[1298] | 1 | ! |
---|
| 2 | ! $Header: /home/cvsroot/LMDZ4/libf/phylmd/ocean_slab_mod.F90,v 1.3 2008-02-04 16:24:28 fairhead Exp $ |
---|
| 3 | ! |
---|
| 4 | MODULE surf_heat_transp_mod |
---|
| 5 | |
---|
[1529] | 6 | IMPLICIT NONE |
---|
[1298] | 7 | |
---|
[1529] | 8 | ! Variables copied over from dyn3d dynamics: |
---|
| 9 | REAL,SAVE,ALLOCATABLE :: fext(:) |
---|
| 10 | REAL,SAVE,ALLOCATABLE :: unsairez(:) |
---|
| 11 | REAL,SAVE,ALLOCATABLE :: unsaire(:) |
---|
| 12 | REAL,SAVE,ALLOCATABLE :: cu(:) |
---|
| 13 | REAL,SAVE,ALLOCATABLE :: cv(:) |
---|
| 14 | REAL,SAVE,ALLOCATABLE :: cuvsurcv(:) |
---|
| 15 | REAL,SAVE,ALLOCATABLE :: cvusurcu(:) |
---|
| 16 | REAL,SAVE,ALLOCATABLE :: aire(:) |
---|
| 17 | REAL,SAVE :: apoln |
---|
| 18 | REAL,SAVE :: apols |
---|
| 19 | REAL,SAVE,ALLOCATABLE :: aireu(:) |
---|
| 20 | REAL,SAVE,ALLOCATABLE :: airev(:) |
---|
| 21 | |
---|
| 22 | LOGICAL,SAVE :: alpha_var |
---|
| 23 | LOGICAL,SAVE :: slab_upstream |
---|
| 24 | REAL,SAVE,ALLOCATABLE :: zmasqu(:) |
---|
| 25 | REAL,SAVE,ALLOCATABLE :: zmasqv(:) |
---|
| 26 | REAL,SAVE,ALLOCATABLE :: unsfv(:) |
---|
| 27 | REAL,SAVE,ALLOCATABLE :: unsev(:) |
---|
| 28 | REAL,SAVE,ALLOCATABLE :: unsfu(:) |
---|
| 29 | REAL,SAVE,ALLOCATABLE :: unseu(:) |
---|
| 30 | |
---|
| 31 | ! Routines usable only by routines within this module: |
---|
| 32 | PRIVATE :: gr_fi_dyn, gr_dyn_fi |
---|
| 33 | ! Routines from dyn3d, valid on global dynamics grid only: |
---|
[2111] | 34 | PRIVATE :: grad,diverg,gr_v_scal,gr_scal_v,gr_scal_u |
---|
[1529] | 35 | |
---|
[1298] | 36 | CONTAINS |
---|
[1529] | 37 | |
---|
| 38 | SUBROUTINE ini_surf_heat_transp(ip1jm,ip1jmp1,unsairez_,fext_,unsaire_,& |
---|
| 39 | cu_,cuvsurcv_,cv_,cvusurcu_, & |
---|
| 40 | aire_,apoln_,apols_, & |
---|
| 41 | aireu_,airev_) |
---|
| 42 | USE mod_grid_phy_lmdz, only: nbp_lon, nbp_lat |
---|
| 43 | IMPLICIT NONE |
---|
| 44 | ! Transfer some variables from dyn3d dynamics |
---|
| 45 | INTEGER,INTENT(IN) :: ip1jm |
---|
| 46 | INTEGER,INTENT(IN) :: ip1jmp1 |
---|
| 47 | REAL,INTENT(IN) :: unsairez_(ip1jm) |
---|
| 48 | REAL,INTENT(IN) :: fext_(ip1jm) |
---|
| 49 | REAL,INTENT(IN) :: unsaire_(ip1jmp1) |
---|
| 50 | REAL,INTENT(IN) :: cu_(ip1jmp1) |
---|
| 51 | REAL,INTENT(IN) :: cuvsurcv_(ip1jm) |
---|
| 52 | REAL,INTENT(IN) :: cv_(ip1jm) |
---|
| 53 | REAL,INTENT(IN) :: cvusurcu_(ip1jmp1) |
---|
| 54 | REAL,INTENT(IN) :: aire_(ip1jmp1) |
---|
| 55 | REAL,INTENT(IN) :: apoln_ |
---|
| 56 | REAL,INTENT(IN) :: apols_ |
---|
| 57 | REAL,INTENT(IN) :: aireu_(ip1jmp1) |
---|
| 58 | REAL,INTENT(IN) :: airev_(ip1jm) |
---|
| 59 | |
---|
| 60 | ! Sanity check |
---|
| 61 | if ((ip1jm.ne.((nbp_lon+1)*(nbp_lat-1))).or. & |
---|
| 62 | (ip1jmp1.ne.((nbp_lon+1)*nbp_lat))) then |
---|
| 63 | write(*,*) "ini_surf_heat_transp Error: wrong array sizes" |
---|
| 64 | stop |
