[135] | 1 | |
---|
| 2 | subroutine rain(ptimestep,pplev,pplay,t,pdt,pq,pdq,d_t,dqrain,dqsrain,dqssnow,rneb) |
---|
| 3 | |
---|
| 4 | use watercommon_h, only: To, RLVTT, RCPD, RCPV, RV, RVTMP2 |
---|
| 5 | |
---|
| 6 | implicit none |
---|
| 7 | |
---|
| 8 | !================================================================== |
---|
| 9 | ! |
---|
| 10 | ! Purpose |
---|
| 11 | ! ------- |
---|
| 12 | ! Calculates H2O precipitation using simplified microphysics. |
---|
| 13 | ! |
---|
| 14 | ! Authors |
---|
| 15 | ! ------- |
---|
| 16 | ! Adapted from the LMDTERRE code by R. Wordsworth (2009) |
---|
| 17 | ! Original author Z. X. Li (1993) |
---|
| 18 | ! |
---|
| 19 | !================================================================== |
---|
| 20 | |
---|
| 21 | #include "dimensions.h" |
---|
| 22 | #include "dimphys.h" |
---|
| 23 | #include "tracer.h" |
---|
| 24 | #include "comcstfi.h" |
---|
| 25 | #include "callkeys.h" |
---|
| 26 | |
---|
| 27 | ! Pre-arguments (for universal model) |
---|
| 28 | real pq(ngridmx,nlayermx,nqmx) ! tracer (kg/kg) |
---|
| 29 | real qsurf(ngridmx,nqmx) ! tracer at the surface (kg.m-2) |
---|
| 30 | REAL pdt(ngridmx,nlayermx),pdq(ngridmx,nlayermx,nqmx) |
---|
| 31 | |
---|
| 32 | real dqrain(ngridmx,nlayermx,nqmx) ! tendency of H2O precipitation (kg/kg.s-1) |
---|
| 33 | real dqsrain(ngridmx) ! rain flux at the surface (kg.m-2.s-1) |
---|
| 34 | real dqssnow(ngridmx) ! snow flux at the surface (kg.m-2.s-1) |
---|
| 35 | REAL d_t(ngridmx,nlayermx) ! temperature increment |
---|
| 36 | |
---|
| 37 | ! Arguments |
---|
| 38 | REAL ptimestep ! time interval |
---|
| 39 | REAL pplev(ngridmx,nlayermx+1) ! inter-layer pressure |
---|
| 40 | REAL pplay(ngridmx,nlayermx) ! mid-layer pressure |
---|
| 41 | REAL t(ngridmx,nlayermx) ! temperature (K) |
---|
| 42 | REAL ql(ngridmx,nlayermx) ! liquid water (Kg/Kg) |
---|
| 43 | REAL q(ngridmx,nlayermx) ! specific humidity (Kg/Kg) |
---|
| 44 | REAL rneb(ngridmx,nlayermx) ! cloud fraction |
---|
| 45 | REAL d_q(ngridmx,nlayermx) ! water vapor increment |
---|
| 46 | REAL d_ql(ngridmx,nlayermx) ! liquid water / ice increment |
---|
| 47 | |
---|
| 48 | ! Subroutine options |
---|
| 49 | REAL seuil_neb ! Nebulosity threshold |
---|
| 50 | PARAMETER (seuil_neb=0.001) |
---|
| 51 | |
---|
| 52 | REAL ct ! Inverse of cloud precipitation time |
---|
| 53 | ! PARAMETER (ct=1./1800.) |
---|
| 54 | PARAMETER (ct=1./1849.479) |
---|
| 55 | |
---|
| 56 | REAL cl ! Precipitation threshold |
---|
| 57 | PARAMETER (cl=2.0e-4) |
---|
| 58 | |
---|
| 59 | INTEGER ninter |
---|
| 60 | PARAMETER (ninter=5) |
---|
| 61 | |
---|
| 62 | logical simple ! Use very simple Emanuel scheme? |
---|
| 63 | parameter(simple=.true.) |
---|
| 64 | |
---|
| 65 | logical evap_prec ! Does the rain evaporate? |
---|
| 66 | parameter(evap_prec=.true.) |
---|
| 67 | |
---|
| 68 | ! for simple scheme |
---|
