1 | !================================================================== |
---|
2 | module radii_mod |
---|
3 | !================================================================== |
---|
4 | ! module to centralize the radii calculations for aerosols |
---|
5 | !================================================================== |
---|
6 | |
---|
7 | ! CO2 cloud properties (initialized in inifis) |
---|
8 | real,save :: Nmix_co2 ! Number mixing ratio of CO2 ice particles |
---|
9 | !$OMP THREADPRIVATE(Nmix_co2) |
---|
10 | |
---|
11 | ! flag to specify if we assume a constant fixed radius for particles |
---|
12 | logical,save :: radfixed ! initialized in inifis |
---|
13 | !$OMP THREADPRIVATE(radfixed) |
---|
14 | |
---|
15 | ! water cloud optical properties (initialized in su_aer_radii below) |
---|
16 | real, save :: rad_h2o |
---|
17 | real, save :: rad_h2o_ice |
---|
18 | real, save :: Nmix_h2o |
---|
19 | real, save :: Nmix_h2o_ice |
---|
20 | !$OMP THREADPRIVATE(rad_h2o,rad_h2o_ice,Nmix_h2o,Nmix_h2o_ice) |
---|
21 | |
---|
22 | real,save :: nueff_iaero_h2o ! effective variance of H2O aerosol |
---|
23 | ! (initialized in su_aer_radii below) |
---|
24 | !$OMP THREADPRIVATE(nueff_iaero_h2o) |
---|
25 | ! coefficients for a variable nueff() for h2o aerosol; disabled for now |
---|
26 | real, parameter :: coef_hot=0.13 |
---|
27 | real, parameter :: coef_cold=0.09 |
---|
28 | |
---|
29 | |
---|
30 | contains |
---|
31 | |
---|
32 | |
---|
33 | !================================================================== |
---|
34 | subroutine su_aer_radii(ngrid,nlayer,reffrad,nueffrad) |
---|
35 | !================================================================== |
---|
36 | ! Purpose |
---|
37 | ! ------- |
---|
38 | ! Compute the effective radii of liquid and icy water particles |
---|
39 | ! Jeremy Leconte (2012) |
---|
40 | ! Extended to dust, CO2, NH3, 2-lay,Nlay,auroral aerosols by ?? |
---|
41 | ! Added Radiative Generic Condensable Species effective radii |
---|
42 | ! calculations (Lucas Teinturier 2022) |
---|
43 | ! |
---|
44 | ! Authors |
---|
45 | ! ------- |
---|
46 | ! Jeremy Leconte (2012) |
---|
47 | ! |
---|
48 | !================================================================== |
---|
49 | use mod_phys_lmdz_para, only : is_master |
---|
50 | use ioipsl_getin_p_mod, only: getin_p |
---|
51 | use radinc_h, only: naerkind |
---|
52 | use aerosol_mod, only: iaero_back2lay, iaero_co2, iaero_dust, & |
---|
53 | iaero_h2o, iaero_h2so4, iaero_nh3, iaero_nlay, & |
---|
54 | iaero_aurora, iaero_generic, i_rgcs_ice, & |
---|
55 | iaero_venus1, iaero_venus2, iaero_venus2p, & |
---|
56 | iaero_venus3, iaero_venusUV |
---|
57 | use callkeys_mod, only: size_nh3_cloud, nlayaero, aeronlay_size, & |
---|
58 | aeronlay_nueff,aerogeneric |
---|
59 | use tracer_h, only: radius, nqtot, is_rgcs |
---|
60 | Implicit none |
---|
61 | |
---|
62 | integer,intent(in) :: ngrid |
---|
63 | integer,intent(in) :: nlayer |
---|
64 | |
---|
65 | real, intent(out) :: reffrad(ngrid,nlayer,naerkind) !aerosols radii (K) |
