| 1 | module physiq_mod |
|---|
| 2 | |
|---|
| 3 | implicit none |
|---|
| 4 | |
|---|
| 5 | contains |
|---|
| 6 | |
|---|
| 7 | subroutine physiq(ngrid,nlayer,nq, & |
|---|
| 8 | nametrac, & |
|---|
| 9 | firstcall,lastcall, & |
|---|
| 10 | pday,ptime,ptimestep, & |
|---|
| 11 | pplev,pplay,pphi, & |
|---|
| 12 | pu,pv,pt,pq, & |
|---|
| 13 | flxw, & |
|---|
| 14 | pdu,pdv,pdt,pdq,pdpsrf) |
|---|
| 15 | |
|---|
| 16 | use radinc_h, only : L_NSPECTI,L_NSPECTV,naerkind |
|---|
| 17 | use watercommon_h, only : RLVTT, Psat_water,epsi,su_watercycle, RV, T_h2o_ice_liq |
|---|
| 18 | use thermcell_mod, only: init_thermcell_mod |
|---|
| 19 | use gases_h, only: gnom, gfrac |
|---|
| 20 | use radcommon_h, only: sigma, glat, grav, BWNV |
|---|
| 21 | use radii_mod, only: h2o_reffrad, co2_reffrad |
|---|
| 22 | use aerosol_mod, only: iaero_co2, iaero_h2o |
|---|
| 23 | use surfdat_h, only: phisfi, zmea, zstd, zsig, zgam, zthe, & |
|---|
| 24 | dryness, watercaptag |
|---|
| 25 | use comdiurn_h, only: coslat, sinlat, coslon, sinlon |
|---|
| 26 | use comsaison_h, only: mu0, fract, dist_star, declin, right_ascen |
|---|
| 27 | use comsoil_h, only: nsoilmx, layer, mlayer, inertiedat |
|---|
| 28 | use geometry_mod, only: latitude, longitude, cell_area |
|---|
| 29 | USE comgeomfi_h, only: totarea, totarea_planet |
|---|
| 30 | USE tracer_h, only: noms, mmol, radius, rho_q, qext, & |
|---|
| 31 | alpha_lift, alpha_devil, qextrhor, & |
|---|
| 32 | igcm_h2o_ice, igcm_h2o_vap, igcm_dustbin, & |
|---|
| 33 | igcm_co2_ice, nesp, is_chim |
|---|
| 34 | use time_phylmdz_mod, only: ecritphy, iphysiq, nday |
|---|
| 35 | use phyetat0_mod, only: phyetat0 |
|---|
| 36 | use phyredem, only: physdem0, physdem1 |
|---|
| 37 | use slab_ice_h, only: capcalocean, capcalseaice,capcalsno, & |
|---|
| 38 | noceanmx |
|---|
| 39 | use ocean_slab_mod, only :ocean_slab_init, ocean_slab_ice, & |
|---|
| 40 | ini_surf_heat_transp_mod, & |
|---|
| 41 | ocean_slab_get_vars,ocean_slab_final |
|---|
| 42 | use surf_heat_transp_mod,only :init_masquv |
|---|
| 43 | use planetwide_mod, only: planetwide_minval,planetwide_maxval,planetwide_sumval |
|---|
| 44 | use mod_phys_lmdz_para, only : is_master |
|---|
| 45 | use planete_mod, only: apoastr, periastr, year_day, peri_day, & |
|---|
| 46 | obliquit, nres, z0 |
|---|
| 47 | use comcstfi_mod, only: pi, g, rcp, r, rad, mugaz, cpp |
|---|
| 48 | use time_phylmdz_mod, only: daysec |
|---|
| 49 | use callkeys_mod, only: albedo_spectral_mode, calladj, calldifv, & |
|---|
| 50 | calllott_nonoro, callrad, callsoil, nosurf, & |
|---|
| 51 | callstats, & |
|---|
| 52 | calltherm, CLFvarying, co2cond, corrk, diagdtau, & |
|---|
| 53 | diurnal, enertest, fat1au, flatten, j2, & |
|---|
| 54 | hydrology, icetstep, intheat, iradia, kastprof, & |
|---|
| 55 | lwrite, mass_redistrib, massplanet, meanOLR, & |
|---|
| 56 | nearco2cond, newtonian, noseason_day, oblate, & |
|---|
| 57 | ok_slab_ocean, photochem, rings_shadow, rmean, & |
|---|
| 58 | season, sedimentation, sourceevol, specOLR, & |
|---|
| 59 | startphy_file, testradtimes, tlocked, & |
|---|
| 60 | tracer, UseTurbDiff, water, watercond, & |
|---|
| 61 | waterrain, global1d, szangle |
|---|
| 62 | use nonoro_gwd_ran_mod, only: nonoro_gwd_ran |
|---|
| 63 | use conc_mod, only: rnew, cpnew, ini_conc_mod |
|---|
| 64 | use phys_state_var_mod |
|---|
| 65 | use callcorrk_mod, only: callcorrk |
|---|
| 66 | use vdifc_mod, only: vdifc |
|---|
| 67 | use turbdiff_mod, only: turbdiff |
|---|
| 68 | use turb_mod, only : q2,sensibFlux,turb_resolved |
|---|
| 69 | use mass_redistribution_mod, only: mass_redistribution |
|---|
| 70 | #ifndef MESOSCALE |
|---|
| 71 | use vertical_layers_mod, only: presnivs, pseudoalt |
|---|
| 72 | use mod_phys_lmdz_omp_data, ONLY: is_omp_master |
|---|
| 73 | #else |
|---|
| 74 | use comm_wrf, only : comm_HR_SW, comm_HR_LW, & |
|---|
| 75 | comm_CLOUDFRAC,comm_TOTCLOUDFRAC,& |
|---|
| 76 | comm_SURFRAIN,comm_REEVAP,comm_HR_DYN,& |
|---|
| 77 | comm_RAIN,comm_SNOW,comm_ALBEQ,& |
|---|
| 78 | comm_FLUXTOP_DN,comm_FLUXABS_SW,& |
|---|
| 79 | comm_FLUXTOP_LW,comm_FLUXSURF_SW,& |
|---|
| 80 | comm_FLUXSURF_LW,comm_FLXGRD,& |
|---|
| 81 | comm_LSCEZ,comm_H2OICE_REFF |
|---|
| 82 | #endif |
|---|
| 83 | |
|---|
| 84 | #ifdef CPP_XIOS |
|---|
| 85 | use xios_output_mod, only: initialize_xios_output, & |
|---|
| 86 | update_xios_timestep, & |
|---|
| 87 | send_xios_field |
|---|
| 88 | use wxios, only: wxios_context_init, xios_context_finalize |
|---|
| 89 | #endif |
|---|
| 90 | |
|---|
| 91 | implicit none |
|---|
| 92 | |
|---|
| 93 | |
|---|
| 94 | !================================================================== |
|---|
| 95 | ! |
|---|
| 96 | ! Purpose |
|---|
| 97 | ! ------- |
|---|
| 98 | ! Central subroutine for all the physics parameterisations in the |
|---|
| 99 | ! universal model. Originally adapted from the Mars LMDZ model. |
|---|
| 100 | ! |
|---|
| 101 | ! The model can be run without or with tracer transport |
|---|
| 102 | ! depending on the value of "tracer" in file "callphys.def". |
|---|
| 103 | ! |
|---|
| 104 | ! |
|---|
| 105 | ! It includes: |
|---|
| 106 | ! |
|---|
| 107 | ! I. Initialization : |
|---|
| 108 | ! I.1 Firstcall initializations. |
|---|
| 109 | ! I.2 Initialization for every call to physiq. |
|---|
| 110 | ! |
|---|
| 111 | ! II. Compute radiative transfer tendencies (longwave and shortwave) : |
|---|
| 112 | ! II.a Option 1 : Call correlated-k radiative transfer scheme. |
|---|
| 113 | ! II.b Option 2 : Call Newtonian cooling scheme. |
|---|
| 114 | ! II.c Option 3 : Atmosphere has no radiative effect. |
|---|
| 115 | ! |
|---|
| 116 | ! III. Vertical diffusion (turbulent mixing) : |
|---|
| 117 | ! |
|---|
| 118 | ! IV. Convection : |
|---|
| 119 | ! IV.a Thermal plume model |
|---|
| 120 | ! IV.b Dry convective adjusment |
|---|
| 121 | ! |
|---|
| 122 | ! V. Condensation and sublimation of gases (currently just CO2). |
|---|
| 123 | ! |
|---|
| 124 | ! VI. Tracers |
|---|
| 125 | ! VI.1. Water and water ice. |
|---|
| 126 | ! VI.2 Photochemistry |
|---|
| 127 | ! VI.3. Aerosols and particles. |
|---|
| 128 | ! VI.4. Updates (pressure variations, surface budget). |
|---|
| 129 | ! VI.5. Slab Ocean. |
|---|
| 130 | ! VI.6. Surface Tracer Update. |
|---|
| 131 | ! |
|---|
| 132 | ! VII. Surface and sub-surface soil temperature. |
|---|
| 133 | ! |
|---|
| 134 | ! VIII. Perform diagnostics and write output files. |
|---|
| 135 | ! |
|---|
| 136 | ! |
|---|
| 137 | ! arguments |
|---|
| 138 | ! --------- |
|---|
| 139 | ! |
|---|
| 140 | ! INPUT |
|---|
| 141 | ! ----- |
|---|
| 142 | ! |
|---|
| 143 | ! ngrid Size of the horizontal grid. |
|---|
| 144 | ! nlayer Number of vertical layers. |
|---|
| 145 | ! nq Number of advected fields. |
|---|
| 146 | ! nametrac Name of corresponding advected fields. |
|---|
| 147 | ! |
|---|
| 148 | ! firstcall True at the first call. |
|---|
| 149 | ! lastcall True at the last call. |
|---|
| 150 | ! |
|---|
| 151 | ! pday Number of days counted from the North. Spring equinoxe. |
|---|
| 152 | ! ptime Universal time (0<ptime<1): ptime=0.5 at 12:00 UT. |
|---|
| 153 | ! ptimestep timestep (s). |
|---|
| 154 | ! |
|---|
| 155 | ! pplay(ngrid,nlayer) Pressure at the middle of the layers (Pa). |
|---|
| 156 | ! pplev(ngrid,nlayer+1) Intermediate pressure levels (Pa). |
|---|
| 157 | ! pphi(ngrid,nlayer) Geopotential at the middle of the layers (m2.s-2). |
|---|
| 158 | ! |
|---|
| 159 | ! pu(ngrid,nlayer) u, zonal component of the wind (ms-1). |
|---|
| 160 | ! pv(ngrid,nlayer) v, meridional component of the wind (ms-1). |
|---|
| 161 | ! |
|---|
| 162 | ! pt(ngrid,nlayer) Temperature (K). |
|---|
| 163 | ! |
|---|
| 164 | ! pq(ngrid,nlayer,nq) Advected fields. |
|---|
| 165 | ! |
|---|
| 166 | ! pudyn(ngrid,nlayer) \ |
|---|
| 167 | ! pvdyn(ngrid,nlayer) \ Dynamical temporal derivative for the |
|---|
| 168 | ! ptdyn(ngrid,nlayer) / corresponding variables. |
|---|
| 169 | ! pqdyn(ngrid,nlayer,nq) / |
|---|
| 170 | ! flxw(ngrid,nlayer) vertical mass flux (kg/s) at layer lower boundary |
|---|
| 171 | ! |
|---|
| 172 | ! OUTPUT |
|---|
| 173 | ! ------ |
|---|
| 174 | ! |
|---|
| 175 | ! pdu(ngrid,nlayer) \ |
|---|
| 176 | ! pdv(ngrid,nlayer) \ Temporal derivative of the corresponding |
|---|
| 177 | ! pdt(ngrid,nlayer) / variables due to physical processes. |
|---|
| 178 | ! pdq(ngrid,nlayer) / |
|---|
| 179 | ! pdpsrf(ngrid) / |
|---|
| 180 | ! |
|---|
| 181 | ! |
|---|
| 182 | ! Authors |
|---|
| 183 | ! ------- |
|---|
| 184 | ! Frederic Hourdin 15/10/93 |
|---|
| 185 | ! Francois Forget 1994 |
|---|
| 186 | ! Christophe Hourdin 02/1997 |
|---|
| 187 | ! Subroutine completely rewritten by F. Forget (01/2000) |
|---|
| 188 | ! Water ice clouds: Franck Montmessin (update 06/2003) |
|---|
| 189 | ! Radiatively active tracers: J.-B. Madeleine (10/2008-06/2009) |
|---|
| 190 | ! New correlated-k radiative scheme: R. Wordsworth (2009) |
|---|
| 191 | ! Many specifically Martian subroutines removed: R. Wordsworth (2009) |
|---|
| 192 | ! Improved water cycle: R. Wordsworth / B. Charnay (2010) |
|---|
| 193 | ! To F90: R. Wordsworth (2010) |
|---|
| 194 | ! New turbulent diffusion scheme: J. Leconte (2012) |
|---|
| 195 | ! Loops converted to F90 matrix format: J. Leconte (2012) |
|---|
| 196 | ! No more ngridmx/nqmx, F90 commons and adaptation to parallel: A. Spiga (2012) |
|---|
| 197 | ! Purge of the code : M. Turbet (2015) |
|---|
| 198 | ! Photochemical core developped by F. Lefevre: B. Charnay (2017) |
|---|
| 199 | !================================================================== |
|---|
| 200 | |
|---|
| 201 | |
|---|
| 202 | ! 0. Declarations : |
|---|
| 203 | ! ------------------ |
|---|
| 204 | |
|---|
| 205 | include "netcdf.inc" |
|---|
| 206 | |
|---|
| 207 | ! Arguments : |
|---|
| 208 | ! ----------- |
|---|
| 209 | |
|---|
| 210 | ! INPUTS: |
|---|
| 211 | ! ------- |
|---|
| 212 | |
|---|
| 213 | integer,intent(in) :: ngrid ! Number of atmospheric columns. |
|---|
| 214 | integer,intent(in) :: nlayer ! Number of atmospheric layers. |
|---|
| 215 | integer,intent(in) :: nq ! Number of tracers. |
|---|
| 216 | character*30,intent(in) :: nametrac(nq) ! Names of the tracers taken from dynamics. |
|---|
| 217 | |
|---|
| 218 | logical,intent(in) :: firstcall ! Signals first call to physics. |
|---|
