1 | ! |
---|
2 | ! $Header: /home/cvsroot/LMDZ4/libf/phylmd/ocean_slab_mod.F90,v 1.3 2008-02-04 16:24:28 fairhead Exp $ |
---|
3 | ! |
---|
4 | MODULE surf_heat_transp_mod |
---|
5 | |
---|
6 | IMPLICIT NONE |
---|
7 | |
---|
8 | ! Variables copied over from dyn3d dynamics: |
---|
9 | REAL,SAVE,ALLOCATABLE :: fext(:) |
---|
10 | REAL,SAVE,ALLOCATABLE :: unsairez(:) |
---|
11 | REAL,SAVE,ALLOCATABLE :: unsaire(:) |
---|
12 | REAL,SAVE,ALLOCATABLE :: cu(:) |
---|
13 | REAL,SAVE,ALLOCATABLE :: cv(:) |
---|
14 | REAL,SAVE,ALLOCATABLE :: cuvsurcv(:) |
---|
15 | REAL,SAVE,ALLOCATABLE :: cvusurcu(:) |
---|
16 | REAL,SAVE,ALLOCATABLE :: aire(:) |
---|
17 | REAL,SAVE :: apoln |
---|
18 | REAL,SAVE :: apols |
---|
19 | REAL,SAVE,ALLOCATABLE :: aireu(:) |
---|
20 | REAL,SAVE,ALLOCATABLE :: airev(:) |
---|
21 | |
---|
22 | LOGICAL,SAVE :: alpha_var |
---|
23 | LOGICAL,SAVE :: slab_upstream |
---|
24 | REAL,SAVE,ALLOCATABLE :: zmasqu(:) |
---|
25 | REAL,SAVE,ALLOCATABLE :: zmasqv(:) |
---|
26 | REAL,SAVE,ALLOCATABLE :: unsfv(:) |
---|
27 | REAL,SAVE,ALLOCATABLE :: unsev(:) |
---|
28 | REAL,SAVE,ALLOCATABLE :: unsfu(:) |
---|
29 | REAL,SAVE,ALLOCATABLE :: unseu(:) |
---|
30 | |
---|
31 | ! Routines usable only by routines within this module: |
---|
32 | PRIVATE :: gr_fi_dyn, gr_dyn_fi |
---|
33 | ! Routines from dyn3d, valid on global dynamics grid only: |
---|
34 | PRIVATE :: grad,diverg,gr_v_scal,gr_scal_v,gr_scal_u |
---|
35 | |
---|
36 | CONTAINS |
---|
37 | |
---|
38 | SUBROUTINE ini_surf_heat_transp(ip1jm,ip1jmp1,unsairez_,fext_,unsaire_,& |
---|
39 | cu_,cuvsurcv_,cv_,cvusurcu_, & |
---|
40 | aire_,apoln_,apols_, & |
---|
41 | aireu_,airev_) |
---|
42 | USE mod_grid_phy_lmdz, only: nbp_lon, nbp_lat |
---|
43 | IMPLICIT NONE |
---|
44 | ! Transfer some variables from dyn3d dynamics |
---|
45 | INTEGER,INTENT(IN) :: ip1jm |
---|
46 | INTEGER,INTENT(IN) :: ip1jmp1 |
---|
47 | REAL,INTENT(IN) :: unsairez_(ip1jm) |
---|
48 | REAL,INTENT(IN) :: fext_(ip1jm) |
---|
49 | REAL,INTENT(IN) :: unsaire_(ip1jmp1) |
---|
50 | REAL,INTENT(IN) :: cu_(ip1jmp1) |
---|
51 | REAL,INTENT(IN) :: cuvsurcv_(ip1jm) |
---|
52 | REAL,INTENT(IN) :: cv_(ip1jm) |
---|
53 | REAL,INTENT(IN) :: cvusurcu_(ip1jmp1) |
---|
54 | REAL,INTENT(IN) :: aire_(ip1jmp1) |
---|
55 | REAL,INTENT(IN) :: apoln_ |
---|
56 | REAL,INTENT(IN) :: apols_ |
---|
57 | REAL,INTENT(IN) :: aireu_(ip1jmp1) |
---|
58 | REAL,INTENT(IN) :: airev_(ip1jm) |
---|
59 | |
---|
60 | ! Sanity check |
---|
61 | if ((ip1jm.ne.((nbp_lon+1)*(nbp_lat-1))).or. & |
---|
62 | (ip1jmp1.ne.((nbp_lon+1)*nbp_lat))) then |
---|
63 | write(*,*) "ini_surf_heat_transp Error: wrong array sizes" |
