[135] | 1 | SUBROUTINE SFLUXI(PLEV,TLEV,DTAUI,TAUCUMI,UBARI,RSFI,WNOI,DWNI, |
---|
| 2 | * COSBI,WBARI,GWEIGHT,NFLUXTOPI,NFLUXTOPI_nu, |
---|
| 3 | * FMNETI,fluxupi,fluxdni,fluxupi_nu, |
---|
| 4 | * FZEROI,TAUGSURF) |
---|
| 5 | |
---|
| 6 | use radinc_h |
---|
[600] | 7 | use radcommon_h, only: planckir, tlimit,sigma |
---|
[1384] | 8 | use comcstfi_mod, only: pi |
---|
[135] | 9 | |
---|
| 10 | implicit none |
---|
| 11 | |
---|
| 12 | integer NLEVRAD, L, NW, NG, NTS, NTT |
---|
| 13 | |
---|
| 14 | real*8 TLEV(L_LEVELS), PLEV(L_LEVELS) |
---|
| 15 | real*8 TAUCUMI(L_LEVELS,L_NSPECTI,L_NGAUSS) |
---|
| 16 | real*8 FMNETI(L_NLAYRAD) |
---|
| 17 | real*8 WNOI(L_NSPECTI), DWNI(L_NSPECTI) |
---|
| 18 | real*8 DTAUI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
| 19 | real*8 FMUPI(L_NLEVRAD), FMDI(L_NLEVRAD) |
---|
| 20 | real*8 COSBI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
| 21 | real*8 WBARI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
| 22 | real*8 GWEIGHT(L_NGAUSS), NFLUXTOPI |
---|
| 23 | real*8 NFLUXTOPI_nu(L_NSPECTI) |
---|
| 24 | real*8 fluxupi_nu(L_NLAYRAD,L_NSPECTI) |
---|
| 25 | real*8 FTOPUP |
---|
| 26 | |
---|
| 27 | real*8 UBARI, RSFI, TSURF, BSURF, TTOP, BTOP, TAUTOP |
---|
| 28 | real*8 PLANCK, PLTOP |
---|
| 29 | real*8 fluxupi(L_NLAYRAD), fluxdni(L_NLAYRAD) |
---|
| 30 | real*8 FZEROI(L_NSPECTI) |
---|
| 31 | real*8 taugsurf(L_NSPECTI,L_NGAUSS-1), fzero |
---|
| 32 | |
---|
| 33 | real*8 fup_tmp(L_NSPECTI),fdn_tmp(L_NSPECTI) |
---|
[600] | 34 | real*8 PLANCKSUM,PLANCKREF |
---|
[135] | 35 | |
---|
| 36 | |
---|
| 37 | C======================================================================C |
---|
| 38 | |
---|
| 39 | NLEVRAD = L_NLEVRAD |
---|
| 40 | |
---|
| 41 | |
---|
| 42 | C ZERO THE NET FLUXES |
---|
| 43 | |
---|
[959] | 44 | NFLUXTOPI = 0.0D0 |
---|
[253] | 45 | |
---|
[135] | 46 | DO NW=1,L_NSPECTI |
---|
[959] | 47 | NFLUXTOPI_nu(NW) = 0.0D0 |
---|
[135] | 48 | DO L=1,L_NLAYRAD |
---|
[959] | 49 | FLUXUPI_nu(L,NW) = 0.0D0 |
---|
[135] | 50 | |
---|
[959] | 51 | fup_tmp(nw)=0.0D0 |
---|
| 52 | fdn_tmp(nw)=0.0D0 |
---|
[135] | 53 | |
---|
| 54 | END DO |
---|
| 55 | END DO |
---|
| 56 | |
---|
| 57 | DO L=1,L_NLAYRAD |
---|
[959] | 58 | FMNETI(L) = 0.0D0 |
---|
| 59 | FLUXUPI(L) = 0.0D0 |
---|
| 60 | FLUXDNI(L) = 0.0D0 |
---|
[135] | 61 | END DO |
---|
| 62 | |
---|
| 63 | C WE NOW ENTER A MAJOR LOOP OVER SPECTRAL INTERVALS IN THE INFRARED |
---|
| 64 | C TO CALCULATE THE NET FLUX IN EACH SPECTRAL INTERVAL |
---|
| 65 | |
---|
[526] | 66 | TTOP = TLEV(2) ! JL12 why not (1) ??? |
---|
[135] | 67 | TSURF = TLEV(L_LEVELS) |
---|
| 68 | |
---|
[543] | 69 | NTS = int(TSURF*NTfac)-NTstar+1 |
---|
| 70 | NTT = int(TTOP *NTfac)-NTstar+1 |
