1 | subroutine sugas_corrk |
---|
2 | |
---|
3 | !================================================================== |
---|
4 | ! |
---|
5 | ! Purpose |
---|
6 | ! ------- |
---|
7 | ! Set up gaseous absorption parameters used by the radiation code. |
---|
8 | ! This subroutine is a replacement for the old 'setrad', which contained |
---|
9 | ! both absorption and scattering data. |
---|
10 | ! |
---|
11 | ! Authors |
---|
12 | ! ------- |
---|
13 | ! Adapted and generalised from the NASA Ames code by Robin Wordsworth (2009) |
---|
14 | ! |
---|
15 | ! Summary |
---|
16 | ! ------- |
---|
17 | ! |
---|
18 | !================================================================== |
---|
19 | |
---|
20 | use radinc_h |
---|
21 | use radcommon_h, only : pgasref,pfgasref,pgasmin,pgasmax |
---|
22 | use radcommon_h, only : tgasref,tgasmin,tgasmax |
---|
23 | use radcommon_h, only : gasv,gasi,FZEROI,FZEROV,gweight |
---|
24 | use radcommon_h, only : wrefvar,gastype |
---|
25 | |
---|
26 | implicit none |
---|
27 | |
---|
28 | #include "datafile.h" |
---|
29 | #include "callkeys.h" |
---|
30 | |
---|
31 | !================================================================== |
---|
32 | |
---|
33 | logical file_ok |
---|
34 | |
---|
35 | integer n, nt, np, nh, ng, nw, m, i |
---|
36 | integer L_NGAUSScheck, L_NPREFcheck, L_NTREFcheck, L_REFVARcheck |
---|
37 | |
---|
38 | character(len=100) :: file_id |
---|
39 | character(len=100) :: file_path |
---|
40 | |
---|
41 | real*8 gasi8(L_NTREF,L_NPREF,L_REFVAR,L_NSPECTI,L_NGAUSS) |
---|
42 | real*8 gasv8(L_NTREF,L_NPREF,L_REFVAR,L_NSPECTV,L_NGAUSS) |
---|
43 | |
---|
44 | real*8 x, xi(4), yi(4), ans, p |
---|
45 | |
---|
46 | integer Nspecies |
---|
47 | |
---|
48 | |
---|
49 | !======================================================================= |
---|
50 | ! Load variable species data, exit if we have wrong database |
---|
51 | file_id='/corrk_data/' // corrkdir(1:LEN_TRIM(corrkdir)) // '/Q.dat' |
---|
52 | file_path=datafile(1:LEN_TRIM(datafile))//file_id(1:LEN_TRIM(file_id)) |
---|
53 | |
---|
54 | ! check that the file exists |
---|
55 | inquire(FILE=file_path,EXIST=file_ok) |
---|
56 | if(.not.file_ok) then |
---|
57 | write(*,*)'The file ',file_path(1:LEN_TRIM(file_path)) |
---|
58 | write(*,*)'was not found by sugas_corrk.F90, exiting.' |
---|
59 | call abort |
---|
60 | endif |
---|
61 | |
---|
62 | ! check that database matches varactive toggle |
---|
63 | open(111,file=file_path(1:LEN_TRIM(file_path)),form='formatted') |
---|
64 | read(111,*) Nspecies |
---|
65 | |
---|
66 | if(Nspecies.eq.1 .and. (varactive.or.varfixed))then |
---|
67 | print*,'You have varactive/fixed=.true. but the database [', & |
---|
68 | corrkdir(1:LEN_TRIM(corrkdir)), & |
---|
69 | '] has no variable species, exiting.' |
---|
70 | call abort |
---|
71 | elseif(Nspecies.eq.2 .and. (.not.varactive) .and. (.not.varfixed))then |
---|
72 | print*,'You have varactive and varfixed=.false. and the database [', & |
---|
73 | corrkdir(1:LEN_TRIM(corrkdir)), & |
---|
74 | '] has a variable species.' |
---|
75 | call abort |
---|
76 | elseif(Nspecies.gt.3 .or. Nspecies.lt.1)then |
---|
77 | print*,Nspecies,' species in database [', & |
---|
78 | corrkdir(1:LEN_TRIM(corrkdir)), & |
---|