---|
64 | stop |
---|
65 | endif |
---|
66 | |
---|
67 | allocate(unsairez(ip1jm)) |
---|
68 | unsairez(:)=unsairez_(:) |
---|
69 | allocate(fext(ip1jm)) |
---|
70 | fext(:)=fext_(:) |
---|
71 | allocate(unsaire(ip1jmp1)) |
---|
72 | unsaire(:)=unsaire_(:) |
---|
73 | allocate(cu(ip1jmp1)) |
---|
74 | cu(:)=cu_(:) |
---|
75 | allocate(cuvsurcv(ip1jm)) |
---|
76 | cuvsurcv(:)=cuvsurcv_(:) |
---|
77 | allocate(cv(ip1jm)) |
---|
78 | cv(:)=cv_(:) |
---|
79 | allocate(cvusurcu(ip1jmp1)) |
---|
80 | cvusurcu(:)=cvusurcu_(:) |
---|
81 | allocate(aire(ip1jmp1)) |
---|
82 | aire(:)=aire_(:) |
---|
83 | apoln=apoln_ |
---|
84 | apols=apols_ |
---|
85 | allocate(aireu(ip1jmp1)) |
---|
86 | aireu(:)=aireu_(:) |
---|
87 | allocate(airev(ip1jm)) |
---|
88 | airev(:)=airev_(:) |
---|
89 | |
---|
90 | END SUBROUTINE ini_surf_heat_transp |
---|
91 | |
---|
92 | SUBROUTINE ini_surf_heat_transp_mod |
---|
93 | USE mod_grid_phy_lmdz, only: nbp_lon, nbp_lat |
---|
94 | IMPLICIT NONE |
---|
95 | INTEGER :: ip1jm, ip1jmp1 |
---|
96 | |
---|
97 | ip1jm=(nbp_lon+1)*(nbp_lat-1) |
---|
98 | ip1jmp1=(nbp_lon+1)*nbp_lat |
---|
99 | |
---|
100 | allocate(zmasqu(ip1jmp1)) |
---|
101 | allocate(zmasqv(ip1jm)) |
---|
102 | allocate(unsfv(ip1jm)) |
---|
103 | allocate(unsev(ip1jm)) |
---|
104 | allocate(unsfu(ip1jmp1)) |
---|
105 | allocate(unseu(ip1jmp1)) |
---|
106 | |
---|
107 | END SUBROUTINE ini_surf_heat_transp_mod |
---|
108 | |
---|
109 | SUBROUTINE divgrad_phy(ngrid,nlevs,temp,delta) |
---|
110 | |
---|
111 | USE mod_grid_phy_lmdz, ONLY: nbp_lon, nbp_lat |
---|
112 | IMPLICIT NONE |
---|
113 | |
---|
114 | INTEGER,INTENT(IN) :: ngrid, nlevs |
---|
115 | REAL,INTENT(IN) :: temp(ngrid,nlevs) |
---|
116 | REAL,INTENT(OUT) :: delta(ngrid,nlevs) |
---|
117 | REAL delta_2d((nbp_lon+1)*nbp_lat,nlevs) |
---|
118 | INTEGER :: ll |
---|
119 | REAL ghx((nbp_lon+1)*nbp_lat,nlevs) |
---|
120 | REAL ghy((nbp_lon+1)*(nbp_lat-1),nlevs) |
---|
121 | INTEGER :: iip1,jjp1 |
---|
122 | |
---|
123 | iip1=nbp_lon+1 |
---|
124 | jjp1=nbp_lat |
---|
125 | |
---|
126 | CALL gr_fi_dyn(nlevs,ngrid,iip1,jjp1,temp,delta_2d) |
---|
127 | CALL grad(nlevs,delta_2d,ghx,ghy) |
---|
128 | DO ll=1,nlevs |
---|
129 | ghx(:,ll)=ghx(:,ll)*zmasqu |
---|
130 | ! pas de diffusion zonale |
---|
131 | ! ghx(:,ll)=0. |
---|
132 | ghy(:,ll)=ghy(:,ll)*zmasqv |
---|
133 | END DO |
---|
134 | CALL diverg(nlevs,ghx,ghy,delta_2d) |
---|
135 | CALL gr_dyn_fi(nlevs,iip1,jjp1,ngrid,delta_2d,delta) |
---|
136 | |
---|
137 | |
---|
138 | END SUBROUTINE divgrad_phy |
---|
139 | |
---|
140 | |
---|
141 | |
---|
142 | SUBROUTINE init_masquv(ngrid,zmasq) |
---|
