| 1 | module sfluxv_mod |
|---|
| 2 | |
|---|
| 3 | implicit none |
|---|
| 4 | |
|---|
| 5 | contains |
|---|
| 6 | |
|---|
| 7 | SUBROUTINE SFLUXV(DTAUV,TAUV,TAUCUMV,RSFV,DWNV,WBARV,COSBV, |
|---|
| 8 | * UBAR0,STEL,NFLUXTOPV,FLUXTOPVDN, |
|---|
| 9 | * NFLUXOUTV_nu,NFLUXGNDV_nu, |
|---|
| 10 | * FMNETV,FLUXUPV,FLUXDNV,FZEROV,taugsurf) |
|---|
| 11 | |
|---|
| 12 | use radinc_h, only: L_TAUMAX, L_LEVELS, L_NSPECTV, L_NGAUSS |
|---|
| 13 | use radinc_h, only: L_NLAYRAD, L_NLEVRAD |
|---|
| 14 | use radcommon_h, only: tlimit, gweight |
|---|
| 15 | use gfluxv_mod, only: gfluxv |
|---|
| 16 | |
|---|
| 17 | implicit none |
|---|
| 18 | |
|---|
| 19 | real*8 FMNETV(L_NLAYRAD) |
|---|
| 20 | real*8 TAUCUMV(L_LEVELS,L_NSPECTV,L_NGAUSS) |
|---|
| 21 | real*8 TAUV(L_NLEVRAD,L_NSPECTV,L_NGAUSS) |
|---|
| 22 | real*8 DTAUV(L_NLAYRAD,L_NSPECTV,L_NGAUSS), DWNV(L_NSPECTV) |
|---|
| 23 | real*8 FMUPV(L_NLAYRAD), FMDV(L_NLAYRAD) |
|---|
| 24 | real*8 COSBV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
|---|
| 25 | real*8 WBARV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
|---|
| 26 | real*8 STEL(L_NSPECTV) |
|---|
| 27 | real*8 FLUXUPV(L_NLAYRAD), FLUXDNV(L_NLAYRAD) |
|---|
| 28 | real*8 NFLUXTOPV, FLUXUP, FLUXDN,FLUXTOPVDN |
|---|
| 29 | real*8 NFLUXOUTV_nu(L_NSPECTV) |
|---|
| 30 | real*8 NFLUXGNDV_nu(L_NSPECTV) |
|---|
| 31 | |
|---|
| 32 | integer L, NG, NW, NG1,k |
|---|
| 33 | real*8 ubar0, f0pi, btop, bsurf, taumax, eterm |
|---|
| 34 | real*8 rsfv(L_NSPECTV) ! Spectral dependency added by MT2015. |
|---|
| 35 | real*8 FZEROV(L_NSPECTV) |
|---|
| 36 | |
|---|
| 37 | real*8 DIFFV, DIFFVT |
|---|
| 38 | real*8 taugsurf(L_NSPECTV,L_NGAUSS-1), fzero |
|---|
| 39 | |
|---|
| 40 | C======================================================================C |
|---|
| 41 | |
|---|
| 42 | TAUMAX = L_TAUMAX |
|---|
| 43 | |
|---|
| 44 | C ZERO THE NET FLUXES |
|---|
| 45 | |
|---|
| 46 | NFLUXTOPV = 0.0 |
|---|
| 47 | FLUXTOPVDN = 0.0 |
|---|
| 48 | |
|---|
| 49 | DO NW=1,L_NSPECTV |
|---|
| 50 | NFLUXOUTV_nu(NW)=0.0 |
|---|
| 51 | NFLUXGNDV_nu(NW)=0.0 |
|---|
| 52 | END DO |
|---|
| 53 | |
|---|
| 54 | DO L=1,L_NLAYRAD |
|---|
| 55 | FMNETV(L) = 0.0 |
|---|
| 56 | FLUXUPV(L) = 0.0 |
|---|
| 57 | FLUXDNV(L) = 0.0 |
|---|
| 58 | END DO |
|---|
| 59 | |
|---|
| 60 | DIFFVT = 0.0 |
|---|
| 61 | |
|---|
| 62 | C WE NOW ENTER A MAJOR LOOP OVER SPECTRAL INTERVALS IN THE VISIBLE |
|---|
| 63 | C TO CALCULATE THE NET FLUX IN EACH SPECTRAL INTERVAL |
|---|
| 64 | |
|---|
| 65 | DO 500 NW=1,L_NSPECTV |
|---|
| 66 | |
|---|
