1 | subroutine rain(ptimestep,pplev,pplay,t,pdt,pq,pdq,d_t,dqrain,dqsrain,dqssnow,rneb) |
---|
2 | |
---|
3 | |
---|
4 | use watercommon_h, only: To, RLVTT, RCPD, RCPV, RV, RVTMP2 |
---|
5 | |
---|
6 | implicit none |
---|
7 | |
---|
8 | !================================================================== |
---|
9 | ! |
---|
10 | ! Purpose |
---|
11 | ! ------- |
---|
12 | ! Calculates H2O precipitation using simplified microphysics. |
---|
13 | ! |
---|
14 | ! Authors |
---|
15 | ! ------- |
---|
16 | ! Adapted from the LMDTERRE code by R. Wordsworth (2009) |
---|
17 | ! Original author Z. X. Li (1993) |
---|
18 | ! |
---|
19 | !================================================================== |
---|
20 | |
---|
21 | #include "dimensions.h" |
---|
22 | #include "dimphys.h" |
---|
23 | #include "tracer.h" |
---|
24 | #include "comcstfi.h" |
---|
25 | #include "callkeys.h" |
---|
26 | |
---|
27 | ! Pre-arguments (for universal model) |
---|
28 | real pq(ngridmx,nlayermx,nqmx) ! tracer (kg/kg) |
---|
29 | real qsurf(ngridmx,nqmx) ! tracer at the surface (kg.m-2) |
---|
30 | REAL pdt(ngridmx,nlayermx),pdq(ngridmx,nlayermx,nqmx) |
---|
31 | |
---|
32 | real dqrain(ngridmx,nlayermx,nqmx) ! tendency of H2O precipitation (kg/kg.s-1) |
---|
33 | real dqsrain(ngridmx) ! rain flux at the surface (kg.m-2.s-1) |
---|
34 | real dqssnow(ngridmx) ! snow flux at the surface (kg.m-2.s-1) |
---|
35 | REAL d_t(ngridmx,nlayermx) ! temperature increment |
---|
36 | |
---|
37 | ! Arguments |
---|
38 | REAL ptimestep ! time interval |
---|
39 | REAL pplev(ngridmx,nlayermx+1) ! inter-layer pressure |
---|
40 | REAL pplay(ngridmx,nlayermx) ! mid-layer pressure |
---|
41 | REAL t(ngridmx,nlayermx) ! input temperature (K) |
---|
42 | REAL zt(ngridmx,nlayermx) ! working temperature (K) |
---|
43 | REAL ql(ngridmx,nlayermx) ! liquid water (Kg/Kg) |
---|
44 | REAL q(ngridmx,nlayermx) ! specific humidity (Kg/Kg) |
---|
45 | REAL rneb(ngridmx,nlayermx) ! cloud fraction |
---|
46 | REAL d_q(ngridmx,nlayermx) ! water vapor increment |
---|
47 | REAL d_ql(ngridmx,nlayermx) ! liquid water / ice increment |
---|
48 | |
---|
49 | ! Subroutine options |
---|
50 | REAL seuil_neb ! Nebulosity threshold |
---|
51 | PARAMETER (seuil_neb=0.001) |
---|
52 | |
---|
53 | ! REAL ct ! Inverse of cloud precipitation time |
---|
54 | ! PARAMETER (ct=1./1800.) |
---|
55 | ! PARAMETER (ct=1./1849.479) |
---|
56 | |
---|
57 | REAL cl ! Precipitation threshold |
---|
58 | PARAMETER (cl=2.0e-4) |
---|
59 | |
---|
60 | INTEGER ninter |
---|
61 | PARAMETER (ninter=5) |
---|
62 | |
---|
63 | logical simple ! Use very simple Emanuel scheme? |
---|
64 | parameter(simple=.true.) |
---|
65 | |
---|
66 | logical evap_prec ! Does the rain evaporate? |
---|
67 | parameter(evap_prec=.true.) |
---|
68 | |
---|
69 | ! for simple scheme |
---|
70 | real t_crit |
---|
71 | PARAMETER (t_crit=218.0) |
---|
72 | real lconvert |
---|
73 | |
---|
74 | ! for precipitation evaporation (old scheme) |