---|
66 | real, intent(out) :: nueffrad(ngrid,nlayer,naerkind) !variance |
---|
67 | |
---|
68 | logical, save :: firstcall=.true. |
---|
69 | !$OMP THREADPRIVATE(firstcall) |
---|
70 | integer :: iaer, ia , iq, i_rad |
---|
71 | |
---|
72 | do iaer=1,naerkind |
---|
73 | ! these values will change once the microphysics gets to work |
---|
74 | ! UNLESS tracer=.false., in which case we should be working with |
---|
75 | ! a fixed aerosol layer, and be able to define reffrad in a |
---|
76 | ! .def file. To be improved! |
---|
77 | ! |-> Done in th n-layer aerosol case (JVO 20) |
---|
78 | |
---|
79 | if(iaer.eq.iaero_co2)then ! CO2 ice |
---|
80 | reffrad(1:ngrid,1:nlayer,iaer) = 1.e-4 |
---|
81 | nueffrad(1:ngrid,1:nlayer,iaer) = 0.1 |
---|
82 | endif |
---|
83 | |
---|
84 | if(iaer.eq.iaero_h2o)then ! H2O ice |
---|
85 | nueff_iaero_h2o=0.1 ! default value for variance of h2o aerosols |
---|
86 | call getin_p("nueff_iaero_h2o",nueff_iaero_h2o) |
---|
87 | if (is_master) write(*,*)" nueff_iaero_h2o = ",nueff_iaero_h2o |
---|
88 | reffrad(1:ngrid,1:nlayer,iaer) = 1.e-5 |
---|
89 | nueffrad(1:ngrid,1:nlayer,iaer) = nueff_iaero_h2o |
---|
90 | endif |
---|
91 | |
---|
92 | if(iaer.eq.iaero_dust)then ! dust |
---|
93 | reffrad(1:ngrid,1:nlayer,iaer) = 1.e-5 |
---|
94 | nueffrad(1:ngrid,1:nlayer,iaer) = 0.1 |
---|
95 | endif |
---|
96 | |
---|
97 | if(iaer.eq.iaero_h2so4)then ! H2SO4 ice |
---|
98 | reffrad(1:ngrid,1:nlayer,iaer) = 1.e-6 |
---|
99 | nueffrad(1:ngrid,1:nlayer,iaer) = 0.1 |
---|
100 | endif |
---|
101 | |
---|
102 | if(iaer.eq.iaero_back2lay)then ! Two-layer aerosols |
---|
103 | reffrad(1:ngrid,1:nlayer,iaer) = 2.e-6 |
---|
104 | nueffrad(1:ngrid,1:nlayer,iaer) = 0.1 |
---|
105 | endif |
---|
106 | |
---|
107 | |
---|
108 | if(iaer.eq.iaero_nh3)then ! Nh3 cloud |
---|
109 | reffrad(1:ngrid,1:nlayer,iaer) = size_nh3_cloud |
---|
110 | nueffrad(1:ngrid,1:nlayer,iaer) = 0.1 |
---|
111 | endif |
---|
112 | |
---|
113 | do ia=1,nlayaero |
---|
114 | if(iaer.eq.iaero_nlay(ia))then ! N-layer aerosols |
---|
115 | reffrad(1:ngrid,1:nlayer,iaer) = aeronlay_size(ia) |
---|
116 | nueffrad(1:ngrid,1:nlayer,iaer) = aeronlay_nueff(ia) |
---|
117 | endif |
---|
118 | enddo |
---|
119 | |
---|
120 | if(iaer.eq.iaero_aurora)then ! Auroral aerosols |
---|
121 | reffrad(1:ngrid,1:nlayer,iaer) = 3.e-7 |
---|
122 | nueffrad(1:ngrid,1:nlayer,iaer) = 0.1 |
---|
123 | endif |
---|
124 | |
---|
125 | if(iaer.eq.iaero_venus1)then ! Venus cloud, mode 1, Haus13 model |
---|
126 | reffrad(1:ngrid,1:nlayer,iaer) = 0.49e-6 |
---|
127 | nueffrad(1:ngrid,1:nlayer,iaer) = 0.21 |
---|
128 | endif |
---|
129 | |
---|
130 | if(iaer.eq.iaero_venus2)then ! Venus cloud, mode 2, Haus13 model |
---|
131 | reffrad(1:ngrid,1:nlayer,iaer) = 1.23e-6 |
---|
132 | nueffrad(1:ngrid,1:nlayer,iaer) = 0.067 |
---|
133 | endif |
---|
134 | |
---|
135 | if(iaer.eq.iaero_venus2p)then ! Venus cloud, mode 2p, Haus13 model |
---|
136 | reffrad(1:ngrid,1:nlayer,iaer) = 1.56e-6 |
---|
137 | nueffrad(1:ngrid,1:nlayer,iaer) = 0.044 |
