1 | SUBROUTINE rings(ngrid, declin, ptime, rad, flat, eclipse) |
---|
2 | ! Calculates Saturn's rings shadowing |
---|
3 | ! Includes rings opacities measured by Cassini/UVIS |
---|
4 | ! Authors: M. Sylvestre, M. Capderou, S. Guerlet, A. Spiga |
---|
5 | |
---|
6 | use comdiurn_h |
---|
7 | use comgeomfi_h |
---|
8 | |
---|
9 | implicit none |
---|
10 | |
---|
11 | INTEGER, INTENT(IN) :: ngrid ! horizontal grid dimension |
---|
12 | REAL, INTENT(IN) :: declin ! latitude of the subsolar point |
---|
13 | REAL, INTENT(IN) :: ptime ! UTC time in sol fraction : ptime=0.5 at noon |
---|
14 | REAL, INTENT(IN) :: rad ! equatorial radius of the planet |
---|
15 | REAL, INTENT(IN) :: flat ! flattening of the planet |
---|
16 | REAL, DIMENSION(ngrid), INTENT(OUT) :: eclipse ! absorption of the light by the rings |
---|
17 | |
---|
18 | REAL :: rpol ! polar radius of the planet |
---|
19 | REAL :: e ! shape excentricity of the planet : (1-e*e) = (1-f)*(1-f) |
---|
20 | INTEGER, PARAMETER :: nb_a = 4 ! number of subdivisions of the A ring |
---|
21 | INTEGER, PARAMETER :: nb_b = 3 ! number of subdivisions of the B ring |
---|
22 | INTEGER, PARAMETER :: nb_c = 3 ! number of subdivisions of the C ring |
---|
23 | INTEGER, PARAMETER :: nb_ca = 2 ! number of subdivisions in the Cassini division |
---|
24 | INTEGER :: i |
---|
25 | |
---|
26 | ! arrays for the rings. TBD: dynamical? |
---|
27 | REAL, DIMENSION(nb_a) :: A_Rint ! internal radii of the subdivisions of the A ring |
---|
28 | REAL, DIMENSION(nb_a) :: A_Rext ! external radii of the subdivisions of the A ring |
---|
29 | REAL, DIMENSION(nb_b) :: B_Rint ! internal radii of the subdivisions of the B ring |
---|
30 | REAL, DIMENSION(nb_b) :: B_Rext ! external radii of the subdivisions of the B ring |
---|
31 | REAL, DIMENSION(nb_c) :: C_Rint ! internal radii of the subdivisions of the C ring |
---|
32 | REAL, DIMENSION(nb_c) :: C_Rext ! external radii of the subdivisions of the C ring |
---|
33 | REAL, DIMENSION(nb_ca) :: Ca_Rint ! internal radii of the subdivisions of the Cassini Division |
---|
34 | REAL, DIMENSION(nb_ca) :: Ca_Rext ! external radii of the subdivisions of the Cassini Division |
---|
35 | |
---|
36 | ! Opacities of the rings : for each one we can give different opacities for each part |
---|
37 | REAL, DIMENSION(nb_a) :: tau_A ! opacity of the A ring |
---|
38 | REAL, DIMENSION(nb_b) :: tau_B ! opacity of the B ring |
---|
39 | REAL, DIMENSION(nb_c) :: tau_C ! opacity of the C ring |
---|
40 | REAL, DIMENSION(nb_ca) :: tau_Ca ! opacity of the Cassini Division |
---|
41 | |
---|
42 | ! Parameters used to calculate if a point is under a ring subdivision's shadow |
---|
43 | REAL :: phi_S ! subsolar point longitude |
---|
44 | REAL, PARAMETER :: pi=acos(-1.0) |
---|