| 219 | logical,intent(in) :: lastcall ! Signals last call to physics. |
|---|
| 220 | |
|---|
| 221 | real,intent(in) :: pday ! Number of elapsed sols since reference Ls=0. |
|---|
| 222 | real,intent(in) :: ptime ! "Universal time", given as fraction of sol (e.g.: 0.5 for noon). |
|---|
| 223 | real,intent(in) :: ptimestep ! Physics timestep (s). |
|---|
| 224 | real,intent(in) :: pplev(ngrid,nlayer+1) ! Inter-layer pressure (Pa). |
|---|
| 225 | real,intent(in) :: pplay(ngrid,nlayer) ! Mid-layer pressure (Pa). |
|---|
| 226 | real,intent(in) :: pphi(ngrid,nlayer) ! Geopotential at mid-layer (m2s-2). |
|---|
| 227 | real,intent(in) :: pu(ngrid,nlayer) ! Zonal wind component (m/s). |
|---|
| 228 | real,intent(in) :: pv(ngrid,nlayer) ! Meridional wind component (m/s). |
|---|
| 229 | real,intent(in) :: pt(ngrid,nlayer) ! Temperature (K). |
|---|
| 230 | real,intent(in) :: pq(ngrid,nlayer,nq) ! Tracers (kg/kg_of_air). |
|---|
| 231 | real,intent(in) :: flxw(ngrid,nlayer) ! Vertical mass flux (ks/s) at lower boundary of layer |
|---|
| 232 | |
|---|
| 233 | ! OUTPUTS: |
|---|
| 234 | ! -------- |
|---|
| 235 | |
|---|
| 236 | ! Physical tendencies : |
|---|
| 237 | |
|---|
| 238 | real,intent(out) :: pdu(ngrid,nlayer) ! Zonal wind tendencies (m/s/s). |
|---|
| 239 | real,intent(out) :: pdv(ngrid,nlayer) ! Meridional wind tendencies (m/s/s). |
|---|
| 240 | real,intent(out) :: pdt(ngrid,nlayer) ! Temperature tendencies (K/s). |
|---|
| 241 | real,intent(out) :: pdq(ngrid,nlayer,nq) ! Tracer tendencies (kg/kg_of_air/s). |
|---|
| 242 | real,intent(out) :: pdpsrf(ngrid) ! Surface pressure tendency (Pa/s). |
|---|
| 243 | |
|---|
| 244 | ! Local saved variables: |
|---|
| 245 | ! ---------------------- |
|---|
| 246 | integer,save :: day_ini ! Initial date of the run (sol since Ls=0). |
|---|
| 247 | integer,save :: icount ! Counter of calls to physiq during the run. |
|---|
| 248 | !$OMP THREADPRIVATE(day_ini,icount) |
|---|
| 249 | |
|---|
| 250 | ! Local variables : |
|---|
| 251 | ! ----------------- |
|---|
| 252 | |
|---|
| 253 | ! Aerosol (dust or ice) extinction optical depth at reference wavelength |
|---|
| 254 | ! for the "naerkind" optically active aerosols: |
|---|
| 255 | |
|---|
| 256 | real aerosol(ngrid,nlayer,naerkind) ! Aerosols. |
|---|
| 257 | real zh(ngrid,nlayer) ! Potential temperature (K). |
|---|
| 258 | real pw(ngrid,nlayer) ! Vertical velocity (m/s). (NOTE : >0 WHEN DOWNWARDS !!) |
|---|
| 259 | real omega(ngrid,nlayer) ! omega velocity (Pa/s, >0 when downward) |
|---|
| 260 | |
|---|
| 261 | integer l,ig,ierr,iq,nw,isoil,iesp |
|---|
| 262 | |
|---|
| 263 | real zls ! Solar longitude (radians). |
|---|
| 264 | real zlss ! Sub solar point longitude (radians). |
|---|
| 265 | real zday ! Date (time since Ls=0, calculated in sols). |
|---|
| 266 | real zzlay(ngrid,nlayer) ! Altitude at the middle of the atmospheric layers. |
|---|
| 267 | real zzlev(ngrid,nlayer+1) ! Altitude at the atmospheric layer boundaries. |
|---|
| 268 | |
|---|
| 269 | ! VARIABLES for the thermal plume model |
|---|
| 270 | |
|---|
| 271 | real f(ngrid) ! Mass flux norm |
|---|
| 272 | real fm(ngrid,nlayer+1) ! Mass flux |
|---|
| 273 | real fm_bis(ngrid,nlayer) ! Recasted fm |
|---|
| 274 | real entr(ngrid,nlayer) ! Entrainment |
|---|
| 275 | real detr(ngrid,nlayer) ! Detrainment |
|---|
| 276 | real dqevap(ngrid,nlayer,nq) ! water tracer mass mixing ratio variations due to evaporation |
|---|
| 277 | real dtevap(ngrid,nlayer) ! temperature variation due to evaporation |
|---|
| 278 | real zqtherm(ngrid,nlayer,nq) ! vapor mass mixing ratio after evaporation |
|---|
| 279 | real zttherm(ngrid,nlayer) ! temperature after evaporation |
|---|
| 280 | real fraca(ngrid,nlayer+1) ! Fraction of the surface that plumes occupies |
|---|
| 281 | real zw2(ngrid,nlayer+1) ! Vertical speed |
|---|
| 282 | real zw2_bis(ngrid,nlayer) ! Recasted zw2 |
|---|
| 283 | |
|---|
| 284 | ! TENDENCIES due to various processes : |
|---|
| 285 | |
|---|
| 286 | ! For Surface Temperature : (K/s) |
|---|
| 287 | real zdtsurf(ngrid) ! Cumulated tendencies. |
|---|
| 288 | real zdtsurfmr(ngrid) ! Mass_redistribution routine. |
|---|
| 289 | real zdtsurfc(ngrid) ! Condense_co2 routine. |
|---|
| 290 | real zdtsdif(ngrid) ! Turbdiff/vdifc routines. |
|---|
| 291 | real zdtsurf_hyd(ngrid) ! Hydrol routine. |
|---|
| 292 | |
|---|
| 293 | ! For Atmospheric Temperatures : (K/s) |
|---|
| 294 | real dtlscale(ngrid,nlayer) ! Largescale routine. |
|---|
| 295 | real zdtc(ngrid,nlayer) ! Condense_co2 routine. |
|---|
| 296 | real zdtdif(ngrid,nlayer) ! Turbdiff/vdifc routines. |
|---|
| 297 | real zdttherm(ngrid,nlayer) ! Calltherm routine. |
|---|
| 298 | real zdtmr(ngrid,nlayer) ! Mass_redistribution routine. |
|---|
| 299 | real zdtrain(ngrid,nlayer) ! Rain routine. |
|---|
| 300 | real dtmoist(ngrid,nlayer) ! Moistadj routine. |
|---|
| 301 | real dt_ekman(ngrid,noceanmx), dt_hdiff(ngrid,noceanmx) ! Slab_ocean routine. |
|---|
| 302 | real zdtsw1(ngrid,nlayer), zdtlw1(ngrid,nlayer) ! Callcorrk routine. |
|---|
| 303 | real zdtchim(ngrid,nlayer) ! Calchim routine. |
|---|
| 304 | |
|---|
| 305 | ! For Surface Tracers : (kg/m2/s) |
|---|
| 306 | real dqsurf(ngrid,nq) ! Cumulated tendencies. |
|---|
| 307 | real zdqsurfc(ngrid) ! Condense_co2 routine. |
|---|
| 308 | real zdqsdif(ngrid,nq) ! Turbdiff/vdifc routines. |
|---|
| 309 | real zdqssed(ngrid,nq) ! Callsedim routine. |
|---|
| 310 | real zdqsurfmr(ngrid,nq) ! Mass_redistribution routine. |
|---|
| 311 | real zdqsrain(ngrid), zdqssnow(ngrid) ! Rain routine. |
|---|
| 312 | real dqs_hyd(ngrid,nq) ! Hydrol routine. |
|---|
| 313 | real reevap_precip(ngrid) ! re-evaporation flux of precipitation (integrated over the atmospheric column) |
|---|
| 314 | |
|---|
| 315 | ! For Tracers : (kg/kg_of_air/s) |
|---|
| 316 | real zdqc(ngrid,nlayer,nq) ! Condense_co2 routine. |
|---|
| 317 | real zdqadj(ngrid,nlayer,nq) ! Convadj routine. |
|---|
| 318 | real zdqdif(ngrid,nlayer,nq) ! Turbdiff/vdifc routines. |
|---|
| 319 | real zdqevap(ngrid,nlayer) ! Turbdiff routine. |
|---|
| 320 | real zdqtherm(ngrid,nlayer,nq) ! Calltherm routine. |
|---|
| 321 | real zdqsed(ngrid,nlayer,nq) ! Callsedim routine. |
|---|
| 322 | real zdqmr(ngrid,nlayer,nq) ! Mass_redistribution routine. |
|---|
| 323 | real zdqrain(ngrid,nlayer,nq) ! Rain routine. |
|---|
| 324 | real dqmoist(ngrid,nlayer,nq) ! Moistadj routine. |
|---|
| 325 | real dqvaplscale(ngrid,nlayer) ! Largescale routine. |
|---|
| 326 | real dqcldlscale(ngrid,nlayer) ! Largescale routine. |
|---|
| 327 | REAL,allocatable,save :: zdqchim(:,:,:) ! Calchim_asis routine |
|---|
| 328 | REAL,allocatable,save :: zdqschim(:,:) ! Calchim_asis routine |
|---|
| 329 | |
|---|
| 330 | REAL array_zero1(ngrid) |
|---|
| 331 | REAL array_zero2(ngrid,nlayer) |
|---|
| 332 | |
|---|
| 333 | ! For Winds : (m/s/s) |
|---|
| 334 | real zdvadj(ngrid,nlayer), zduadj(ngrid,nlayer) ! Convadj routine. |
|---|
| 335 | real zdutherm(ngrid,nlayer), zdvtherm(ngrid,nlayer) ! Calltherm routine. |
|---|
| 336 | real zdumr(ngrid,nlayer), zdvmr(ngrid,nlayer) ! Mass_redistribution routine. |
|---|
| 337 | real zdvdif(ngrid,nlayer), zdudif(ngrid,nlayer) ! Turbdiff/vdifc routines. |
|---|
| 338 | real zdhdif(ngrid,nlayer) ! Turbdiff/vdifc routines. |
|---|
| 339 | real zdhadj(ngrid,nlayer) ! Convadj routine. |
|---|
| 340 | |
|---|
| 341 | ! For Pressure and Mass : |
|---|
| 342 | real zdmassmr(ngrid,nlayer) ! Atmospheric Mass tendency for mass_redistribution (kg_of_air/m2/s). |
|---|
| 343 | real zdmassmr_col(ngrid) ! Atmospheric Column Mass tendency for mass_redistribution (kg_of_air/m2/s). |
|---|
| 344 | real zdpsrfmr(ngrid) ! Pressure tendency for mass_redistribution routine (Pa/s). |
|---|
| 345 | |
|---|
| 346 | |
|---|
| 347 | |
|---|
| 348 | ! Local variables for LOCAL CALCULATIONS: |
|---|
| 349 | ! --------------------------------------- |
|---|
| 350 | real zflubid(ngrid) |
|---|
| 351 | real zplanck(ngrid),zpopsk(ngrid,nlayer) |
|---|
| 352 | real ztim1,ztim2,ztim3, z1,z2 |
|---|
| 353 | real ztime_fin |
|---|
| 354 | real zdh(ngrid,nlayer) |
|---|
| 355 | real gmplanet |
|---|
| 356 | real taux(ngrid),tauy(ngrid) |
|---|
| 357 | |
|---|
| 358 | |
|---|
| 359 | ! local variables for DIAGNOSTICS : (diagfi & stat) |
|---|
| 360 | ! ------------------------------------------------- |
|---|
| 361 | real ps(ngrid) ! Surface Pressure. |
|---|
| 362 | real zt(ngrid,nlayer) ! Atmospheric Temperature. |
|---|
| 363 | real zu(ngrid,nlayer),zv(ngrid,nlayer) ! Zonal and Meridional Winds. |
|---|
| 364 | real zq(ngrid,nlayer,nq) ! Atmospheric Tracers. |
|---|
| 365 | real zdtadj(ngrid,nlayer) ! Convadj Diagnostic. |
|---|
| 366 | real zdtdyn(ngrid,nlayer) ! Dynamical Heating (K/s). |
|---|
| 367 | real zdudyn(ngrid,nlayer) ! Dynamical Zonal Wind tendency (m.s-2). |
|---|
| 368 | |
|---|
| 369 | real reff(ngrid,nlayer) ! Effective dust radius (used if doubleq=T). |
|---|
| 370 | real vmr(ngrid,nlayer) ! volume mixing ratio |
|---|
| 371 | real time_phys |
|---|
| 372 | |
|---|
| 373 | real ISR,ASR,OLR,GND,DYN,GSR,Ts1,Ts2,Ts3,TsS ! for Diagnostic. |
|---|
| 374 | |
|---|
| 375 | real qcol(ngrid,nq) ! Tracer Column Mass (kg/m2). |
|---|
| 376 | |
|---|
| 377 | ! included by RW for H2O Manabe scheme |
|---|
| 378 | real rneb_man(ngrid,nlayer) ! H2O cloud fraction (moistadj). |
|---|
| 379 | real rneb_lsc(ngrid,nlayer) ! H2O cloud fraction (large scale). |
|---|
| 380 | |
|---|
| 381 | |
|---|
| 382 | ! to test energy conservation (RW+JL) |
|---|
| 383 | real mass(ngrid,nlayer),massarea(ngrid,nlayer) |
|---|
| 384 | real dEtot, dEtots, AtmToSurf_TurbFlux |
|---|
| 385 | real,save :: dEtotSW, dEtotsSW, dEtotLW, dEtotsLW |
|---|
| 386 | !$OMP THREADPRIVATE(dEtotSW, dEtotsSW, dEtotLW, dEtotsLW) |
|---|
| 387 | |
|---|
| 388 | !JL12 conservation test for mean flow kinetic energy has been disabled temporarily |
|---|
| 389 | |
|---|
| 390 | real dtmoist_max,dtmoist_min |
|---|
| 391 | real dItot, dItot_tmp, dVtot, dVtot_tmp |
|---|
| 392 | |
|---|
| 393 | |
|---|
| 394 | real h2otot ! Total Amount of water. For diagnostic. |
|---|
| 395 | real icesrf,liqsrf,icecol,vapcol ! Total Amounts of water (ice,liq,vap). For diagnostic. |
|---|
| 396 | real dWtot, dWtot_tmp, dWtots, dWtots_tmp |
|---|
| 397 | logical,save :: watertest |
|---|
| 398 | !$OMP THREADPRIVATE(watertest) |
|---|
| 399 | |
|---|