79 | '], radiative code cannot handle this.' |
---|
80 | call abort |
---|
81 | endif |
---|
82 | |
---|
83 | do n=1,Nspecies |
---|
84 | read(111,*) gastype(n) |
---|
85 | print*,'Gas ',n,' is ',gastype(n) |
---|
86 | enddo |
---|
87 | |
---|
88 | ! check the array size is correct, load the coefficients |
---|
89 | open(111,file=file_path(1:LEN_TRIM(file_path)),form='formatted') |
---|
90 | read(111,*) L_REFVARcheck |
---|
91 | if(.not.(L_REFVARcheck.eq.L_REFVAR)) then |
---|
92 | print*,'The size of your radiative transfer mixing ratio array does ' |
---|
93 | print*,'not match the value given in Q.dat, exiting.' |
---|
94 | call abort |
---|
95 | endif |
---|
96 | read(111,*) wrefvar |
---|
97 | close(111) |
---|
98 | |
---|
99 | ! display the values |
---|
100 | print*,'Variable gas mixing ratios:' |
---|
101 | do n=1,L_REFVAR |
---|
102 | print*,n,'.',wrefvar(n),' kg/kg' |
---|
103 | end do |
---|
104 | print*,'' |
---|
105 | |
---|
106 | |
---|
107 | !======================================================================= |
---|
108 | ! Set the weighting in g-space |
---|
109 | |
---|
110 | file_id='/corrk_data/' // corrkdir(1:LEN_TRIM(corrkdir)) // '/g.dat' |
---|
111 | file_path=datafile(1:LEN_TRIM(datafile))//file_id(1:LEN_TRIM(file_id)) |
---|
112 | |
---|
113 | ! check that the file exists |
---|
114 | inquire(FILE=file_path,EXIST=file_ok) |
---|
115 | if(.not.file_ok) then |
---|
116 | write(*,*)'The file ',file_path(1:LEN_TRIM(file_path)) |
---|
117 | write(*,*)'was not found by sugas_corrk.F90, exiting.' |
---|
118 | call abort |
---|
119 | endif |
---|
120 | |
---|
121 | ! check the array size is correct, load the coefficients |
---|
122 | open(111,file=file_path(1:LEN_TRIM(file_path)),form='formatted') |
---|
123 | read(111,*) L_NGAUSScheck |
---|
124 | if(.not.(L_NGAUSScheck.eq.L_NGAUSS)) then |
---|
125 | print*,'The size of your radiative transfer g-space array does ' |
---|
126 | print*,'not match the value given in g.dat, exiting.' |
---|
127 | call abort |
---|
128 | endif |
---|
129 | read(111,*) gweight |
---|
130 | close(111) |
---|
131 | |
---|
132 | ! display the values |
---|
133 | print*,'Correlated-k g-space grid:' |
---|
134 | do n=1,L_NGAUSS |
---|
135 | print*,n,'.',gweight(n) |
---|
136 | end do |
---|
137 | print*,'' |
---|
138 | |
---|
139 | !======================================================================= |
---|
140 | ! Set the reference pressure and temperature arrays. These are |
---|
141 | ! the pressures and temperatures at which we have k-coefficients. |
---|
142 | |
---|
143 | !----------------------------------------------------------------------- |
---|
144 | ! pressure |
---|
145 | |
---|
146 | file_id='/corrk_data/' // corrkdir(1:LEN_TRIM(corrkdir)) // '/p.dat' |
---|
147 | file_path=datafile(1:LEN_TRIM(datafile))//file_id(1:LEN_TRIM(file_id)) |
---|
148 | |
---|
149 | ! check that the file exists |
---|
150 | inquire(FILE=file_path,EXIST=file_ok) |
---|
151 | if(.not.file_ok) then |
---|
152 | write(*,*)'The file ',file_path(1:LEN_TRIM(file_path)) |
---|
153 | write(*,*)'was not found by sugas_corrk.F90, exiting.' |
---|
154 | call abort |
---|
155 | endif |
---|
156 | |
---|
157 | ! check the array size is correct, load the coefficients |
---|
158 | open(111,file=file_path(1:LEN_TRIM(file_path)),form='formatted') |