45 | REAL, DIMENSION(:), ALLOCATABLE:: x, y, z ! cartesian coordinates of the points on the planet |
---|
46 | REAL :: xs, ys, zs ! cartesian coordinates of the points of the subsolar point |
---|
47 | REAL, DIMENSION(:), ALLOCATABLE :: k |
---|
48 | REAL, DIMENSION(:), ALLOCATABLE :: N ! parameter to compute cartesian coordinates on a ellipsoidal planet |
---|
49 | REAL, DIMENSION(:), ALLOCATABLE :: r ! distance at which the incident ray of sun crosses the equatorial plane |
---|
50 | ! measured from the center of the planet |
---|
51 | REAL :: Ns ! (same for the subsolar point) |
---|
52 | |
---|
53 | ! equinox --> no shadow (AS: why is this needed?) |
---|
54 | if(declin .eq. 0.) then |
---|
55 | eclipse(:) = 0. |
---|
56 | return |
---|
57 | endif |
---|
58 | |
---|
59 | ! 1) INITIALIZATION |
---|
60 | |
---|
61 | ! Generic |
---|
62 | rpol = (1.- flat)*rad |
---|
63 | e = sqrt(2*flat - flat**2) |
---|
64 | ALLOCATE(x(ngrid)) |
---|
65 | ALLOCATE(y(ngrid)) |
---|
66 | ALLOCATE(z(ngrid)) |
---|
67 | ALLOCATE(k(ngrid)) |
---|
68 | ALLOCATE(N(ngrid)) |
---|
69 | ALLOCATE(r(ngrid)) |
---|
70 | eclipse(:) = 2000. |
---|
71 | |
---|
72 | ! Model of the rings with Cassini/UVIS opacities |
---|
73 | |
---|
74 | ! Size of the rings |
---|
75 | A_Rint(1) = 2.03*rad |
---|
76 | A_Rext(1) = 2.06*rad |
---|
77 | A_Rint(2) = 2.06*rad |
---|
78 | A_Rext(2) = 2.09*rad |
---|
79 | A_Rint(3) = 2.09*rad |
---|
80 | A_Rext(3) = 2.12*rad |
---|
81 | A_Rint(4) = 2.12*rad |
---|
82 | A_Rext(4) = 2.27*rad |
---|
83 | |
---|
84 | B_Rint(1) = 1.53*rad |
---|
85 | B_Rext(1) = 1.64*rad |
---|
86 | B_Rint(2) = 1.64*rad |
---|
87 | B_Rext(2) = 1.83*rad |
---|
88 | B_Rint(3) = 1.83*rad |
---|
89 | B_Rext(3) = 1.95*rad |
---|
90 | |
---|
91 | C_Rint(1) = 1.24*rad |
---|
92 | C_Rext(1) = 1.29*rad |
---|
93 | C_Rint(2) = 1.29*rad |
---|
94 | C_Rext(2) = 1.43*rad |
---|
95 | C_Rint(3) = 1.43*rad |
---|
96 | C_Rext(3) = 1.53*rad |
---|
97 | |
---|
98 | Ca_Rint(1) = 1.95*rad |
---|
99 | Ca_Rext(1) = 1.99*rad |
---|
100 | Ca_Rint(2) = 1.99*rad |
---|
101 | Ca_Rext(2) = 2.03*rad |
---|
102 | |
---|
103 | |
---|
104 | ! Opacities of the rings |
---|
105 | tau_A(1) = 1.24 |
---|
106 | tau_A(2) = 0.81 |
---|
107 | tau_A(3) = 0.67 |
---|
108 | tau_A(4) = 0.58 |
---|
109 | |
---|
110 | tau_B(1) = 1.29 |
---|
111 | tau_B(2) = 5.13 |
---|
112 | tau_B(3) = 2.84 |
---|
113 | |
---|
114 | tau_C(1) = 0.06 |
---|
115 | tau_C(2) = 0.10 |
---|
116 | tau_C(3) = 0.14 |
---|
117 | |
---|
118 | tau_Ca(1) = 0.06 |
---|
119 | tau_Ca(2) = 0.24 |
---|
120 | |
---|
121 | ! Convert to cartesian coordinates |
---|
122 | N(:) = rad / sqrt(1-(e**2)*sinlat(:)**2) |
---|
123 | x(:) = N(:)*coslat(:)*coslon(:) |
---|
124 | y(:) = N(:)*coslat(:)*sinlon(:) |
---|
125 | z(:) = N(:)*(1-e**2)*sinlat(:) |
---|
126 | |
---|
127 | ! 2) LOCATION OF THE SUBSOLAR POINT |