---|
| 65 | endif |
---|
| 66 | |
---|
| 67 | allocate(unsairez(ip1jm)) |
---|
| 68 | unsairez(:)=unsairez_(:) |
---|
| 69 | allocate(fext(ip1jm)) |
---|
| 70 | fext(:)=fext_(:) |
---|
| 71 | allocate(unsaire(ip1jmp1)) |
---|
| 72 | unsaire(:)=unsaire_(:) |
---|
| 73 | allocate(cu(ip1jmp1)) |
---|
| 74 | cu(:)=cu_(:) |
---|
| 75 | allocate(cuvsurcv(ip1jm)) |
---|
| 76 | cuvsurcv(:)=cuvsurcv_(:) |
---|
| 77 | allocate(cv(ip1jm)) |
---|
| 78 | cv(:)=cv_(:) |
---|
| 79 | allocate(cvusurcu(ip1jmp1)) |
---|
| 80 | cvusurcu(:)=cvusurcu_(:) |
---|
| 81 | allocate(aire(ip1jmp1)) |
---|
| 82 | aire(:)=aire_(:) |
---|
| 83 | apoln=apoln_ |
---|
| 84 | apols=apols_ |
---|
| 85 | allocate(aireu(ip1jmp1)) |
---|
| 86 | aireu(:)=aireu_(:) |
---|
| 87 | allocate(airev(ip1jm)) |
---|
| 88 | airev(:)=airev_(:) |
---|
| 89 | |
---|
| 90 | END SUBROUTINE ini_surf_heat_transp |
---|
| 91 | |
---|
| 92 | SUBROUTINE ini_surf_heat_transp_mod |
---|
| 93 | USE mod_grid_phy_lmdz, only: nbp_lon, nbp_lat |
---|
| 94 | IMPLICIT NONE |
---|
| 95 | INTEGER :: ip1jm, ip1jmp1 |
---|
| 96 | |
---|
| 97 | ip1jm=(nbp_lon+1)*(nbp_lat-1) |
---|
| 98 | ip1jmp1=(nbp_lon+1)*nbp_lat |
---|
| 99 | |
---|
| 100 | allocate(zmasqu(ip1jmp1)) |
---|
| 101 | allocate(zmasqv(ip1jm)) |
---|
| 102 | allocate(unsfv(ip1jm)) |
---|
| 103 | allocate(unsev(ip1jm)) |
---|
| 104 | allocate(unsfu(ip1jmp1)) |
---|
| 105 | allocate(unseu(ip1jmp1)) |
---|
[1298] | 106 | |
---|
[1529] | 107 | END SUBROUTINE ini_surf_heat_transp_mod |
---|
[1298] | 108 | |
---|
[1529] | 109 | SUBROUTINE divgrad_phy(ngrid,nlevs,temp,delta) |
---|
[1298] | 110 | |
---|
[1529] | 111 | USE mod_grid_phy_lmdz, ONLY: nbp_lon, nbp_lat |
---|
[1298] | 112 | IMPLICIT NONE |
---|
| 113 | |
---|
[1308] | 114 | INTEGER,INTENT(IN) :: ngrid, nlevs |
---|
| 115 | REAL,INTENT(IN) :: temp(ngrid,nlevs) |
---|
| 116 | REAL,INTENT(OUT) :: delta(ngrid,nlevs) |
---|
[1529] | 117 | REAL delta_2d((nbp_lon+1)*nbp_lat,nlevs) |
---|
[1308] | 118 | INTEGER :: ll |
---|
[1529] | 119 | REAL ghx((nbp_lon+1)*nbp_lat,nlevs) |
---|
| 120 | REAL ghy((nbp_lon+1)*(nbp_lat-1),nlevs) |
---|
| 121 | INTEGER :: iip1,jjp1 |
---|
| 122 | |
---|
| 123 | iip1=nbp_lon+1 |
---|
| 124 | jjp1=nbp_lat |
---|
[1298] | 125 | |
---|
[1308] | 126 | CALL gr_fi_dyn(nlevs,ngrid,iip1,jjp1,temp,delta_2d) |
---|
[1298] | 127 | CALL grad(nlevs,delta_2d,ghx,ghy) |
---|
| 128 | DO ll=1,nlevs |
---|
| 129 | ghx(:,ll)=ghx(:,ll)*zmasqu |
---|
| 130 | ! pas de diffusion zonale |
---|
| 131 | ! ghx(:,ll)=0. |
---|
| 132 | ghy(:,ll)=ghy(:,ll)*zmasqv |
---|
| 133 | END DO |
---|
| 134 | CALL diverg(nlevs,ghx,ghy,delta_2d) |
---|
[1308] | 135 | CALL gr_dyn_fi(nlevs,iip1,jjp1,ngrid,delta_2d,delta) |
---|
[1298] | 136 | |
---|
| 137 | |
---|
| 138 | END SUBROUTINE divgrad_phy |
---|
| 139 | |
---|
| 140 | |
---|
| 141 | |
---|