| 69 | real t_crit |
---|
| 70 | PARAMETER (t_crit=218.0) |
---|
| 71 | real lconvert |
---|
| 72 | |
---|
| 73 | ! for precipitation evaporation (old scheme) |
---|
| 74 | real eeff1 |
---|
| 75 | real eeff2 |
---|
| 76 | ! parameter (eeff1=0.95) |
---|
| 77 | ! parameter (eeff2=0.98) |
---|
| 78 | parameter (eeff1=0.5) |
---|
| 79 | parameter (eeff2=0.8) |
---|
| 80 | |
---|
| 81 | ! Local variables |
---|
| 82 | INTEGER i, k, n |
---|
| 83 | REAL zqs(ngridmx,nlayermx), zdelta, zcor |
---|
| 84 | REAL zrfl(ngridmx), zrfln(ngridmx), zqev, zqevt |
---|
| 85 | |
---|
| 86 | REAL zoliq(ngridmx) |
---|
| 87 | REAL ztglace |
---|
| 88 | REAL zdz(ngridmx),zrho(ngridmx),ztot(ngridmx), zrhol(ngridmx) |
---|
| 89 | REAL zchau(ngridmx),zfroi(ngridmx),zfrac(ngridmx),zneb(ngridmx) |
---|
| 90 | |
---|
| 91 | real ttemp, ptemp |
---|
| 92 | real tnext(ngridmx,nlayermx) |
---|
| 93 | |
---|
| 94 | REAL l2c(ngridmx,nlayermx) |
---|
| 95 | |
---|
| 96 | ! Indices of water vapour and water ice tracers |
---|
| 97 | INTEGER, SAVE :: i_vap=0 ! water vapour |
---|
| 98 | INTEGER, SAVE :: i_ice=0 ! water ice |
---|
| 99 | |
---|
| 100 | LOGICAL firstcall |
---|
| 101 | SAVE firstcall |
---|
| 102 | |
---|
| 103 | ! Online functions |
---|
| 104 | REAL fallv, zzz ! falling speed of ice crystals |
---|
| 105 | fallv (zzz) = 3.29 * ((zzz)**0.16) |
---|
| 106 | |
---|
| 107 | DATA firstcall /.true./ |
---|
| 108 | |
---|
| 109 | IF (firstcall) THEN |
---|
| 110 | |
---|
| 111 | i_vap=igcm_h2o_vap |
---|
| 112 | i_ice=igcm_h2o_ice |
---|
| 113 | |
---|
| 114 | write(*,*) "rain: i_ice=",i_ice |
---|
| 115 | write(*,*) " i_vap=",i_vap |
---|
| 116 | |
---|
| 117 | PRINT*, 'in rain.F, ninter=', ninter |
---|
| 118 | PRINT*, 'in rain.F, evap_prec=', evap_prec |
---|
| 119 | |
---|
| 120 | print*,ptimestep |
---|
| 121 | print*,1./ct |
---|
| 122 | |
---|
| 123 | if(.not.simple)then |
---|
| 124 | IF (ABS(ptimestep-1./ct).GT.0.001) THEN |
---|
| 125 | PRINT*, 'Must talk to Laurent Li!!!' |
---|
| 126 | call abort |
---|
| 127 | ENDIF |
---|
| 128 | endif |
---|
| 129 | |
---|
| 130 | firstcall = .false. |
---|
| 131 | ENDIF |
---|
| 132 | |
---|
| 133 | ! GCM -----> subroutine variables |
---|
| 134 | DO k = 1, nlayermx |
---|
| 135 | DO i = 1, ngridmx |
---|
| 136 | |
---|
| 137 | q(i,k) = pq(i,k,i_vap)!+pdq(i,k,i_vap) |
---|
| 138 | ql(i,k) = pq(i,k,i_ice)!+pdq(i,k,i_ice) |
---|
| 139 | |
---|
| 140 | if(q(i,k).lt.0.)then ! if this is not done, we don't conserve water |
---|
| 141 | q(i,k)=0. |
---|
| 142 | endif |
---|
| 143 | if(ql(i,k).lt.0.)then |
---|
| 144 | ql(i,k)=0. |
---|
| 145 | endif |
---|
| 146 | |
---|
| 147 | ENDDO |
---|
| 148 | ENDDO |
---|
| 149 | |
---|
| 150 | ! Determine the cold clouds by their temperature |
---|
| 151 | ztglace = To - 15.0 |
---|
| 152 | |
---|
| 153 | ! Initialise the outputs |
---|
| 154 | DO k = 1, nlayermx |
---|
