[135] | 1 | subroutine soil(ngrid,nsoil,firstcall, |
---|
| 2 | & therm_i, |
---|
| 3 | & timestep,tsurf,tsoil, |
---|
| 4 | & capcal,fluxgrd) |
---|
| 5 | implicit none |
---|
| 6 | |
---|
| 7 | !----------------------------------------------------------------------- |
---|
| 8 | ! Author: Ehouarn Millour |
---|
| 9 | ! |
---|
| 10 | ! Purpose: Compute soil temperature using an implict 1st order scheme |
---|
| 11 | ! |
---|
| 12 | ! Note: depths of layers and mid-layers, soil thermal inertia and |
---|
| 13 | ! heat capacity are commons in comsoil.h |
---|
| 14 | !----------------------------------------------------------------------- |
---|
| 15 | |
---|
| 16 | #include "dimensions.h" |
---|
| 17 | #include "dimphys.h" |
---|
| 18 | |
---|
| 19 | #include"comsoil.h" |
---|
| 20 | |
---|
| 21 | c----------------------------------------------------------------------- |
---|
| 22 | ! arguments |
---|
| 23 | ! --------- |
---|
| 24 | ! inputs: |
---|
| 25 | integer ngrid ! number of (horizontal) grid-points |
---|
| 26 | integer nsoil ! number of soil layers |
---|
| 27 | logical firstcall ! identifier for initialization call |
---|
| 28 | real therm_i(ngrid,nsoil) ! thermal inertia |
---|
| 29 | real timestep ! time step |
---|
| 30 | real tsurf(ngrid) ! surface temperature |
---|
| 31 | ! outputs: |
---|
| 32 | real tsoil(ngrid,nsoil) ! soil (mid-layer) temperature |
---|
| 33 | real capcal(ngrid) ! surface specific heat |
---|
| 34 | real fluxgrd(ngrid) ! surface diffusive heat flux |
---|
| 35 | |
---|
| 36 | ! local saved variables: |
---|
[253] | 37 | !real,save :: mthermdiff(ngridmx,0:nsoilmx-1) ! mid-layer thermal diffusivity |
---|
| 38 | !real,save :: thermdiff(ngridmx,nsoilmx-1) ! inter-layer thermal diffusivity |
---|
| 39 | !real,save :: coefq(0:nsoilmx-1) ! q_{k+1/2} coefficients |
---|
| 40 | !real,save :: coefd(ngridmx,nsoilmx-1) ! d_k coefficients |
---|
| 41 | !real,save :: alph(ngridmx,nsoilmx-1) ! alpha_k coefficients |
---|
| 42 | !real,save :: beta(ngridmx,nsoilmx-1) ! beta_k coefficients |
---|
| 43 | !real,save :: mu |
---|
| 44 | |
---|
| 45 | real mthermdiff(ngridmx,0:nsoilmx-1) ! mid-layer thermal diffusivity |
---|
| 46 | real thermdiff(ngridmx,nsoilmx-1) ! inter-layer thermal diffusivity |
---|
| 47 | real coefq(0:nsoilmx-1) ! q_{k+1/2} coefficients |
---|
| 48 | real coefd(ngridmx,nsoilmx-1) ! d_k coefficients |
---|
| 49 | real alph(ngridmx,nsoilmx-1) ! alpha_k coefficients |
---|
| 50 | real beta(ngridmx,nsoilmx-1) ! beta_k coefficients |
---|
| 51 | real mu |
---|
| 52 | |
---|
| 53 | save mthermdiff,thermdiff,coefq,coefd,alph,beta,mu |
---|
| 54 | |
