alim_star(:,:) = 0. |
---|
| 149 | alim_star_tot(:) = 0. |
---|
| 150 | |
---|
| 151 | lmix(:) = 1 |
---|
| 152 | lmix_bis(:) = 2 |
---|
| 153 | lalim(:) = 1 |
---|
| 154 | lmin(:) = linf |
---|
| 155 | |
---|
| 156 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 157 | ! Pour activer un contraste de temperature a la base du panache |
---|
| 158 | ! AB : It is used only in the thermcell_alim_init subroutine. |
---|
| 159 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 160 | d_temp(:) = 0. |
---|
| 161 | |
---|
| 162 | !============================================================================== |
---|
| 163 | ! 0. Calcul de l'alimentation |
---|
| 164 | !============================================================================== |
---|
| 165 | |
---|
| 166 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 167 | ! AB : Convective plumes can go off from every layer above the linf-th and |
---|
| 168 | ! where pressure is lesser than pres_limit (cf. thermcell_plume). |
---|
| 169 | ! The second constraint is added to avoid the parametrization occurs too |
---|
| 170 | ! high when the low atmosphere is stable. |
---|
| 171 | ! However, once there is a triggered plume, it can rise as high as its |
---|
| 172 | ! velocity allows it (it can overshoot). |
---|
| 173 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 174 | DO ig=1,ngrid |
---|
| 175 | active(ig) = .false. |
---|
| 176 | l = linf |
---|
| 177 | DO WHILE ((.not.active(ig)) .and. pplev(ig,l+1).gt.pres_limit .and. l.lt.klev) |
---|
| 178 | IF (ztv(ig,l).gt.ztv(ig,l+1)) THEN |
---|
| 179 | active(ig) = .true. |
---|
| 180 | lmin(ig) = l |
---|
| 181 | ENDIF |
---|
| 182 | l = l + 1 |
---|
| 183 | ENDDO |
---|
| 184 | ENDDO |
---|
| 185 | |
---|
| 186 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[2065] | 187 | ! AB : On pourrait n'appeler thermcell_alim que si la plume est active |
---|
[2060] | 188 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 189 | CALL thermcell_alim(iflag_thermals_alim,ngrid,klev,ztv,d_temp, & |
---|
[2065] | 190 | & zlev,alim_star,lalim,lmin) |
---|
[2060] | 191 | |
---|
| 192 | !============================================================================== |
---|
| 193 | ! 1. Calcul dans la premiere couche |
---|
| 194 | !============================================================================== |
---|
| 195 | |
---|
| 196 | DO ig=1,ngrid |
---|
| 197 | IF (active(ig)) THEN |
---|
| 198 | |
---|
| 199 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 200 | ! AB : plume takes the environment features for every layer below lmin. |
---|
| 201 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 202 | DO l=1,lmin(ig) |
---|
| 203 | ztla(ig,l) = zthl(ig,l) |
---|
| 204 | zqta(ig,l) = po(ig,l) |
---|
| 205 | zqla(ig,l) = zl(ig,l) |
---|
| 206 | ENDDO |
---|
| 207 | |
---|
| 208 | l = lmin(ig) |
---|
| 209 | f_star(ig,l+1) = alim_star(ig,l) |
---|
| 210 | |
---|
| 211 | zw2(ig,l+1) = 2. * RG * (zlev(ig,l+1) - zlev(ig,l)) & |
---|
| 212 | & * (ztv(ig,l) - ztv(ig,l+1)) / ztv(ig,l+1) |
---|
| 213 | |
---|
| 214 | w_est(ig,l+1) = zw2(ig,l+1) |
---|
| 215 | |
---|
| 216 | ENDIF |
---|
| 217 | ENDDO |
---|
| 218 | |
---|
| 219 | !============================================================================== |
---|
| 220 | ! 2. Boucle de calcul de la vitesse verticale dans le thermique |
---|
| 221 | !============================================================================== |
---|
| 222 | |
---|