[1529] | 142 | SUBROUTINE init_masquv(ngrid,zmasq) |
---|
[1397] | 143 | |
---|
[1529] | 144 | USE mod_grid_phy_lmdz, only: nbp_lon, nbp_lat |
---|
[1298] | 145 | IMPLICIT NONE |
---|
| 146 | |
---|
| 147 | |
---|
[1308] | 148 | INTEGER,INTENT(IN) :: ngrid |
---|
| 149 | REAL zmasq(ngrid) |
---|
[1529] | 150 | REAL zmasq_2d((nbp_lon+1)*nbp_lat) |
---|
| 151 | REAL ff((nbp_lon+1)*(nbp_lat-1)) |
---|
[1298] | 152 | REAL eps |
---|
| 153 | INTEGER i |
---|
[1529] | 154 | INTEGER :: iim,iip1,jjp1,ip1jm,ip1jmp1 |
---|
| 155 | |
---|
| 156 | iim=nbp_lon |
---|
| 157 | iip1=nbp_lon+1 |
---|
| 158 | jjp1=nbp_lat |
---|
| 159 | ip1jm=(nbp_lon+1)*(nbp_lat-1) |
---|
| 160 | ip1jmp1=(nbp_lon+1)*nbp_lat |
---|
[1298] | 161 | |
---|
| 162 | ! Masques u,v |
---|
| 163 | zmasqu=1. |
---|
| 164 | zmasqv=1. |
---|
| 165 | |
---|
[1308] | 166 | CALL gr_fi_dyn(1,ngrid,iip1,jjp1,zmasq,zmasq_2d) |
---|
[1298] | 167 | |
---|
| 168 | DO i=1,ip1jmp1-1 |
---|
| 169 | IF (zmasq_2d(i).GT.1e-5 .OR. zmasq_2d(i+1).GT.1e-5) THEN |
---|
| 170 | zmasqu(i)=0. |
---|
| 171 | ENDIF |
---|
| 172 | END DO |
---|
| 173 | DO i=iip1,ip1jmp1,iip1 |
---|
| 174 | zmasqu(i)=zmasqu(i-iim) |
---|
| 175 | END DO |
---|
| 176 | DO i=1,ip1jm |
---|
| 177 | IF (zmasq_2d(i).GT.1e-5 .OR. zmasq_2d(i+iip1).GT.1e-5) THEN |
---|
| 178 | zmasqv(i)=0. |
---|
| 179 | END IF |
---|
| 180 | END DO |
---|
| 181 | |
---|
| 182 | |
---|
| 183 | ! Coriolis (pour Ekman transp.) |
---|
| 184 | eps=1e-5 |
---|
| 185 | ! CALL getin('slab_eps',eps) |
---|
| 186 | ! print *,'epsilon=',eps |
---|
| 187 | ff=fext*unsairez |
---|
| 188 | DO i=1,ip1jm |
---|
| 189 | unsev(i)=eps/(ff(i)*ff(i)+eps**2) |
---|
| 190 | unsfv(i)=ff(i)/(ff(i)*ff(i)+eps**2) |
---|
| 191 | ENDDO |
---|
| 192 | CALL gr_v_scal(1,unsfv,unsfu) |
---|
| 193 | CALL gr_v_scal(1,unsev,unseu) |
---|
| 194 | ! Alpha variable? |
---|
| 195 | ! alpha_var=.FALSE. |
---|
| 196 | ! CALL getin('slab_alphav',alpha_var) |
---|
| 197 | |
---|
| 198 | |
---|
| 199 | |
---|
| 200 | END SUBROUTINE init_masquv |
---|
| 201 | |
---|
| 202 | |
---|
| 203 | |
---|
[1529] | 204 | SUBROUTINE slab_ekman2(ngrid,tx_phy,ty_phy,ts_phy,dt_phy) |
---|
[1298] | 205 | |
---|
[1529] | 206 | USE mod_grid_phy_lmdz, ONLY: nbp_lon, nbp_lat |
---|
| 207 | USE slab_ice_h, ONLY: noceanmx |
---|
[1298] | 208 | |
---|
| 209 | IMPLICIT NONE |
---|
| 210 | |
---|
[1308] | 211 | INTEGER,INTENT(IN) :: ngrid |
---|
[1298] | 212 | INTEGER ij |
---|
[1529] | 213 | REAL txv((nbp_lon+1)*(nbp_lat-1)),fluxm((nbp_lon+1)*(nbp_lat-1)) |
---|
| 214 | REAL tyv((nbp_lon+1)*(nbp_lat-1)) |
---|
| 215 | REAL fluxtm((nbp_lon+1)*(nbp_lat-1),noceanmx) |
---|
| 216 | REAL fluxtz((nbp_lon+1)*nbp_lat,noceanmx) |
---|
| 217 | REAL tyu((nbp_lon+1)*nbp_lat),txu((nbp_lon+1)*nbp_lat) |
---|
| 218 | REAL fluxz((nbp_lon+1)*nbp_lat),fluxv((nbp_lon+1)*nbp_lat) |
---|