| 67 | F0PI = STEL(NW) |
|---|
| 68 | |
|---|
| 69 | FZERO = FZEROV(NW) |
|---|
| 70 | IF(FZERO.ge.0.99) goto 40 |
|---|
| 71 | DO NG=1,L_NGAUSS-1 |
|---|
| 72 | |
|---|
| 73 | if(TAUGSURF(NW,NG) .lt. TLIMIT) then |
|---|
| 74 | |
|---|
| 75 | fzero = fzero + (1.0-FZEROV(NW))*GWEIGHT(NG) |
|---|
| 76 | |
|---|
| 77 | goto 30 |
|---|
| 78 | end if |
|---|
| 79 | |
|---|
| 80 | C SET UP THE UPPER AND LOWER BOUNDARY CONDITIONS ON THE VISIBLE |
|---|
| 81 | |
|---|
| 82 | BTOP = 0.0 |
|---|
| 83 | !BSURF = 0./0. ! why was this here? |
|---|
| 84 | BSURF = 0. |
|---|
| 85 | C LOOP OVER THE NTERMS BEGINNING HERE |
|---|
| 86 | |
|---|
| 87 | |
|---|
| 88 | ! FACTOR = 1.0D0 - WDEL(1)*CDEL(1)**2 |
|---|
| 89 | ! TAU(1) = TDEL(1)*FACTOR |
|---|
| 90 | |
|---|
| 91 | |
|---|
| 92 | ETERM = MIN(TAUV(L_NLEVRAD,NW,NG),TAUMAX) |
|---|
| 93 | BSURF = RSFV(NW)*UBAR0*STEL(NW)*EXP(-ETERM/UBAR0) |
|---|
| 94 | |
|---|
| 95 | C WE CAN NOW SOLVE FOR THE COEFFICIENTS OF THE TWO STREAM |
|---|
| 96 | C CALL A SUBROUTINE THAT SOLVES FOR THE FLUX TERMS |
|---|
| 97 | C WITHIN EACH INTERVAL AT THE MIDPOINT WAVENUMBER |
|---|
| 98 | C |
|---|
| 99 | C FUW AND FDW ARE WORKING FLUX ARRAYS THAT WILL BE USED TO |
|---|
| 100 | C RETURN FLUXES FOR A GIVEN NT |
|---|
| 101 | |
|---|
| 102 | |
|---|
| 103 | CALL GFLUXV(DTAUV(1,NW,NG),TAUV(1,NW,NG),TAUCUMV(1,NW,NG), |
|---|
| 104 | * WBARV(1,NW,NG),COSBV(1,NW,NG),UBAR0,F0PI,RSFV(NW), |
|---|
| 105 | * BTOP,BSURF,FMUPV,FMDV,DIFFV,FLUXUP,FLUXDN) |
|---|
| 106 | |
|---|
| 107 | C NOW CALCULATE THE CUMULATIVE VISIBLE NET FLUX |
|---|
| 108 | |
|---|
| 109 | NFLUXTOPV = NFLUXTOPV+(FLUXUP-FLUXDN)*GWEIGHT(NG)* |
|---|
| 110 | * (1.0-FZEROV(NW)) |
|---|
| 111 | FLUXTOPVDN = FLUXTOPVDN+FLUXDN*GWEIGHT(NG)* |
|---|
| 112 | * (1.0-FZEROV(NW)) |
|---|
| 113 | DO L=1,L_NLAYRAD |
|---|
| 114 | FMNETV(L)=FMNETV(L)+( FMUPV(L)-FMDV(L) )* |
|---|
| 115 | * GWEIGHT(NG)*(1.0-FZEROV(NW)) |
|---|
| 116 | FLUXUPV(L) = FLUXUPV(L) + FMUPV(L)*GWEIGHT(NG)* |
|---|
| 117 | * (1.0-FZEROV(NW)) |
|---|
| 118 | FLUXDNV(L) = FLUXDNV(L) + FMDV(L)*GWEIGHT(NG)* |
|---|
| 119 | * (1.0-FZEROV(NW)) |
|---|
| 120 | END DO |
|---|
| 121 | |
|---|
| 122 | c band-resolved flux leaving TOA (RDW) |
|---|
| 123 | NFLUXOUTV_nu(NW) = NFLUXOUTV_nu(NW) |
|---|
| 124 | * +FLUXUP*GWEIGHT(NG)*(1.0-FZEROV(NW)) |
|---|
| 125 | |
|---|
| 126 | c band-resolved flux at ground (RDW) |
|---|
| 127 | NFLUXGNDV_nu(NW) = NFLUXGNDV_nu(NW) |
|---|
| 128 | * +FMDV(L_NLAYRAD)*GWEIGHT(NG)*(1.0-FZEROV(NW)) |
|---|
| 129 | |
|---|
| 130 | |
|---|