| 155 | DO i = 1, ngridmx |
---|
| 156 | d_t(i,k) = 0.0 |
---|
| 157 | d_q(i,k) = 0.0 |
---|
| 158 | d_ql(i,k) = 0.0 |
---|
| 159 | ENDDO |
---|
| 160 | ENDDO |
---|
| 161 | DO i = 1, ngridmx |
---|
| 162 | zrfl(i) = 0.0 |
---|
| 163 | zrfln(i) = 0.0 |
---|
| 164 | ENDDO |
---|
| 165 | |
---|
| 166 | ! calculate saturation mixing ratio |
---|
| 167 | DO k = 1, nlayermx |
---|
| 168 | DO i = 1, ngridmx |
---|
| 169 | ttemp = t(i,k) |
---|
| 170 | ptemp = pplay(i,k) |
---|
| 171 | call watersat_2(ttemp,ptemp,zqs(i,k)) |
---|
| 172 | ENDDO |
---|
| 173 | ENDDO |
---|
| 174 | |
---|
| 175 | ! get column / layer conversion factor (+ptimstep) |
---|
| 176 | DO k = 1, nlayermx |
---|
| 177 | DO i = 1, ngridmx |
---|
| 178 | l2c(i,k)=(pplev(i,k)-pplev(i,k+1))/(g*ptimestep) |
---|
| 179 | ENDDO |
---|
| 180 | ENDDO |
---|
| 181 | |
---|
| 182 | |
---|
| 183 | ! Vertical loop (from top to bottom) |
---|
| 184 | ! We carry the rain with us and calculate that added by warm/cold precipitation |
---|
| 185 | ! processes and that subtracted by evaporation at each level. |
---|
| 186 | DO 9999 k = nlayermx, 1, -1 |
---|
| 187 | |
---|
| 188 | IF (evap_prec) THEN ! note no rneb dependence! |
---|
| 189 | DO i = 1, ngridmx |
---|
| 190 | IF (zrfl(i) .GT.0.) THEN |
---|
| 191 | !zqev = MAX (0.0, (zqs(i,k)-q(i,k))*eeff1 ) |
---|
| 192 | !zqevt = (zrfl(i)/l2c(i,k))*eeff2 |
---|
| 193 | !zqev = MIN (zqev, zqevt) |
---|
| 194 | !zrfln(i) = zrfl(i) - zqev*l2c(i,k) |
---|
| 195 | |
---|
| 196 | zrfln(i) = zrfl(i) - 1.5e-5*(1.0-q(i,k)/zqs(i,k))*sqrt(zrfl(i)) |
---|
| 197 | zrfln(i) = min(zrfln(i),zrfl(i)) |
---|
| 198 | ! this is what is actually written in the manual |
---|
| 199 | |
---|
| 200 | d_q(i,k) = - (zrfln(i)-zrfl(i))/l2c(i,k) |
---|
| 201 | d_t(i,k) = d_q(i,k) * RLVTT/RCPD/(1.0+RVTMP2*q(i,k)) |
---|
| 202 | |
---|
| 203 | zrfl(i) = zrfln(i) |
---|
| 204 | ENDIF |
---|
| 205 | ENDDO |
---|
| 206 | ENDIF |
---|
| 207 | |
---|
| 208 | DO i = 1, ngridmx |
---|
| 209 | zoliq(i) = 0.0 |
---|
| 210 | ENDDO |
---|
| 211 | |
---|
| 212 | |
---|
| 213 | if(simple)then |
---|
| 214 | |
---|
| 215 | DO i = 1, ngridmx |
---|
| 216 | ttemp = t(i,k) |
---|
| 217 | IF (ttemp .ge. To) THEN |
---|
| 218 | lconvert=rainthreshold |
---|
| 219 | ELSEIF (ttemp .gt. t_crit) THEN |
---|
| 220 | lconvert=rainthreshold*(1.- t_crit/ttemp) |
---|
| 221 | ELSE |
---|
| 222 | lconvert=0. |
---|
| 223 | ENDIF |
---|
| 224 | |
---|
| 225 | IF (ql(i,k).gt.lconvert)THEN ! precipitate! |
---|
| 226 | d_ql(i,k) = (lconvert-ql(i,k))/ptimestep |
---|
| 227 | zrfl(i) = zrfl(i) + max(ql(i,k) - lconvert,0.0)*l2c(i,k) |
---|
| 228 | ENDIF |
---|
| 229 | ENDDO |
---|
| 230 | |
---|
| 231 | else |
---|
| 232 | |
---|
| 233 | DO i = 1, ngridmx |
---|
| 234 | IF (rneb(i,k).GT.0.0) THEN |
---|
| 235 | zoliq(i) = ql(i,k) |
---|
| 236 | zrho(i) = pplay(i,k) / ( t(i,k) * R ) |
---|
| 237 | zdz(i) = (pplev(i,k)-pplev(i,k+1)) / (zrho(i)*g) |