---|
[135] | 71 | |
---|
[600] | 72 | !JL12 corrects the surface planck function so that its integral is equal to sigma Tsurf^4 |
---|
| 73 | !JL12 this ensure that no flux is lost due to: |
---|
| 74 | !JL12 -truncation of the planck function at high/low wavenumber |
---|
| 75 | !JL12 -numerical error during first spectral integration |
---|
| 76 | !JL12 -discrepancy between Tsurf and NTS/NTfac |
---|
| 77 | PLANCKSUM=0.d0 |
---|
| 78 | PLANCKREF=TSURF*TSURF |
---|
| 79 | PLANCKREF=sigma*PLANCKREF*PLANCKREF |
---|
| 80 | DO NW=1,L_NSPECTI |
---|
| 81 | PLANCKSUM=PLANCKSUM+PLANCKIR(NW,NTS)*DWNI(NW) |
---|
| 82 | ENDDO |
---|
| 83 | PLANCKSUM=PLANCKREF/(PLANCKSUM*Pi) |
---|
| 84 | !JL12 |
---|
| 85 | |
---|
[135] | 86 | DO 501 NW=1,L_NSPECTI |
---|
| 87 | |
---|
| 88 | C SURFACE EMISSIONS - INDEPENDENT OF GAUSS POINTS |
---|
[600] | 89 | BSURF = (1.-RSFI)*PLANCKIR(NW,NTS)*PLANCKSUM !JL12 plancksum see above |
---|
[135] | 90 | PLTOP = PLANCKIR(NW,NTT) |
---|
| 91 | |
---|
| 92 | C If FZEROI(NW) = 1, then the k-coefficients are zero - skip to the |
---|
| 93 | C special Gauss point at the end. |
---|
| 94 | |
---|
| 95 | FZERO = FZEROI(NW) |
---|
| 96 | IF(FZERO.ge.0.99) goto 40 |
---|
| 97 | |
---|
| 98 | DO NG=1,L_NGAUSS-1 |
---|
| 99 | |
---|
| 100 | if(TAUGSURF(NW,NG).lt. TLIMIT) then |
---|
[959] | 101 | fzero = fzero + (1.0D0-FZEROI(NW))*GWEIGHT(NG) |
---|
[135] | 102 | goto 30 |
---|
| 103 | end if |
---|
| 104 | |
---|
| 105 | C SET UP THE UPPER AND LOWER BOUNDARY CONDITIONS ON THE IR |
---|
| 106 | C CALCULATE THE DOWNWELLING RADIATION AT THE TOP OF THE MODEL |
---|
| 107 | C OR THE TOP LAYER WILL COOL TO SPACE UNPHYSICALLY |
---|
| 108 | |
---|
[961] | 109 | ! TAUTOP = DTAUI(1,NW,NG)*PLEV(2)/(PLEV(4)-PLEV(2)) |
---|
| 110 | TAUTOP = TAUCUMI(2,NW,NG) |
---|
[959] | 111 | BTOP = (1.0D0-EXP(-TAUTOP/UBARI))*PLTOP |
---|
[135] | 112 | |
---|
| 113 | C WE CAN NOW SOLVE FOR THE COEFFICIENTS OF THE TWO STREAM |
---|
| 114 | C CALL A SUBROUTINE THAT SOLVES FOR THE FLUX TERMS |
---|
| 115 | C WITHIN EACH INTERVAL AT THE MIDPOINT WAVENUMBER |
---|
| 116 | |
---|
| 117 | CALL GFLUXI(NLEVRAD,TLEV,NW,DWNI(NW),DTAUI(1,NW,NG), |
---|
| 118 | * TAUCUMI(1,NW,NG), |
---|
| 119 | * WBARI(1,NW,NG),COSBI(1,NW,NG),UBARI,RSFI,BTOP, |
---|
| 120 | * BSURF,FTOPUP,FMUPI,FMDI) |
---|
| 121 | |
---|
| 122 | |
---|
[253] | 123 | |
---|
[135] | 124 | C NOW CALCULATE THE CUMULATIVE IR NET FLUX |
---|
| 125 | |
---|
| 126 | NFLUXTOPI = NFLUXTOPI+FTOPUP*DWNI(NW)*GWEIGHT(NG)* |
---|
[959] | 127 | * (1.0D0-FZEROI(NW)) |
---|
[135] | 128 | |
---|
| 129 | c and same thing by spectral band... (RDW) |
---|
| 130 | NFLUXTOPI_nu(NW) = NFLUXTOPI_nu(NW) |
---|
[959] | 131 | * +FTOPUP*DWNI(NW)*GWEIGHT(NG)*(1.0D0-FZEROI(NW)) |