| 223 | DO l=2,klev-1 |
---|
| 224 | |
---|
| 225 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 226 | ! AB : we decide here if the plume is still active or not. When the plume's |
---|
| 227 | ! first level is reached, we set active to "true". Otherwise, it is given |
---|
[2065] | 228 | ! by zw2, f_star, alim_star and entr_star. |
---|
[2060] | 229 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 230 | DO ig=1,ngrid |
---|
| 231 | IF (l==lmin(ig)+1) THEN |
---|
| 232 | active(ig) = .true. |
---|
| 233 | ENDIF |
---|
| 234 | |
---|
| 235 | active(ig) = active(ig) & |
---|
| 236 | & .and. zw2(ig,l)>1.e-10 & |
---|
| 237 | & .and. f_star(ig,l)+alim_star(ig,l)+entr_star(ig,l)>1.e-10 |
---|
| 238 | ENDDO |
---|
| 239 | |
---|
| 240 | ztemp(:) = zpspsk(:,l) * ztla(:,l-1) |
---|
[2065] | 241 | |
---|
[2060] | 242 | DO ig=1,ngrid |
---|
| 243 | CALL watersat(ztemp(ig), pplev(ig,l), zqsat(ig)) |
---|
| 244 | ENDDO |
---|
| 245 | |
---|
| 246 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 247 | ! AB : we compute thermodynamical values and speed in the plume in the layer l |
---|
| 248 | ! without mixing with environment. |
---|
| 249 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 250 | |
---|
| 251 | DO ig=1,ngrid |
---|
| 252 | IF (active(ig)) THEN |
---|
| 253 | zqla_est(ig,l) = max(0.,zqta(ig,l-1)-zqsat(ig)) ! zqla_est set to ql plume |
---|
| 254 | ztva_est(ig,l) = ztla(ig,l-1)*zpspsk(ig,l)+RLvCp*zqla_est(ig,l) ! ztva_est set to TR plume |
---|
| 255 | zta_est(ig,l) = ztva_est(ig,l) ! zta_est set to TR plume |
---|
| 256 | ztva_est(ig,l) = ztva_est(ig,l)/zpspsk(ig,l) ! ztva_est set to TRP plume |
---|
| 257 | ztva_est(ig,l) = ztva_est(ig,l)*(1.+RETV*(zqta(ig,l-1) & ! ztva_est set to TRPV plume |
---|
| 258 | & - zqla_est(ig,l))-zqla_est(ig,l)) |
---|
| 259 | |
---|
| 260 | zbuoy(ig,l) = RG * (ztva_est(ig,l)-ztv(ig,l)) / ztv(ig,l) |
---|
| 261 | zdz = zlev(ig,l+1) - zlev(ig,l) |
---|
| 262 | |
---|
| 263 | !============================================================================== |
---|
| 264 | ! 3. Calcul de la flotabilite modifiee par melange avec l'air au dessus |
---|
| 265 | !============================================================================== |
---|
| 266 | |
---|
| 267 | lmel = fact_thermals_ed_dz * zlev(ig,l) |
---|
| 268 | zlmel = zlev(ig,l) + lmel |
---|
| 269 | lt = l + 1 |
---|
| 270 | zlt = zlev(ig,lt) |
---|
| 271 | zdz2 = zlev(ig,lt) - zlev(ig,l) |
---|
| 272 | |
---|
| 273 | DO while (lmel.gt.zdz2) |
---|
| 274 | lt = lt + 1 |
---|
| 275 | zlt = zlev(ig,lt) |
---|
| 276 | zdz2 = zlev(ig,lt) - zlev(ig,l) |
---|
| 277 | ENDDO |
---|
| 278 | |
---|
| 279 | ! IF (lt-l.gt.1) THEN |
---|
| 280 | ! print *, 'WARNING: lt is greater than l+1!' |
---|
| 281 | ! print *, 'l,lt', l, lt |
---|
| 282 | ! ENDIF |
---|
| 283 | |
---|
| 284 | zdz3 = zlev(ig,lt+1) - zlt |
---|
| 285 | zltdwn = zlev(ig,lt) - zdz3 / 2 |
---|
| 286 | zlmelup = zlmel + (zdz / 2) |
---|
| 287 | coefzlmel = Min(1.,(zlmelup - zltdwn) / zdz) |
---|
| 288 | |
---|
| 289 | zbuoyjam(ig,l) = 1.* RG * (coefzlmel * & |
---|
| 290 | & (ztva_est(ig,l) - ztv(ig,lt)) / ztv(ig,lt) & |
---|
| 291 | & + (1. - coefzlmel) * & |
---|
| 292 | & (ztva_est(ig,l) - ztv(ig,lt-1)) / ztv(ig,lt-1)) & |
---|
| 293 | & + 0. * zbuoy(ig,l) |
---|
| 294 | |
---|
| 295 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 296 | ! AB : initial formulae |
---|
| 297 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 298 | ! zw2fact = fact_epsilon * 2. * zdz / (1. + betalpha) |