| 219 | REAL dt((nbp_lon+1)*nbp_lat,noceanmx),ts((nbp_lon+1)*nbp_lat,noceanmx) |
---|
[1308] | 220 | REAL tx_phy(ngrid),ty_phy(ngrid) |
---|
| 221 | REAL dt_phy(ngrid,noceanmx),ts_phy(ngrid,noceanmx) |
---|
[1298] | 222 | |
---|
[1529] | 223 | INTEGER iim,iip1,iip2,jjp1,ip1jm,ip1jmi1,ip1jmp1 |
---|
[1298] | 224 | |
---|
[1529] | 225 | iim=nbp_lon |
---|
| 226 | iip1=nbp_lon+1 |
---|
| 227 | iip2=nbp_lon+2 |
---|
[1537] | 228 | jjp1=nbp_lat |
---|
[1529] | 229 | ip1jm=(nbp_lon+1)*(nbp_lat-1) ! = iip1*jjm |
---|
| 230 | ip1jmi1=(nbp_lon+1)*(nbp_lat-1)-(nbp_lon+1) ! = ip1jm - iip1 |
---|
| 231 | ip1jmp1=(nbp_lon+1)*nbp_lat ! = iip1*jjp1 |
---|
[1298] | 232 | |
---|
[2111] | 233 | ! Convert taux,y to 2D scalar grid |
---|
| 234 | ! north and south poles tx,ty no meaning |
---|
| 235 | tx_phy(1)=0. |
---|
| 236 | tx_phy(ngrid)=0. |
---|
| 237 | ty_phy(1)=0. |
---|
| 238 | ty_phy(ngrid)=0. |
---|
[1308] | 239 | CALL gr_fi_dyn(1,ngrid,iip1,jjp1,tx_phy,txu) |
---|
| 240 | CALL gr_fi_dyn(1,ngrid,iip1,jjp1,ty_phy,tyu) |
---|
[2111] | 241 | |
---|
| 242 | ! Divide taux,y by f or eps, and convert to 2D u,v grids |
---|
| 243 | ! (Arakawa C grid) |
---|
| 244 | CALL gr_scal_v(1,txu,txv) ! wind stress at v points |
---|
| 245 | CALL gr_scal_v(1,tyu,tyv) |
---|
[1298] | 246 | fluxm=tyv*unsev-txv*unsfv |
---|
| 247 | ! fluxm=-txv*unsfv |
---|
[2111] | 248 | ! Zonal flux |
---|
| 249 | CALL gr_scal_u(1,txu,txu) ! wind stress at u points |
---|
| 250 | CALL gr_scal_u(1,tyu,tyu) |
---|
[1298] | 251 | fluxz=tyu*unsfu+txu*unseu |
---|
| 252 | ! fluxz=tyu*unsfu |
---|
| 253 | |
---|
[2111] | 254 | ! Convert temperature to 2D grid |
---|
[1308] | 255 | CALL gr_fi_dyn(2,ngrid,iip1,jjp1,ts_phy,ts) |
---|
[1298] | 256 | |
---|
| 257 | ! Flux de masse |
---|
| 258 | fluxm=fluxm*cv*cuvsurcv*zmasqv |
---|
| 259 | fluxz=fluxz*cu*cvusurcu*zmasqu |
---|
| 260 | ! Flux de masse vertical |
---|
| 261 | DO ij=iip2,ip1jm |
---|
| 262 | fluxv(ij)=fluxz(ij)-fluxz(ij-1)-fluxm(ij)+fluxm(ij-iip1) |
---|
| 263 | ENDDO |
---|
| 264 | DO ij=iip1,ip1jmi1,iip1 |
---|
| 265 | fluxv(ij+1)=fluxv(ij+iip1) |
---|
| 266 | END DO |
---|
| 267 | ! Poles |
---|
| 268 | fluxv(1)=-SUM(fluxm(1:iim)) |
---|
| 269 | fluxv(ip1jmp1)=SUM(fluxm(ip1jm-iim:ip1jm-1)) |
---|
| 270 | fluxv=fluxv |
---|
| 271 | |
---|
[2111] | 272 | ! Meridional heat fluxes |
---|
[1298] | 273 | DO ij=1,ip1jm |
---|
[2111] | 274 | ! centered scheme |
---|
[1298] | 275 | fluxtm(ij,1)=fluxm(ij)*(ts(ij+iip1,1)+ts(ij,1))/2. |
---|
| 276 | fluxtm(ij,2)=-fluxm(ij)*(ts(ij+iip1,2)+ts(ij,2))/2. |
---|
| 277 | END DO |
---|
| 278 | |
---|
[2111] | 279 | ! Zonal heat fluxes |
---|
| 280 | ! Schema upstream |
---|
| 281 | fluxtz(1:iip1,:)=0 ! no zonal heat flux at north pole |
---|
[1298] | 282 | DO ij=iip2,ip1jm |
---|
| 283 | IF (fluxz(ij).GE.0.) THEN |
---|
| 284 | fluxtz(ij,1)=fluxz(ij)*ts(ij,1) |
---|