| 400 | real qsat(ngrid,nlayer) ! Water Vapor Volume Mixing Ratio at saturation (kg/kg_of_air). |
|---|
| 401 | real RH(ngrid,nlayer) ! Relative humidity. |
|---|
| 402 | real psat_tmp |
|---|
| 403 | |
|---|
| 404 | logical clearsky ! For double radiative transfer call. By BC |
|---|
| 405 | |
|---|
| 406 | ! For Clear Sky Case. |
|---|
| 407 | real fluxsurfabs_sw1(ngrid) ! For SW/LW flux. |
|---|
| 408 | real tau_col1(ngrid) ! For aerosol optical depth diagnostic. |
|---|
| 409 | real OLR_nu1(ngrid,L_NSPECTI) ! Clear sky TOA LW radiation in each IR band |
|---|
| 410 | real OSR_nu1(ngrid,L_NSPECTV) ! Clear sky TOA SW radiation in each VI band |
|---|
| 411 | real GSR_nu1(ngrid,L_NSPECTV) ! Clear sky Surface SW radiation in each VI band |
|---|
| 412 | real int_dtaui1(ngrid,nlayer,L_NSPECTI),int_dtauv1(ngrid,nlayer,L_NSPECTV) ! For optical thickness diagnostics. |
|---|
| 413 | real tf, ntf |
|---|
| 414 | |
|---|
| 415 | real nconsMAX, vdifcncons(ngrid), cadjncons(ngrid) ! Vdfic water conservation test. By RW |
|---|
| 416 | |
|---|
| 417 | real muvar(ngrid,nlayer+1) ! For Runaway Greenhouse 1D study. By RW |
|---|
| 418 | |
|---|
| 419 | real reffcol(ngrid,naerkind) |
|---|
| 420 | |
|---|
| 421 | ! Sourceevol for 'accelerated ice evolution'. By RW |
|---|
| 422 | real delta_ice,ice_tot |
|---|
| 423 | integer num_run |
|---|
| 424 | logical,save :: ice_update |
|---|
| 425 | ! Non-oro GW tendencies |
|---|
| 426 | REAL d_u_hin(ngrid,nlayer), d_v_hin(ngrid,nlayer) |
|---|
| 427 | REAL d_t_hin(ngrid,nlayer) |
|---|
| 428 | ! Diagnostics 2D of gw_nonoro |
|---|
| 429 | REAL zustrhi(ngrid), zvstrhi(ngrid) |
|---|
| 430 | |
|---|
| 431 | |
|---|
| 432 | real :: tsurf2(ngrid) |
|---|
| 433 | real :: flux_o(ngrid),flux_g(ngrid) |
|---|
| 434 | real :: flux_sens_lat(ngrid) |
|---|
| 435 | real :: qsurfint(ngrid,nq) |
|---|
| 436 | #ifdef MESOSCALE |
|---|
| 437 | REAL :: lsf_dt(nlayer) |
|---|
| 438 | REAL :: lsf_dq(nlayer) |
|---|
| 439 | #endif |
|---|
| 440 | |
|---|
| 441 | ! Misc |
|---|
| 442 | character*2 :: str2 |
|---|
| 443 | !================================================================================================== |
|---|
| 444 | |
|---|
| 445 | ! ----------------- |
|---|
| 446 | ! I. INITIALISATION |
|---|
| 447 | ! ----------------- |
|---|
| 448 | |
|---|
| 449 | ! -------------------------------- |
|---|
| 450 | ! I.1 First Call Initialisation. |
|---|
| 451 | ! -------------------------------- |
|---|
| 452 | if (firstcall) then |
|---|
| 453 | ! Allocate saved arrays (except for 1D model, where this has already |
|---|
| 454 | ! been done) |
|---|
| 455 | #ifndef MESOSCALE |
|---|
| 456 | if (ngrid>1) call phys_state_var_init(nq) |
|---|
| 457 | #endif |
|---|
| 458 | |
|---|
| 459 | ! Variables set to 0 |
|---|
| 460 | ! ~~~~~~~~~~~~~~~~~~ |
|---|
| 461 | dtrad(:,:) = 0.0 |
|---|
| 462 | fluxrad(:) = 0.0 |
|---|
| 463 | tau_col(:) = 0.0 |
|---|
| 464 | zdtsw(:,:) = 0.0 |
|---|
| 465 | zdtlw(:,:) = 0.0 |
|---|
| 466 | |
|---|
| 467 | |
|---|
| 468 | ! Initialize aerosol indexes. |
|---|
| 469 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 470 | call iniaerosol() |
|---|
| 471 | |
|---|
| 472 | |
|---|
| 473 | ! Initialize tracer names, indexes and properties. |
|---|
| 474 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 475 | IF (.NOT.ALLOCATED(noms)) ALLOCATE(noms(nq)) ! (because noms is an argument of physdem1 whether or not tracer is on) |
|---|
| 476 | if (tracer) then |
|---|
| 477 | call initracer(ngrid,nq,nametrac) |
|---|
| 478 | if(photochem) then |
|---|
| 479 | call ini_conc_mod(ngrid,nlayer) |
|---|
| 480 | IF (.NOT.ALLOCATED(zdqchim)) ALLOCATE(zdqchim(ngrid,nlayer,nesp)) |
|---|
| 481 | IF (.NOT.ALLOCATED(zdqschim)) ALLOCATE(zdqschim(ngrid,nesp)) |
|---|
| 482 | endif |
|---|
| 483 | endif |
|---|
| 484 | |
|---|
| 485 | #ifdef CPP_XIOS |
|---|
| 486 | ! Initialize XIOS context |
|---|
| 487 | write(*,*) "physiq: call wxios_context_init" |
|---|
| 488 | CALL wxios_context_init |
|---|
| 489 | #endif |
|---|
| 490 | |
|---|
| 491 | ! Read 'startfi.nc' file. |
|---|
| 492 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 493 | #ifndef MESOSCALE |
|---|
| 494 | call phyetat0(startphy_file, & |
|---|
| 495 | ngrid,nlayer,"startfi.nc",0,0,nsoilmx,nq, & |
|---|
| 496 | day_ini,time_phys,tsurf,tsoil,emis,q2,qsurf, & |
|---|
| 497 | cloudfrac,totcloudfrac,hice, & |
|---|
| 498 | rnat,pctsrf_sic,tslab, tsea_ice,sea_ice) |
|---|
| 499 | #else |
|---|
| 500 | emis(:)=0.0 |
|---|
| 501 | q2(:,:)=0.0 |
|---|
| 502 | qsurf(:,:)=0.0 |
|---|
| 503 | day_ini = pday |
|---|
| 504 | #endif |
|---|
| 505 | |
|---|
| 506 | #ifndef MESOSCALE |
|---|
| 507 | if (.not.startphy_file) then |
|---|
| 508 | ! additionnal "academic" initialization of physics |
|---|
| 509 | if (is_master) write(*,*) "Physiq: initializing tsurf(:) to pt(:,1) !!" |
|---|
| 510 | tsurf(:)=pt(:,1) |
|---|
| 511 | if (is_master) write(*,*) "Physiq: initializing tsoil(:) to pt(:,1) !!" |
|---|
| 512 | do isoil=1,nsoilmx |
|---|
| 513 | tsoil(1:ngrid,isoil)=tsurf(1:ngrid) |
|---|
| 514 | enddo |
|---|
| 515 | if (is_master) write(*,*) "Physiq: initializing day_ini to pdat !" |
|---|
| 516 | day_ini=pday |
|---|
| 517 | endif |
|---|
| 518 | #endif |
|---|
| 519 | if (pday.ne.day_ini) then |
|---|
| 520 | write(*,*) "ERROR in physiq.F90:" |
|---|
| 521 | write(*,*) "bad synchronization between physics and dynamics" |
|---|
| 522 | write(*,*) "dynamics day: ",pday |
|---|
| 523 | write(*,*) "physics day: ",day_ini |
|---|
| 524 | stop |
|---|
| 525 | endif |
|---|
| 526 | |
|---|
| 527 | write (*,*) 'In physiq day_ini =', day_ini |
|---|
| 528 | |
|---|
| 529 | ! Initialize albedo calculation. |
|---|
| 530 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 531 | albedo(:,:)=0.0 |
|---|
| 532 | albedo_bareground(:)=0.0 |
|---|
| 533 | albedo_snow_SPECTV(:)=0.0 |
|---|
| 534 | albedo_co2_ice_SPECTV(:)=0.0 |
|---|
| 535 | call surfini(ngrid,nq,qsurf,albedo,albedo_bareground,albedo_snow_SPECTV,albedo_co2_ice_SPECTV) |
|---|
| 536 | |
|---|
| 537 | ! Initialize orbital calculation. |
|---|
| 538 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 539 | call iniorbit(apoastr,periastr,year_day,peri_day,obliquit) |
|---|
| 540 | |
|---|
| 541 | |
|---|
| 542 | if(tlocked)then |
|---|
| 543 | print*,'Planet is tidally locked at resonance n=',nres |
|---|
| 544 | print*,'Make sure you have the right rotation rate!!!' |
|---|
| 545 | endif |
|---|
| 546 | |
|---|
| 547 | ! Initialize oceanic variables. |
|---|
| 548 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 549 | |
|---|
| 550 | if (ok_slab_ocean)then |
|---|
| 551 | |
|---|
| 552 | call ocean_slab_init(ngrid,ptimestep, tslab, & |
|---|
| 553 | sea_ice, pctsrf_sic) |
|---|
| 554 | |
|---|
| 555 | call ini_surf_heat_transp_mod() |
|---|
| 556 | |
|---|
| 557 | knindex(:) = 0 |
|---|
| 558 | |
|---|
| 559 | do ig=1,ngrid |
|---|
| 560 | zmasq(ig)=1 |
|---|
| 561 | knindex(ig) = ig |
|---|
| 562 | if (nint(rnat(ig)).eq.0) then |
|---|
| 563 | zmasq(ig)=0 |
|---|
| 564 | endif |
|---|
| 565 | enddo |
|---|
| 566 | |
|---|
| 567 | CALL init_masquv(ngrid,zmasq) |
|---|
| 568 | |
|---|
| 569 | endif ! end of 'ok_slab_ocean'. |
|---|
| 570 | |
|---|
| 571 | |
|---|
| 572 | ! Initialize soil. |
|---|
| 573 | ! ~~~~~~~~~~~~~~~~ |
|---|
| 574 | if (callsoil) then |
|---|
| 575 | |
|---|
| 576 | call soil(ngrid,nsoilmx,firstcall,lastcall,inertiedat, & |
|---|
| 577 | ptimestep,tsurf,tsoil,capcal,fluxgrd) |
|---|
| 578 | |
|---|
| 579 | if (ok_slab_ocean) then |
|---|
| 580 | do ig=1,ngrid |
|---|
| 581 | if (nint(rnat(ig)).eq.2) then |
|---|
| 582 | capcal(ig)=capcalocean |
|---|
| 583 | if (pctsrf_sic(ig).gt.0.5) then |
|---|
| 584 | capcal(ig)=capcalseaice |
|---|
| 585 | if (qsurf(ig,igcm_h2o_ice).gt.0.) then |
|---|
| 586 | capcal(ig)=capcalsno |
|---|
| 587 | endif |
|---|
| 588 | endif |
|---|
| 589 | endif |
|---|
| 590 | enddo |
|---|
| 591 | endif ! end of 'ok_slab_ocean'. |
|---|
| 592 | |
|---|
| 593 | else ! else of 'callsoil'. |
|---|
| 594 | |
|---|
| 595 | print*,'WARNING! Thermal conduction in the soil turned off' |
|---|
| 596 | capcal(:)=1.e6 |
|---|
| 597 | fluxgrd(:)=intheat |
|---|
| 598 | print*,'Flux from ground = ',intheat,' W m^-2' |
|---|
| 599 | |
|---|
| 600 | endif ! end of 'callsoil'. |
|---|
| 601 | |
|---|
| 602 | icount=1 |
|---|
| 603 | |
|---|
| 604 | ! Decide whether to update ice at end of run. |
|---|
| 605 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 606 | ice_update=.false. |
|---|
| 607 | if(sourceevol)then |
|---|
| 608 | !$OMP MASTER |
|---|
| 609 | open(128,file='num_run',form='formatted', & |
|---|
| 610 | status="old",iostat=ierr) |
|---|
| 611 | if (ierr.ne.0) then |
|---|
| 612 | write(*,*) "physiq: Error! No num_run file!" |
|---|
| 613 | write(*,*) " (which is needed for sourceevol option)" |
|---|
| 614 | stop |
|---|
| 615 | endif |
|---|
| 616 | read(128,*) num_run |
|---|
| 617 | close(128) |
|---|
| 618 | !$OMP END MASTER |
|---|
| 619 | !$OMP BARRIER |
|---|
| 620 | |
|---|
| 621 | if(num_run.ne.0.and.mod(num_run,2).eq.0)then |
|---|
| 622 | print*,'Updating ice at end of this year!' |
|---|
| 623 | ice_update=.true. |
|---|
| 624 | ice_min(:)=1.e4 |
|---|
| 625 | endif |
|---|
| 626 | |
|---|
| 627 | endif ! end of 'sourceevol'. |
|---|
| 628 | |
|---|
| 629 | |
|---|
| 630 | ! Here is defined the type of the surface : Continent or Ocean. |
|---|
| 631 | ! BC2014 : This is now already done in newstart. |
|---|
| 632 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 633 | if (.not.ok_slab_ocean) then |
|---|
| 634 | |
|---|
| 635 | rnat(:)=1. |
|---|
| 636 | if (.not.nosurf) then ! inertiedat only defined if there is a surface |
|---|
| 637 | do ig=1,ngrid |
|---|
| 638 | if(inertiedat(ig,1).gt.1.E4)then |
|---|
| 639 | rnat(ig)=0 |
|---|
| 640 | endif |
|---|
| 641 | enddo |
|---|
| 642 | |
|---|
| 643 | print*,'WARNING! Surface type currently decided by surface inertia' |
|---|
| 644 | print*,'This should be improved e.g. in newstart.F' |
|---|
| 645 | endif |
|---|
| 646 | endif ! end of 'ok_slab_ocean'. |
|---|
| 647 | |
|---|
| 648 | |
|---|
| 649 | ! Initialize surface history variable. |
|---|
| 650 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 651 | qsurf_hist(:,:)=qsurf(:,:) |
|---|
| 652 | |
|---|
| 653 | ! Initialize variable for dynamical heating and zonal wind tendency diagnostic |
