| 1 | SUBROUTINE SFLUXV(DTAUV,TAUV,TAUCUMV,RSFV,DWNV,WBARV,COSBV, |
|---|
| 2 | * UBAR0,STEL,NFLUXTOPV,FLUXTOPVDN, |
|---|
| 3 | * NFLUXOUTV_nu,NFLUXGNDV_nu, |
|---|
| 4 | * FMNETV,FLUXUPV,FLUXDNV,FZEROV,taugsurf) |
|---|
| 5 | |
|---|
| 6 | use radinc_h |
|---|
| 7 | use radcommon_h, only: tlimit, gweight |
|---|
| 8 | |
|---|
| 9 | implicit none |
|---|
| 10 | |
|---|
| 11 | real*8 FMNETV(L_NLAYRAD) |
|---|
| 12 | real*8 TAUCUMV(L_LEVELS,L_NSPECTV,L_NGAUSS) |
|---|
| 13 | real*8 TAUV(L_NLEVRAD,L_NSPECTV,L_NGAUSS) |
|---|
| 14 | real*8 DTAUV(L_NLAYRAD,L_NSPECTV,L_NGAUSS), DWNV(L_NSPECTV) |
|---|
| 15 | real*8 FMUPV(L_NLAYRAD), FMDV(L_NLAYRAD) |
|---|
| 16 | real*8 COSBV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
|---|
| 17 | real*8 WBARV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
|---|
| 18 | real*8 STEL(L_NSPECTV) |
|---|
| 19 | real*8 FLUXUPV(L_NLAYRAD), FLUXDNV(L_NLAYRAD) |
|---|
| 20 | real*8 NFLUXTOPV, FLUXUP, FLUXDN,FLUXTOPVDN |
|---|
| 21 | real*8 NFLUXOUTV_nu(L_NSPECTV) |
|---|
| 22 | real*8 NFLUXGNDV_nu(L_NSPECTV) |
|---|
| 23 | |
|---|
| 24 | integer L, NG, NW, NG1,k |
|---|
| 25 | real*8 ubar0, f0pi, btop, bsurf, taumax, eterm |
|---|
| 26 | real*8 rsfv(L_NSPECTV) ! Spectral dependency added by MT2015. |
|---|
| 27 | real*8 FZEROV(L_NSPECTV) |
|---|
| 28 | |
|---|
| 29 | real*8 DIFFV, DIFFVT |
|---|
| 30 | real*8 taugsurf(L_NSPECTV,L_NGAUSS-1), fzero |
|---|
| 31 | |
|---|
| 32 | C======================================================================C |
|---|
| 33 | |
|---|
| 34 | TAUMAX = L_TAUMAX |
|---|
| 35 | |
|---|
| 36 | C ZERO THE NET FLUXES |
|---|
| 37 | |
|---|
| 38 | NFLUXTOPV = 0.0 |
|---|
| 39 | FLUXTOPVDN = 0.0 |
|---|
| 40 | |
|---|
| 41 | DO NW=1,L_NSPECTV |
|---|
| 42 | NFLUXOUTV_nu(NW)=0.0 |
|---|
| 43 | NFLUXGNDV_nu(NW)=0.0 |
|---|
| 44 | END DO |
|---|
| 45 | |
|---|
| 46 | DO L=1,L_NLAYRAD |
|---|
| 47 | FMNETV(L) = 0.0 |
|---|
| 48 | FLUXUPV(L) = 0.0 |
|---|
| 49 | FLUXDNV(L) = 0.0 |
|---|
| 50 | END DO |
|---|
| 51 | |
|---|
| 52 | DIFFVT = 0.0 |
|---|
| 53 | |
|---|
| 54 | C WE NOW ENTER A MAJOR LOOP OVER SPECTRAL INTERVALS IN THE VISIBLE |
|---|
| 55 | C TO CALCULATE THE NET FLUX IN EACH SPECTRAL INTERVAL |
|---|
| 56 | |
|---|
| 57 | DO 500 NW=1,L_NSPECTV |
|---|
| 58 | |
|---|
| 59 | F0PI = STEL(NW) |
|---|
| 60 | |
|---|
| 61 | FZERO = FZEROV(NW) |
|---|
| 62 | IF(FZERO.ge.0.99) goto 40 |
|---|
| 63 | DO NG=1,L_NGAUSS-1 |
|---|