---|
| 299 | ! zdw2 = afact * zbuoy(ig,l) / fact_epsilon |
---|
| 300 | ! zdw2bis = afact * zbuoy(ig,l-1) / fact_epsilon |
---|
| 301 | ! w_est(ig,l+1) = Max(0.0001,exp(-zw2fact)*(w_est(ig,l)-zdw2)+zdw2) |
---|
| 302 | ! w_est(ig,l+1) = Max(0.0001,exp(-zw2fact)*(w_est(ig,l)-zdw2bis)+zdw2) |
---|
| 303 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[2065] | 304 | ! AB : own derivation for w_est (Rio 2010 formula with e=d=0) |
---|
[2060] | 305 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 306 | zw2fact = 2. * fact_epsilon * zdz |
---|
| 307 | zdw2 = 2. * afact * zbuoy(ig,l) * zdz |
---|
| 308 | w_est(ig,l+1) = Max(0., exp(-zw2fact) * w_est(ig,l) + zdw2) |
---|
| 309 | |
---|
| 310 | ! IF (w_est(ig,l+1).le.0.) THEN |
---|
| 311 | ! print *, 'WARNING: w_est is negative!' |
---|
| 312 | ! print *, 'l,w_est', l+1, w_est(ig,l+1) |
---|
| 313 | ! ENDIF |
---|
| 314 | ENDIF |
---|
| 315 | ENDDO |
---|
| 316 | |
---|
| 317 | !============================================================================== |
---|
| 318 | ! 4. Calcul de l'entrainement et du detrainement |
---|
| 319 | !============================================================================== |
---|
| 320 | |
---|
| 321 | DO ig=1,ngrid |
---|
| 322 | IF (active(ig)) THEN |
---|
| 323 | |
---|
| 324 | zdz = zlev(ig,l+1) - zlev(ig,l) |
---|
[2065] | 325 | zalpha = f0(ig) * f_star(ig,l) / sqrt(w_est(ig,l+1)) / rhobarz(ig,l) |
---|
[2060] | 326 | |
---|
| 327 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[2065] | 328 | ! AB : The next test is added to avoid a division by zero when w_est becomes |
---|
| 329 | ! negative. |
---|
| 330 | ! Indeed, entr and detr computed here are of no importance because w_est |
---|
| 331 | ! <= 0 means it will be the last layer reached by the plume and then they |
---|
| 332 | ! will be reset in thermcell_flux. |
---|
[2060] | 333 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[2065] | 334 | IF (w_est(ig,l+1).eq.0.) THEN |
---|
| 335 | zw2m = 1. |
---|
[2060] | 336 | ELSE |
---|
[2065] | 337 | zw2m = w_est(ig,l+1) |
---|
[2060] | 338 | ENDIF |
---|
| 339 | |
---|
| 340 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[2065] | 341 | ! AB : The next test is added to avoid a division by zero if there is no water |
---|
| 342 | ! in the environment. |
---|
[2060] | 343 | ! In the case where there is no water in the env. but water in the plume |
---|
| 344 | ! (ascending from depth) we set the effect on detrainment equal to zero |
---|
| 345 | ! but at the next time step, po will be positive thanks to the mixing and |
---|
| 346 | ! then the physical effect of the water gradient will be taken on board. |
---|
| 347 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 348 | IF (po(ig,l).lt.1.e-6) THEN |
---|
[2065] | 349 | ! print *, 'WARNING: po=0 in layer',l,'!' |
---|
[2060] | 350 | ! print *, 'po,zqta', po(ig,l), zqta(ig,l-1) |
---|
| 351 | zdqt(ig,l) = 0.0 |
---|
| 352 | ELSE |
---|
| 353 | zdqt(ig,l) = max(zqta(ig,l-1)-po(ig,l),0.) / po(ig,l) |
---|
| 354 | ENDIF |
---|
| 355 | |
---|
| 356 | !------------------------------------------------------------------------------ |
---|
| 357 | ! Detrainment |
---|
| 358 | !------------------------------------------------------------------------------ |
---|
| 359 | |
---|
| 360 | detr_star(ig,l) = f_star(ig,l) * zdz * ( & |
---|
| 361 | & mix0 * 0.1 / (zalpha + 0.001) & |
---|
| 362 | & + MAX(detr_min, & |
---|