|---|
| 654 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 655 | ztprevious(:,:)=pt(:,:) |
|---|
| 656 | zuprevious(:,:)=pu(:,:) |
|---|
| 657 | |
|---|
| 658 | ! Set temperature just above condensation temperature (for Early Mars) |
|---|
| 659 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 660 | if(nearco2cond) then |
|---|
| 661 | write(*,*)' WARNING! Starting at Tcond+1K' |
|---|
| 662 | do l=1, nlayer |
|---|
| 663 | do ig=1,ngrid |
|---|
| 664 | pdt(ig,l)= ((-3167.8)/(log(.01*pplay(ig,l))-23.23)+4 & |
|---|
| 665 | -pt(ig,l)) / ptimestep |
|---|
| 666 | enddo |
|---|
| 667 | enddo |
|---|
| 668 | endif |
|---|
| 669 | |
|---|
| 670 | if(meanOLR)then |
|---|
| 671 | call system('rm -f rad_bal.out') ! to record global radiative balance. |
|---|
| 672 | call system('rm -f tem_bal.out') ! to record global mean/max/min temperatures. |
|---|
| 673 | call system('rm -f h2o_bal.out') ! to record global hydrological balance. |
|---|
| 674 | endif |
|---|
| 675 | |
|---|
| 676 | |
|---|
| 677 | watertest=.false. |
|---|
| 678 | if(water)then ! Initialize variables for water cycle |
|---|
| 679 | |
|---|
| 680 | if(enertest)then |
|---|
| 681 | watertest = .true. |
|---|
| 682 | endif |
|---|
| 683 | |
|---|
| 684 | if(ice_update)then |
|---|
| 685 | ice_initial(:)=qsurf(:,igcm_h2o_ice) |
|---|
| 686 | endif |
|---|
| 687 | |
|---|
| 688 | endif |
|---|
| 689 | |
|---|
| 690 | ! Set some parameters for the thermal plume model |
|---|
| 691 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 692 | if (calltherm) then |
|---|
| 693 | CALL init_thermcell_mod(g, rcp, r, pi, T_h2o_ice_liq, RV) |
|---|
| 694 | endif |
|---|
| 695 | |
|---|
| 696 | call su_watercycle ! even if we don't have a water cycle, we might |
|---|
| 697 | ! need epsi for the wvp definitions in callcorrk.F |
|---|
| 698 | ! or RETV, RLvCp for the thermal plume model |
|---|
| 699 | #ifndef MESOSCALE |
|---|
| 700 | if (ngrid.ne.1) then ! Note : no need to create a restart file in 1d. |
|---|
| 701 | call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid,nlayer,nq, & |
|---|
| 702 | ptimestep,pday+nday,time_phys,cell_area, & |
|---|
| 703 | albedo_bareground,inertiedat,zmea,zstd,zsig,zgam,zthe) |
|---|
| 704 | endif |
|---|
| 705 | #endif |
|---|
| 706 | |
|---|
| 707 | ! XIOS outputs |
|---|
| 708 | #ifdef CPP_XIOS |
|---|
| 709 | |
|---|
| 710 | write(*,*) "physiq: call initialize_xios_output" |
|---|
| 711 | call initialize_xios_output(pday,ptime,ptimestep,daysec, & |
|---|
| 712 | presnivs,pseudoalt) |
|---|
| 713 | #endif |
|---|
| 714 | write(*,*) "physiq: end of firstcall" |
|---|
| 715 | endif ! end of 'firstcall' |
|---|
| 716 | |
|---|
| 717 | ! ------------------------------------------------------ |
|---|
| 718 | ! I.2 Initializations done at every physical timestep: |
|---|
| 719 | ! ------------------------------------------------------ |
|---|
| 720 | |
|---|
| 721 | #ifdef CPP_XIOS |
|---|
| 722 | ! update XIOS time/calendar |
|---|
| 723 | call update_xios_timestep |
|---|
| 724 | #endif |
|---|
| 725 | |
|---|
| 726 | ! Initialize various variables |
|---|
| 727 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 728 | |
|---|
| 729 | if ( .not.nearco2cond ) then |
|---|
| 730 | pdt(1:ngrid,1:nlayer) = 0.0 |
|---|
| 731 | endif |
|---|
| 732 | zdtsurf(1:ngrid) = 0.0 |
|---|
| 733 | pdq(1:ngrid,1:nlayer,1:nq) = 0.0 |
|---|
| 734 | dqsurf(1:ngrid,1:nq)= 0.0 |
|---|
| 735 | pdu(1:ngrid,1:nlayer) = 0.0 |
|---|
| 736 | pdv(1:ngrid,1:nlayer) = 0.0 |
|---|
| 737 | pdpsrf(1:ngrid) = 0.0 |
|---|
| 738 | zflubid(1:ngrid) = 0.0 |
|---|
| 739 | flux_sens_lat(1:ngrid) = 0.0 |
|---|
| 740 | taux(1:ngrid) = 0.0 |
|---|
| 741 | tauy(1:ngrid) = 0.0 |
|---|
| 742 | |
|---|
| 743 | zday=pday+ptime ! Compute time, in sols (and fraction thereof). |
|---|
| 744 | |
|---|
| 745 | ! Compute Stellar Longitude (Ls), and orbital parameters. |
|---|
| 746 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 747 | if (season) then |
|---|
| 748 | call stellarlong(zday,zls) |
|---|
| 749 | else |
|---|
| 750 | call stellarlong(noseason_day,zls) |
|---|
| 751 | end if |
|---|
| 752 | |
|---|
| 753 | call orbite(zls,dist_star,declin,right_ascen) |
|---|
| 754 | |
|---|
| 755 | if (tlocked) then |
|---|
| 756 | zlss=Mod(-(2.*pi*(zday/year_day)*nres - right_ascen),2.*pi) |
|---|
| 757 | elseif (diurnal) then |
|---|
| 758 | zlss=-2.*pi*(zday-.5) |
|---|
| 759 | else if(diurnal .eqv. .false.) then |
|---|
| 760 | zlss=9999. |
|---|
| 761 | endif |
|---|
| 762 | |
|---|
| 763 | |
|---|
| 764 | ! Compute variations of g with latitude (oblate case). |
|---|
| 765 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 766 | if (oblate .eqv. .false.) then |
|---|
| 767 | glat(:) = g |
|---|
| 768 | else if (flatten .eq. 0.0 .or. J2 .eq. 0.0 .or. Rmean .eq. 0.0 .or. MassPlanet .eq. 0.0) then |
|---|
| 769 | print*,'I need values for flatten, J2, Rmean and MassPlanet to compute glat (else set oblate=.false.)' |
|---|
| 770 | call abort |
|---|
| 771 | else |
|---|
| 772 | gmplanet = MassPlanet*grav*1e24 |
|---|
| 773 | do ig=1,ngrid |
|---|
| 774 | glat(ig)= gmplanet/(Rmean**2) * (1.D0 + 0.75 *J2 - 2.0*flatten/3. + (2.*flatten - 15./4.* J2) * cos(2. * (pi/2. - latitude(ig)))) |
|---|
| 775 | end do |
|---|
| 776 | endif |
|---|
| 777 | |
|---|
| 778 | ! Compute geopotential between layers. |
|---|
| 779 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 780 | zzlay(1:ngrid,1:nlayer)=pphi(1:ngrid,1:nlayer) |
|---|
| 781 | do l=1,nlayer |
|---|
| 782 | zzlay(1:ngrid,l)= zzlay(1:ngrid,l)/glat(1:ngrid) |
|---|
| 783 | enddo |
|---|
| 784 | |
|---|
| 785 | zzlev(1:ngrid,1)=0. |
|---|
| 786 | zzlev(1:ngrid,nlayer+1)=1.e7 ! Dummy top of last layer above 10000 km... |
|---|
| 787 | |
|---|
| 788 | do l=2,nlayer |
|---|
| 789 | do ig=1,ngrid |
|---|
| 790 | z1=(pplay(ig,l-1)+pplev(ig,l))/(pplay(ig,l-1)-pplev(ig,l)) |
|---|
| 791 | z2=(pplev(ig,l)+pplay(ig,l))/(pplev(ig,l)-pplay(ig,l)) |
|---|
| 792 | zzlev(ig,l)=(z1*zzlay(ig,l-1)+z2*zzlay(ig,l))/(z1+z2) |
|---|
| 793 | enddo |
|---|
| 794 | enddo |
|---|
| 795 | |
|---|
| 796 | ! Compute potential temperature |
|---|
| 797 | ! Note : Potential temperature calculation may not be the same in physiq and dynamic... |
|---|
| 798 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 799 | do l=1,nlayer |
|---|
| 800 | do ig=1,ngrid |
|---|
| 801 | zpopsk(ig,l)=(pplay(ig,l)/pplev(ig,1))**rcp |
|---|
| 802 | zh(ig,l)=pt(ig,l)/zpopsk(ig,l) |
|---|
| 803 | mass(ig,l) = (pplev(ig,l) - pplev(ig,l+1))/glat(ig) |
|---|
| 804 | massarea(ig,l)=mass(ig,l)*cell_area(ig) |
|---|
| 805 | enddo |
|---|
| 806 | enddo |
|---|
| 807 | |
|---|
| 808 | ! Compute vertical velocity (m/s) from vertical mass flux |
|---|
| 809 | ! w = F / (rho*area) and rho = P/(r*T) |
|---|
| 810 | ! But first linearly interpolate mass flux to mid-layers |
|---|
| 811 | do l=1,nlayer-1 |
|---|
| 812 | pw(1:ngrid,l)=0.5*(flxw(1:ngrid,l)+flxw(1:ngrid,l+1)) |
|---|
| 813 | enddo |
|---|
| 814 | pw(1:ngrid,nlayer)=0.5*flxw(1:ngrid,nlayer) ! since flxw(nlayer+1)=0 |
|---|
| 815 | do l=1,nlayer |
|---|
| 816 | pw(1:ngrid,l)=(pw(1:ngrid,l)*r*pt(1:ngrid,l)) / & |
|---|
| 817 | (pplay(1:ngrid,l)*cell_area(1:ngrid)) |
|---|
| 818 | enddo |
|---|
| 819 | ! omega in Pa/s |
|---|
| 820 | do l=1,nlayer-1 |
|---|
| 821 | omega(1:ngrid,l)=0.5*(flxw(1:ngrid,l)+flxw(1:ngrid,l+1)) |
|---|
| 822 | enddo |
|---|
| 823 | omega(1:ngrid,nlayer)=0.5*flxw(1:ngrid,nlayer) ! since flxw(nlayer+1)=0 |
|---|
| 824 | do l=1,nlayer |
|---|
| 825 | omega(1:ngrid,l)=g*omega(1:ngrid,l)/cell_area(1:ngrid) |
|---|
| 826 | enddo |
|---|
| 827 | |
|---|
| 828 | ! ---------------------------------------------------------------- |
|---|
| 829 | ! Compute mean mass, cp, and R |
|---|
| 830 | ! -------------------------------- |
|---|
| 831 | #ifndef MESOSCALE |
|---|
| 832 | if(photochem) then |
|---|
| 833 | call concentrations(ngrid,nlayer,nq,pplay,pt,pdt,pq,pdq,ptimestep) |
|---|
| 834 | endif |
|---|
| 835 | #endif |
|---|
| 836 | |
|---|
| 837 | !--------------------------------- |
|---|
| 838 | ! II. Compute radiative tendencies |
|---|
| 839 | !--------------------------------- |
|---|
| 840 | |
|---|
| 841 | if (callrad) then |
|---|
| 842 | if( mod(icount-1,iradia).eq.0.or.lastcall) then |
|---|
| 843 | |
|---|
| 844 | ! Compute local stellar zenith angles |
|---|
| 845 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 846 | if (tlocked) then |
|---|
| 847 | ! JL14 corrects tidally resonant (and inclined) cases. nres=omega_rot/omega_orb |
|---|
| 848 | ztim1=SIN(declin) |
|---|
| 849 | ztim2=COS(declin)*COS(zlss) |
|---|
| 850 | ztim3=COS(declin)*SIN(zlss) |
|---|
| 851 | |
|---|
| 852 | call stelang(ngrid,sinlon,coslon,sinlat,coslat, & |
|---|
| 853 | ztim1,ztim2,ztim3,mu0,fract, flatten) |
|---|
| 854 | |
|---|
| 855 | elseif (diurnal) then |
|---|
| 856 | ztim1=SIN(declin) |
|---|
| 857 | ztim2=COS(declin)*COS(2.*pi*(zday-.5)) |
|---|
| 858 | ztim3=-COS(declin)*SIN(2.*pi*(zday-.5)) |
|---|
| 859 | |
|---|
| 860 | call stelang(ngrid,sinlon,coslon,sinlat,coslat, & |
|---|
| 861 | ztim1,ztim2,ztim3,mu0,fract, flatten) |
|---|
| 862 | else if(diurnal .eqv. .false.) then |
|---|
| 863 | |
|---|
| 864 | call mucorr(ngrid,declin,latitude,mu0,fract,10000.,rad,flatten) |
|---|
| 865 | ! WARNING: this function appears not to work in 1D |
|---|
| 866 | |
|---|
| 867 | if ((ngrid.eq.1).and.(global1d)) then ! Fixed zenith angle 'szangle' in 1D simulations w/ globally-averaged sunlight. |
|---|
| 868 | mu0 = cos(pi*szangle/180.0) |
|---|
| 869 | !print*,'acosz=',mu0,', szangle=',szangle |
|---|
| 870 | endif |
|---|
| 871 | |
|---|
| 872 | endif |
|---|
| 873 | |
|---|
| 874 | ! Eclipse incoming sunlight (e.g. Saturn ring shadowing). |
|---|
| 875 | if(rings_shadow) then |
|---|
| 876 | call call_rings(ngrid, ptime, pday, diurnal) |
|---|
| 877 | endif |
|---|
| 878 | |
|---|
| 879 | |
|---|
| 880 | if (corrk) then |
|---|
| 881 | |
|---|
| 882 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 883 | ! II.a Call correlated-k radiative transfer scheme |
|---|
| 884 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 885 | if(kastprof)then |
|---|
| 886 | print*,'kastprof should not = true here' |
|---|
| 887 | call abort |
|---|
| 888 | endif |
|---|
| 889 | if(water) then |
|---|
| 890 | muvar(1:ngrid,1:nlayer)=mugaz/(1.e0+(1.e0/epsi-1.e0)*pq(1:ngrid,1:nlayer,igcm_h2o_vap)) |