| 64 | |
|---|
| 65 | if(TAUGSURF(NW,NG) .lt. TLIMIT) then |
|---|
| 66 | |
|---|
| 67 | fzero = fzero + (1.0-FZEROV(NW))*GWEIGHT(NG) |
|---|
| 68 | |
|---|
| 69 | goto 30 |
|---|
| 70 | end if |
|---|
| 71 | |
|---|
| 72 | C SET UP THE UPPER AND LOWER BOUNDARY CONDITIONS ON THE VISIBLE |
|---|
| 73 | |
|---|
| 74 | BTOP = 0.0 |
|---|
| 75 | !BSURF = 0./0. ! why was this here? |
|---|
| 76 | BSURF = 0. |
|---|
| 77 | C LOOP OVER THE NTERMS BEGINNING HERE |
|---|
| 78 | |
|---|
| 79 | |
|---|
| 80 | ! FACTOR = 1.0D0 - WDEL(1)*CDEL(1)**2 |
|---|
| 81 | ! TAU(1) = TDEL(1)*FACTOR |
|---|
| 82 | |
|---|
| 83 | |
|---|
| 84 | ETERM = MIN(TAUV(L_NLEVRAD,NW,NG),TAUMAX) |
|---|
| 85 | BSURF = RSFV(NW)*UBAR0*STEL(NW)*EXP(-ETERM/UBAR0) |
|---|
| 86 | |
|---|
| 87 | C WE CAN NOW SOLVE FOR THE COEFFICIENTS OF THE TWO STREAM |
|---|
| 88 | C CALL A SUBROUTINE THAT SOLVES FOR THE FLUX TERMS |
|---|
| 89 | C WITHIN EACH INTERVAL AT THE MIDPOINT WAVENUMBER |
|---|
| 90 | C |
|---|
| 91 | C FUW AND FDW ARE WORKING FLUX ARRAYS THAT WILL BE USED TO |
|---|
| 92 | C RETURN FLUXES FOR A GIVEN NT |
|---|
| 93 | |
|---|
| 94 | |
|---|
| 95 | CALL GFLUXV(DTAUV(1,NW,NG),TAUV(1,NW,NG),TAUCUMV(1,NW,NG), |
|---|
| 96 | * WBARV(1,NW,NG),COSBV(1,NW,NG),UBAR0,F0PI,RSFV(NW), |
|---|
| 97 | * BTOP,BSURF,FMUPV,FMDV,DIFFV,FLUXUP,FLUXDN) |
|---|
| 98 | |
|---|
| 99 | C NOW CALCULATE THE CUMULATIVE VISIBLE NET FLUX |
|---|
| 100 | |
|---|
| 101 | NFLUXTOPV = NFLUXTOPV+(FLUXUP-FLUXDN)*GWEIGHT(NG)* |
|---|
| 102 | * (1.0-FZEROV(NW)) |
|---|
| 103 | FLUXTOPVDN = FLUXTOPVDN+FLUXDN*GWEIGHT(NG)* |
|---|
| 104 | * (1.0-FZEROV(NW)) |
|---|
| 105 | DO L=1,L_NLAYRAD |
|---|
| 106 | FMNETV(L)=FMNETV(L)+( FMUPV(L)-FMDV(L) )* |
|---|
| 107 | * GWEIGHT(NG)*(1.0-FZEROV(NW)) |
|---|
| 108 | FLUXUPV(L) = FLUXUPV(L) + FMUPV(L)*GWEIGHT(NG)* |
|---|
| 109 | * (1.0-FZEROV(NW)) |
|---|
| 110 | FLUXDNV(L) = FLUXDNV(L) + FMDV(L)*GWEIGHT(NG)* |
|---|
| 111 | * (1.0-FZEROV(NW)) |
|---|
| 112 | END DO |
|---|
| 113 | |
|---|
| 114 | c band-resolved flux leaving TOA (RDW) |
|---|
| 115 | NFLUXOUTV_nu(NW) = NFLUXOUTV_nu(NW) |
|---|
| 116 | * +FLUXUP*GWEIGHT(NG)*(1.0-FZEROV(NW)) |
|---|
| 117 | |
|---|
| 118 | c band-resolved flux at ground (RDW) |
|---|
| 119 | NFLUXGNDV_nu(NW) = NFLUXGNDV_nu(NW) |
|---|
| 120 | * +FMDV(L_NLAYRAD)*GWEIGHT(NG)*(1.0-FZEROV(NW)) |
|---|
| 121 | |
|---|
| 122 | |
|---|
| 123 | C THE DIFFUSE COMPONENT OF THE DOWNWARD STELLAR FLUX |