| 285 | fluxtz(ij,2)=-fluxz(ij)*ts(ij+1,2) |
---|
| 286 | ELSE |
---|
| 287 | fluxtz(ij,1)=fluxz(ij)*ts(ij+1,1) |
---|
| 288 | fluxtz(ij,2)=-fluxz(ij)*ts(ij,2) |
---|
| 289 | ENDIF |
---|
| 290 | END DO |
---|
| 291 | DO ij=iip1*2,ip1jmp1,iip1 |
---|
| 292 | fluxtz(ij,:)=fluxtz(ij-iim,:) |
---|
| 293 | END DO |
---|
| 294 | |
---|
| 295 | ! Calcul de dT |
---|
| 296 | DO ij=iip2,ip1jm |
---|
| 297 | dt(ij,:)=fluxtz(ij-1,:)-fluxtz(ij,:) & |
---|
| 298 | +fluxtm(ij,:)-fluxtm(ij-iip1,:) |
---|
| 299 | IF (fluxv(ij).GT.0.) THEN |
---|
| 300 | dt(ij,1)=dt(ij,1)+fluxv(ij)*ts(ij,2) |
---|
| 301 | dt(ij,2)=dt(ij,2)-fluxv(ij)*ts(ij,2) |
---|
| 302 | ELSE |
---|
| 303 | dt(ij,1)=dt(ij,1)+fluxv(ij)*ts(ij,1) |
---|
| 304 | dt(ij,2)=dt(ij,2)-fluxv(ij)*ts(ij,1) |
---|
| 305 | ENDIF |
---|
| 306 | dt(ij,:)=dt(ij,:)/aire(ij) |
---|
| 307 | END DO |
---|
| 308 | DO ij=iip1,ip1jmi1,iip1 |
---|
| 309 | dt(ij+1,:)=dt(ij+iip1,:) |
---|
| 310 | END DO |
---|
| 311 | ! Pôles |
---|
| 312 | dt(1,:)=SUM(fluxtm(1:iim,:),dim=1) |
---|
| 313 | IF (fluxv(1).GT.0.) THEN |
---|
| 314 | dt(1,1)=dt(1,1)+fluxv(1)*ts(1,2) |
---|
| 315 | dt(1,2)=dt(1,2)-fluxv(1)*ts(1,2) |
---|
| 316 | ELSE |
---|
| 317 | dt(1,1)=dt(1,1)+fluxv(1)*ts(1,1) |
---|
| 318 | dt(1,2)=dt(1,2)-fluxv(1)*ts(1,1) |
---|
| 319 | ENDIF |
---|
| 320 | dt(1,:)=dt(1,:)/apoln |
---|
| 321 | dt(ip1jmp1,:)=-SUM(fluxtm(ip1jm-iim:ip1jm-1,:),dim=1) |
---|
| 322 | IF (fluxv(ip1jmp1).GT.0.) THEN |
---|
| 323 | dt(ip1jmp1,1)=dt(ip1jmp1,1)+fluxv(ip1jmp1)*ts(ip1jmp1,2) |
---|
| 324 | dt(ip1jmp1,2)=dt(ip1jmp1,2)-fluxv(ip1jmp1)*ts(ip1jmp1,2) |
---|
| 325 | ELSE |
---|
| 326 | dt(ip1jmp1,1)=dt(ip1jmp1,1)+fluxv(ip1jmp1)*ts(ip1jmp1,1) |
---|
| 327 | dt(ip1jmp1,2)=dt(ip1jmp1,2)-fluxv(ip1jmp1)*ts(ip1jmp1,1) |
---|
| 328 | ENDIF |
---|
| 329 | dt(ip1jmp1,:)=dt(ip1jmp1,:)/apols |
---|
| 330 | dt(2:iip1,1)=dt(1,1) |
---|
| 331 | dt(2:iip1,2)=dt(1,2) |
---|
| 332 | dt(ip1jm+1:ip1jmp1,1)=dt(ip1jmp1,1) |
---|
| 333 | dt(ip1jm+1:ip1jmp1,2)=dt(ip1jmp1,2) |
---|
| 334 | |
---|
| 335 | ! Retour grille physique |
---|
[1308] | 336 | CALL gr_dyn_fi(2,iip1,jjp1,ngrid,dt,dt_phy) |
---|
[1298] | 337 | |
---|
| 338 | |
---|
| 339 | END SUBROUTINE slab_ekman2 |
---|
| 340 | |
---|
[1529] | 341 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 342 | |
---|
| 343 | SUBROUTINE gr_fi_dyn(nfield,ngrid,im,jm,pfi,pdyn) |
---|
| 344 | ! Transfer a variable on global "physics" grid to global "dynamics" grid |
---|
| 345 | IMPLICIT NONE |
---|
| 346 | |
---|
| 347 | INTEGER,INTENT(IN) :: im,jm,ngrid,nfield |
---|
| 348 | REAL,INTENT(IN) :: pfi(ngrid,nfield) |
---|
| 349 | REAL,INTENT(OUT) :: pdyn(im,jm,nfield) |
---|
| 350 | |
---|
| 351 | INTEGER :: i,j,ifield,ig |
---|
| 352 | |
---|
| 353 | DO ifield=1,nfield |
---|
| 354 | ! Handle poles |
---|
| 355 | DO i=1,im |
---|
| 356 | pdyn(i,1,ifield)=pfi(1,ifield) |
---|