---|
128 | |
---|
129 | ! subsolar longitude is deduced from time fraction ptime |
---|
130 | ! SG: the minus sign is important! ... otherwise subsolar point adopts a reverse rotation |
---|
131 | phi_S = -(ptime - 0.5)*2.*pi |
---|
132 | ! write(*,*) 'subsol point coords : ', declin*180./pi, phi_S*180./pi |
---|
133 | |
---|
134 | ! subsolar latitude is declin (declination of the sun) |
---|
135 | ! now convert in cartesian coordinates : |
---|
136 | Ns = rad/sqrt(1-(e**2)*sin(declin)**2) |
---|
137 | xs = Ns*cos(declin)*cos(phi_S) |
---|
138 | ys = Ns*cos(declin)*sin(phi_S) |
---|
139 | zs = Ns*(1-e**2)*sin(declin) |
---|
140 | |
---|
141 | ! 3) WHERE DOES THE INCIDENT RAY OF SUN CROSS THE EQUATORIAL PLAN ? |
---|
142 | |
---|
143 | k(:) = -z(:)/zs |
---|
144 | r(:) = (k(:)*xs + x(:))**2 + (k(:)*ys + y(:))**2 |
---|
145 | r(:) = sqrt(r(:)) |
---|
146 | |
---|
147 | ! 4) SO WHERE ARE THE SHADOW OF THESE RINGS ? |
---|
148 | |
---|
149 | ! Summer hemisphere is not under the shadow of the rings |
---|
150 | where(lati(:)*declin .gt. 0.) |
---|
151 | eclipse(:) = 1000. |
---|
152 | end where |
---|
153 | |
---|
154 | ! No shadow of the rings by night |
---|
155 | where(x(:)*xs + y(:)*ys + z(:)*zs .lt. 0.) |
---|
156 | eclipse(:) = 1000. |
---|
157 | end where |
---|
158 | |
---|
159 | ! if the incident rays of sun cross a ring, there is a shadow |
---|
160 | do i=1, nb_A |
---|
161 | where(r(:) .ge. A_Rint(i) .and. r(:) .le. A_Rext(i) .and. eclipse(:) .ne. 1000.) |
---|
162 | eclipse(:) = 1. - exp(-tau_A(i)/abs(sin(declin))) |
---|
163 | end where |
---|
164 | end do |
---|
165 | |
---|
166 | do i=1, nb_B |
---|
167 | where(r(:) .ge. B_Rint(i) .and. r(:) .le. B_Rext(i) .and. eclipse(:) .ne. 1000.) |
---|
168 | eclipse(:) = 1. - exp(-tau_B(i)/abs(sin(declin))) |
---|
169 | end where |
---|
170 | enddo |
---|
171 | |
---|
172 | do i=1, nb_C |
---|
173 | where(r(:) .ge. C_Rint(i) .and. r(:) .le. C_Rext(i) .and. eclipse(:) .ne. 1000.) |
---|
174 | eclipse(:) = 1. - exp(-tau_C(i)/abs(sin(declin))) |
---|
175 | end where |
---|
176 | enddo |
---|
177 | |
---|
178 | do i=1, nb_ca |
---|
179 | where(r(:) .ge. Ca_Rint(i) .and. r(:) .le. Ca_Rext(i) .and. eclipse(:) .ne. 1000.) |
---|
180 | eclipse(:) = 1. - exp(-tau_Ca(i)/abs(sin(declin))) |
---|
181 | end where |
---|
182 | enddo |
---|
183 | |
---|
184 | ! At the other places and the excluded ones, eclipse is 0. |
---|
185 | where(eclipse(:) .eq. 2000. .or. eclipse(:) .eq. 1000.) |
---|
186 | eclipse(:) = 0. |
---|
187 | end where |
---|
188 | |
---|
189 | ! 5) CLEAN THE PLACE |
---|
190 | DEALLOCATE(x) |
---|
191 | DEALLOCATE(y) |
---|
192 | DEALLOCATE(z) |
---|
193 | DEALLOCATE(k) |
---|
194 | DEALLOCATE(N) |
---|
195 | DEALLOCATE(r) |
---|
196 | |
---|
197 | END SUBROUTINE rings |
---|