---|
[135] | 132 | |
---|
| 133 | |
---|
| 134 | DO L=1,L_NLEVRAD-1 |
---|
| 135 | |
---|
| 136 | C CORRECT FOR THE WAVENUMBER INTERVALS |
---|
| 137 | |
---|
| 138 | FMNETI(L) = FMNETI(L)+(FMUPI(L)-FMDI(L))*DWNI(NW)* |
---|
[959] | 139 | * GWEIGHT(NG)*(1.0D0-FZEROI(NW)) |
---|
[135] | 140 | FLUXUPI(L) = FLUXUPI(L) + FMUPI(L)*DWNI(NW)*GWEIGHT(NG)* |
---|
[959] | 141 | * (1.0D0-FZEROI(NW)) |
---|
[135] | 142 | FLUXDNI(L) = FLUXDNI(L) + FMDI(L)*DWNI(NW)*GWEIGHT(NG)* |
---|
[959] | 143 | * (1.0D0-FZEROI(NW)) |
---|
[135] | 144 | |
---|
| 145 | c and same thing by spectral band... (RW) |
---|
| 146 | FLUXUPI_nu(L,NW) = FLUXUPI_nu(L,NW) + |
---|
[959] | 147 | * FMUPI(L)*DWNI(NW)*GWEIGHT(NG)*(1.0D0-FZEROI(NW)) |
---|
[135] | 148 | |
---|
| 149 | END DO |
---|
| 150 | |
---|
| 151 | 30 CONTINUE |
---|
| 152 | |
---|
| 153 | END DO !End NGAUSS LOOP |
---|
| 154 | |
---|
| 155 | 40 CONTINUE |
---|
| 156 | |
---|
| 157 | C SPECIAL 17th Gauss point |
---|
| 158 | |
---|
| 159 | NG = L_NGAUSS |
---|
| 160 | |
---|
[961] | 161 | ! TAUTOP = DTAUI(1,NW,NG)*PLEV(2)/(PLEV(4)-PLEV(2)) |
---|
| 162 | TAUTOP = TAUCUMI(2,NW,NG) |
---|
[959] | 163 | BTOP = (1.0D0-EXP(-TAUTOP/UBARI))*PLTOP |
---|
[135] | 164 | |
---|
| 165 | C WE CAN NOW SOLVE FOR THE COEFFICIENTS OF THE TWO STREAM |
---|
| 166 | C CALL A SUBROUTINE THAT SOLVES FOR THE FLUX TERMS |
---|
| 167 | C WITHIN EACH INTERVAL AT THE MIDPOINT WAVENUMBER |
---|
| 168 | |
---|
| 169 | |
---|
| 170 | CALL GFLUXI(NLEVRAD,TLEV,NW,DWNI(NW),DTAUI(1,NW,NG), |
---|
| 171 | * TAUCUMI(1,NW,NG), |
---|
| 172 | * WBARI(1,NW,NG),COSBI(1,NW,NG),UBARI,RSFI,BTOP, |
---|
| 173 | * BSURF,FTOPUP,FMUPI,FMDI) |
---|
| 174 | |
---|
| 175 | C NOW CALCULATE THE CUMULATIVE IR NET FLUX |
---|
| 176 | |
---|
| 177 | NFLUXTOPI = NFLUXTOPI+FTOPUP*DWNI(NW)*FZERO |
---|
| 178 | |
---|
| 179 | c and same thing by spectral band... (RW) |
---|
| 180 | NFLUXTOPI_nu(NW) = NFLUXTOPI_nu(NW) |
---|
| 181 | * +FTOPUP*DWNI(NW)*FZERO |
---|
| 182 | |
---|
| 183 | DO L=1,L_NLEVRAD-1 |
---|
| 184 | |
---|
| 185 | C CORRECT FOR THE WAVENUMBER INTERVALS |
---|
| 186 | |
---|
| 187 | FMNETI(L) = FMNETI(L)+(FMUPI(L)-FMDI(L))*DWNI(NW)*FZERO |
---|
| 188 | FLUXUPI(L) = FLUXUPI(L) + FMUPI(L)*DWNI(NW)*FZERO |
---|
| 189 | FLUXDNI(L) = FLUXDNI(L) + FMDI(L)*DWNI(NW)*FZERO |
---|
| 190 | |
---|
| 191 | c and same thing by spectral band... (RW) |
---|
| 192 | FLUXUPI_nu(L,NW) = FLUXUPI_nu(L,NW) + FMUPI(L)*DWNI(NW)*FZERO |
---|
| 193 | |
---|
| 194 | END DO |
---|
| 195 | |
---|
| 196 | 501 CONTINUE !End Spectral Interval LOOP |
---|
| 197 | |
---|
| 198 | C *** END OF MAJOR SPECTRAL INTERVAL LOOP IN THE INFRARED**** |
---|
| 199 | |
---|
| 200 | RETURN |
---|
| 201 | END |
---|