|---|
| 891 | muvar(1:ngrid,nlayer+1)=mugaz/(1.e0+(1.e0/epsi-1.e0)*pq(1:ngrid,nlayer,igcm_h2o_vap)) |
|---|
| 892 | ! take into account water effect on mean molecular weight |
|---|
| 893 | else |
|---|
| 894 | muvar(1:ngrid,1:nlayer+1)=mugaz |
|---|
| 895 | endif |
|---|
| 896 | |
|---|
| 897 | |
|---|
| 898 | if(ok_slab_ocean) then |
|---|
| 899 | tsurf2(:)=tsurf(:) |
|---|
| 900 | do ig=1,ngrid |
|---|
| 901 | if (nint(rnat(ig))==0) then |
|---|
| 902 | tsurf(ig)=((1.-pctsrf_sic(ig))*tslab(ig,1)**4+pctsrf_sic(ig)*tsea_ice(ig)**4)**0.25 |
|---|
| 903 | endif |
|---|
| 904 | enddo |
|---|
| 905 | endif !(ok_slab_ocean) |
|---|
| 906 | |
|---|
| 907 | ! standard callcorrk |
|---|
| 908 | clearsky=.false. |
|---|
| 909 | call callcorrk(ngrid,nlayer,pq,nq,qsurf, & |
|---|
| 910 | albedo,albedo_equivalent,emis,mu0,pplev,pplay,pt, & |
|---|
| 911 | tsurf,fract,dist_star,aerosol,muvar, & |
|---|
| 912 | zdtlw,zdtsw,fluxsurf_lw,fluxsurf_sw, & |
|---|
| 913 | fluxsurfabs_sw,fluxtop_lw, & |
|---|
| 914 | fluxabs_sw,fluxtop_dn,OLR_nu,OSR_nu,GSR_nu, & |
|---|
| 915 | int_dtaui,int_dtauv, & |
|---|
| 916 | tau_col,cloudfrac,totcloudfrac, & |
|---|
| 917 | clearsky,firstcall,lastcall) |
|---|
| 918 | |
|---|
| 919 | ! Option to call scheme once more for clear regions |
|---|
| 920 | if(CLFvarying)then |
|---|
| 921 | |
|---|
| 922 | ! ---> PROBLEMS WITH ALLOCATED ARRAYS : temporary solution in callcorrk: do not deallocate if CLFvarying ... |
|---|
| 923 | clearsky=.true. |
|---|
| 924 | call callcorrk(ngrid,nlayer,pq,nq,qsurf, & |
|---|
| 925 | albedo,albedo_equivalent1,emis,mu0,pplev,pplay,pt, & |
|---|
| 926 | tsurf,fract,dist_star,aerosol,muvar, & |
|---|
| 927 | zdtlw1,zdtsw1,fluxsurf_lw1,fluxsurf_sw1, & |
|---|
| 928 | fluxsurfabs_sw1,fluxtop_lw1, & |
|---|
| 929 | fluxabs_sw1,fluxtop_dn,OLR_nu1,OSR_nu1,GSR_nu1, & |
|---|
| 930 | int_dtaui1,int_dtauv1, & |
|---|
| 931 | tau_col1,cloudfrac,totcloudfrac, & |
|---|
| 932 | clearsky,firstcall,lastcall) |
|---|
| 933 | clearsky = .false. ! just in case. |
|---|
| 934 | |
|---|
| 935 | ! Sum the fluxes and heating rates from cloudy/clear cases |
|---|
| 936 | do ig=1,ngrid |
|---|
| 937 | tf=totcloudfrac(ig) |
|---|
| 938 | ntf=1.-tf |
|---|
| 939 | fluxsurf_lw(ig) = ntf*fluxsurf_lw1(ig) + tf*fluxsurf_lw(ig) |
|---|
| 940 | fluxsurf_sw(ig) = ntf*fluxsurf_sw1(ig) + tf*fluxsurf_sw(ig) |
|---|
| 941 | albedo_equivalent(ig) = ntf*albedo_equivalent1(ig) + tf*albedo_equivalent(ig) |
|---|
| 942 | fluxsurfabs_sw(ig) = ntf*fluxsurfabs_sw1(ig) + tf*fluxsurfabs_sw(ig) |
|---|
| 943 | fluxtop_lw(ig) = ntf*fluxtop_lw1(ig) + tf*fluxtop_lw(ig) |
|---|
| 944 | fluxabs_sw(ig) = ntf*fluxabs_sw1(ig) + tf*fluxabs_sw(ig) |
|---|
| 945 | tau_col(ig) = ntf*tau_col1(ig) + tf*tau_col(ig) |
|---|
| 946 | |
|---|
| 947 | zdtlw(ig,1:nlayer) = ntf*zdtlw1(ig,1:nlayer) + tf*zdtlw(ig,1:nlayer) |
|---|
| 948 | zdtsw(ig,1:nlayer) = ntf*zdtsw1(ig,1:nlayer) + tf*zdtsw(ig,1:nlayer) |
|---|
| 949 | |
|---|
| 950 | OSR_nu(ig,1:L_NSPECTV) = ntf*OSR_nu1(ig,1:L_NSPECTV) + tf*OSR_nu(ig,1:L_NSPECTV) |
|---|
| 951 | GSR_nu(ig,1:L_NSPECTV) = ntf*GSR_nu1(ig,1:L_NSPECTV) + tf*GSR_nu(ig,1:L_NSPECTV) |
|---|
| 952 | OLR_nu(ig,1:L_NSPECTI) = ntf*OLR_nu1(ig,1:L_NSPECTI) + tf*OLR_nu(ig,1:L_NSPECTI) |
|---|
| 953 | if (diagdtau) then |
|---|
| 954 | int_dtauv(ig,:,1:L_NSPECTV) = ntf*int_dtauv1(ig,:,1:L_NSPECTV) + tf*int_dtauv(ig,:,1:L_NSPECTV) |
|---|
| 955 | int_dtaui(ig,:,1:L_NSPECTI) = ntf*int_dtaui1(ig,:,1:L_NSPECTI) + tf*int_dtaui(ig,:,1:L_NSPECTI) |
|---|
| 956 | endif |
|---|
| 957 | enddo |
|---|
| 958 | |
|---|
| 959 | endif ! end of CLFvarying. |
|---|
| 960 | |
|---|
| 961 | if(ok_slab_ocean) then |
|---|
| 962 | tsurf(:)=tsurf2(:) |
|---|
| 963 | endif |
|---|
| 964 | |
|---|
| 965 | |
|---|
| 966 | ! Radiative flux from the sky absorbed by the surface (W.m-2). |
|---|
| 967 | GSR=0.0 |
|---|
| 968 | fluxrad_sky(1:ngrid)=emis(1:ngrid)*fluxsurf_lw(1:ngrid)+fluxsurfabs_sw(1:ngrid) |
|---|
| 969 | |
|---|
| 970 | !if(noradsurf)then ! no lower surface; SW flux just disappears |
|---|
| 971 | ! GSR = SUM(fluxsurf_sw(1:ngrid)*cell_area(1:ngrid))/totarea |
|---|
| 972 | ! fluxrad_sky(1:ngrid)=emis(1:ngrid)*fluxsurf_lw(1:ngrid) |
|---|
| 973 | ! print*,'SW lost in deep atmosphere = ',GSR,' W m^-2' |
|---|
| 974 | !endif |
|---|
| 975 | |
|---|
| 976 | ! Net atmospheric radiative heating rate (K.s-1) |
|---|
| 977 | dtrad(1:ngrid,1:nlayer)=zdtsw(1:ngrid,1:nlayer)+zdtlw(1:ngrid,1:nlayer) |
|---|
| 978 | |
|---|
| 979 | ! Late initialization of the Ice Spectral Albedo. We needed the visible bands to do that ! |
|---|
| 980 | if (firstcall .and. albedo_spectral_mode) then |
|---|
| 981 | call spectral_albedo_calc(albedo_snow_SPECTV) |
|---|
| 982 | endif |
|---|
| 983 | |
|---|
| 984 | elseif(newtonian)then |
|---|
| 985 | |
|---|
| 986 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 987 | ! II.b Call Newtonian cooling scheme |
|---|
| 988 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 989 | call newtrelax(ngrid,nlayer,mu0,sinlat,zpopsk,pt,pplay,pplev,dtrad,firstcall) |
|---|
| 990 | |
|---|
| 991 | zdtsurf(1:ngrid) = +(pt(1:ngrid,1)-tsurf(1:ngrid))/ptimestep |
|---|
| 992 | ! e.g. surface becomes proxy for 1st atmospheric layer ? |
|---|
| 993 | |
|---|
| 994 | else |
|---|
| 995 | |
|---|
| 996 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 997 | ! II.c Atmosphere has no radiative effect |
|---|
| 998 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 999 | fluxtop_dn(1:ngrid) = fract(1:ngrid)*mu0(1:ngrid)*Fat1AU/dist_star**2 |
|---|
| 1000 | if(ngrid.eq.1)then ! / by 4 globally in 1D case... |
|---|
| 1001 | fluxtop_dn(1) = fract(1)*Fat1AU/dist_star**2/2.0 |
|---|
| 1002 | endif |
|---|
| 1003 | fluxsurf_sw(1:ngrid) = fluxtop_dn(1:ngrid) |
|---|
| 1004 | print*,'------------WARNING---WARNING------------' ! by MT2015. |
|---|
| 1005 | print*,'You are in corrk=false mode, ' |
|---|
| 1006 | print*,'and the surface albedo is taken equal to the first visible spectral value' |
|---|
| 1007 | |
|---|
| 1008 | fluxsurfabs_sw(1:ngrid) = fluxtop_dn(1:ngrid)*(1.-albedo(1:ngrid,1)) |
|---|
| 1009 | fluxrad_sky(1:ngrid) = fluxsurfabs_sw(1:ngrid) |
|---|
| 1010 | fluxtop_lw(1:ngrid) = emis(1:ngrid)*sigma*tsurf(1:ngrid)**4 |
|---|
| 1011 | |
|---|
| 1012 | dtrad(1:ngrid,1:nlayer)=0.0 ! no atmospheric radiative heating |
|---|
| 1013 | |
|---|
| 1014 | endif ! end of corrk |
|---|
| 1015 | |
|---|
| 1016 | endif ! of if(mod(icount-1,iradia).eq.0) |
|---|
| 1017 | |
|---|
| 1018 | |
|---|
| 1019 | ! Transformation of the radiative tendencies |
|---|
| 1020 | ! ------------------------------------------ |
|---|
| 1021 | zplanck(1:ngrid)=tsurf(1:ngrid)*tsurf(1:ngrid) |
|---|
| 1022 | zplanck(1:ngrid)=emis(1:ngrid)*sigma*zplanck(1:ngrid)*zplanck(1:ngrid) |
|---|
| 1023 | fluxrad(1:ngrid)=fluxrad_sky(1:ngrid)-zplanck(1:ngrid) |
|---|
| 1024 | pdt(1:ngrid,1:nlayer)=pdt(1:ngrid,1:nlayer)+dtrad(1:ngrid,1:nlayer) |
|---|
| 1025 | |
|---|
| 1026 | ! Test of energy conservation |
|---|
| 1027 | !---------------------------- |
|---|
| 1028 | if(enertest)then |
|---|
| 1029 | call planetwide_sumval(cpp*massarea(:,:)*zdtsw(:,:)/totarea_planet,dEtotSW) |
|---|
| 1030 | call planetwide_sumval(cpp*massarea(:,:)*zdtlw(:,:)/totarea_planet,dEtotLW) |
|---|
| 1031 | !call planetwide_sumval(fluxsurf_sw(:)*(1.-albedo_equivalent(:))*cell_area(:)/totarea_planet,dEtotsSW) !JL13 carefull, albedo can have changed since the last time we called corrk |
|---|
| 1032 | call planetwide_sumval(fluxsurfabs_sw(:)*cell_area(:)/totarea_planet,dEtotsSW) !JL13 carefull, albedo can have changed since the last time we called corrk |
|---|
| 1033 | call planetwide_sumval((fluxsurf_lw(:)*emis(:)-zplanck(:))*cell_area(:)/totarea_planet,dEtotsLW) |
|---|
| 1034 | dEzRadsw(:,:)=cpp*mass(:,:)*zdtsw(:,:) |
|---|
| 1035 | dEzRadlw(:,:)=cpp*mass(:,:)*zdtlw(:,:) |
|---|
| 1036 | if (is_master) then |
|---|
| 1037 | print*,'---------------------------------------------------------------' |
|---|
| 1038 | print*,'In corrk SW atmospheric heating =',dEtotSW,' W m-2' |
|---|
| 1039 | print*,'In corrk LW atmospheric heating =',dEtotLW,' W m-2' |
|---|
| 1040 | print*,'atmospheric net rad heating (SW+LW) =',dEtotLW+dEtotSW,' W m-2' |
|---|
| 1041 | print*,'In corrk SW surface heating =',dEtotsSW,' W m-2' |
|---|
| 1042 | print*,'In corrk LW surface heating =',dEtotsLW,' W m-2' |
|---|
| 1043 | print*,'surface net rad heating (SW+LW) =',dEtotsLW+dEtotsSW,' W m-2' |
|---|
| 1044 | endif |
|---|
| 1045 | endif ! end of 'enertest' |
|---|
| 1046 | |
|---|
| 1047 | endif ! of if (callrad) |
|---|
| 1048 | |
|---|
| 1049 | |
|---|
| 1050 | |
|---|
| 1051 | ! -------------------------------------------- |
|---|
| 1052 | ! III. Vertical diffusion (turbulent mixing) : |
|---|
| 1053 | ! -------------------------------------------- |
|---|
| 1054 | |
|---|
| 1055 | if (calldifv) then |
|---|
| 1056 | |
|---|
| 1057 | zflubid(1:ngrid)=fluxrad(1:ngrid)+fluxgrd(1:ngrid) |
|---|
| 1058 | |
|---|
| 1059 | ! JL12 the following if test is temporarily there to allow us to compare the old vdifc with turbdiff. |
|---|
| 1060 | if (UseTurbDiff) then |
|---|
| 1061 | |
|---|
| 1062 | call turbdiff(ngrid,nlayer,nq,rnat, & |
|---|
| 1063 | ptimestep,capcal, & |
|---|
| 1064 | pplay,pplev,zzlay,zzlev,z0, & |
|---|
| 1065 | pu,pv,pt,zpopsk,pq,tsurf,emis,qsurf, & |
|---|
| 1066 | pdt,pdq,zflubid, & |
|---|
| 1067 | zdudif,zdvdif,zdtdif,zdtsdif, & |
|---|
| 1068 | sensibFlux,q2,zdqdif,zdqevap,zdqsdif, & |
|---|
| 1069 | taux,tauy) |
|---|
| 1070 | |
|---|
| 1071 | else |
|---|
| 1072 | |
|---|
| 1073 | zdh(1:ngrid,1:nlayer)=pdt(1:ngrid,1:nlayer)/zpopsk(1:ngrid,1:nlayer) |
|---|
| 1074 | |
|---|
| 1075 | call vdifc(ngrid,nlayer,nq,rnat,zpopsk, & |
|---|
| 1076 | ptimestep,capcal,lwrite, & |
|---|
| 1077 | pplay,pplev,zzlay,zzlev,z0, & |
|---|
| 1078 | pu,pv,zh,pq,tsurf,emis,qsurf, & |
|---|
| 1079 | zdh,pdq,zflubid, & |
|---|
| 1080 | zdudif,zdvdif,zdhdif,zdtsdif, & |
|---|
| 1081 | sensibFlux,q2,zdqdif,zdqsdif) |
|---|
| 1082 | |
|---|
| 1083 | zdtdif(1:ngrid,1:nlayer)=zdhdif(1:ngrid,1:nlayer)*zpopsk(1:ngrid,1:nlayer) ! for diagnostic only |
|---|
| 1084 | zdqevap(1:ngrid,1:nlayer)=0. |
|---|
| 1085 | |
|---|
| 1086 | end if !end of 'UseTurbDiff' |
|---|
| 1087 | |
|---|
| 1088 | zdtsurf(1:ngrid)=zdtsurf(1:ngrid)+zdtsdif(1:ngrid) |
|---|
| 1089 | |