---|
| 238 | zfrac(i) = (t(i,k)-ztglace) / (To-ztglace) |
---|
| 239 | zfrac(i) = MAX(zfrac(i), 0.0) |
---|
| 240 | zfrac(i) = MIN(zfrac(i), 1.0) |
---|
| 241 | zneb(i) = MAX(rneb(i,k), seuil_neb) |
---|
| 242 | ENDIF |
---|
| 243 | ENDDO |
---|
| 244 | |
---|
| 245 | DO n = 1, ninter |
---|
| 246 | DO i = 1, ngridmx |
---|
| 247 | IF (rneb(i,k).GT.0.0) THEN |
---|
| 248 | zchau(i) = ct*ptimestep/FLOAT(ninter) * zoliq(i) & |
---|
| 249 | * (1.0-EXP(-(zoliq(i)/zneb(i)/cl)**2)) * zfrac(i) |
---|
| 250 | ! this is the ONLY place where zneb, ct and cl are used |
---|
| 251 | zrhol(i) = zrho(i) * zoliq(i) / zneb(i) |
---|
| 252 | zfroi(i) = ptimestep/FLOAT(ninter)/zdz(i)*zoliq(i) & |
---|
| 253 | *fallv(zrhol(i)) * (1.0-zfrac(i)) ! zfroi behaves oddly... |
---|
| 254 | ! * 0.1 * (1.0-zfrac(i)) |
---|
| 255 | ztot(i) = zchau(i) + zfroi(i) |
---|
| 256 | |
---|
| 257 | IF (zneb(i).EQ.seuil_neb) ztot(i) = 0.0 |
---|
| 258 | ztot(i) = MIN(MAX(ztot(i),0.0),zoliq(i)) |
---|
| 259 | zoliq(i) = MAX(zoliq(i)-ztot(i), 0.0) |
---|
| 260 | |
---|
| 261 | ENDIF |
---|
| 262 | ENDDO |
---|
| 263 | ENDDO |
---|
| 264 | |
---|
| 265 | ! Change in cloud density and surface H2O values |
---|
| 266 | DO i = 1, ngridmx |
---|
| 267 | IF (rneb(i,k).GT.0.0) THEN |
---|
| 268 | d_ql(i,k) = (zoliq(i) - ql(i,k))/ptimestep |
---|
| 269 | zrfl(i) = zrfl(i)+ MAX(ql(i,k)-zoliq(i),0.0)*l2c(i,k) |
---|
| 270 | ENDIF |
---|
| 271 | ENDDO |
---|
| 272 | |
---|
| 273 | endif ! if simple |
---|
| 274 | |
---|
| 275 | 9999 continue |
---|
| 276 | |
---|
| 277 | ! Rain or snow on the ground |
---|
| 278 | DO i = 1, ngridmx |
---|
| 279 | IF (t(i,1) .LT. To) THEN |
---|
| 280 | dqssnow(i) = zrfl(i) |
---|
| 281 | ELSE |
---|
| 282 | dqsrain(i) = zrfl(i) ! liquid water = ice for now |
---|
| 283 | ENDIF |
---|
| 284 | ENDDO |
---|
| 285 | |
---|
| 286 | ! now subroutine -----> GCM variables |
---|
| 287 | DO k = 1, nlayermx |
---|
| 288 | DO i = 1, ngridmx |
---|
| 289 | |
---|
| 290 | if(evap_prec)then |
---|
| 291 | dqrain(i,k,i_vap) = d_q(i,k)/ptimestep |
---|
| 292 | d_t(i,k) = d_t(i,k)/ptimestep |
---|
| 293 | else |
---|
| 294 | dqrain(i,k,i_vap) = 0.0 |
---|
| 295 | d_t(i,k) = 0.0 |
---|
| 296 | endif |
---|
| 297 | dqrain(i,k,i_ice) = d_ql(i,k) |
---|
| 298 | |
---|
| 299 | ENDDO |
---|
| 300 | ENDDO |
---|
| 301 | |
---|
| 302 | ! debugging |
---|
| 303 | ! print*,'zrfl=',zrfl |
---|
| 304 | ! print*,'dqrain=',dqrain |
---|
| 305 | ! print*,'q=',q |
---|
| 306 | ! print*,'ql=',ql |
---|
| 307 | ! print*,'dql=',d_ql |
---|
| 308 | ! DO k = 1, nlayermx |
---|
| 309 | ! DO i = 1, ngridmx |
---|
| 310 | ! if(ql(i,k).lt.0.0) then |
---|
| 311 | ! print*,'below zero!!!!' |
---|
| 312 | ! call abort |
---|
| 313 | ! endif |
---|
| 314 | ! ENDDO |
---|
| 315 | ! ENDDO |
---|
| 316 | |
---|
| 317 | |
---|
| 318 | RETURN |
---|
| 319 | end subroutine rain |
---|