---|
138 | endif |
---|
139 | |
---|
140 | if(iaer.eq.iaero_venus3)then ! Venus cloud, mode 3, Haus13 model |
---|
141 | reffrad(1:ngrid,1:nlayer,iaer) = 4.25e-6 |
---|
142 | nueffrad(1:ngrid,1:nlayer,iaer) = 0.062 |
---|
143 | endif |
---|
144 | |
---|
145 | if(iaer.eq.iaero_venusUV)then ! Venus cloud, UV abs, 1 val as in table |
---|
146 | reffrad(1:ngrid,1:nlayer,iaer) = 0.5e-6 |
---|
147 | nueffrad(1:ngrid,1:nlayer,iaer) = 0.1 |
---|
148 | endif |
---|
149 | |
---|
150 | do ia=1,aerogeneric ! Radiative Generic Condensable Species |
---|
151 | if (iaer .eq. iaero_generic(ia)) then |
---|
152 | i_rad = i_rgcs_ice(ia) |
---|
153 | reffrad(1:ngrid,1:nlayer,iaer)=radius(i_rad) |
---|
154 | nueffrad(1:ngrid,1:nlayer,iaer) = 0.1 |
---|
155 | endif |
---|
156 | enddo ! generic radiative condensable aerosols |
---|
157 | |
---|
158 | enddo ! iaer=1,naerkind |
---|
159 | |
---|
160 | |
---|
161 | if (radfixed) then |
---|
162 | |
---|
163 | if (is_master) write(*,*)"radius of H2O water particles:" |
---|
164 | rad_h2o=13. ! default value |
---|
165 | call getin_p("rad_h2o",rad_h2o) |
---|
166 | if (is_master) write(*,*)" rad_h2o = ",rad_h2o |
---|
167 | |
---|
168 | if (is_master) write(*,*)"radius of H2O ice particles:" |
---|
169 | rad_h2o_ice=35. ! default value |
---|
170 | call getin_p("rad_h2o_ice",rad_h2o_ice) |
---|
171 | if (is_master) write(*,*)" rad_h2o_ice = ",rad_h2o_ice |
---|
172 | |
---|
173 | else |
---|
174 | |
---|
175 | if (is_master) write(*,*)"Number mixing ratio of H2O water particles:" |
---|
176 | Nmix_h2o=1.e6 ! default value |
---|
177 | call getin_p("Nmix_h2o",Nmix_h2o) |
---|
178 | if (is_master) write(*,*)" Nmix_h2o = ",Nmix_h2o |
---|
179 | |
---|
180 | if (is_master) write(*,*)"Number mixing ratio of H2O ice particles:" |
---|
181 | Nmix_h2o_ice=Nmix_h2o ! default value |
---|
182 | call getin_p("Nmix_h2o_ice",Nmix_h2o_ice) |
---|
183 | if (is_master) write(*,*)" Nmix_h2o_ice = ",Nmix_h2o_ice |
---|
184 | endif |
---|
185 | |
---|
186 | |
---|
187 | end subroutine su_aer_radii |
---|
188 | !================================================================== |
---|
189 | |
---|
190 | |
---|
191 | !================================================================== |
---|
192 | subroutine h2o_reffrad(ngrid,nlayer,pq,pt,reffrad,nueffrad) |
---|
193 | !================================================================== |
---|
194 | ! Purpose |
---|
195 | ! ------- |
---|
196 | ! Compute the effective radii of liquid and icy water particles |
---|
197 | ! |
---|
198 | ! Authors |
---|
199 | ! ------- |
---|
200 | ! Jeremy Leconte (2012) |
---|
201 | ! |
---|
202 | !================================================================== |
---|
203 | use watercommon_h, Only: T_h2O_ice_liq,T_h2O_ice_clouds,rhowater,rhowaterice |
---|
204 | use comcstfi_mod, only: pi |
---|
205 | Implicit none |
---|
206 | |
---|
207 | integer,intent(in) :: ngrid |
---|
208 | integer,intent(in) :: nlayer |
---|
209 | |
---|
210 | real, intent(in) :: pq(ngrid,nlayer) !water ice mixing ratios (kg/kg) |