|---|
| 1090 | !!! this is always done, except for turbulence-resolving simulations |
|---|
| 1091 | if (.not. turb_resolved) then |
|---|
| 1092 | pdv(1:ngrid,1:nlayer)=pdv(1:ngrid,1:nlayer)+zdvdif(1:ngrid,1:nlayer) |
|---|
| 1093 | pdu(1:ngrid,1:nlayer)=pdu(1:ngrid,1:nlayer)+zdudif(1:ngrid,1:nlayer) |
|---|
| 1094 | pdt(1:ngrid,1:nlayer)=pdt(1:ngrid,1:nlayer)+zdtdif(1:ngrid,1:nlayer) |
|---|
| 1095 | endif |
|---|
| 1096 | |
|---|
| 1097 | if(ok_slab_ocean)then |
|---|
| 1098 | flux_sens_lat(1:ngrid)=(zdtsdif(1:ngrid)*capcal(1:ngrid)-fluxrad(1:ngrid)) |
|---|
| 1099 | endif |
|---|
| 1100 | |
|---|
| 1101 | |
|---|
| 1102 | if (tracer) then |
|---|
| 1103 | pdq(1:ngrid,1:nlayer,1:nq)=pdq(1:ngrid,1:nlayer,1:nq)+ zdqdif(1:ngrid,1:nlayer,1:nq) |
|---|
| 1104 | dqsurf(1:ngrid,1:nq)=dqsurf(1:ngrid,1:nq) + zdqsdif(1:ngrid,1:nq) |
|---|
| 1105 | end if ! of if (tracer) |
|---|
| 1106 | |
|---|
| 1107 | |
|---|
| 1108 | ! test energy conservation |
|---|
| 1109 | !------------------------- |
|---|
| 1110 | if(enertest)then |
|---|
| 1111 | |
|---|
| 1112 | dEzdiff(:,:)=cpp*mass(:,:)*zdtdif(:,:) |
|---|
| 1113 | do ig = 1, ngrid |
|---|
| 1114 | dEdiff(ig)=SUM(dEzdiff (ig,:))+ sensibFlux(ig)! subtract flux to the ground |
|---|
| 1115 | dEzdiff(ig,1)= dEzdiff(ig,1)+ sensibFlux(ig)! subtract flux to the ground |
|---|
| 1116 | enddo |
|---|
| 1117 | |
|---|
| 1118 | call planetwide_sumval(dEdiff(:)*cell_area(:)/totarea_planet,dEtot) |
|---|
| 1119 | dEdiffs(:)=capcal(:)*zdtsdif(:)-zflubid(:)-sensibFlux(:) |
|---|
| 1120 | call planetwide_sumval(dEdiffs(:)*cell_area(:)/totarea_planet,dEtots) |
|---|
| 1121 | call planetwide_sumval(sensibFlux(:)*cell_area(:)/totarea_planet,AtmToSurf_TurbFlux) |
|---|
| 1122 | |
|---|
| 1123 | if (is_master) then |
|---|
| 1124 | |
|---|
| 1125 | if (UseTurbDiff) then |
|---|
| 1126 | print*,'In TurbDiff sensible flux (atm=>surf) =',AtmToSurf_TurbFlux,' W m-2' |
|---|
| 1127 | print*,'In TurbDiff non-cons atm nrj change =',dEtot,' W m-2' |
|---|
| 1128 | print*,'In TurbDiff (correc rad+latent heat) surf nrj change =',dEtots,' W m-2' |
|---|
| 1129 | else |
|---|
| 1130 | print*,'In vdifc sensible flux (atm=>surf) =',AtmToSurf_TurbFlux,' W m-2' |
|---|
| 1131 | print*,'In vdifc non-cons atm nrj change =',dEtot,' W m-2' |
|---|
| 1132 | print*,'In vdifc (correc rad+latent heat) surf nrj change =',dEtots,' W m-2' |
|---|
| 1133 | end if |
|---|
| 1134 | endif ! end of 'is_master' |
|---|
| 1135 | |
|---|
| 1136 | ! JL12 : note that the black body radiative flux emitted by the surface has been updated by the implicit scheme but not given back elsewhere. |
|---|
| 1137 | endif ! end of 'enertest' |
|---|
| 1138 | |
|---|
| 1139 | |
|---|
| 1140 | ! Test water conservation. |
|---|
| 1141 | if(watertest.and.water)then |
|---|
| 1142 | |
|---|
| 1143 | call planetwide_sumval(massarea(:,:)*zdqdif(:,:,igcm_h2o_vap)*ptimestep/totarea_planet,dWtot_tmp) |
|---|
| 1144 | call planetwide_sumval(zdqsdif(:,igcm_h2o_vap)*cell_area(:)*ptimestep/totarea_planet,dWtots_tmp) |
|---|
| 1145 | do ig = 1, ngrid |
|---|
| 1146 | vdifcncons(ig)=SUM(mass(ig,:)*zdqdif(ig,:,igcm_h2o_vap)) |
|---|
| 1147 | enddo |
|---|
| 1148 | call planetwide_sumval(massarea(:,:)*zdqdif(:,:,igcm_h2o_ice)*ptimestep/totarea_planet,dWtot) |
|---|
| 1149 | call planetwide_sumval(zdqsdif(:,igcm_h2o_ice)*cell_area(:)*ptimestep/totarea_planet,dWtots) |
|---|
| 1150 | dWtot = dWtot + dWtot_tmp |
|---|
| 1151 | dWtots = dWtots + dWtots_tmp |
|---|
| 1152 | do ig = 1, ngrid |
|---|
| 1153 | vdifcncons(ig)=vdifcncons(ig) + SUM(mass(ig,:)*zdqdif(ig,:,igcm_h2o_ice)) |
|---|
| 1154 | enddo |
|---|
| 1155 | call planetwide_maxval(vdifcncons(:),nconsMAX) |
|---|
| 1156 | |
|---|
| 1157 | if (is_master) then |
|---|
| 1158 | print*,'---------------------------------------------------------------' |
|---|
| 1159 | print*,'In difv atmospheric water change =',dWtot,' kg m-2' |
|---|
| 1160 | print*,'In difv surface water change =',dWtots,' kg m-2' |
|---|
| 1161 | print*,'In difv non-cons factor =',dWtot+dWtots,' kg m-2' |
|---|
| 1162 | print*,'In difv MAX non-cons factor =',nconsMAX,' kg m-2 s-1' |
|---|
| 1163 | endif |
|---|
| 1164 | |
|---|
| 1165 | endif ! end of 'watertest' |
|---|
| 1166 | !------------------------- |
|---|
| 1167 | |
|---|
| 1168 | else ! calldifv |
|---|
| 1169 | |
|---|
| 1170 | if(.not.newtonian)then |
|---|
| 1171 | |
|---|
| 1172 | zdtsurf(1:ngrid) = zdtsurf(1:ngrid) + (fluxrad(1:ngrid) + fluxgrd(1:ngrid))/capcal(1:ngrid) |
|---|
| 1173 | |
|---|
| 1174 | endif |
|---|
| 1175 | |
|---|
| 1176 | endif ! end of 'calldifv' |
|---|
| 1177 | |
|---|
| 1178 | |
|---|
| 1179 | !------------------- |
|---|
| 1180 | ! IV. Convection : |
|---|
| 1181 | !------------------- |
|---|
| 1182 | |
|---|
| 1183 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 1184 | ! IV.a Thermal plume model : |
|---|
| 1185 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 1186 | |
|---|
| 1187 | IF (calltherm) THEN |
|---|
| 1188 | |
|---|
| 1189 | ! AB: We need to evaporate ice before calling thermcell_main. |
|---|
| 1190 | IF (water) THEN |
|---|
| 1191 | CALL evap(ngrid,nlayer,nq,ptimestep,pt,pq,pdq,pdt,dqevap,dtevap,zqtherm,zttherm) |
|---|
| 1192 | ELSE |
|---|
| 1193 | zttherm(:,:) = pt(:,:) + pdt(:,:) * ptimestep |
|---|
| 1194 | zqtherm(:,:,:) = pq(:,:,:) + pdq(:,:,:) * ptimestep |
|---|
| 1195 | ENDIF |
|---|
| 1196 | |
|---|
| 1197 | CALL thermcell_main(ngrid, nlayer, nq, ptimestep, firstcall, & |
|---|
| 1198 | pplay, pplev, pphi, zpopsk, & |
|---|
| 1199 | pu, pv, zttherm, zqtherm, & |
|---|
| 1200 | zdutherm, zdvtherm, zdttherm, zdqtherm, & |
|---|
| 1201 | fm, entr, detr, zw2, fraca) |
|---|
| 1202 | |
|---|
| 1203 | pdu(1:ngrid,1:nlayer) = pdu(1:ngrid,1:nlayer) + zdutherm(1:ngrid,1:nlayer) |
|---|
| 1204 | pdv(1:ngrid,1:nlayer) = pdv(1:ngrid,1:nlayer) + zdvtherm(1:ngrid,1:nlayer) |
|---|
| 1205 | pdt(1:ngrid,1:nlayer) = pdt(1:ngrid,1:nlayer) + zdttherm(1:ngrid,1:nlayer) |
|---|
| 1206 | |
|---|
| 1207 | IF (tracer) THEN |
|---|
| 1208 | pdq(1:ngrid,1:nlayer,1:nq) = pdq(1:ngrid,1:nlayer,1:nq) + zdqtherm(1:ngrid,1:nlayer,1:nq) |
|---|
| 1209 | ENDIF |
|---|
| 1210 | |
|---|
| 1211 | ENDIF ! end of 'calltherm' |
|---|
| 1212 | |
|---|
| 1213 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 1214 | ! IV.b Dry convective adjustment : |
|---|
| 1215 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 1216 | |
|---|
| 1217 | if(calladj) then |
|---|
| 1218 | |
|---|
| 1219 | zdh(1:ngrid,1:nlayer) = pdt(1:ngrid,1:nlayer)/zpopsk(1:ngrid,1:nlayer) |
|---|
| 1220 | zduadj(1:ngrid,1:nlayer)=0.0 |
|---|
| 1221 | zdvadj(1:ngrid,1:nlayer)=0.0 |
|---|
| 1222 | zdhadj(1:ngrid,1:nlayer)=0.0 |
|---|
| 1223 | |
|---|
| 1224 | |
|---|
| 1225 | call convadj(ngrid,nlayer,nq,ptimestep, & |
|---|
| 1226 | pplay,pplev,zpopsk, & |
|---|
| 1227 | pu,pv,zh,pq, & |
|---|
| 1228 | pdu,pdv,zdh,pdq, & |
|---|
| 1229 | zduadj,zdvadj,zdhadj, & |
|---|
| 1230 | zdqadj) |
|---|
| 1231 | |
|---|
| 1232 | pdu(1:ngrid,1:nlayer) = pdu(1:ngrid,1:nlayer) + zduadj(1:ngrid,1:nlayer) |
|---|
| 1233 | pdv(1:ngrid,1:nlayer) = pdv(1:ngrid,1:nlayer) + zdvadj(1:ngrid,1:nlayer) |
|---|
| 1234 | pdt(1:ngrid,1:nlayer) = pdt(1:ngrid,1:nlayer) + zdhadj(1:ngrid,1:nlayer)*zpopsk(1:ngrid,1:nlayer) |
|---|
| 1235 | zdtadj(1:ngrid,1:nlayer) = zdhadj(1:ngrid,1:nlayer)*zpopsk(1:ngrid,1:nlayer) ! for diagnostic only |
|---|
| 1236 | |
|---|
| 1237 | if(tracer) then |
|---|
| 1238 | pdq(1:ngrid,1:nlayer,1:nq) = pdq(1:ngrid,1:nlayer,1:nq) + zdqadj(1:ngrid,1:nlayer,1:nq) |
|---|
| 1239 | end if |
|---|
| 1240 | |
|---|
| 1241 | ! Test energy conservation |
|---|
| 1242 | if(enertest)then |
|---|
| 1243 | call planetwide_sumval(cpp*massarea(:,:)*zdtadj(:,:)/totarea_planet,dEtot) |
|---|
| 1244 | if (is_master) print*,'In convadj atmospheric energy change =',dEtot,' W m-2' |
|---|
| 1245 | endif |
|---|
| 1246 | |
|---|
| 1247 | ! Test water conservation |
|---|
| 1248 | if(watertest)then |
|---|
| 1249 | call planetwide_sumval(massarea(:,:)*zdqadj(:,:,igcm_h2o_vap)*ptimestep/totarea_planet,dWtot_tmp) |
|---|
| 1250 | do ig = 1, ngrid |
|---|
| 1251 | cadjncons(ig)=SUM(mass(ig,:)*zdqadj(ig,:,igcm_h2o_vap)) |
|---|
| 1252 | enddo |
|---|
| 1253 | call planetwide_sumval(massarea(:,:)*zdqadj(:,:,igcm_h2o_ice)*ptimestep/totarea_planet,dWtot) |
|---|
| 1254 | dWtot = dWtot + dWtot_tmp |
|---|
| 1255 | do ig = 1, ngrid |
|---|
| 1256 | cadjncons(ig)=cadjncons(ig) + SUM(mass(ig,:)*zdqadj(ig,:,igcm_h2o_ice)) |
|---|
| 1257 | enddo |
|---|
| 1258 | call planetwide_maxval(cadjncons(:),nconsMAX) |
|---|
| 1259 | |
|---|
| 1260 | if (is_master) then |
|---|
| 1261 | print*,'In convadj atmospheric water change =',dWtot,' kg m-2' |
|---|
| 1262 | print*,'In convadj MAX non-cons factor =',nconsMAX,' kg m-2 s-1' |
|---|
| 1263 | endif |
|---|
| 1264 | |
|---|
| 1265 | endif ! end of 'watertest' |
|---|
| 1266 | |
|---|
| 1267 | endif ! end of 'calladj' |
|---|
| 1268 | !---------------------------------------------- |
|---|
| 1269 | ! Non orographic Gravity Waves: |
|---|
| 1270 | !--------------------------------------------- |
|---|
| 1271 | IF (calllott_nonoro) THEN |
|---|
| 1272 | |
|---|
| 1273 | CALL nonoro_gwd_ran(ngrid,nlayer,ptimestep, & |
|---|
| 1274 | cpnew, rnew, & |
|---|
| 1275 | pplay, & |
|---|
| 1276 | zmax_th, &! max altitude reached by thermals (m) |
|---|
| 1277 | pt, pu, pv, & |
|---|
| 1278 | pdt, pdu, pdv, & |
|---|
| 1279 | zustrhi,zvstrhi, & |
|---|
| 1280 | d_t_hin, d_u_hin, d_v_hin) |
|---|
| 1281 | |
|---|
| 1282 | ! Update tendencies |
|---|
| 1283 | pdt(1:ngrid,1:nlayer) = pdt(1:ngrid,1:nlayer) & |
|---|
| 1284 | + d_t_hin(1:ngrid,1:nlayer) |
|---|
| 1285 | pdu(1:ngrid,1:nlayer) = pdu(1:ngrid,1:nlayer) & |
|---|
| 1286 | + d_u_hin(1:ngrid,1:nlayer) |
|---|
| 1287 | pdv(1:ngrid,1:nlayer) = pdv(1:ngrid,1:nlayer) & |
|---|
| 1288 | + d_v_hin(1:ngrid,1:nlayer) |
|---|
| 1289 | print*,'du_nonoro: max ', maxval(d_u_hin), 'min ', minval(d_u_hin) |
|---|
| 1290 | print*,'dv_nonoro: max ', maxval(d_v_hin), 'min ', minval(d_v_hin) |
|---|
| 1291 | |
|---|
| 1292 | ENDIF ! of IF (calllott_nonoro) |
|---|
| 1293 | |
|---|
| 1294 | |
|---|
| 1295 | |
|---|
| 1296 | !----------------------------------------------- |
|---|
| 1297 | ! V. Carbon dioxide condensation-sublimation : |
|---|
| 1298 | !----------------------------------------------- |
|---|
| 1299 | |