---|
159 | read(111,*) L_NPREFcheck |
---|
160 | if(.not.(L_NPREFcheck.eq.L_NPREF)) then |
---|
161 | print*,'The size of your radiative transfer pressure array does ' |
---|
162 | print*,'not match the value given in p.dat, exiting.' |
---|
163 | call abort |
---|
164 | endif |
---|
165 | read(111,*) pgasref |
---|
166 | close(111) |
---|
167 | |
---|
168 | ! display the values |
---|
169 | print*,'Correlated-k pressure grid (mBar):' |
---|
170 | do n=1,L_NPREF |
---|
171 | print*,n,'. 1 x 10^',pgasref(n),' mBar' |
---|
172 | end do |
---|
173 | print*,'' |
---|
174 | |
---|
175 | ! save the min / max matrix values |
---|
176 | pgasmin = 10.0**pgasref(1) |
---|
177 | pgasmax = 10.0**pgasref(L_NPREF) |
---|
178 | |
---|
179 | ! interpolate to finer grid |
---|
180 | do n=1,L_NPREF-1 |
---|
181 | do m=1,5 |
---|
182 | pfgasref((n-1)*5+m) = pgasref(n)+(m-1)*0.2 |
---|
183 | end do |
---|
184 | end do |
---|
185 | pfgasref(L_PINT) = pgasref(L_NPREF) |
---|
186 | ! Warning! this may need to be generalised if we want to use uneven grids! |
---|
187 | |
---|
188 | |
---|
189 | !----------------------------------------------------------------------- |
---|
190 | ! temperature |
---|
191 | |
---|
192 | file_id='/corrk_data/' // corrkdir(1:LEN_TRIM(corrkdir)) // '/T.dat' |
---|
193 | file_path=datafile(1:LEN_TRIM(datafile))//file_id(1:LEN_TRIM(file_id)) |
---|
194 | |
---|
195 | ! check that the file exists |
---|
196 | inquire(FILE=file_path,EXIST=file_ok) |
---|
197 | if(.not.file_ok) then |
---|
198 | write(*,*)'The file ',file_path(1:LEN_TRIM(file_path)) |
---|
199 | write(*,*)'was not found by sugas_corrk.F90, exiting.' |
---|
200 | call abort |
---|
201 | endif |
---|
202 | |
---|
203 | ! check the array size is correct, load the coefficients |
---|
204 | open(111,file=file_path(1:LEN_TRIM(file_path)),form='formatted') |
---|
205 | read(111,*) L_NTREFcheck |
---|
206 | if(.not.(L_NTREFcheck.eq.L_NTREF)) then |
---|
207 | print*,'The size of your radiative transfer temperature array does ' |
---|
208 | print*,'not match the value given in T.dat, exiting.' |
---|
209 | call abort |
---|
210 | endif |
---|
211 | read(111,*) tgasref |
---|
212 | close(111) |
---|
213 | |
---|
214 | ! display the values |
---|
215 | print*,'Correlated-k temperature grid:' |
---|
216 | do n=1,L_NTREF |
---|
217 | print*,n,'.',tgasref(n),' K' |
---|
218 | end do |
---|
219 | |
---|
220 | ! save the min / max matrix values |
---|
221 | tgasmin = tgasref(1) |
---|
222 | tgasmax = tgasref(L_NTREF) |
---|
223 | |
---|
224 | !======================================================================= |
---|
225 | ! Get gaseous k-coefficients and interpolate onto finer pressure grid |
---|
226 | |
---|
227 | ! VISIBLE |
---|
228 | if (callgasvis) then |
---|
229 | file_id='/corrk_data/'//trim(adjustl(banddir))//'/corrk_gcm_VI.dat' |
---|
230 | file_path=datafile(1:LEN_TRIM(datafile))//file_id(1:LEN_TRIM(file_id)) |
---|
231 | |
---|
232 | ! check that the file exists |
---|
233 | inquire(FILE=file_path,EXIST=file_ok) |
---|
234 | if(.not.file_ok) then |
---|
235 | write(*,*)'The file ',file_path(1:LEN_TRIM(file_path)) |
---|
236 | write(*,*)'was not found by sugas_corrk.F90.' |
---|