---|
211 | real, intent(in) :: pt(ngrid,nlayer) !temperature (K) |
---|
212 | real, intent(out) :: reffrad(ngrid,nlayer) !aerosol radii |
---|
213 | real, intent(out) :: nueffrad(ngrid,nlayer) ! dispersion |
---|
214 | |
---|
215 | integer :: ig,l |
---|
216 | real zfice ,zrad,zrad_liq,zrad_ice |
---|
217 | real,external :: CBRT |
---|
218 | |
---|
219 | |
---|
220 | if (radfixed) then |
---|
221 | do l=1,nlayer |
---|
222 | do ig=1,ngrid |
---|
223 | zfice = 1.0 - (pt(ig,l)-T_h2O_ice_clouds) / (T_h2O_ice_liq-T_h2O_ice_clouds) |
---|
224 | zfice = MIN(MAX(zfice,0.0),1.0) |
---|
225 | reffrad(ig,l)= rad_h2o * (1.-zfice) + rad_h2o_ice * zfice |
---|
226 | ! nueffrad(ig,l) = coef_hot * (1.-zfice) + coef_cold * zfice |
---|
227 | enddo |
---|
228 | enddo |
---|
229 | else |
---|
230 | do l=1,nlayer |
---|
231 | do ig=1,ngrid |
---|
232 | zfice = 1.0 - (pt(ig,l)-T_h2O_ice_clouds) / (T_h2O_ice_liq-T_h2O_ice_clouds) |
---|
233 | zfice = MIN(MAX(zfice,0.0),1.0) |
---|
234 | zrad_liq = CBRT( 3*pq(ig,l)/(4*Nmix_h2o*pi*rhowater) ) |
---|
235 | zrad_ice = CBRT( 3*pq(ig,l)/(4*Nmix_h2o_ice*pi*rhowaterice) ) |
---|
236 | ! nueffrad(ig,l) = coef_hot * (1.-zfice) + coef_cold * zfice |
---|
237 | zrad = zrad_liq * (1.-zfice) + zrad_ice * zfice |
---|
238 | |
---|
239 | reffrad(ig,l) = min(max(zrad,1.e-6),1000.e-6) |
---|
240 | enddo |
---|
241 | enddo |
---|
242 | end if |
---|
243 | |
---|
244 | ! For now only constant nueff is enabled (otherwise some specific handling |
---|
245 | ! of variable nueff is required in aeroptproperties) |
---|
246 | nueffrad(1:ngrid,1:nlayer)=nueff_iaero_h2o |
---|
247 | |
---|
248 | end subroutine h2o_reffrad |
---|
249 | !================================================================== |
---|
250 | |
---|
251 | |
---|
252 | !================================================================== |
---|
253 | subroutine h2o_cloudrad(ngrid,nlayer,pql,reffliq,reffice) |
---|
254 | !================================================================== |
---|
255 | ! Purpose |
---|
256 | ! ------- |
---|
257 | ! Compute the effective radii of liquid and icy water particles |
---|
258 | ! |
---|
259 | ! Authors |
---|
260 | ! ------- |
---|
261 | ! Jeremy Leconte (2012) |
---|
262 | ! |
---|
263 | !================================================================== |
---|
264 | use watercommon_h, Only: rhowater,rhowaterice |
---|
265 | use comcstfi_mod, only: pi |
---|
266 | Implicit none |
---|
267 | |
---|
268 | integer,intent(in) :: ngrid |
---|
269 | integer,intent(in) :: nlayer |
---|
270 | |
---|
271 | real, intent(in) :: pql(ngrid,nlayer) !condensed water mixing ratios (kg/kg) |
---|
272 | real, intent(out) :: reffliq(ngrid,nlayer),reffice(ngrid,nlayer) !liquid and ice water particle radii (m) |
---|
273 | |
---|
274 | real,external :: CBRT |
---|
275 | integer :: i,k |
---|
276 | |
---|
277 | if (radfixed) then |
---|
278 | reffliq(1:ngrid,1:nlayer)= rad_h2o |
---|
279 | reffice(1:ngrid,1:nlayer)= rad_h2o_ice |
---|
280 | else |
---|
281 | do k=1,nlayer |
---|