|---|
| 1300 | if (co2cond) then |
|---|
| 1301 | |
|---|
| 1302 | if (.not.tracer) then |
|---|
| 1303 | print*,'We need a CO2 ice tracer to condense CO2' |
|---|
| 1304 | call abort |
|---|
| 1305 | endif |
|---|
| 1306 | call condense_co2(ngrid,nlayer,nq,ptimestep, & |
|---|
| 1307 | capcal,pplay,pplev,tsurf,pt, & |
|---|
| 1308 | pdt,zdtsurf,pq,pdq, & |
|---|
| 1309 | qsurf,zdqsurfc,albedo,emis, & |
|---|
| 1310 | albedo_bareground,albedo_co2_ice_SPECTV, & |
|---|
| 1311 | zdtc,zdtsurfc,pdpsrf,zdqc) |
|---|
| 1312 | |
|---|
| 1313 | pdt(1:ngrid,1:nlayer) = pdt(1:ngrid,1:nlayer)+zdtc(1:ngrid,1:nlayer) |
|---|
| 1314 | zdtsurf(1:ngrid) = zdtsurf(1:ngrid) + zdtsurfc(1:ngrid) |
|---|
| 1315 | |
|---|
| 1316 | pdq(1:ngrid,1:nlayer,1:nq) = pdq(1:ngrid,1:nlayer,1:nq)+ zdqc(1:ngrid,1:nlayer,1:nq) |
|---|
| 1317 | dqsurf(1:ngrid,igcm_co2_ice) = dqsurf(1:ngrid,igcm_co2_ice) + zdqsurfc(1:ngrid) |
|---|
| 1318 | |
|---|
| 1319 | ! test energy conservation |
|---|
| 1320 | if(enertest)then |
|---|
| 1321 | call planetwide_sumval(cpp*massarea(:,:)*zdtc(:,:)/totarea_planet,dEtot) |
|---|
| 1322 | call planetwide_sumval(capcal(:)*zdtsurfc(:)*cell_area(:)/totarea_planet,dEtots) |
|---|
| 1323 | if (is_master) then |
|---|
| 1324 | print*,'In co2cloud atmospheric energy change =',dEtot,' W m-2' |
|---|
| 1325 | print*,'In co2cloud surface energy change =',dEtots,' W m-2' |
|---|
| 1326 | endif |
|---|
| 1327 | endif |
|---|
| 1328 | |
|---|
| 1329 | endif ! end of 'co2cond' |
|---|
| 1330 | |
|---|
| 1331 | |
|---|
| 1332 | !--------------------------------------------- |
|---|
| 1333 | ! VI. Specific parameterizations for tracers |
|---|
| 1334 | !--------------------------------------------- |
|---|
| 1335 | |
|---|
| 1336 | if (tracer) then |
|---|
| 1337 | |
|---|
| 1338 | ! --------------------- |
|---|
| 1339 | ! VI.1. Water and ice |
|---|
| 1340 | ! --------------------- |
|---|
| 1341 | if (water) then |
|---|
| 1342 | |
|---|
| 1343 | ! Water ice condensation in the atmosphere |
|---|
| 1344 | if(watercond.and.(RLVTT.gt.1.e-8))then |
|---|
| 1345 | |
|---|
| 1346 | if (.not.calltherm) then |
|---|
| 1347 | dqmoist(1:ngrid,1:nlayer,1:nq)=0. |
|---|
| 1348 | dtmoist(1:ngrid,1:nlayer)=0. |
|---|
| 1349 | |
|---|
| 1350 | ! Moist Convective Adjustment. |
|---|
| 1351 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 1352 | call moistadj(ngrid,nlayer,nq,pt,pq,pdq,pplev,pplay,dtmoist,dqmoist,ptimestep,rneb_man) |
|---|
| 1353 | |
|---|
| 1354 | pdq(1:ngrid,1:nlayer,igcm_h2o_vap) = pdq(1:ngrid,1:nlayer,igcm_h2o_vap) & |
|---|
| 1355 | + dqmoist(1:ngrid,1:nlayer,igcm_h2o_vap) |
|---|
| 1356 | pdq(1:ngrid,1:nlayer,igcm_h2o_ice) = pdq(1:ngrid,1:nlayer,igcm_h2o_ice) & |
|---|
| 1357 | + dqmoist(1:ngrid,1:nlayer,igcm_h2o_ice) |
|---|
| 1358 | pdt(1:ngrid,1:nlayer) = pdt(1:ngrid,1:nlayer)+dtmoist(1:ngrid,1:nlayer) |
|---|
| 1359 | |
|---|
| 1360 | ! Test energy conservation. |
|---|
| 1361 | if(enertest)then |
|---|
| 1362 | call planetwide_sumval(cpp*massarea(:,:)*dtmoist(:,:)/totarea_planet,dEtot) |
|---|
| 1363 | call planetwide_maxval(dtmoist(:,:),dtmoist_max) |
|---|
| 1364 | call planetwide_minval(dtmoist(:,:),dtmoist_min) |
|---|
| 1365 | madjdEz(:,:)=cpp*mass(:,:)*dtmoist(:,:) |
|---|
| 1366 | |
|---|
| 1367 | do ig=1,ngrid |
|---|
| 1368 | madjdE(ig) = cpp*SUM(mass(:,:)*dtmoist(:,:)) |
|---|
| 1369 | enddo |
|---|
| 1370 | |
|---|
| 1371 | if (is_master) then |
|---|
| 1372 | print*,'In moistadj atmospheric energy change =',dEtot,' W m-2' |
|---|
| 1373 | print*,'In moistadj MAX atmospheric energy change =',dtmoist_max*ptimestep,'K/step' |
|---|
| 1374 | print*,'In moistadj MIN atmospheric energy change =',dtmoist_min*ptimestep,'K/step' |
|---|
| 1375 | endif |
|---|
| 1376 | |
|---|
| 1377 | call planetwide_sumval(massarea(:,:)*dqmoist(:,:,igcm_h2o_vap)*ptimestep/totarea_planet+ & |
|---|
| 1378 | massarea(:,:)*dqmoist(:,:,igcm_h2o_ice)*ptimestep/totarea_planet,dWtot) |
|---|
| 1379 | if (is_master) print*,'In moistadj atmospheric water change =',dWtot,' kg m-2' |
|---|
| 1380 | |
|---|
| 1381 | endif ! end of 'enertest' |
|---|
| 1382 | endif ! end of '.not.calltherm' |
|---|
| 1383 | |
|---|
| 1384 | ! Large scale condensation/evaporation. |
|---|
| 1385 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 1386 | call largescale(ngrid,nlayer,nq,ptimestep,pplev,pplay,pt,pq,pdt,pdq,dtlscale,dqvaplscale,dqcldlscale,rneb_lsc) |
|---|
| 1387 | |
|---|
| 1388 | pdt(1:ngrid,1:nlayer) = pdt(1:ngrid,1:nlayer)+dtlscale(1:ngrid,1:nlayer) |
|---|
| 1389 | pdq(1:ngrid,1:nlayer,igcm_h2o_vap) = pdq(1:ngrid,1:nlayer,igcm_h2o_vap)+dqvaplscale(1:ngrid,1:nlayer) |
|---|
| 1390 | pdq(1:ngrid,1:nlayer,igcm_h2o_ice) = pdq(1:ngrid,1:nlayer,igcm_h2o_ice)+dqcldlscale(1:ngrid,1:nlayer) |
|---|
| 1391 | |
|---|
| 1392 | ! Test energy conservation. |
|---|
| 1393 | if(enertest)then |
|---|
| 1394 | lscaledEz(:,:) = cpp*mass(:,:)*dtlscale(:,:) |
|---|
| 1395 | do ig=1,ngrid |
|---|
| 1396 | lscaledE(ig) = cpp*SUM(mass(:,:)*dtlscale(:,:)) |
|---|
| 1397 | enddo |
|---|
| 1398 | call planetwide_sumval(cpp*massarea(:,:)*dtlscale(:,:)/totarea_planet,dEtot) |
|---|
| 1399 | |
|---|
| 1400 | if (is_master) print*,'In largescale atmospheric energy change =',dEtot,' W m-2' |
|---|
| 1401 | |
|---|
| 1402 | ! Test water conservation. |
|---|
| 1403 | call planetwide_sumval(massarea(:,:)*dqvaplscale(:,:)*ptimestep/totarea_planet+ & |
|---|
| 1404 | SUM(massarea(:,:)*dqcldlscale(:,:))*ptimestep/totarea_planet,dWtot) |
|---|
| 1405 | |
|---|
| 1406 | if (is_master) print*,'In largescale atmospheric water change =',dWtot,' kg m-2' |
|---|
| 1407 | endif ! end of 'enertest' |
|---|
| 1408 | |
|---|
| 1409 | ! Compute cloud fraction. |
|---|
| 1410 | do l = 1, nlayer |
|---|
| 1411 | do ig=1,ngrid |
|---|
| 1412 | cloudfrac(ig,l)=MAX(rneb_lsc(ig,l),rneb_man(ig,l)) |
|---|
| 1413 | enddo |
|---|
| 1414 | enddo |
|---|
| 1415 | |
|---|
| 1416 | endif ! end of 'watercond' |
|---|
| 1417 | |
|---|
| 1418 | ! Water ice / liquid precipitation. |
|---|
| 1419 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 1420 | zdqrain(1:ngrid,1:nlayer,1:nq) = 0.0 !JL18 need to do that everytimestep if mass redis is on. |
|---|
| 1421 | |
|---|
| 1422 | if(waterrain)then |
|---|
| 1423 | |
|---|
| 1424 | zdqsrain(1:ngrid) = 0.0 |
|---|
| 1425 | zdqssnow(1:ngrid) = 0.0 |
|---|
| 1426 | |
|---|
| 1427 | call rain(ngrid,nlayer,nq,ptimestep,pplev,pplay,pt,pdt,pq,pdq, & |
|---|
| 1428 | zdtrain,zdqrain,zdqsrain,zdqssnow,reevap_precip,cloudfrac) |
|---|
| 1429 | |
|---|
| 1430 | pdq(1:ngrid,1:nlayer,igcm_h2o_vap) = pdq(1:ngrid,1:nlayer,igcm_h2o_vap) & |
|---|
| 1431 | + zdqrain(1:ngrid,1:nlayer,igcm_h2o_vap) |
|---|
| 1432 | pdq(1:ngrid,1:nlayer,igcm_h2o_ice) = pdq(1:ngrid,1:nlayer,igcm_h2o_ice) & |
|---|
| 1433 | + zdqrain(1:ngrid,1:nlayer,igcm_h2o_ice) |
|---|
| 1434 | pdt(1:ngrid,1:nlayer) = pdt(1:ngrid,1:nlayer)+zdtrain(1:ngrid,1:nlayer) |
|---|
| 1435 | |
|---|
| 1436 | dqsurf(1:ngrid,igcm_h2o_vap) = dqsurf(1:ngrid,igcm_h2o_vap)+zdqsrain(1:ngrid) |
|---|
| 1437 | dqsurf(1:ngrid,igcm_h2o_ice) = dqsurf(1:ngrid,igcm_h2o_ice)+zdqssnow(1:ngrid) |
|---|
| 1438 | |
|---|
| 1439 | ! Test energy conservation. |
|---|
| 1440 | if(enertest)then |
|---|
| 1441 | |
|---|
| 1442 | call planetwide_sumval(cpp*massarea(:,:)*zdtrain(:,:)/totarea_planet,dEtot) |
|---|
| 1443 | if (is_master) print*,'In rain atmospheric T energy change =',dEtot,' W m-2' |
|---|
| 1444 | call planetwide_sumval(massarea(:,:)*zdqrain(:,:,igcm_h2o_ice)/totarea_planet*RLVTT/cpp,dItot_tmp) |
|---|
| 1445 | call planetwide_sumval(cell_area(:)*zdqssnow(:)/totarea_planet*RLVTT/cpp,dItot) |
|---|
| 1446 | dItot = dItot + dItot_tmp |
|---|
| 1447 | call planetwide_sumval(massarea(:,:)*zdqrain(:,:,igcm_h2o_vap)*ptimestep/totarea_planet,dVtot_tmp) |
|---|
| 1448 | call planetwide_sumval(cell_area(:)*zdqsrain(:)/totarea_planet*RLVTT/cpp,dVtot) |
|---|
| 1449 | dVtot = dVtot + dVtot_tmp |
|---|
| 1450 | dEtot = dItot + dVtot |
|---|
| 1451 | |
|---|
| 1452 | if (is_master) then |
|---|
| 1453 | print*,'In rain dItot =',dItot,' W m-2' |
|---|
| 1454 | print*,'In rain dVtot =',dVtot,' W m-2' |
|---|
| 1455 | print*,'In rain atmospheric L energy change =',dEtot,' W m-2' |
|---|
| 1456 | endif |
|---|
| 1457 | |
|---|
| 1458 | ! Test water conservation |
|---|
| 1459 | call planetwide_sumval(massarea(:,:)*zdqrain(:,:,igcm_h2o_vap)*ptimestep/totarea_planet+ & |
|---|
| 1460 | massarea(:,:)*zdqrain(:,:,igcm_h2o_ice)*ptimestep/totarea_planet,dWtot) |
|---|
| 1461 | call planetwide_sumval((zdqsrain(:)+zdqssnow(:))*cell_area(:)*ptimestep/totarea_planet,dWtots) |
|---|
| 1462 | |
|---|
| 1463 | if (is_master) then |
|---|
| 1464 | print*,'In rain atmospheric water change =',dWtot,' kg m-2' |
|---|
| 1465 | print*,'In rain surface water change =',dWtots,' kg m-2' |
|---|
| 1466 | print*,'In rain non-cons factor =',dWtot+dWtots,' kg m-2' |
|---|
| 1467 | endif |
|---|
| 1468 | |
|---|
| 1469 | endif ! end of 'enertest' |
|---|
| 1470 | |
|---|
| 1471 | end if ! enf of 'waterrain' |
|---|
| 1472 | |
|---|
| 1473 | end if ! end of 'water' |
|---|
| 1474 | |
|---|
| 1475 | ! ------------------------- |
|---|
| 1476 | ! VI.2. Photochemistry |
|---|
| 1477 | ! ------------------------- |
|---|
| 1478 | |
|---|
| 1479 | #ifndef MESOSCALE |
|---|
| 1480 | IF (photochem) then |
|---|
| 1481 | |
|---|
| 1482 | DO ig=1,ngrid |
|---|
| 1483 | array_zero1(ig)=0.0 |
|---|
| 1484 | DO l=1,nlayer |
|---|
| 1485 | array_zero2(ig,l)=0. |
|---|
| 1486 | ENDDO |
|---|
| 1487 | ENDDO |
|---|
| 1488 | |
|---|
| 1489 | call calchim_asis(ngrid,nlayer,nq, & |
|---|
| 1490 | ptimestep,pplay,pplev,pt,pdt,dist_star,mu0, & |
|---|
| 1491 | fract,zzlev,zzlay,zday,pq,pdq,zdqchim,zdqschim, & |
|---|
| 1492 | array_zero1,array_zero1, & |
|---|
| 1493 | pu,pdu,pv,pdv,array_zero2,array_zero2,icount,zdtchim) |
|---|
| 1494 | |
|---|
| 1495 | ! increment values of tracers: |
|---|
| 1496 | iesp = 0 |
|---|
| 1497 | DO iq=1,nq ! loop on all tracers; tendencies for non-chemistry |
|---|
| 1498 | ! tracers is zero anyways |
|---|
| 1499 | ! September 2020: flag is_chim to increment only on chemical species |
|---|
| 1500 | IF (is_chim(iq)==1) THEN |
|---|
| 1501 | iesp = iesp + 1 |
|---|
| 1502 | DO l=1,nlayer |
|---|
| 1503 | DO ig=1,ngrid |
|---|
| 1504 | pdq(ig,l,iq)=pdq(ig,l,iq)+zdqchim(ig,l,iesp) |
|---|
| 1505 | ENDDO |
|---|
| 1506 | ENDDO |