| 131 | C THE DIFFUSE COMPONENT OF THE DOWNWARD STELLAR FLUX |
|---|
| 132 | |
|---|
| 133 | DIFFVT = DIFFVT + DIFFV*GWEIGHT(NG)*(1.0-FZEROV(NW)) |
|---|
| 134 | |
|---|
| 135 | 30 CONTINUE |
|---|
| 136 | |
|---|
| 137 | END DO ! the Gauss loop |
|---|
| 138 | |
|---|
| 139 | 40 continue |
|---|
| 140 | C Special 17th Gauss point |
|---|
| 141 | |
|---|
| 142 | NG = L_NGAUSS |
|---|
| 143 | |
|---|
| 144 | C SET UP THE UPPER AND LOWER BOUNDARY CONDITIONS ON THE VISIBLE |
|---|
| 145 | |
|---|
| 146 | BTOP = 0.0 |
|---|
| 147 | |
|---|
| 148 | C LOOP OVER THE NTERMS BEGINNING HERE |
|---|
| 149 | |
|---|
| 150 | ETERM = MIN(TAUV(L_NLEVRAD,NW,NG),TAUMAX) |
|---|
| 151 | BSURF = RSFV(NW)*UBAR0*STEL(NW)*EXP(-ETERM/UBAR0) |
|---|
| 152 | |
|---|
| 153 | |
|---|
| 154 | C WE CAN NOW SOLVE FOR THE COEFFICIENTS OF THE TWO STREAM |
|---|
| 155 | C CALL A SUBROUTINE THAT SOLVES FOR THE FLUX TERMS |
|---|
| 156 | C WITHIN EACH INTERVAL AT THE MIDPOINT WAVENUMBER |
|---|
| 157 | C |
|---|
| 158 | C FUW AND FDW ARE WORKING FLUX ARRAYS THAT WILL BE USED TO |
|---|
| 159 | C RETURN FLUXES FOR A GIVEN NT |
|---|
| 160 | |
|---|
| 161 | CALL GFLUXV(DTAUV(1,NW,NG),TAUV(1,NW,NG),TAUCUMV(1,NW,NG), |
|---|
| 162 | * WBARV(1,NW,NG),COSBV(1,NW,NG),UBAR0,F0PI,RSFV(NW), |
|---|
| 163 | * BTOP,BSURF,FMUPV,FMDV,DIFFV,FLUXUP,FLUXDN) |
|---|
| 164 | |
|---|
| 165 | |
|---|
| 166 | C NOW CALCULATE THE CUMULATIVE VISIBLE NET FLUX |
|---|
| 167 | |
|---|
| 168 | NFLUXTOPV = NFLUXTOPV+(FLUXUP-FLUXDN)*FZERO |
|---|
| 169 | FLUXTOPVDN = FLUXTOPVDN+FLUXDN*FZERO |
|---|
| 170 | DO L=1,L_NLAYRAD |
|---|
| 171 | FMNETV(L)=FMNETV(L)+( FMUPV(L)-FMDV(L) )*FZERO |
|---|
| 172 | FLUXUPV(L) = FLUXUPV(L) + FMUPV(L)*FZERO |
|---|
| 173 | FLUXDNV(L) = FLUXDNV(L) + FMDV(L)*FZERO |
|---|
| 174 | END DO |
|---|
| 175 | |
|---|
| 176 | c band-resolved flux leaving TOA (RDW) |
|---|
| 177 | NFLUXOUTV_nu(NW) = NFLUXOUTV_nu(NW) |
|---|
| 178 | * +FLUXUP*FZERO |
|---|
| 179 | |
|---|
| 180 | c band-resolved flux at ground (RDW) |
|---|
| 181 | NFLUXGNDV_nu(NW) = NFLUXGNDV_nu(NW)+FMDV(L_NLAYRAD)*FZERO |
|---|
| 182 | |
|---|
| 183 | |
|---|
| 184 | C THE DIFFUSE COMPONENT OF THE DOWNWARD STELLAR FLUX |
|---|
| 185 | |
|---|
| 186 | DIFFVT = DIFFVT + DIFFV*FZERO |
|---|
| 187 | |
|---|
| 188 | |
|---|
| 189 | 500 CONTINUE |
|---|
| 190 | |
|---|
| 191 | |
|---|
| 192 | C *** END OF MAJOR SPECTRAL INTERVAL LOOP IN THE VISIBLE***** |
|---|
| 193 | |
|---|
| 194 | |
|---|
| 195 | END SUBROUTINE SFLUXV |
|---|
| 196 | |
|---|
| 197 | end module sfluxv_mod |
|---|
| 198 | |
|---|