| 357 | pdyn(i,jm,ifield)=pfi(ngrid,ifield) |
---|
| 358 | ENDDO |
---|
| 359 | ! Other points |
---|
| 360 | DO j=2,jm-1 |
---|
| 361 | ig=2+(j-2)*(im-1) |
---|
| 362 | CALL SCOPY(im-1,pfi(ig,ifield),1,pdyn(1,j,ifield),1) |
---|
| 363 | pdyn(im,j,ifield)=pdyn(1,j,ifield) |
---|
| 364 | ENDDO |
---|
| 365 | ENDDO ! of DO ifield=1,nfield |
---|
| 366 | |
---|
| 367 | END SUBROUTINE gr_fi_dyn |
---|
| 368 | |
---|
| 369 | |
---|
| 370 | |
---|
| 371 | SUBROUTINE gr_dyn_fi(nfield,im,jm,ngrid,pdyn,pfi) |
---|
| 372 | ! Transfer a variable on global "dynamics" grid to global "physics" grid |
---|
| 373 | IMPLICIT NONE |
---|
| 374 | |
---|
| 375 | INTEGER,INTENT(IN) :: im,jm,ngrid,nfield |
---|
| 376 | REAL,INTENT(IN) :: pdyn(im,jm,nfield) |
---|
| 377 | REAL,INTENT(OUT) :: pfi(ngrid,nfield) |
---|
| 378 | |
---|
| 379 | INTEGER j,ifield,ig |
---|
| 380 | |
---|
| 381 | ! Sanity check: |
---|
| 382 | IF(ngrid.NE.2+(jm-2)*(im-1)) THEN |
---|
| 383 | WRITE(*,*) "gr_dyn_fi error, wrong sizes" |
---|
| 384 | STOP |
---|
| 385 | ENDIF |
---|
| 386 | |
---|
| 387 | ! Handle poles |
---|
| 388 | CALL SCOPY(nfield,pdyn,im*jm,pfi,ngrid) |
---|
| 389 | CALL SCOPY(nfield,pdyn(1,jm,1),im*jm,pfi(ngrid,1),ngrid) |
---|
| 390 | ! Other points |
---|
| 391 | DO ifield=1,nfield |
---|
| 392 | DO j=2,jm-1 |
---|
| 393 | ig=2+(j-2)*(im-1) |
---|
| 394 | CALL SCOPY(im-1,pdyn(1,j,ifield),1,pfi(ig,ifield),1) |
---|
| 395 | ENDDO |
---|
| 396 | ENDDO |
---|
| 397 | |
---|
| 398 | END SUBROUTINE gr_dyn_fi |
---|
| 399 | |
---|
| 400 | |
---|
| 401 | |
---|
| 402 | SUBROUTINE grad(klevel,pg,pgx,pgy) |
---|
| 403 | ! compute the covariant components x,y of the gradient of pg |
---|
| 404 | USE mod_grid_phy_lmdz, ONLY: nbp_lon, nbp_lat |
---|
| 405 | IMPLICIT NONE |
---|
| 406 | |
---|
| 407 | INTEGER,INTENT(IN) :: klevel |
---|
| 408 | REAL,INTENT(IN) :: pg((nbp_lon+1)*nbp_lat,klevel) |
---|
| 409 | REAL,INTENT(OUT) :: pgx((nbp_lon+1)*nbp_lat,klevel) |
---|
| 410 | REAL,INTENT(OUT) :: pgy((nbp_lon+1)*(nbp_lat-1),klevel) |
---|
| 411 | |
---|
| 412 | INTEGER :: l,ij |
---|
| 413 | INTEGER :: iim,iip1,ip1jm,ip1jmp1 |
---|
| 414 | |
---|
| 415 | iim=nbp_lon |
---|
| 416 | iip1=nbp_lon+1 |
---|
| 417 | ip1jm=(nbp_lon+1)*(nbp_lat-1) ! = iip1*jjm |
---|
| 418 | ip1jmp1=(nbp_lon+1)*nbp_lat ! = iip1*jjp1 |
---|
| 419 | |
---|
| 420 | DO l=1,klevel |
---|
| 421 | DO ij=1,ip1jmp1-1 |
---|
| 422 | pgx(ij,l)=pg(ij+1,l)-pg(ij,l) |
---|
| 423 | ENDDO |
---|
| 424 | ! correction for pgx(ip1,j,l) ... |
---|
| 425 | ! ... pgx(iip1,j,l)=pgx(1,j,l) ... |
---|
| 426 | DO ij=iip1,ip1jmp1,iip1 |
---|
| 427 | pgx(ij,l)=pgx(ij-iim,l) |
---|
| 428 | ENDDO |
---|
| 429 | DO ij=1,ip1jm |
---|
| 430 | pgy(ij,l)=pg(ij,l)-pg(ij+iip1,l) |
---|
| 431 | ENDDO |
---|
| 432 | ENDDO |
---|
| 433 | |
---|
| 434 | END SUBROUTINE grad |
---|
| 435 | |
---|
| 436 | |