---|
75 | real eeff1 |
---|
76 | real eeff2 |
---|
77 | ! parameter (eeff1=0.95) |
---|
78 | ! parameter (eeff2=0.98) |
---|
79 | parameter (eeff1=0.5) |
---|
80 | parameter (eeff2=0.8) |
---|
81 | |
---|
82 | ! Local variables |
---|
83 | INTEGER i, k, n |
---|
84 | REAL zqs(ngridmx,nlayermx), zdelta, zcor |
---|
85 | REAL zrfl(ngridmx), zrfln(ngridmx), zqev, zqevt |
---|
86 | |
---|
87 | REAL zoliq(ngridmx) |
---|
88 | REAL ztglace |
---|
89 | REAL zdz(ngridmx),zrho(ngridmx),ztot(ngridmx), zrhol(ngridmx) |
---|
90 | REAL zchau(ngridmx),zfroi(ngridmx),zfrac(ngridmx),zneb(ngridmx) |
---|
91 | |
---|
92 | real ttemp, ptemp |
---|
93 | real tnext(ngridmx,nlayermx) |
---|
94 | |
---|
95 | real l2c(ngridmx,nlayermx) |
---|
96 | real dWtot |
---|
97 | |
---|
98 | |
---|
99 | ! Indices of water vapour and water ice tracers |
---|
100 | INTEGER, SAVE :: i_vap=0 ! water vapour |
---|
101 | INTEGER, SAVE :: i_ice=0 ! water ice |
---|
102 | |
---|
103 | LOGICAL firstcall |
---|
104 | SAVE firstcall |
---|
105 | |
---|
106 | ! Online functions |
---|
107 | REAL fallv, zzz ! falling speed of ice crystals |
---|
108 | fallv (zzz) = 3.29 * ((zzz)**0.16) |
---|
109 | |
---|
110 | DATA firstcall /.true./ |
---|
111 | |
---|
112 | IF (firstcall) THEN |
---|
113 | |
---|
114 | i_vap=igcm_h2o_vap |
---|
115 | i_ice=igcm_h2o_ice |
---|
116 | |
---|
117 | write(*,*) "rain: i_ice=",i_ice |
---|
118 | write(*,*) " i_vap=",i_vap |
---|
119 | |
---|
120 | PRINT*, 'in rain.F, ninter=', ninter |
---|
121 | PRINT*, 'in rain.F, evap_prec=', evap_prec |
---|
122 | |
---|
123 | !print*,ptimestep |
---|
124 | !print*,1./ct |
---|
125 | !if(.not.simple)then |
---|
126 | ! IF (ABS(ptimestep-1./ct).GT.0.001) THEN |
---|
127 | ! PRINT*, 'Must talk to Laurent Li!!!' |
---|
128 | ! call abort |
---|
129 | ! ENDIF |
---|
130 | !endif |
---|
131 | |
---|
132 | firstcall = .false. |
---|
133 | ENDIF |
---|
134 | |
---|
135 | ! GCM -----> subroutine variables |
---|
136 | DO k = 1, nlayermx |
---|
137 | DO i = 1, ngridmx |
---|
138 | |
---|
139 | zt(i,k) = t(i,k)+pdt(i,k)*ptimestep ! a big fat bug was here |
---|
140 | q(i,k) = pq(i,k,i_vap)+pdq(i,k,i_vap)*ptimestep |
---|
141 | ql(i,k) = pq(i,k,i_ice)+pdq(i,k,i_ice)*ptimestep |
---|
142 | |
---|
143 | !q(i,k) = pq(i,k,i_vap)!+pdq(i,k,i_vap) |
---|
144 | !ql(i,k) = pq(i,k,i_ice)!+pdq(i,k,i_ice) |
---|
145 | |
---|
146 | if(q(i,k).lt.0.)then ! if this is not done, we don't conserve water |
---|
147 | q(i,k)=0. |
---|
148 | endif |
---|
149 | if(ql(i,k).lt.0.)then |
---|
150 | ql(i,k)=0. |
---|
151 | endif |
---|
152 | |
---|
153 | ENDDO |
---|
154 | ENDDO |
---|
155 | |
---|
156 | ! Determine the cold clouds by their temperature |
---|
157 | ztglace = To - 15.0 |
---|
158 | |
---|
159 | ! Initialise the outputs |
---|
160 | DO k = 1, nlayermx |
---|
161 | DO i = 1, ngridmx |
---|
162 | d_t(i,k) = 0.0 |
---|
163 | d_q(i,k) = 0.0 |
---|
164 | d_ql(i,k) = 0.0 |
---|
165 | ENDDO |