143 | |
---|
144 | USE mod_grid_phy_lmdz, only: nbp_lon, nbp_lat |
---|
145 | IMPLICIT NONE |
---|
146 | |
---|
147 | |
---|
148 | INTEGER,INTENT(IN) :: ngrid |
---|
149 | REAL zmasq(ngrid) |
---|
150 | REAL zmasq_2d((nbp_lon+1)*nbp_lat) |
---|
151 | REAL ff((nbp_lon+1)*(nbp_lat-1)) |
---|
152 | REAL eps |
---|
153 | INTEGER i |
---|
154 | INTEGER :: iim,iip1,jjp1,ip1jm,ip1jmp1 |
---|
155 | |
---|
156 | iim=nbp_lon |
---|
157 | iip1=nbp_lon+1 |
---|
158 | jjp1=nbp_lat |
---|
159 | ip1jm=(nbp_lon+1)*(nbp_lat-1) |
---|
160 | ip1jmp1=(nbp_lon+1)*nbp_lat |
---|
161 | |
---|
162 | ! Masques u,v |
---|
163 | zmasqu=1. |
---|
164 | zmasqv=1. |
---|
165 | |
---|
166 | CALL gr_fi_dyn(1,ngrid,iip1,jjp1,zmasq,zmasq_2d) |
---|
167 | |
---|
168 | DO i=1,ip1jmp1-1 |
---|
169 | IF (zmasq_2d(i).GT.1e-5 .OR. zmasq_2d(i+1).GT.1e-5) THEN |
---|
170 | zmasqu(i)=0. |
---|
171 | ENDIF |
---|
172 | END DO |
---|
173 | DO i=iip1,ip1jmp1,iip1 |
---|
174 | zmasqu(i)=zmasqu(i-iim) |
---|
175 | END DO |
---|
176 | DO i=1,ip1jm |
---|
177 | IF (zmasq_2d(i).GT.1e-5 .OR. zmasq_2d(i+iip1).GT.1e-5) THEN |
---|
178 | zmasqv(i)=0. |
---|
179 | END IF |
---|
180 | END DO |
---|
181 | |
---|
182 | |
---|
183 | ! Coriolis (pour Ekman transp.) |
---|
184 | eps=1e-5 |
---|
185 | ! CALL getin('slab_eps',eps) |
---|
186 | ! print *,'epsilon=',eps |
---|
187 | ff=fext*unsairez |
---|
188 | DO i=1,ip1jm |
---|
189 | unsev(i)=eps/(ff(i)*ff(i)+eps**2) |
---|
190 | unsfv(i)=ff(i)/(ff(i)*ff(i)+eps**2) |
---|
191 | ENDDO |
---|
192 | CALL gr_v_scal(1,unsfv,unsfu) |
---|
193 | CALL gr_v_scal(1,unsev,unseu) |
---|
194 | ! Alpha variable? |
---|
195 | ! alpha_var=.FALSE. |
---|
196 | ! CALL getin('slab_alphav',alpha_var) |
---|
197 | |
---|
198 | |
---|
199 | |
---|
200 | END SUBROUTINE init_masquv |
---|
201 | |
---|
202 | |
---|
203 | |
---|
204 | SUBROUTINE slab_ekman2(ngrid,tx_phy,ty_phy,ts_phy,dt_phy) |
---|
205 | |
---|
206 | USE mod_grid_phy_lmdz, ONLY: nbp_lon, nbp_lat |
---|
207 | USE slab_ice_h, ONLY: noceanmx |
---|
208 | |
---|
209 | IMPLICIT NONE |
---|
210 | |
---|
211 | INTEGER,INTENT(IN) :: ngrid |
---|
212 | INTEGER ij |
---|
213 | REAL txv((nbp_lon+1)*(nbp_lat-1)),fluxm((nbp_lon+1)*(nbp_lat-1)) |
---|
214 | REAL tyv((nbp_lon+1)*(nbp_lat-1)) |
---|
215 | REAL fluxtm((nbp_lon+1)*(nbp_lat-1),noceanmx) |
---|
216 | REAL fluxtz((nbp_lon+1)*nbp_lat,noceanmx) |
---|
217 | REAL tyu((nbp_lon+1)*nbp_lat),txu((nbp_lon+1)*nbp_lat) |
---|
218 | REAL fluxz((nbp_lon+1)*nbp_lat),fluxv((nbp_lon+1)*nbp_lat) |
---|
219 | REAL dt((nbp_lon+1)*nbp_lat,noceanmx),ts((nbp_lon+1)*nbp_lat,noceanmx) |
---|
220 | REAL tx_phy(ngrid),ty_phy(ngrid) |
---|