---|
[135] | 55 | ! local variables: |
---|
| 56 | integer ig,ik |
---|
| 57 | |
---|
[253] | 58 | |
---|
| 59 | ! print*,'tsoil=',tsoil |
---|
| 60 | ! print*,'tsurf=',tsurf |
---|
| 61 | |
---|
[135] | 62 | ! 0. Initialisations and preprocessing step |
---|
| 63 | if (firstcall) then |
---|
| 64 | ! note: firstcall is set to .true. or .false. by the caller |
---|
| 65 | ! and not changed by soil.F |
---|
| 66 | ! 0.1 Build mthermdiff(:), the mid-layer thermal diffusivities |
---|
| 67 | do ig=1,ngrid |
---|
| 68 | do ik=0,nsoil-1 |
---|
| 69 | mthermdiff(ig,ik)=therm_i(ig,ik+1)*therm_i(ig,ik+1)/volcapa |
---|
| 70 | ! write(*,*),'soil: ik: ',ik,' mthermdiff:',mthermdiff(ig,ik) |
---|
| 71 | enddo |
---|
| 72 | enddo |
---|
| 73 | |
---|
| 74 | ! 0.2 Build thermdiff(:), the "interlayer" thermal diffusivities |
---|
| 75 | do ig=1,ngrid |
---|
| 76 | do ik=1,nsoil-1 |
---|
| 77 | thermdiff(ig,ik)=((layer(ik)-mlayer(ik-1))*mthermdiff(ig,ik) |
---|
| 78 | & +(mlayer(ik)-layer(ik))*mthermdiff(ig,ik-1)) |
---|
| 79 | & /(mlayer(ik)-mlayer(ik-1)) |
---|
| 80 | ! write(*,*),'soil: ik: ',ik,' thermdiff:',thermdiff(ig,ik) |
---|
| 81 | enddo |
---|
| 82 | enddo |
---|
| 83 | |
---|
| 84 | ! 0.3 Build coefficients mu, q_{k+1/2}, d_k, alpha_k and capcal |
---|
| 85 | ! mu |
---|
| 86 | mu=mlayer(0)/(mlayer(1)-mlayer(0)) |
---|
| 87 | |
---|
| 88 | ! q_{1/2} |
---|
| 89 | coefq(0)=volcapa*layer(1)/timestep |
---|
| 90 | ! q_{k+1/2} |
---|
| 91 | do ik=1,nsoil-1 |
---|
| 92 | coefq(ik)=volcapa*(layer(ik+1)-layer(ik)) |
---|
| 93 | & /timestep |
---|
| 94 | enddo |
---|
| 95 | |
---|
| 96 | do ig=1,ngrid |
---|
| 97 | ! d_k |
---|
| 98 | do ik=1,nsoil-1 |
---|
| 99 | coefd(ig,ik)=thermdiff(ig,ik)/(mlayer(ik)-mlayer(ik-1)) |
---|
| 100 | enddo |
---|
| 101 | |
---|
| 102 | ! alph_{N-1} |
---|
| 103 | alph(ig,nsoil-1)=coefd(ig,nsoil-1)/ |
---|
| 104 | & (coefq(nsoil-1)+coefd(ig,nsoil-1)) |
---|
| 105 | ! alph_k |
---|
| 106 | do ik=nsoil-2,1,-1 |
---|
| 107 | alph(ig,ik)=coefd(ig,ik)/(coefq(ik)+coefd(ig,ik+1)* |
---|
| 108 | & (1.-alph(ig,ik+1))+coefd(ig,ik)) |
---|
| 109 | enddo |
---|
| 110 | |
---|
| 111 | ! capcal |
---|
| 112 | ! Cstar |
---|
| 113 | capcal(ig)=volcapa*layer(1)+ |
---|
| 114 | & (thermdiff(ig,1)/(mlayer(1)-mlayer(0)))* |
---|
| 115 | & (timestep*(1.-alph(ig,1))) |
---|
| 116 | ! Cs |
---|
| 117 | capcal(ig)=capcal(ig)/(1.+mu*(1.0-alph(ig,1))* |
---|
| 118 | & thermdiff(ig,1)/mthermdiff(ig,0)) |
---|
[253] | 119 | !write(*,*)'soil: ig=',ig,' capcal(ig)=',capcal(ig) |
---|
[135] | 120 | enddo ! of do ig=1,ngrid |
---|
| 121 | |
---|
| 122 | else ! of if (firstcall) |
---|