| 363 | & -afact * zbetalpha * zbuoyjam(ig,l) / zw2m & |
---|
| 364 | & + detr_q_coef*(zdqt(ig,l)/zw2m)**detr_q_power) ) |
---|
| 365 | |
---|
| 366 | ! IF (detr_star(ig,l).lt.0.) THEN |
---|
| 367 | ! print *, 'WARNING: detrainment is negative!' |
---|
| 368 | ! print *, 'l,detr', l, detr_star(ig,l) |
---|
| 369 | ! ENDIF |
---|
| 370 | |
---|
| 371 | !------------------------------------------------------------------------------ |
---|
| 372 | ! Entrainment |
---|
| 373 | !------------------------------------------------------------------------------ |
---|
| 374 | |
---|
| 375 | entr_star(ig,l) = f_star(ig,l) * zdz * ( & |
---|
| 376 | & mix0 * 0.1 / (zalpha+0.001) & |
---|
| 377 | & + MAX(entr_min, & |
---|
| 378 | & zbetalpha * afact * zbuoyjam(ig,l) / zw2m & |
---|
| 379 | & - zbetalpha * fact_epsilon) ) |
---|
| 380 | |
---|
| 381 | ! IF (entr_star(ig,l).lt.0.) THEN |
---|
| 382 | ! print *, 'WARNING: entrainment is negative!' |
---|
| 383 | ! print *, 'l,entr', l, entr_star(ig,l) |
---|
| 384 | ! ENDIF |
---|
| 385 | |
---|
| 386 | !------------------------------------------------------------------------------ |
---|
| 387 | ! Alimentation and entrainment |
---|
| 388 | !------------------------------------------------------------------------------ |
---|
| 389 | |
---|
| 390 | IF (l.lt.lalim(ig)) THEN |
---|
| 391 | alim_star(ig,l) = max(alim_star(ig,l),entr_star(ig,l)) |
---|
| 392 | entr_star(ig,l) = 0. |
---|
| 393 | ENDIF |
---|
| 394 | |
---|
| 395 | !------------------------------------------------------------------------------ |
---|
| 396 | ! Mass flux |
---|
| 397 | !------------------------------------------------------------------------------ |
---|
| 398 | |
---|
| 399 | f_star(ig,l+1) = f_star(ig,l) + alim_star(ig,l) & |
---|
| 400 | & + entr_star(ig,l) - detr_star(ig,l) |
---|
| 401 | |
---|
| 402 | ! IF (f_star(ig,l+1).le.0.) THEN |
---|
| 403 | ! print *, 'WARNING: mass flux is negative!' |
---|
| 404 | ! print *, 'l,f_star', l+1, f_star(ig,l+1) |
---|
| 405 | ! ENDIF |
---|
| 406 | |
---|
| 407 | ENDIF |
---|
| 408 | ENDDO |
---|
| 409 | |
---|
| 410 | !============================================================================== |
---|
| 411 | ! 5. Calcul de la vitesse verticale en melangeant Tl et qt du thermique |
---|
| 412 | !============================================================================== |
---|
| 413 | |
---|
| 414 | activetmp(:) = active(:) .and. f_star(:,l+1)>1.e-10 |
---|
| 415 | |
---|
| 416 | !------------------------------------------------------------------------------ |
---|
| 417 | ! Calcul du melange avec l'environnement |
---|
| 418 | !------------------------------------------------------------------------------ |
---|
| 419 | |
---|
| 420 | DO ig=1,ngrid |
---|
| 421 | IF (activetmp(ig)) THEN |
---|
[2065] | 422 | ztla(ig,l) = (f_star(ig,l) * ztla(ig,l-1) & ! ztla is set to TP in plume (mixed) |
---|
| 423 | & + (alim_star(ig,l) + entr_star(ig,l)) * zthl(ig,l)) & |
---|
| 424 | & / (f_star(ig,l+1) + detr_star(ig,l)) |
---|
| 425 | zqta(ig,l) = (f_star(ig,l) * zqta(ig,l-1) + & ! zqta is set to qt in plume (mixed) |
---|
| 426 | & + (alim_star(ig,l) + entr_star(ig,l)) * po(ig,l)) & |
---|
| 427 | & / (f_star(ig,l+1) + detr_star(ig,l)) |
---|
[2060] | 428 | ENDIF |
---|
| 429 | ENDDO |
---|
| 430 | |
---|
| 431 | ztemp(:) = zpspsk(:,l) * ztla(:,l) |
---|
| 432 | |
---|
| 433 | DO ig=1,ngrid |
---|
| 434 | IF (activetmp(ig)) THEN |
---|
| 435 | CALL watersat(ztemp(ig), pplev(ig,l), zqsatth(ig,l)) |