|---|
| 124 | |
|---|
| 125 | DIFFVT = DIFFVT + DIFFV*GWEIGHT(NG)*(1.0-FZEROV(NW)) |
|---|
| 126 | |
|---|
| 127 | 30 CONTINUE |
|---|
| 128 | |
|---|
| 129 | END DO ! the Gauss loop |
|---|
| 130 | |
|---|
| 131 | 40 continue |
|---|
| 132 | C Special 17th Gauss point |
|---|
| 133 | |
|---|
| 134 | NG = L_NGAUSS |
|---|
| 135 | |
|---|
| 136 | C SET UP THE UPPER AND LOWER BOUNDARY CONDITIONS ON THE VISIBLE |
|---|
| 137 | |
|---|
| 138 | BTOP = 0.0 |
|---|
| 139 | |
|---|
| 140 | C LOOP OVER THE NTERMS BEGINNING HERE |
|---|
| 141 | |
|---|
| 142 | ETERM = MIN(TAUV(L_NLEVRAD,NW,NG),TAUMAX) |
|---|
| 143 | BSURF = RSFV(NW)*UBAR0*STEL(NW)*EXP(-ETERM/UBAR0) |
|---|
| 144 | |
|---|
| 145 | |
|---|
| 146 | C WE CAN NOW SOLVE FOR THE COEFFICIENTS OF THE TWO STREAM |
|---|
| 147 | C CALL A SUBROUTINE THAT SOLVES FOR THE FLUX TERMS |
|---|
| 148 | C WITHIN EACH INTERVAL AT THE MIDPOINT WAVENUMBER |
|---|
| 149 | C |
|---|
| 150 | C FUW AND FDW ARE WORKING FLUX ARRAYS THAT WILL BE USED TO |
|---|
| 151 | C RETURN FLUXES FOR A GIVEN NT |
|---|
| 152 | |
|---|
| 153 | CALL GFLUXV(DTAUV(1,NW,NG),TAUV(1,NW,NG),TAUCUMV(1,NW,NG), |
|---|
| 154 | * WBARV(1,NW,NG),COSBV(1,NW,NG),UBAR0,F0PI,RSFV(NW), |
|---|
| 155 | * BTOP,BSURF,FMUPV,FMDV,DIFFV,FLUXUP,FLUXDN) |
|---|
| 156 | |
|---|
| 157 | |
|---|
| 158 | C NOW CALCULATE THE CUMULATIVE VISIBLE NET FLUX |
|---|
| 159 | |
|---|
| 160 | NFLUXTOPV = NFLUXTOPV+(FLUXUP-FLUXDN)*FZERO |
|---|
| 161 | FLUXTOPVDN = FLUXTOPVDN+FLUXDN*FZERO |
|---|
| 162 | DO L=1,L_NLAYRAD |
|---|
| 163 | FMNETV(L)=FMNETV(L)+( FMUPV(L)-FMDV(L) )*FZERO |
|---|
| 164 | FLUXUPV(L) = FLUXUPV(L) + FMUPV(L)*FZERO |
|---|
| 165 | FLUXDNV(L) = FLUXDNV(L) + FMDV(L)*FZERO |
|---|
| 166 | END DO |
|---|
| 167 | |
|---|
| 168 | c band-resolved flux leaving TOA (RDW) |
|---|
| 169 | NFLUXOUTV_nu(NW) = NFLUXOUTV_nu(NW) |
|---|
| 170 | * +FLUXUP*FZERO |
|---|
| 171 | |
|---|
| 172 | c band-resolved flux at ground (RDW) |
|---|
| 173 | NFLUXGNDV_nu(NW) = NFLUXGNDV_nu(NW)+FMDV(L_NLAYRAD)*FZERO |
|---|
| 174 | |
|---|
| 175 | |
|---|
| 176 | C THE DIFFUSE COMPONENT OF THE DOWNWARD STELLAR FLUX |
|---|
| 177 | |
|---|
| 178 | DIFFVT = DIFFVT + DIFFV*FZERO |
|---|
| 179 | |
|---|
| 180 | |
|---|
| 181 | 500 CONTINUE |
|---|
| 182 | |
|---|
| 183 | |
|---|
| 184 | C *** END OF MAJOR SPECTRAL INTERVAL LOOP IN THE VISIBLE***** |
|---|
| 185 | |
|---|
| 186 | |
|---|
| 187 | RETURN |
|---|
| 188 | END |
|---|