| 123 | |
---|
[253] | 124 | |
---|
[135] | 125 | ! 1. Compute soil temperatures |
---|
| 126 | ! First layer: |
---|
| 127 | do ig=1,ngrid |
---|
| 128 | tsoil(ig,1)=(tsurf(ig)+mu*beta(ig,1)* |
---|
| 129 | & thermdiff(ig,1)/mthermdiff(ig,0))/ |
---|
| 130 | & (1.+mu*(1.0-alph(ig,1))* |
---|
| 131 | & thermdiff(ig,1)/mthermdiff(ig,0)) |
---|
| 132 | enddo |
---|
| 133 | ! Other layers: |
---|
| 134 | do ik=1,nsoil-1 |
---|
| 135 | do ig=1,ngrid |
---|
| 136 | tsoil(ig,ik+1)=alph(ig,ik)*tsoil(ig,ik)+beta(ig,ik) |
---|
| 137 | enddo |
---|
| 138 | enddo |
---|
| 139 | |
---|
| 140 | endif! of if (firstcall) |
---|
| 141 | |
---|
| 142 | ! 2. Compute beta coefficients (preprocessing for next time step) |
---|
| 143 | ! Bottom layer, beta_{N-1} |
---|
| 144 | do ig=1,ngrid |
---|
| 145 | beta(ig,nsoil-1)=coefq(nsoil-1)*tsoil(ig,nsoil) |
---|
| 146 | & /(coefq(nsoil-1)+coefd(ig,nsoil-1)) |
---|
| 147 | enddo |
---|
| 148 | ! Other layers |
---|
| 149 | do ik=nsoil-2,1,-1 |
---|
| 150 | do ig=1,ngrid |
---|
| 151 | beta(ig,ik)=(coefq(ik)*tsoil(ig,ik+1)+ |
---|
| 152 | & coefd(ig,ik+1)*beta(ig,ik+1))/ |
---|
| 153 | & (coefq(ik)+coefd(ig,ik+1)*(1.0-alph(ig,ik+1)) |
---|
| 154 | & +coefd(ig,ik)) |
---|
| 155 | enddo |
---|
| 156 | enddo |
---|
| 157 | |
---|
[253] | 158 | |
---|
[135] | 159 | ! 3. Compute surface diffusive flux & calorific capacity |
---|
| 160 | do ig=1,ngrid |
---|
| 161 | ! Cstar |
---|
| 162 | ! capcal(ig)=volcapa(ig,1)*layer(ig,1)+ |
---|
| 163 | ! & (thermdiff(ig,1)/(mlayer(ig,1)-mlayer(ig,0)))* |
---|
| 164 | ! & (timestep*(1.-alph(ig,1))) |
---|
| 165 | ! Fstar |
---|
[253] | 166 | |
---|
| 167 | ! print*,'this far in soil 1' |
---|
| 168 | ! print*,'thermdiff=',thermdiff(ig,1) |
---|
| 169 | ! print*,'mlayer=',mlayer |
---|
| 170 | ! print*,'beta=',beta(ig,1) |
---|
| 171 | ! print*,'alph=',alph(ig,1) |
---|
| 172 | ! print*,'tsoil=',tsoil(ig,1) |
---|
| 173 | |
---|
[135] | 174 | fluxgrd(ig)=(thermdiff(ig,1)/(mlayer(1)-mlayer(0)))* |
---|
| 175 | & (beta(ig,1)+(alph(ig,1)-1.0)*tsoil(ig,1)) |
---|
| 176 | |
---|
| 177 | ! mu=mlayer(ig,0)/(mlayer(ig,1)-mlayer(ig,0)) |
---|
| 178 | ! capcal(ig)=capcal(ig)/(1.+mu*(1.0-alph(ig,1))* |
---|
| 179 | ! & thermdiff(ig,1)/mthermdiff(ig,0)) |
---|
| 180 | ! Fs |
---|
| 181 | fluxgrd(ig)=fluxgrd(ig)+(capcal(ig)/timestep)* |
---|
| 182 | & (tsoil(ig,1)*(1.+mu*(1.0-alph(ig,1))* |
---|
| 183 | & thermdiff(ig,1)/mthermdiff(ig,0)) |
---|
| 184 | & -tsurf(ig)-mu*beta(ig,1)* |
---|
| 185 | & thermdiff(ig,1)/mthermdiff(ig,0)) |
---|
| 186 | enddo |
---|
| 187 | |
---|
[253] | 188 | |
---|
[135] | 189 | end |
---|
| 190 | |
---|