---|
| 436 | ENDIF |
---|
| 437 | ENDDO |
---|
| 438 | |
---|
| 439 | !------------------------------------------------------------------------------ |
---|
| 440 | ! Calcul de la vitesse verticale zw2 apres le melange |
---|
| 441 | !------------------------------------------------------------------------------ |
---|
| 442 | |
---|
| 443 | DO ig=1,ngrid |
---|
| 444 | IF (activetmp(ig)) THEN |
---|
| 445 | zqla(ig,l) = max(0.,zqta(ig,l)-zqsatth(ig,l)) ! zqla is set to ql plume (mixed) |
---|
| 446 | ztva(ig,l) = ztla(ig,l) * zpspsk(ig,l)+RLvCp*zqla(ig,l) ! ztva is set to TR plume (mixed) |
---|
| 447 | ztva(ig,l) = ztva(ig,l) / zpspsk(ig,l) ! ztva is set to TRP plume (mixed) |
---|
| 448 | zha(ig,l) = ztva(ig,l) ! zha is set to TRP plume (mixed) |
---|
| 449 | ztva(ig,l) = ztva(ig,l) * (1. + RETV*(zqta(ig,l)-zqla(ig,l)) & ! ztva is set to TRPV plume (mixed) |
---|
| 450 | & - zqla(ig,l)) |
---|
| 451 | |
---|
| 452 | zbuoy(ig,l) = RG * (ztva(ig,l) - ztv(ig,l)) / ztv(ig,l) |
---|
| 453 | zdz = zlev(ig,l+1) - zlev(ig,l) |
---|
| 454 | |
---|
| 455 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[2065] | 456 | ! AB : initial formula |
---|
[2060] | 457 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 458 | ! zw2fact = fact_epsilon * 2. * zdz / (1. + betalpha) |
---|
| 459 | ! zdw2 = afact * zbuoy(ig,l) / fact_epsilon |
---|
| 460 | ! zdw2bis = afact * zbuoy(ig,l-1) / fact_epsilon |
---|
| 461 | ! zw2(ig,l+1) = Max(0.0001,exp(-zw2fact)*(zw2(ig,l)-zdw2)+zdw2) |
---|
| 462 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[2065] | 463 | ! AB : own derivation for zw2 (Rio 2010 formula) |
---|
[2060] | 464 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 465 | zw2fact = 2. * (fact_epsilon * zdz + entr_star(ig,l) / f_star(ig,l)) |
---|
| 466 | zdw2 = 2. * afact * zbuoy(ig,l) * zdz |
---|
| 467 | zw2(ig,l+1) = Max(0., exp(-zw2fact) * zw2(ig,l) + zdw2) |
---|
| 468 | |
---|
| 469 | ! IF (zw2(ig,l+1).le.0.) THEN |
---|
| 470 | ! print *, 'WARNING: zw2 is negative!' |
---|
| 471 | ! print *, 'l,zw2', l+1, zw2(ig,l+1) |
---|
| 472 | ! ENDIF |
---|
| 473 | ENDIF |
---|
| 474 | ENDDO |
---|
| 475 | |
---|
| 476 | ENDDO |
---|
| 477 | |
---|
| 478 | !============================================================================== |
---|
| 479 | ! 6. New computation of alim_star_tot |
---|
| 480 | !============================================================================== |
---|
| 481 | |
---|
| 482 | DO ig=1,ngrid |
---|
[2065] | 483 | alim_star_tot(ig) = 0. |
---|
[2060] | 484 | ENDDO |
---|
| 485 | |
---|
| 486 | DO ig=1,ngrid |
---|
| 487 | DO l=1,lalim(ig)-1 |
---|
| 488 | alim_star_tot(ig) = alim_star_tot(ig) + alim_star(ig,l) |
---|
| 489 | ENDDO |
---|
| 490 | ENDDO |
---|
| 491 | |
---|
| 492 | #undef wrgrads_thermcell |
---|
| 493 | #ifdef wrgrads_thermcell |
---|
| 494 | call wrgradsfi(1,klev,entr_star(igout,1:klev),'esta ','esta ') |
---|
| 495 | call wrgradsfi(1,klev,detr_star(igout,1:klev),'dsta ','dsta ') |
---|
| 496 | call wrgradsfi(1,klev,zbuoy(igout,1:klev) ,'buoy ','buoy ') |
---|
| 497 | call wrgradsfi(1,klev,zdqt(igout,1:klev) ,'dqt ','dqt ') |
---|
| 498 | call wrgradsfi(1,klev,w_est(igout,1:klev) ,'w_est ','w_est ') |
---|
| 499 | call wrgradsfi(1,klev,w_est(igout,2:klev+1) ,'w_es2 ','w_es2 ') |
---|
| 500 | call wrgradsfi(1,klev,zw2(igout,1:klev) ,'zw2A ','zw2A ') |
---|
| 501 | #endif |
---|
| 502 | |
---|
| 503 | |
---|
| 504 | RETURN |
---|
| 505 | END |
---|