221 | REAL dt_phy(ngrid,noceanmx),ts_phy(ngrid,noceanmx) |
---|
222 | |
---|
223 | INTEGER iim,iip1,iip2,jjp1,ip1jm,ip1jmi1,ip1jmp1 |
---|
224 | |
---|
225 | iim=nbp_lon |
---|
226 | iip1=nbp_lon+1 |
---|
227 | iip2=nbp_lon+2 |
---|
228 | jjp1=nbp_lat |
---|
229 | ip1jm=(nbp_lon+1)*(nbp_lat-1) ! = iip1*jjm |
---|
230 | ip1jmi1=(nbp_lon+1)*(nbp_lat-1)-(nbp_lon+1) ! = ip1jm - iip1 |
---|
231 | ip1jmp1=(nbp_lon+1)*nbp_lat ! = iip1*jjp1 |
---|
232 | |
---|
233 | ! Convert taux,y to 2D scalar grid |
---|
234 | ! north and south poles tx,ty no meaning |
---|
235 | tx_phy(1)=0. |
---|
236 | tx_phy(ngrid)=0. |
---|
237 | ty_phy(1)=0. |
---|
238 | ty_phy(ngrid)=0. |
---|
239 | CALL gr_fi_dyn(1,ngrid,iip1,jjp1,tx_phy,txu) |
---|
240 | CALL gr_fi_dyn(1,ngrid,iip1,jjp1,ty_phy,tyu) |
---|
241 | |
---|
242 | ! Divide taux,y by f or eps, and convert to 2D u,v grids |
---|
243 | ! (Arakawa C grid) |
---|
244 | CALL gr_scal_v(1,txu,txv) ! wind stress at v points |
---|
245 | CALL gr_scal_v(1,tyu,tyv) |
---|
246 | fluxm=tyv*unsev-txv*unsfv |
---|
247 | ! fluxm=-txv*unsfv |
---|
248 | ! Zonal flux |
---|
249 | CALL gr_scal_u(1,txu,txu) ! wind stress at u points |
---|
250 | CALL gr_scal_u(1,tyu,tyu) |
---|
251 | fluxz=tyu*unsfu+txu*unseu |
---|
252 | ! fluxz=tyu*unsfu |
---|
253 | |
---|
254 | ! Convert temperature to 2D grid |
---|
255 | CALL gr_fi_dyn(2,ngrid,iip1,jjp1,ts_phy,ts) |
---|
256 | |
---|
257 | ! Flux de masse |
---|
258 | fluxm=fluxm*cv*cuvsurcv*zmasqv |
---|
259 | fluxz=fluxz*cu*cvusurcu*zmasqu |
---|
260 | ! Flux de masse vertical |
---|
261 | DO ij=iip2,ip1jm |
---|
262 | fluxv(ij)=fluxz(ij)-fluxz(ij-1)-fluxm(ij)+fluxm(ij-iip1) |
---|
263 | ENDDO |
---|
264 | DO ij=iip1,ip1jmi1,iip1 |
---|
265 | fluxv(ij+1)=fluxv(ij+iip1) |
---|
266 | END DO |
---|
267 | ! Poles |
---|
268 | fluxv(1)=-SUM(fluxm(1:iim)) |
---|
269 | fluxv(ip1jmp1)=SUM(fluxm(ip1jm-iim:ip1jm-1)) |
---|
270 | fluxv=fluxv |
---|
271 | |
---|
272 | ! Meridional heat fluxes |
---|
273 | DO ij=1,ip1jm |
---|
274 | ! centered scheme |
---|
275 | fluxtm(ij,1)=fluxm(ij)*(ts(ij+iip1,1)+ts(ij,1))/2. |
---|
276 | fluxtm(ij,2)=-fluxm(ij)*(ts(ij+iip1,2)+ts(ij,2))/2. |
---|
277 | END DO |
---|
278 | |
---|
279 | ! Zonal heat fluxes |
---|
280 | ! Schema upstream |
---|
281 | fluxtz(1:iip1,:)=0 ! no zonal heat flux at north pole |
---|
282 | DO ij=iip2,ip1jm |
---|
283 | IF (fluxz(ij).GE.0.) THEN |
---|
284 | fluxtz(ij,1)=fluxz(ij)*ts(ij,1) |
---|
285 | fluxtz(ij,2)=-fluxz(ij)*ts(ij+1,2) |
---|
286 | ELSE |
---|
287 | fluxtz(ij,1)=fluxz(ij)*ts(ij+1,1) |
---|
288 | fluxtz(ij,2)=-fluxz(ij)*ts(ij,2) |
---|
289 | ENDIF |
---|
290 | END DO |
---|