237 | write(*,*)'Are you sure you have absorption data for these bands?' |
---|
238 | call abort |
---|
239 | endif |
---|
240 | |
---|
241 | open(111,file=file_path(1:LEN_TRIM(file_path)),form='formatted') |
---|
242 | read(111,*) gasv8 |
---|
243 | close(111) |
---|
244 | |
---|
245 | else |
---|
246 | print*,'Visible gaseous absorption is set to zero.' |
---|
247 | endif |
---|
248 | |
---|
249 | ! INFRA-RED |
---|
250 | file_id='/corrk_data/'//trim(adjustl(banddir))//'/corrk_gcm_IR.dat' |
---|
251 | file_path=datafile(1:LEN_TRIM(datafile))//file_id(1:LEN_TRIM(file_id)) |
---|
252 | |
---|
253 | ! check that the file exists |
---|
254 | inquire(FILE=file_path,EXIST=file_ok) |
---|
255 | if(.not.file_ok) then |
---|
256 | write(*,*)'The file ',file_path(1:LEN_TRIM(file_path)) |
---|
257 | write(*,*)'was not found by sugas_corrk.F90.' |
---|
258 | write(*,*)'Are you sure you have absorption data for these bands?' |
---|
259 | call abort |
---|
260 | endif |
---|
261 | |
---|
262 | open(111,file=file_path(1:LEN_TRIM(file_path)),form='formatted') |
---|
263 | read(111,*) gasi8 |
---|
264 | close(111) |
---|
265 | |
---|
266 | do nw=1,L_NSPECTI |
---|
267 | fzeroi(nw) = 0. |
---|
268 | end do |
---|
269 | do nw=1,L_NSPECTV |
---|
270 | fzerov(nw) = 0. |
---|
271 | end do |
---|
272 | |
---|
273 | ! Take log10 of the values - this is what we will interpolate. |
---|
274 | ! Smallest value is 1.0E-200. |
---|
275 | |
---|
276 | do nt=1,L_NTREF |
---|
277 | do np=1,L_NPREF |
---|
278 | do nh=1,L_REFVAR |
---|
279 | do ng = 1,L_NGAUSS |
---|
280 | |
---|
281 | do nw=1,L_NSPECTV |
---|
282 | if(gasv8(nt,np,nh,nw,ng).gt.1.0d-200) then |
---|
283 | gasv8(nt,np,nh,nw,ng) = & |
---|
284 | log10(gasv8(nt,np,nh,nw,ng)) |
---|
285 | else |
---|
286 | gasv8(nt,np,nh,nw,ng) = -200.0 |
---|
287 | end if |
---|
288 | end do |
---|
289 | |
---|
290 | do nw=1,L_NSPECTI |
---|
291 | if(gasi8(nt,np,nh,nw,ng).gt.1.0d-200) then |
---|
292 | gasi8(nt,np,nh,nw,ng) = & |
---|
293 | log10(gasi8(nt,np,nh,nw,ng)) |
---|
294 | else |
---|
295 | gasi8(nt,np,nh,nw,ng) = -200.0 |
---|
296 | end if |
---|
297 | end do |
---|
298 | |
---|
299 | end do |
---|
300 | end do |
---|
301 | end do |
---|
302 | end do |
---|
303 | |
---|
304 | ! Interpolate the values: first the longwave |
---|
305 | |
---|
306 | do nt=1,L_NTREF |
---|
307 | do nh=1,L_REFVAR |
---|
308 | do nw=1,L_NSPECTI |
---|
309 | do ng=1,L_NGAUSS |
---|
310 | |
---|
311 | ! First, the initial interval |
---|
312 | |
---|
313 | n = 1 |
---|
314 | do m=1,5 |
---|
315 | x = pfgasref(m) |
---|
316 | xi(1) = pgasref(n) |
---|
317 | xi(2) = pgasref(n+1) |
---|
318 | xi(3) = pgasref(n+2) |
---|
319 | xi(4) = pgasref(n+3) |
---|
320 | yi(1) = gasi8(nt,n,nh,nw,ng) |
---|
321 | yi(2) = gasi8(nt,n+1,nh,nw,ng) |
---|
322 | yi(3) = gasi8(nt,n+2,nh,nw,ng) |
---|
323 | yi(4) = gasi8(nt,n+3,nh,nw,ng) |
---|
324 | call lagrange(x,xi,yi,ans) |
---|
325 | gasi(nt,m,nh,nw,ng) = 10.0**ans |
---|
326 | end do |
---|
327 | |
---|
328 | do n=2,L_NPREF-2 |
---|
329 | do m=1,5 |
---|
330 | i = (n-1)*5+m |
---|
331 | x = pfgasref(i) |
---|
332 | xi(1) = pgasref(n-1) |
---|
333 | xi(2) = pgasref(n) |
---|
334 | xi(3) = pgasref(n+1) |
---|
335 | xi(4) = pgasref(n+2) |
---|
336 | yi(1) = gasi8(nt,n-1,nh,nw,ng) |
---|
337 | yi(2) = gasi8(nt,n,nh,nw,ng) |