---|
| 437 | |
---|
| 438 | SUBROUTINE diverg(klevel,x,y,div) |
---|
| 439 | ! compute the divergence of a vector field of components |
---|
| 440 | ! x,y. y and y being covriant components |
---|
| 441 | USE mod_grid_phy_lmdz, ONLY: nbp_lon, nbp_lat |
---|
| 442 | IMPLICIT NONE |
---|
| 443 | |
---|
| 444 | INTEGER,INTENT(IN) :: klevel |
---|
| 445 | REAL,INTENT(IN) :: x((nbp_lon+1)*nbp_lat,klevel) |
---|
| 446 | REAL,INTENT(IN) :: y((nbp_lon+1)*(nbp_lat-1),klevel) |
---|
| 447 | REAL,INTENT(OUT) :: div((nbp_lon+1)*nbp_lat,klevel) |
---|
| 448 | |
---|
| 449 | INTEGER :: l,ij |
---|
| 450 | INTEGER :: iim,iip1,iip2,ip1jm,ip1jmp1,ip1jmi1 |
---|
| 451 | |
---|
| 452 | REAL :: aiy1(nbp_lon+1),aiy2(nbp_lon+1) |
---|
| 453 | REAL :: sumypn,sumyps |
---|
| 454 | REAL,EXTERNAL :: SSUM |
---|
| 455 | |
---|
| 456 | iim=nbp_lon |
---|
| 457 | iip1=nbp_lon+1 |
---|
| 458 | iip2=nbp_lon+2 |
---|
| 459 | ip1jm=(nbp_lon+1)*(nbp_lat-1) ! = iip1*jjm |
---|
| 460 | ip1jmp1=(nbp_lon+1)*nbp_lat ! = iip1*jjp1 |
---|
| 461 | ip1jmi1=(nbp_lon+1)*(nbp_lat-1)-(nbp_lon+1) ! = ip1jm - iip1 |
---|
| 462 | |
---|
| 463 | DO l=1,klevel |
---|
| 464 | DO ij=iip2,ip1jm-1 |
---|
| 465 | div(ij+1,l)= & |
---|
| 466 | cvusurcu(ij+1)*x(ij+1,l)-cvusurcu(ij)*x(ij,l)+ & |
---|
| 467 | cuvsurcv(ij-iim)*y(ij-iim,l)-cuvsurcv(ij+1)*y(ij+1,l) |
---|
| 468 | ENDDO |
---|
| 469 | ! correction for div(1,j,l) ... |
---|
| 470 | ! ... div(1,j,l)= div(iip1,j,l) ... |
---|
| 471 | DO ij=iip2,ip1jm,iip1 |
---|
| 472 | div(ij,l)=div(ij+iim,l) |
---|
| 473 | ENDDO |
---|
| 474 | ! at the poles |
---|
| 475 | DO ij=1,iim |
---|
| 476 | aiy1(ij)=cuvsurcv(ij)*y(ij,l) |
---|
| 477 | aiy2(ij)=cuvsurcv(ij+ip1jmi1)*y(ij+ip1jmi1,l) |
---|
| 478 | ENDDO |
---|
| 479 | sumypn=SSUM(iim,aiy1,1)/apoln |
---|
| 480 | sumyps=SSUM(iim,aiy2,1)/apols |
---|
| 481 | DO ij=1,iip1 |
---|
| 482 | div(ij,l)=-sumypn |
---|
| 483 | div(ij+ip1jm,l)=sumyps |
---|
| 484 | ENDDO |
---|
| 485 | ENDDO ! of DO l=1,klevel |
---|
| 486 | |
---|
| 487 | !!! CALL filtreg( div, jjp1, klevel, 2, 2, .TRUE., 1 ) |
---|
| 488 | |
---|
| 489 | DO l=1,klevel |
---|
| 490 | DO ij=iip2,ip1jm |
---|
| 491 | div(ij,l)=div(ij,l)*unsaire(ij) |
---|
| 492 | ENDDO |
---|
| 493 | ENDDO |
---|
| 494 | |
---|
| 495 | END SUBROUTINE diverg |
---|
| 496 | |
---|
| 497 | |
---|
| 498 | |
---|
| 499 | SUBROUTINE gr_v_scal(nx,x_v,x_scal) |
---|
| 500 | USE mod_grid_phy_lmdz, ONLY: nbp_lon, nbp_lat |
---|
| 501 | IMPLICIT NONE |
---|
| 502 | |
---|
| 503 | INTEGER,INTENT(IN) :: nx |
---|
| 504 | REAL,INTENT(IN) :: x_v((nbp_lon+1)*(nbp_lat-1),nx) |
---|
| 505 | REAL,INTENT(OUT) :: x_scal((nbp_lon+1)*nbp_lat,nx) |
---|
| 506 | |
---|
| 507 | INTEGER :: l,ij |
---|
| 508 | INTEGER :: iip1,iip2,ip1jm,ip1jmp1 |
---|
| 509 | |
---|
| 510 | iip1=nbp_lon+1 |
---|
| 511 | iip2=nbp_lon+2 |
---|