291 | DO ij=iip1*2,ip1jmp1,iip1 |
---|
292 | fluxtz(ij,:)=fluxtz(ij-iim,:) |
---|
293 | END DO |
---|
294 | |
---|
295 | ! Calcul de dT |
---|
296 | DO ij=iip2,ip1jm |
---|
297 | dt(ij,:)=fluxtz(ij-1,:)-fluxtz(ij,:) & |
---|
298 | +fluxtm(ij,:)-fluxtm(ij-iip1,:) |
---|
299 | IF (fluxv(ij).GT.0.) THEN |
---|
300 | dt(ij,1)=dt(ij,1)+fluxv(ij)*ts(ij,2) |
---|
301 | dt(ij,2)=dt(ij,2)-fluxv(ij)*ts(ij,2) |
---|
302 | ELSE |
---|
303 | dt(ij,1)=dt(ij,1)+fluxv(ij)*ts(ij,1) |
---|
304 | dt(ij,2)=dt(ij,2)-fluxv(ij)*ts(ij,1) |
---|
305 | ENDIF |
---|
306 | dt(ij,:)=dt(ij,:)/aire(ij) |
---|
307 | END DO |
---|
308 | DO ij=iip1,ip1jmi1,iip1 |
---|
309 | dt(ij+1,:)=dt(ij+iip1,:) |
---|
310 | END DO |
---|
311 | ! Pôles |
---|
312 | dt(1,:)=SUM(fluxtm(1:iim,:),dim=1) |
---|
313 | IF (fluxv(1).GT.0.) THEN |
---|
314 | dt(1,1)=dt(1,1)+fluxv(1)*ts(1,2) |
---|
315 | dt(1,2)=dt(1,2)-fluxv(1)*ts(1,2) |
---|
316 | ELSE |
---|
317 | dt(1,1)=dt(1,1)+fluxv(1)*ts(1,1) |
---|
318 | dt(1,2)=dt(1,2)-fluxv(1)*ts(1,1) |
---|
319 | ENDIF |
---|
320 | dt(1,:)=dt(1,:)/apoln |
---|
321 | dt(ip1jmp1,:)=-SUM(fluxtm(ip1jm-iim:ip1jm-1,:),dim=1) |
---|
322 | IF (fluxv(ip1jmp1).GT.0.) THEN |
---|
323 | dt(ip1jmp1,1)=dt(ip1jmp1,1)+fluxv(ip1jmp1)*ts(ip1jmp1,2) |
---|
324 | dt(ip1jmp1,2)=dt(ip1jmp1,2)-fluxv(ip1jmp1)*ts(ip1jmp1,2) |
---|
325 | ELSE |
---|
326 | dt(ip1jmp1,1)=dt(ip1jmp1,1)+fluxv(ip1jmp1)*ts(ip1jmp1,1) |
---|
327 | dt(ip1jmp1,2)=dt(ip1jmp1,2)-fluxv(ip1jmp1)*ts(ip1jmp1,1) |
---|
328 | ENDIF |
---|
329 | dt(ip1jmp1,:)=dt(ip1jmp1,:)/apols |
---|
330 | dt(2:iip1,1)=dt(1,1) |
---|
331 | dt(2:iip1,2)=dt(1,2) |
---|
332 | dt(ip1jm+1:ip1jmp1,1)=dt(ip1jmp1,1) |
---|
333 | dt(ip1jm+1:ip1jmp1,2)=dt(ip1jmp1,2) |
---|
334 | |
---|
335 | ! Retour grille physique |
---|
336 | CALL gr_dyn_fi(2,iip1,jjp1,ngrid,dt,dt_phy) |
---|
337 | |
---|
338 | |
---|
339 | END SUBROUTINE slab_ekman2 |
---|
340 | |
---|
341 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
342 | |
---|
343 | SUBROUTINE gr_fi_dyn(nfield,ngrid,im,jm,pfi,pdyn) |
---|
344 | ! Transfer a variable on global "physics" grid to global "dynamics" grid |
---|
345 | IMPLICIT NONE |
---|
346 | |
---|
347 | INTEGER,INTENT(IN) :: im,jm,ngrid,nfield |
---|
348 | REAL,INTENT(IN) :: pfi(ngrid,nfield) |
---|
349 | REAL,INTENT(OUT) :: pdyn(im,jm,nfield) |
---|
350 | |
---|
351 | INTEGER :: i,j,ifield,ig |
---|
352 | |
---|
353 | DO ifield=1,nfield |
---|
354 | ! Handle poles |
---|
355 | DO i=1,im |
---|
356 | pdyn(i,1,ifield)=pfi(1,ifield) |
---|
357 | pdyn(i,jm,ifield)=pfi(ngrid,ifield) |
---|
358 | ENDDO |
---|
359 | ! Other points |
---|
360 | DO j=2,jm-1 |
---|
361 | ig=2+(j-2)*(im-1) |