---|
338 | yi(3) = gasi8(nt,n+1,nh,nw,ng) |
---|
339 | yi(4) = gasi8(nt,n+2,nh,nw,ng) |
---|
340 | call lagrange(x,xi,yi,ans) |
---|
341 | gasi(nt,i,nh,nw,ng) = 10.0**ans |
---|
342 | end do |
---|
343 | end do |
---|
344 | |
---|
345 | ! Now, get the last interval |
---|
346 | |
---|
347 | n = L_NPREF-1 |
---|
348 | do m=1,5 |
---|
349 | i = (n-1)*5+m |
---|
350 | x = pfgasref(i) |
---|
351 | xi(1) = pgasref(n-2) |
---|
352 | xi(2) = pgasref(n-1) |
---|
353 | xi(3) = pgasref(n) |
---|
354 | xi(4) = pgasref(n+1) |
---|
355 | yi(1) = gasi8(nt,n-2,nh,nw,ng) |
---|
356 | yi(2) = gasi8(nt,n-1,nh,nw,ng) |
---|
357 | yi(3) = gasi8(nt,n,nh,nw,ng) |
---|
358 | yi(4) = gasi8(nt,n+1,nh,nw,ng) |
---|
359 | call lagrange(x,xi,yi,ans) |
---|
360 | gasi(nt,i,nh,nw,ng) = 10.0**ans |
---|
361 | end do |
---|
362 | |
---|
363 | ! Fill the last pressure point |
---|
364 | |
---|
365 | gasi(nt,L_PINT,nh,nw,ng) = & |
---|
366 | 10.0**gasi8(nt,L_NPREF,nh,nw,ng) |
---|
367 | |
---|
368 | end do |
---|
369 | end do |
---|
370 | end do |
---|
371 | end do |
---|
372 | |
---|
373 | ! Interpolate the values: now the shortwave |
---|
374 | |
---|
375 | do nt=1,L_NTREF |
---|
376 | do nh=1,L_REFVAR |
---|
377 | do nw=1,L_NSPECTV |
---|
378 | do ng=1,L_NGAUSS |
---|
379 | |
---|
380 | ! First, the initial interval |
---|
381 | |
---|
382 | n = 1 |
---|
383 | do m=1,5 |
---|
384 | x = pfgasref(m) |
---|
385 | xi(1) = pgasref(n) |
---|
386 | xi(2) = pgasref(n+1) |
---|
387 | xi(3) = pgasref(n+2) |
---|
388 | xi(4) = pgasref(n+3) |
---|
389 | yi(1) = gasv8(nt,n,nh,nw,ng) |
---|
390 | yi(2) = gasv8(nt,n+1,nh,nw,ng) |
---|
391 | yi(3) = gasv8(nt,n+2,nh,nw,ng) |
---|
392 | yi(4) = gasv8(nt,n+3,nh,nw,ng) |
---|
393 | call lagrange(x,xi,yi,ans) |
---|
394 | gasv(nt,m,nh,nw,ng) = 10.0**ans |
---|
395 | end do |
---|
396 | |
---|
397 | do n=2,L_NPREF-2 |
---|
398 | do m=1,5 |
---|
399 | i = (n-1)*5+m |
---|
400 | x = pfgasref(i) |
---|
401 | xi(1) = pgasref(n-1) |
---|
402 | xi(2) = pgasref(n) |
---|
403 | xi(3) = pgasref(n+1) |
---|
404 | xi(4) = pgasref(n+2) |
---|
405 | yi(1) = gasv8(nt,n-1,nh,nw,ng) |
---|
406 | yi(2) = gasv8(nt,n,nh,nw,ng) |
---|
407 | yi(3) = gasv8(nt,n+1,nh,nw,ng) |
---|
408 | yi(4) = gasv8(nt,n+2,nh,nw,ng) |
---|
409 | call lagrange(x,xi,yi,ans) |
---|
410 | gasv(nt,i,nh,nw,ng) = 10.0**ans |
---|
411 | end do |
---|
412 | end do |
---|
413 | |
---|
414 | ! Now, get the last interval |
---|
415 | |
---|
416 | n = L_NPREF-1 |
---|
417 | do m=1,5 |
---|
418 | i = (n-1)*5+m |
---|
419 | x = pfgasref(i) |
---|
420 | xi(1) = pgasref(n-2) |
---|
421 | xi(2) = pgasref(n-1) |
---|
422 | xi(3) = pgasref(n) |
---|
423 | xi(4) = pgasref(n+1) |
---|
424 | yi(1) = gasv8(nt,n-2,nh,nw,ng) |
---|
425 | yi(2) = gasv8(nt,n-1,nh,nw,ng) |
---|
426 | yi(3) = gasv8(nt,n,nh,nw,ng) |
---|
427 | yi(4) = gasv8(nt,n+1,nh,nw,ng) |
---|
428 | call lagrange(x,xi,yi,ans) |
---|
429 | gasv(nt,i,nh,nw,ng) = 10.0**ans |
---|
430 | end do |
---|
431 | |
---|
432 | ! Fill the last pressure point |
---|
433 | |
---|
434 | gasv(nt,L_PINT,nh,nw,ng) = & |
---|
435 | 10.0**gasv8(nt,L_NPREF,nh,nw,ng) |
---|
436 | |
---|
437 | end do |
---|
438 | end do |
---|
439 | end do |
---|
440 | end do |
---|
441 | |
---|
442 | return |
---|
443 | end subroutine sugas_corrk |
---|