---|
166 | ENDDO |
---|
167 | DO i = 1, ngridmx |
---|
168 | zrfl(i) = 0.0 |
---|
169 | zrfln(i) = 0.0 |
---|
170 | ENDDO |
---|
171 | |
---|
172 | ! calculate saturation mixing ratio |
---|
173 | DO k = 1, nlayermx |
---|
174 | DO i = 1, ngridmx |
---|
175 | ttemp = zt(i,k) |
---|
176 | ptemp = pplay(i,k) |
---|
177 | call watersat(ttemp,ptemp,zqs(i,k)) |
---|
178 | ENDDO |
---|
179 | ENDDO |
---|
180 | |
---|
181 | ! get column / layer conversion factor |
---|
182 | DO k = 1, nlayermx |
---|
183 | DO i = 1, ngridmx |
---|
184 | !l2c(i,k)=(pplev(i,k)-pplev(i,k+1))/(g*ptimestep) |
---|
185 | l2c(i,k)=(pplev(i,k)-pplev(i,k+1))/g |
---|
186 | ENDDO |
---|
187 | ENDDO |
---|
188 | |
---|
189 | |
---|
190 | ! Vertical loop (from top to bottom) |
---|
191 | ! We carry the rain with us and calculate that added by warm/cold precipitation |
---|
192 | ! processes and that subtracted by evaporation at each level. |
---|
193 | DO 9999 k = nlayermx, 1, -1 |
---|
194 | |
---|
195 | IF (evap_prec) THEN ! note no rneb dependence! |
---|
196 | DO i = 1, ngridmx |
---|
197 | IF (zrfl(i) .GT.0.) THEN |
---|
198 | |
---|
199 | zqev = MAX (0.0, (zqs(i,k)-q(i,k)))/ptimestep! BC modif here |
---|
200 | zqevt = 2.0e-5*(1.0-q(i,k)/zqs(i,k)) & |
---|
201 | *sqrt(zrfl(i))*l2c(i,k)/pplay(i,k)*zt(i,k)*R ! BC modif here |
---|
202 | zqevt = MAX (zqevt, 0.0) |
---|
203 | zqev = MIN (zqev, zqevt) |
---|
204 | zqev = MAX (zqev, 0.0) |
---|
205 | zrfln(i) = zrfl(i) - zqev |
---|
206 | zrfln(i) = max(zrfln(i),0.0) |
---|
207 | |
---|
208 | !zqev = MAX (0.0, (zqs(i,k)-q(i,k))*eeff1 ) |
---|
209 | !zqevt = (zrfl(i)/l2c(i,k))*eeff2 |
---|
210 | !zqev = MIN (zqev, zqevt) |
---|
211 | !zrfln(i) = zrfl(i) - zqev*l2c(i,k) |
---|
212 | !zrfln(i) = zrfl(i) - 1.5e-5*(1.0-q(i,k)/zqs(i,k))*sqrt(zrfl(i)) |
---|
213 | !zrfln(i) = min(zrfln(i),zrfl(i)) |
---|
214 | ! this is what is actually written in the manual |
---|
215 | |
---|
216 | d_q(i,k) = - (zrfln(i)-zrfl(i))/l2c(i,k)*ptimestep |
---|
217 | !d_t(i,k) = d_q(i,k) * RLVTT/RCPD!/(1.0+RVTMP2*q(i,k)) ! double BC modif here |
---|
218 | d_t(i,k) = - d_q(i,k) * RLVTT/RCPD ! was bugged! |
---|
219 | |
---|
220 | zrfl(i) = zrfln(i) |
---|
221 | ENDIF |
---|
222 | ENDDO |
---|
223 | ENDIF |
---|
224 | |
---|
225 | DO i = 1, ngridmx |
---|
226 | zoliq(i) = 0.0 |
---|
227 | ENDDO |
---|
228 | |
---|
229 | |
---|
230 | if(simple)then |
---|
231 | |
---|
232 | DO i = 1, ngridmx |
---|
233 | ttemp = zt(i,k) |
---|
234 | IF (ttemp .ge. To) THEN |
---|
235 | lconvert=rainthreshold |
---|
236 | ELSEIF (ttemp .gt. t_crit) THEN |
---|
237 | lconvert=rainthreshold*(1.- t_crit/ttemp) |
---|
238 | lconvert=MAX(0.0,lconvert) |
---|
239 | ELSE |
---|
240 | lconvert=0. |
---|
241 | ENDIF |
---|
242 | |
---|
243 | |
---|
244 | IF (ql(i,k).gt.1.e-9) then |
---|
245 | zneb(i) = MAX(rneb(i,k), seuil_neb) |
---|
246 | IF ((ql(i,k)/zneb(i)).gt.lconvert)THEN ! precipitate! |
---|
247 | d_ql(i,k) = -MAX((ql(i,k)-lconvert),0.0) |