---|
362 | CALL SCOPY(im-1,pfi(ig,ifield),1,pdyn(1,j,ifield),1) |
---|
363 | pdyn(im,j,ifield)=pdyn(1,j,ifield) |
---|
364 | ENDDO |
---|
365 | ENDDO ! of DO ifield=1,nfield |
---|
366 | |
---|
367 | END SUBROUTINE gr_fi_dyn |
---|
368 | |
---|
369 | |
---|
370 | |
---|
371 | SUBROUTINE gr_dyn_fi(nfield,im,jm,ngrid,pdyn,pfi) |
---|
372 | ! Transfer a variable on global "dynamics" grid to global "physics" grid |
---|
373 | IMPLICIT NONE |
---|
374 | |
---|
375 | INTEGER,INTENT(IN) :: im,jm,ngrid,nfield |
---|
376 | REAL,INTENT(IN) :: pdyn(im,jm,nfield) |
---|
377 | REAL,INTENT(OUT) :: pfi(ngrid,nfield) |
---|
378 | |
---|
379 | INTEGER j,ifield,ig |
---|
380 | |
---|
381 | ! Sanity check: |
---|
382 | IF(ngrid.NE.2+(jm-2)*(im-1)) THEN |
---|
383 | WRITE(*,*) "gr_dyn_fi error, wrong sizes" |
---|
384 | STOP |
---|
385 | ENDIF |
---|
386 | |
---|
387 | ! Handle poles |
---|
388 | CALL SCOPY(nfield,pdyn,im*jm,pfi,ngrid) |
---|
389 | CALL SCOPY(nfield,pdyn(1,jm,1),im*jm,pfi(ngrid,1),ngrid) |
---|
390 | ! Other points |
---|
391 | DO ifield=1,nfield |
---|
392 | DO j=2,jm-1 |
---|
393 | ig=2+(j-2)*(im-1) |
---|
394 | CALL SCOPY(im-1,pdyn(1,j,ifield),1,pfi(ig,ifield),1) |
---|
395 | ENDDO |
---|
396 | ENDDO |
---|
397 | |
---|
398 | END SUBROUTINE gr_dyn_fi |
---|
399 | |
---|
400 | |
---|
401 | |
---|
402 | SUBROUTINE grad(klevel,pg,pgx,pgy) |
---|
403 | ! compute the covariant components x,y of the gradient of pg |
---|
404 | USE mod_grid_phy_lmdz, ONLY: nbp_lon, nbp_lat |
---|
405 | IMPLICIT NONE |
---|
406 | |
---|
407 | INTEGER,INTENT(IN) :: klevel |
---|
408 | REAL,INTENT(IN) :: pg((nbp_lon+1)*nbp_lat,klevel) |
---|
409 | REAL,INTENT(OUT) :: pgx((nbp_lon+1)*nbp_lat,klevel) |
---|
410 | REAL,INTENT(OUT) :: pgy((nbp_lon+1)*(nbp_lat-1),klevel) |
---|
411 | |
---|
412 | INTEGER :: l,ij |
---|
413 | INTEGER :: iim,iip1,ip1jm,ip1jmp1 |
---|
414 | |
---|
415 | iim=nbp_lon |
---|
416 | iip1=nbp_lon+1 |
---|
417 | ip1jm=(nbp_lon+1)*(nbp_lat-1) ! = iip1*jjm |
---|
418 | ip1jmp1=(nbp_lon+1)*nbp_lat ! = iip1*jjp1 |
---|
419 | |
---|
420 | DO l=1,klevel |
---|
421 | DO ij=1,ip1jmp1-1 |
---|
422 | pgx(ij,l)=pg(ij+1,l)-pg(ij,l) |
---|
423 | ENDDO |
---|
424 | ! correction for pgx(ip1,j,l) ... |
---|
425 | ! ... pgx(iip1,j,l)=pgx(1,j,l) ... |
---|
426 | DO ij=iip1,ip1jmp1,iip1 |
---|
427 | pgx(ij,l)=pgx(ij-iim,l) |
---|
428 | ENDDO |
---|
429 | DO ij=1,ip1jm |
---|
430 | pgy(ij,l)=pg(ij,l)-pg(ij+iip1,l) |
---|
431 | ENDDO |
---|
432 | ENDDO |
---|
433 | |
---|
434 | END SUBROUTINE grad |
---|
435 | |
---|
436 | |
---|
437 | |
---|
438 | SUBROUTINE diverg(klevel,x,y,div) |
---|