282 | do i=1,ngrid |
---|
283 | reffliq(i,k) = CBRT(3*pql(i,k)/(4*Nmix_h2o*pi*rhowater)) |
---|
284 | reffliq(i,k) = min(max(reffliq(i,k),1.e-6),1000.e-6) |
---|
285 | |
---|
286 | reffice(i,k) = CBRT(3*pql(i,k)/(4*Nmix_h2o_ice*pi*rhowaterice)) |
---|
287 | reffice(i,k) = min(max(reffice(i,k),1.e-6),1000.e-6) |
---|
288 | enddo |
---|
289 | enddo |
---|
290 | endif |
---|
291 | |
---|
292 | end subroutine h2o_cloudrad |
---|
293 | !================================================================== |
---|
294 | |
---|
295 | |
---|
296 | |
---|
297 | !================================================================== |
---|
298 | subroutine co2_reffrad(ngrid,nlayer,nq,pq,reffrad) |
---|
299 | !================================================================== |
---|
300 | ! Purpose |
---|
301 | ! ------- |
---|
302 | ! Compute the effective radii of co2 ice particles |
---|
303 | ! |
---|
304 | ! Authors |
---|
305 | ! ------- |
---|
306 | ! Jeremy Leconte (2012) |
---|
307 | ! |
---|
308 | !================================================================== |
---|
309 | USE tracer_h, only:igcm_co2_ice,rho_co2 |
---|
310 | use comcstfi_mod, only: pi |
---|
311 | Implicit none |
---|
312 | |
---|
313 | integer,intent(in) :: ngrid,nlayer,nq |
---|
314 | |
---|
315 | real, intent(in) :: pq(ngrid,nlayer,nq) !tracer mixing ratios (kg/kg) |
---|
316 | real, intent(out) :: reffrad(ngrid,nlayer) !co2 ice particles radii (m) |
---|
317 | |
---|
318 | integer :: ig,l |
---|
319 | real :: zrad |
---|
320 | real,external :: CBRT |
---|
321 | |
---|
322 | |
---|
323 | |
---|
324 | if (radfixed) then |
---|
325 | reffrad(1:ngrid,1:nlayer) = 5.e-5 ! CO2 ice |
---|
326 | else |
---|
327 | do l=1,nlayer |
---|
328 | do ig=1,ngrid |
---|
329 | zrad = CBRT( 3*pq(ig,l,igcm_co2_ice)/(4*Nmix_co2*pi*rho_co2) ) |
---|
330 | reffrad(ig,l) = min(max(zrad,1.e-6),100.e-6) |
---|
331 | enddo |
---|
332 | enddo |
---|
333 | end if |
---|
334 | |
---|
335 | end subroutine co2_reffrad |
---|
336 | !================================================================== |
---|
337 | |
---|
338 | |
---|
339 | |
---|
340 | !================================================================== |
---|
341 | subroutine dust_reffrad(ngrid,nlayer,reffrad) |
---|
342 | !================================================================== |
---|
343 | ! Purpose |
---|
344 | ! ------- |
---|
345 | ! Compute the effective radii of dust particles |
---|
346 | ! |
---|
347 | ! Authors |
---|
348 | ! ------- |
---|
349 | ! Jeremy Leconte (2012) |
---|
350 | ! |
---|
351 | !================================================================== |
---|
352 | Implicit none |
---|
353 | |
---|
354 | integer,intent(in) :: ngrid |
---|
355 | integer,intent(in) :: nlayer |
---|
356 | |
---|
357 | real, intent(out) :: reffrad(ngrid,nlayer) !dust particles radii (m) |
---|
358 | |
---|
359 | reffrad(1:ngrid,1:nlayer) = 2.e-6 ! dust |
---|
360 | |
---|
361 | end subroutine dust_reffrad |
---|
362 | !================================================================== |