| 512 | ip1jm=(nbp_lon+1)*(nbp_lat-1) ! = iip1*jjm |
---|
| 513 | ip1jmp1=(nbp_lon+1)*nbp_lat ! = iip1*jjp1 |
---|
| 514 | |
---|
| 515 | DO l=1,nx |
---|
| 516 | DO ij=iip2,ip1jm |
---|
| 517 | x_scal(ij,l)= & |
---|
| 518 | (airev(ij-iip1)*x_v(ij-iip1,l)+airev(ij)*x_v(ij,l)) & |
---|
| 519 | /(airev(ij-iip1)+airev(ij)) |
---|
| 520 | ENDDO |
---|
| 521 | DO ij=1,iip1 |
---|
| 522 | x_scal(ij,l)=0. |
---|
| 523 | ENDDO |
---|
| 524 | DO ij=ip1jm+1,ip1jmp1 |
---|
| 525 | x_scal(ij,l)=0. |
---|
| 526 | ENDDO |
---|
| 527 | ENDDO |
---|
| 528 | |
---|
| 529 | END SUBROUTINE gr_v_scal |
---|
[2111] | 530 | |
---|
| 531 | SUBROUTINE gr_scal_v(nx,x_scal,x_v) |
---|
| 532 | ! convert values from scalar points to v points on C-grid |
---|
| 533 | ! used to compute wind stress at V points |
---|
| 534 | USE mod_grid_phy_lmdz, ONLY: nbp_lon, nbp_lat |
---|
| 535 | IMPLICIT NONE |
---|
| 536 | |
---|
| 537 | INTEGER,INTENT(IN) :: nx ! number of levels or fields |
---|
| 538 | REAL,INTENT(OUT) :: x_v((nbp_lon+1)*(nbp_lat-1),nx) |
---|
| 539 | REAL,INTENT(IN) :: x_scal((nbp_lon+1)*nbp_lat,nx) |
---|
| 540 | |
---|
| 541 | INTEGER :: l,ij |
---|
| 542 | INTEGER :: iip1,ip1jm |
---|
| 543 | |
---|
| 544 | iip1=nbp_lon+1 |
---|
| 545 | ip1jm=(nbp_lon+1)*(nbp_lat-1) ! = iip1*jjm |
---|
| 546 | |
---|
| 547 | DO l=1,nx |
---|
| 548 | DO ij=1,ip1jm |
---|
| 549 | x_v(ij,l)= & |
---|
| 550 | (cu(ij)*cvusurcu(ij)*x_scal(ij,l)+ & |
---|
| 551 | cu(ij+iip1)*cvusurcu(ij+iip1)*x_scal(ij+iip1,l)) & |
---|
| 552 | /(cu(ij)*cvusurcu(ij)+cu(ij+iip1)*cvusurcu(ij+iip1)) |
---|
| 553 | ENDDO |
---|
| 554 | ENDDO |
---|
| 555 | |
---|
| 556 | END SUBROUTINE gr_scal_v |
---|
| 557 | |
---|
| 558 | SUBROUTINE gr_scal_u(nx,x_scal,x_u) |
---|
| 559 | ! convert values from scalar points to U points on C-grid |
---|
| 560 | ! used to compute wind stress at U points |
---|
| 561 | USE mod_grid_phy_lmdz, ONLY: nbp_lon, nbp_lat |
---|
| 562 | IMPLICIT NONE |
---|
| 563 | |
---|
| 564 | INTEGER,INTENT(IN) :: nx |
---|
| 565 | REAL,INTENT(OUT) :: x_u((nbp_lon+1)*nbp_lat,nx) |
---|
| 566 | REAL,INTENT(IN) :: x_scal((nbp_lon+1)*nbp_lat,nx) |
---|
| 567 | |
---|
| 568 | INTEGER :: l,ij |
---|
| 569 | INTEGER :: iip1,jjp1,ip1jmp1 |
---|
| 570 | |
---|
| 571 | iip1=nbp_lon+1 |
---|
| 572 | jjp1=nbp_lat |
---|
| 573 | ip1jmp1=(nbp_lon+1)*nbp_lat ! = iip1*jjp1 |
---|
| 574 | |
---|
| 575 | DO l=1,nx |
---|
| 576 | DO ij=1,ip1jmp1-1 |
---|
| 577 | x_u(ij,l)= & |
---|
| 578 | (aire(ij)*x_scal(ij,l)+aire(ij+1)*x_scal(ij+1,l)) & |
---|
| 579 | /(aire(ij)+aire(ij+1)) |
---|
| 580 | ENDDO |
---|
| 581 | ENDDO |
---|
| 582 | |
---|
| 583 | CALL SCOPY(nx*jjp1,x_u(1,1),iip1,x_u(iip1,1),iip1) |
---|
| 584 | |
---|
| 585 | END SUBROUTINE gr_scal_u |
---|
[1529] | 586 | |
---|
[1298] | 587 | END MODULE surf_heat_transp_mod |
---|
| 588 | |
---|
| 589 | |
---|
| 590 | |
---|