439 | ! compute the divergence of a vector field of components |
---|
440 | ! x,y. y and y being covriant components |
---|
441 | USE mod_grid_phy_lmdz, ONLY: nbp_lon, nbp_lat |
---|
442 | IMPLICIT NONE |
---|
443 | |
---|
444 | INTEGER,INTENT(IN) :: klevel |
---|
445 | REAL,INTENT(IN) :: x((nbp_lon+1)*nbp_lat,klevel) |
---|
446 | REAL,INTENT(IN) :: y((nbp_lon+1)*(nbp_lat-1),klevel) |
---|
447 | REAL,INTENT(OUT) :: div((nbp_lon+1)*nbp_lat,klevel) |
---|
448 | |
---|
449 | INTEGER :: l,ij |
---|
450 | INTEGER :: iim,iip1,iip2,ip1jm,ip1jmp1,ip1jmi1 |
---|
451 | |
---|
452 | REAL :: aiy1(nbp_lon+1),aiy2(nbp_lon+1) |
---|
453 | REAL :: sumypn,sumyps |
---|
454 | REAL,EXTERNAL :: SSUM |
---|
455 | |
---|
456 | iim=nbp_lon |
---|
457 | iip1=nbp_lon+1 |
---|
458 | iip2=nbp_lon+2 |
---|
459 | ip1jm=(nbp_lon+1)*(nbp_lat-1) ! = iip1*jjm |
---|
460 | ip1jmp1=(nbp_lon+1)*nbp_lat ! = iip1*jjp1 |
---|
461 | ip1jmi1=(nbp_lon+1)*(nbp_lat-1)-(nbp_lon+1) ! = ip1jm - iip1 |
---|
462 | |
---|
463 | DO l=1,klevel |
---|
464 | DO ij=iip2,ip1jm-1 |
---|
465 | div(ij+1,l)= & |
---|
466 | cvusurcu(ij+1)*x(ij+1,l)-cvusurcu(ij)*x(ij,l)+ & |
---|
467 | cuvsurcv(ij-iim)*y(ij-iim,l)-cuvsurcv(ij+1)*y(ij+1,l) |
---|
468 | ENDDO |
---|
469 | ! correction for div(1,j,l) ... |
---|
470 | ! ... div(1,j,l)= div(iip1,j,l) ... |
---|
471 | DO ij=iip2,ip1jm,iip1 |
---|
472 | div(ij,l)=div(ij+iim,l) |
---|
473 | ENDDO |
---|
474 | ! at the poles |
---|
475 | DO ij=1,iim |
---|
476 | aiy1(ij)=cuvsurcv(ij)*y(ij,l) |
---|
477 | aiy2(ij)=cuvsurcv(ij+ip1jmi1)*y(ij+ip1jmi1,l) |
---|
478 | ENDDO |
---|
479 | sumypn=SSUM(iim,aiy1,1)/apoln |
---|
480 | sumyps=SSUM(iim,aiy2,1)/apols |
---|
481 | DO ij=1,iip1 |
---|
482 | div(ij,l)=-sumypn |
---|
483 | div(ij+ip1jm,l)=sumyps |
---|
484 | ENDDO |
---|
485 | ENDDO ! of DO l=1,klevel |
---|
486 | |
---|
487 | !!! CALL filtreg( div, jjp1, klevel, 2, 2, .TRUE., 1 ) |
---|
488 | |
---|
489 | DO l=1,klevel |
---|
490 | DO ij=iip2,ip1jm |
---|
491 | div(ij,l)=div(ij,l)*unsaire(ij) |
---|
492 | ENDDO |
---|
493 | ENDDO |
---|
494 | |
---|
495 | END SUBROUTINE diverg |
---|
496 | |
---|
497 | |
---|
498 | |
---|
499 | SUBROUTINE gr_v_scal(nx,x_v,x_scal) |
---|
500 | USE mod_grid_phy_lmdz, ONLY: nbp_lon, nbp_lat |
---|
501 | IMPLICIT NONE |
---|
502 | |
---|
503 | INTEGER,INTENT(IN) :: nx |
---|
504 | REAL,INTENT(IN) :: x_v((nbp_lon+1)*(nbp_lat-1),nx) |
---|
505 | REAL,INTENT(OUT) :: x_scal((nbp_lon+1)*nbp_lat,nx) |
---|
506 | |
---|
507 | INTEGER :: l,ij |
---|
508 | INTEGER :: iip1,iip2,ip1jm,ip1jmp1 |
---|
509 | |
---|
510 | iip1=nbp_lon+1 |
---|
511 | iip2=nbp_lon+2 |
---|
512 | ip1jm=(nbp_lon+1)*(nbp_lat-1) ! = iip1*jjm |