---|
363 | |
---|
364 | |
---|
365 | !================================================================== |
---|
366 | subroutine h2so4_reffrad(ngrid,nlayer,reffrad) |
---|
367 | !================================================================== |
---|
368 | ! Purpose |
---|
369 | ! ------- |
---|
370 | ! Compute the effective radii of h2so4 particles |
---|
371 | ! |
---|
372 | ! Authors |
---|
373 | ! ------- |
---|
374 | ! Jeremy Leconte (2012) |
---|
375 | ! |
---|
376 | !================================================================== |
---|
377 | Implicit none |
---|
378 | |
---|
379 | integer,intent(in) :: ngrid |
---|
380 | integer,intent(in) :: nlayer |
---|
381 | |
---|
382 | real, intent(out) :: reffrad(ngrid,nlayer) !h2so4 particle radii (m) |
---|
383 | |
---|
384 | reffrad(1:ngrid,1:nlayer) = 1.e-6 ! h2so4 |
---|
385 | |
---|
386 | end subroutine h2so4_reffrad |
---|
387 | !================================================================== |
---|
388 | |
---|
389 | !================================================================== |
---|
390 | subroutine back2lay_reffrad(ngrid,reffrad,nlayer,pplev) |
---|
391 | !================================================================== |
---|
392 | ! Purpose |
---|
393 | ! ------- |
---|
394 | ! Compute the effective radii of particles in a 2-layer model |
---|
395 | ! |
---|
396 | ! Authors |
---|
397 | ! ------- |
---|
398 | ! Sandrine Guerlet (2013) |
---|
399 | ! |
---|
400 | !================================================================== |
---|
401 | use callkeys_mod, only: pres_bottom_tropo,pres_top_tropo,size_tropo, & |
---|
402 | pres_bottom_strato,size_strato |
---|
403 | |
---|
404 | Implicit none |
---|
405 | |
---|
406 | integer,intent(in) :: ngrid |
---|
407 | |
---|
408 | real, intent(out) :: reffrad(ngrid,nlayer) ! particle radii (m) |
---|
409 | REAL,INTENT(IN) :: pplev(ngrid,nlayer+1) ! inter-layer pressure (Pa) |
---|
410 | INTEGER,INTENT(IN) :: nlayer ! number of atmospheric layers |
---|
411 | REAL :: expfactor |
---|
412 | INTEGER l,ig |
---|
413 | |
---|
414 | reffrad(:,:)=1e-6 !!initialization, not important |
---|
415 | DO ig=1,ngrid |
---|
416 | DO l=1,nlayer-1 |
---|
417 | IF (pplev(ig,l) .le. pres_bottom_tropo .and. pplev(ig,l) .ge. pres_top_tropo) THEN |
---|
418 | reffrad(ig,l) = size_tropo |
---|
419 | ELSEIF (pplev(ig,l) .lt. pres_top_tropo .and. pplev(ig,l) .gt. pres_bottom_strato) THEN |
---|
420 | expfactor=log(size_strato/size_tropo) / log(pres_bottom_strato/pres_top_tropo) |
---|
421 | reffrad(ig,l)= size_tropo*((pplev(ig,l)/pres_top_tropo)**expfactor) |
---|
422 | ELSEIF (pplev(ig,l) .le. pres_bottom_strato) then |
---|
423 | reffrad(ig,l) = size_strato |
---|
424 | ENDIF |
---|
425 | ENDDO |
---|
426 | ENDDO |
---|
427 | |
---|
428 | end subroutine back2lay_reffrad |
---|
429 | !================================================================== |
---|
430 | |
---|
431 | end module radii_mod |
---|
432 | !================================================================== |
---|