---|
248 | zrfl(i) = zrfl(i) - d_ql(i,k)*l2c(i,k)/ptimestep |
---|
249 | ENDIF |
---|
250 | ENDIF |
---|
251 | ENDDO |
---|
252 | |
---|
253 | else |
---|
254 | |
---|
255 | DO i = 1, ngridmx |
---|
256 | IF (rneb(i,k).GT.0.0) THEN |
---|
257 | zoliq(i) = ql(i,k) |
---|
258 | zrho(i) = pplay(i,k) / ( zt(i,k) * R ) |
---|
259 | zdz(i) = (pplev(i,k)-pplev(i,k+1)) / (zrho(i)*g) |
---|
260 | zfrac(i) = (zt(i,k)-ztglace) / (To-ztglace) |
---|
261 | zfrac(i) = MAX(zfrac(i), 0.0) |
---|
262 | zfrac(i) = MIN(zfrac(i), 1.0) |
---|
263 | zneb(i) = MAX(rneb(i,k), seuil_neb) |
---|
264 | ENDIF |
---|
265 | ENDDO |
---|
266 | |
---|
267 | DO n = 1, ninter |
---|
268 | DO i = 1, ngridmx |
---|
269 | IF (rneb(i,k).GT.0.0) THEN |
---|
270 | zchau(i) = (1./FLOAT(ninter)) * zoliq(i) & |
---|
271 | * (1.0-EXP(-(zoliq(i)/zneb(i)/cl)**2)) * zfrac(i) |
---|
272 | ! warning: this may give dodgy results for physics calls .ne. 48 per day... |
---|
273 | |
---|
274 | ! this is the ONLY place where zneb, ct and cl are used |
---|
275 | zrhol(i) = zrho(i) * zoliq(i) / zneb(i) |
---|
276 | zfroi(i) = ptimestep/FLOAT(ninter)/zdz(i)*zoliq(i) & |
---|
277 | *fallv(zrhol(i)) * (1.0-zfrac(i)) ! zfroi behaves oddly... |
---|
278 | ! * 0.1 * (1.0-zfrac(i)) |
---|
279 | ztot(i) = zchau(i) + zfroi(i) |
---|
280 | |
---|
281 | IF (zneb(i).EQ.seuil_neb) ztot(i) = 0.0 |
---|
282 | ztot(i) = MIN(MAX(ztot(i),0.0),zoliq(i)) |
---|
283 | zoliq(i) = MAX(zoliq(i)-ztot(i), 0.0) |
---|
284 | |
---|
285 | ENDIF |
---|
286 | ENDDO |
---|
287 | ENDDO |
---|
288 | |
---|
289 | ! Change in cloud density and surface H2O values |
---|
290 | DO i = 1, ngridmx |
---|
291 | IF (rneb(i,k).GT.0.0) THEN |
---|
292 | d_ql(i,k) = (zoliq(i) - ql(i,k))!/ptimestep |
---|
293 | zrfl(i) = zrfl(i)+ MAX(ql(i,k)-zoliq(i),0.0)*l2c(i,k)/ptimestep |
---|
294 | ENDIF |
---|
295 | ENDDO |
---|
296 | |
---|
297 | endif ! if simple |
---|
298 | |
---|
299 | 9999 continue |
---|
300 | |
---|
301 | ! Rain or snow on the ground |
---|
302 | DO i = 1, ngridmx |
---|
303 | if(zrfl(i).lt.0.0)then |
---|
304 | print*,'Droplets of negative rain are falling...' |
---|
305 | call abort |
---|
306 | endif |
---|
307 | IF (t(i,1) .LT. To) THEN |
---|
308 | dqssnow(i) = zrfl(i) |
---|
309 | dqsrain(i) = 0.0 |
---|
310 | ELSE |
---|
311 | dqssnow(i) = 0.0 |
---|
312 | dqsrain(i) = zrfl(i) ! liquid water = ice for now |
---|
313 | ENDIF |
---|
314 | ENDDO |
---|
315 | |
---|
316 | ! now subroutine -----> GCM variables |
---|
317 | DO k = 1, nlayermx |
---|
318 | DO i = 1, ngridmx |
---|
319 | |
---|
320 | if(evap_prec)then |
---|
321 | dqrain(i,k,i_vap) = d_q(i,k)/ptimestep |
---|
322 | d_t(i,k) = d_t(i,k)/ptimestep |
---|
323 | else |
---|
324 | dqrain(i,k,i_vap) = 0.0 |
---|
325 | d_t(i,k) = 0.0 |
---|
326 | endif |
---|
327 | dqrain(i,k,i_ice) = d_ql(i,k)/ptimestep |
---|
328 | |
---|
329 | ENDDO |
---|
330 | ENDDO |
---|
331 | |
---|
332 | RETURN |
---|
333 | end subroutine rain |
---|