---|
513 | ip1jmp1=(nbp_lon+1)*nbp_lat ! = iip1*jjp1 |
---|
514 | |
---|
515 | DO l=1,nx |
---|
516 | DO ij=iip2,ip1jm |
---|
517 | x_scal(ij,l)= & |
---|
518 | (airev(ij-iip1)*x_v(ij-iip1,l)+airev(ij)*x_v(ij,l)) & |
---|
519 | /(airev(ij-iip1)+airev(ij)) |
---|
520 | ENDDO |
---|
521 | DO ij=1,iip1 |
---|
522 | x_scal(ij,l)=0. |
---|
523 | ENDDO |
---|
524 | DO ij=ip1jm+1,ip1jmp1 |
---|
525 | x_scal(ij,l)=0. |
---|
526 | ENDDO |
---|
527 | ENDDO |
---|
528 | |
---|
529 | END SUBROUTINE gr_v_scal |
---|
530 | |
---|
531 | SUBROUTINE gr_scal_v(nx,x_scal,x_v) |
---|
532 | ! convert values from scalar points to v points on C-grid |
---|
533 | ! used to compute wind stress at V points |
---|
534 | USE mod_grid_phy_lmdz, ONLY: nbp_lon, nbp_lat |
---|
535 | IMPLICIT NONE |
---|
536 | |
---|
537 | INTEGER,INTENT(IN) :: nx ! number of levels or fields |
---|
538 | REAL,INTENT(OUT) :: x_v((nbp_lon+1)*(nbp_lat-1),nx) |
---|
539 | REAL,INTENT(IN) :: x_scal((nbp_lon+1)*nbp_lat,nx) |
---|
540 | |
---|
541 | INTEGER :: l,ij |
---|
542 | INTEGER :: iip1,ip1jm |
---|
543 | |
---|
544 | iip1=nbp_lon+1 |
---|
545 | ip1jm=(nbp_lon+1)*(nbp_lat-1) ! = iip1*jjm |
---|
546 | |
---|
547 | DO l=1,nx |
---|
548 | DO ij=1,ip1jm |
---|
549 | x_v(ij,l)= & |
---|
550 | (cu(ij)*cvusurcu(ij)*x_scal(ij,l)+ & |
---|
551 | cu(ij+iip1)*cvusurcu(ij+iip1)*x_scal(ij+iip1,l)) & |
---|
552 | /(cu(ij)*cvusurcu(ij)+cu(ij+iip1)*cvusurcu(ij+iip1)) |
---|
553 | ENDDO |
---|
554 | ENDDO |
---|
555 | |
---|
556 | END SUBROUTINE gr_scal_v |
---|
557 | |
---|
558 | SUBROUTINE gr_scal_u(nx,x_scal,x_u) |
---|
559 | ! convert values from scalar points to U points on C-grid |
---|
560 | ! used to compute wind stress at U points |
---|
561 | USE mod_grid_phy_lmdz, ONLY: nbp_lon, nbp_lat |
---|
562 | IMPLICIT NONE |
---|
563 | |
---|
564 | INTEGER,INTENT(IN) :: nx |
---|
565 | REAL,INTENT(OUT) :: x_u((nbp_lon+1)*nbp_lat,nx) |
---|
566 | REAL,INTENT(IN) :: x_scal((nbp_lon+1)*nbp_lat,nx) |
---|
567 | |
---|
568 | INTEGER :: l,ij |
---|
569 | INTEGER :: iip1,jjp1,ip1jmp1 |
---|
570 | |
---|
571 | iip1=nbp_lon+1 |
---|
572 | jjp1=nbp_lat |
---|
573 | ip1jmp1=(nbp_lon+1)*nbp_lat ! = iip1*jjp1 |
---|
574 | |
---|
575 | DO l=1,nx |
---|
576 | DO ij=1,ip1jmp1-1 |
---|
577 | x_u(ij,l)= & |
---|
578 | (aire(ij)*x_scal(ij,l)+aire(ij+1)*x_scal(ij+1,l)) & |
---|
579 | /(aire(ij)+aire(ij+1)) |
---|
580 | ENDDO |
---|
581 | ENDDO |
---|
582 | |
---|
583 | CALL SCOPY(nx*jjp1,x_u(1,1),iip1,x_u(iip1,1),iip1) |
---|
584 | |
---|
585 | END SUBROUTINE gr_scal_u |
---|
586 | |
---|
587 | END MODULE surf_heat_transp_mod |
---|
588 | |
---|
589 | |
---|
590 | |
---|