|---|
| 1507 | ENDIF |
|---|
| 1508 | ENDDO ! of DO iq=1,nq |
|---|
| 1509 | |
|---|
| 1510 | |
|---|
| 1511 | ! increment surface values of tracers: |
|---|
| 1512 | DO iq=1,nq ! loop on all tracers; tendencies for non-chemistry |
|---|
| 1513 | ! tracers is zero anyways |
|---|
| 1514 | DO ig=1,ngrid |
|---|
| 1515 | ! dqsurf(ig,iq)=dqsurf(ig,iq)+zdqschim(ig,iq) |
|---|
| 1516 | ENDDO |
|---|
| 1517 | ENDDO ! of DO iq=1,nq |
|---|
| 1518 | |
|---|
| 1519 | ! increment values of temperature: |
|---|
| 1520 | pdt(1:ngrid,1:nlayer)=pdt(1:ngrid,1:nlayer)+zdtchim(1:ngrid,1:nlayer) |
|---|
| 1521 | |
|---|
| 1522 | END IF ! of IF (photochem) |
|---|
| 1523 | #endif |
|---|
| 1524 | |
|---|
| 1525 | |
|---|
| 1526 | ! ------------------------- |
|---|
| 1527 | ! VI.3. Aerosol particles |
|---|
| 1528 | ! ------------------------- |
|---|
| 1529 | |
|---|
| 1530 | ! Sedimentation. |
|---|
| 1531 | if (sedimentation) then |
|---|
| 1532 | |
|---|
| 1533 | zdqsed(1:ngrid,1:nlayer,1:nq) = 0.0 |
|---|
| 1534 | zdqssed(1:ngrid,1:nq) = 0.0 |
|---|
| 1535 | |
|---|
| 1536 | if(watertest)then |
|---|
| 1537 | |
|---|
| 1538 | iq=igcm_h2o_ice |
|---|
| 1539 | call planetwide_sumval(massarea(:,:)*pq(:,:,iq)*ptimestep/totarea_planet,dWtot) |
|---|
| 1540 | call planetwide_sumval(massarea(:,:)*pdq(:,:,iq)*ptimestep/totarea_planet,dWtots) |
|---|
| 1541 | if (is_master) then |
|---|
| 1542 | print*,'Before sedim pq =',dWtot,' kg m-2' |
|---|
| 1543 | print*,'Before sedim pdq =',dWtots,' kg m-2' |
|---|
| 1544 | endif |
|---|
| 1545 | endif |
|---|
| 1546 | |
|---|
| 1547 | call callsedim(ngrid,nlayer,ptimestep, & |
|---|
| 1548 | pplev,zzlev,pt,pdt,pq,pdq, & |
|---|
| 1549 | zdqsed,zdqssed,nq) |
|---|
| 1550 | |
|---|
| 1551 | if(watertest)then |
|---|
| 1552 | iq=igcm_h2o_ice |
|---|
| 1553 | call planetwide_sumval(massarea(:,:)*pq(:,:,iq)*ptimestep/totarea_planet,dWtot) |
|---|
| 1554 | call planetwide_sumval(massarea(:,:)*pdq(:,:,iq)*ptimestep/totarea_planet,dWtots) |
|---|
| 1555 | if (is_master) then |
|---|
| 1556 | print*,'After sedim pq =',dWtot,' kg m-2' |
|---|
| 1557 | print*,'After sedim pdq =',dWtots,' kg m-2' |
|---|
| 1558 | endif |
|---|
| 1559 | endif |
|---|
| 1560 | |
|---|
| 1561 | ! Whether it falls as rain or snow depends only on the surface temperature |
|---|
| 1562 | pdq(1:ngrid,1:nlayer,1:nq) = pdq(1:ngrid,1:nlayer,1:nq) + zdqsed(1:ngrid,1:nlayer,1:nq) |
|---|
| 1563 | dqsurf(1:ngrid,1:nq) = dqsurf(1:ngrid,1:nq) + zdqssed(1:ngrid,1:nq) |
|---|
| 1564 | |
|---|
| 1565 | ! Test water conservation |
|---|
| 1566 | if(watertest)then |
|---|
| 1567 | call planetwide_sumval(massarea(:,:)*(zdqsed(:,:,igcm_h2o_vap)+zdqsed(:,:,igcm_h2o_ice))*ptimestep/totarea_planet,dWtot) |
|---|
| 1568 | call planetwide_sumval((zdqssed(:,igcm_h2o_vap)+zdqssed(:,igcm_h2o_ice))*cell_area(:)*ptimestep/totarea_planet,dWtots) |
|---|
| 1569 | if (is_master) then |
|---|
| 1570 | print*,'In sedim atmospheric ice change =',dWtot,' kg m-2' |
|---|
| 1571 | print*,'In sedim surface ice change =',dWtots,' kg m-2' |
|---|
| 1572 | print*,'In sedim non-cons factor =',dWtot+dWtots,' kg m-2' |
|---|
| 1573 | endif |
|---|
| 1574 | endif |
|---|
| 1575 | |
|---|
| 1576 | end if ! end of 'sedimentation' |
|---|
| 1577 | |
|---|
| 1578 | |
|---|
| 1579 | ! --------------- |
|---|
| 1580 | ! VI.4. Updates |
|---|
| 1581 | ! --------------- |
|---|
| 1582 | |
|---|
| 1583 | ! Updating Atmospheric Mass and Tracers budgets. |
|---|
| 1584 | if(mass_redistrib) then |
|---|
| 1585 | |
|---|
| 1586 | zdmassmr(1:ngrid,1:nlayer) = mass(1:ngrid,1:nlayer) * & |
|---|
| 1587 | ( zdqevap(1:ngrid,1:nlayer) & |
|---|
| 1588 | + zdqrain(1:ngrid,1:nlayer,igcm_h2o_vap) & |
|---|
| 1589 | + dqmoist(1:ngrid,1:nlayer,igcm_h2o_vap) & |
|---|
| 1590 | + dqvaplscale(1:ngrid,1:nlayer) ) |
|---|
| 1591 | |
|---|
| 1592 | do ig = 1, ngrid |
|---|
| 1593 | zdmassmr_col(ig)=SUM(zdmassmr(ig,1:nlayer)) |
|---|
| 1594 | enddo |
|---|
| 1595 | |
|---|
| 1596 | call writediagfi(ngrid,"mass_evap","mass gain"," ",3,zdmassmr) |
|---|
| 1597 | call writediagfi(ngrid,"mass_evap_col","mass gain col"," ",2,zdmassmr_col) |
|---|
| 1598 | call writediagfi(ngrid,"mass","mass","kg/m2",3,mass) |
|---|
| 1599 | |
|---|
| 1600 | call mass_redistribution(ngrid,nlayer,nq,ptimestep, & |
|---|
| 1601 | rnat,capcal,pplay,pplev,pt,tsurf,pq,qsurf, & |
|---|
| 1602 | pu,pv,pdt,zdtsurf,pdq,pdu,pdv,zdmassmr, & |
|---|
| 1603 | zdtmr,zdtsurfmr,zdpsrfmr,zdumr,zdvmr,zdqmr,zdqsurfmr) |
|---|
| 1604 | |
|---|
| 1605 | pdq(1:ngrid,1:nlayer,1:nq) = pdq(1:ngrid,1:nlayer,1:nq) + zdqmr(1:ngrid,1:nlayer,1:nq) |
|---|
| 1606 | dqsurf(1:ngrid,1:nq) = dqsurf(1:ngrid,1:nq) + zdqsurfmr(1:ngrid,1:nq) |
|---|
| 1607 | pdt(1:ngrid,1:nlayer) = pdt(1:ngrid,1:nlayer) + zdtmr(1:ngrid,1:nlayer) |
|---|
| 1608 | pdu(1:ngrid,1:nlayer) = pdu(1:ngrid,1:nlayer) + zdumr(1:ngrid,1:nlayer) |
|---|
| 1609 | pdv(1:ngrid,1:nlayer) = pdv(1:ngrid,1:nlayer) + zdvmr(1:ngrid,1:nlayer) |
|---|
| 1610 | pdpsrf(1:ngrid) = pdpsrf(1:ngrid) + zdpsrfmr(1:ngrid) |
|---|
| 1611 | zdtsurf(1:ngrid) = zdtsurf(1:ngrid) + zdtsurfmr(1:ngrid) |
|---|
| 1612 | |
|---|
| 1613 | endif |
|---|
| 1614 | |
|---|
| 1615 | ! ------------------ |
|---|
| 1616 | ! VI.5. Slab Ocean |
|---|
| 1617 | ! ------------------ |
|---|
| 1618 | |
|---|
| 1619 | if (ok_slab_ocean)then |
|---|
| 1620 | |
|---|
| 1621 | do ig=1,ngrid |
|---|
| 1622 | qsurfint(:,igcm_h2o_ice)=qsurf(:,igcm_h2o_ice) |
|---|
| 1623 | enddo |
|---|
| 1624 | |
|---|
| 1625 | call ocean_slab_ice(ptimestep, & |
|---|
| 1626 | ngrid, knindex, tsea_ice, fluxrad, & |
|---|
| 1627 | zdqssnow, qsurf(:,igcm_h2o_ice), & |
|---|
| 1628 | - zdqsdif(:,igcm_h2o_vap), & |
|---|
| 1629 | flux_sens_lat,tsea_ice, pctsrf_sic, & |
|---|
| 1630 | taux,tauy,icount) |
|---|
| 1631 | |
|---|
| 1632 | |
|---|
| 1633 | call ocean_slab_get_vars(ngrid,tslab, & |
|---|
| 1634 | sea_ice, flux_o, & |
|---|
| 1635 | flux_g, dt_hdiff, & |
|---|
| 1636 | dt_ekman) |
|---|
| 1637 | |
|---|
| 1638 | do ig=1,ngrid |
|---|
| 1639 | if (nint(rnat(ig)).eq.1)then |
|---|
| 1640 | tslab(ig,1) = 0. |
|---|
| 1641 | tslab(ig,2) = 0. |
|---|
| 1642 | tsea_ice(ig) = 0. |
|---|
| 1643 | sea_ice(ig) = 0. |
|---|
| 1644 | pctsrf_sic(ig) = 0. |
|---|
| 1645 | qsurf(ig,igcm_h2o_ice) = qsurfint(ig,igcm_h2o_ice) |
|---|
| 1646 | endif |
|---|
| 1647 | enddo |
|---|
| 1648 | |
|---|
| 1649 | endif ! end of 'ok_slab_ocean' |
|---|
| 1650 | |
|---|
| 1651 | ! ----------------------------- |
|---|
| 1652 | ! VI.6. Surface Tracer Update |
|---|
| 1653 | ! ----------------------------- |
|---|
| 1654 | |
|---|
| 1655 | if(hydrology)then |
|---|
| 1656 | |
|---|
| 1657 | call hydrol(ngrid,nq,ptimestep,rnat,tsurf,qsurf,dqsurf,dqs_hyd, & |
|---|
| 1658 | capcal,albedo,albedo_bareground, & |
|---|
| 1659 | albedo_snow_SPECTV,albedo_co2_ice_SPECTV, & |
|---|
| 1660 | mu0,zdtsurf,zdtsurf_hyd,hice,pctsrf_sic, & |
|---|
| 1661 | sea_ice) |
|---|
| 1662 | |
|---|
| 1663 | zdtsurf(1:ngrid) = zdtsurf(1:ngrid) + zdtsurf_hyd(1:ngrid) |
|---|
| 1664 | dqsurf(1:ngrid,1:nq) = dqsurf(1:ngrid,1:nq) + dqs_hyd(1:ngrid,1:nq) |
|---|
| 1665 | |
|---|
| 1666 | qsurf(1:ngrid,1:nq) = qsurf(1:ngrid,1:nq) + ptimestep*dqsurf(1:ngrid,1:nq) |
|---|
| 1667 | |
|---|
| 1668 | ! Test energy conservation |
|---|
| 1669 | if(enertest)then |
|---|
| 1670 | call planetwide_sumval(cell_area(:)*capcal(:)*zdtsurf_hyd(:)/totarea_planet,dEtots) |
|---|
| 1671 | if (is_master) print*,'In hydrol surface energy change =',dEtots,' W m-2' |
|---|
| 1672 | endif |
|---|
| 1673 | |
|---|
| 1674 | ! test water conservation |
|---|
| 1675 | if(watertest)then |
|---|
| 1676 | call planetwide_sumval(dqs_hyd(:,igcm_h2o_ice)*cell_area(:)*ptimestep/totarea_planet,dWtots) |
|---|
| 1677 | if (is_master) print*,'In hydrol surface ice change =',dWtots,' kg m-2' |
|---|
| 1678 | call planetwide_sumval(dqs_hyd(:,igcm_h2o_vap)*cell_area(:)*ptimestep/totarea_planet,dWtots) |
|---|
| 1679 | if (is_master) then |
|---|
| 1680 | print*,'In hydrol surface water change =',dWtots,' kg m-2' |
|---|
| 1681 | print*,'---------------------------------------------------------------' |
|---|
| 1682 | endif |
|---|
| 1683 | endif |
|---|
| 1684 | |
|---|
| 1685 | else ! of if (hydrology) |
|---|
| 1686 | |
|---|
| 1687 | qsurf(1:ngrid,1:nq) = qsurf(1:ngrid,1:nq) + ptimestep*dqsurf(1:ngrid,1:nq) |
|---|
| 1688 | |
|---|
| 1689 | end if ! of if (hydrology) |
|---|
| 1690 | |
|---|
| 1691 | ! Add qsurf to qsurf_hist, which is what we save in diagfi.nc. At the same time, we set the water |
|---|
| 1692 | ! content of ocean gridpoints back to zero, in order to avoid rounding errors in vdifc, rain. |
|---|
| 1693 | qsurf_hist(:,:) = qsurf(:,:) |
|---|
| 1694 | |
|---|
| 1695 | if(ice_update)then |
|---|
| 1696 | ice_min(1:ngrid)=min(ice_min(1:ngrid),qsurf(1:ngrid,igcm_h2o_ice)) |
|---|
| 1697 | endif |
|---|
| 1698 | |
|---|
| 1699 | endif! end of if 'tracer' |
|---|
| 1700 | |
|---|
| 1701 | |
|---|
| 1702 | !------------------------------------------------ |
|---|
| 1703 | ! VII. Surface and sub-surface soil temperature |
|---|
| 1704 | !------------------------------------------------ |
|---|
| 1705 | |
|---|
| 1706 | |
|---|
| 1707 | ! Increment surface temperature |
|---|
| 1708 | if(ok_slab_ocean)then |
|---|
| 1709 | do ig=1,ngrid |
|---|
| 1710 | if (nint(rnat(ig)).eq.0)then |
|---|
| 1711 | zdtsurf(ig)= (tslab(ig,1) & |
|---|
| 1712 | + pctsrf_sic(ig)*(tsea_ice(ig)-tslab(ig,1))-tsurf(ig))/ptimestep |
|---|
| 1713 | endif |
|---|
| 1714 | tsurf(ig)=tsurf(ig)+ptimestep*zdtsurf(ig) |
|---|
| 1715 | enddo |
|---|
| 1716 | |
|---|
| 1717 | else |
|---|
| 1718 | tsurf(1:ngrid)=tsurf(1:ngrid)+ptimestep*zdtsurf(1:ngrid) |
|---|
| 1719 | endif ! end of 'ok_slab_ocean' |
|---|
| 1720 | |
|---|
| 1721 | |
|---|
| 1722 | ! Compute soil temperatures and subsurface heat flux. |
|---|
| 1723 | if (callsoil) then |
|---|
| 1724 | call soil(ngrid,nsoilmx,.false.,lastcall,inertiedat, & |
|---|
| 1725 | ptimestep,tsurf,tsoil,capcal,fluxgrd) |
|---|
| 1726 | endif |
|---|
| 1727 | |
|---|
| 1728 | |
|---|
| 1729 | if (ok_slab_ocean) then |
|---|
| 1730 | |
|---|
| 1731 | do ig=1,ngrid |
|---|
| 1732 | |
|---|
| 1733 | fluxgrdocean(ig)=fluxgrd(ig) |
|---|
| 1734 | if (nint(rnat(ig)).eq.0) then |
|---|
| 1735 | capcal(ig)=capcalocean |
|---|
| 1736 | fluxgrd(ig)=0. |
|---|
| 1737 | fluxgrdocean(ig)=pctsrf_sic(ig)*flux_g(ig)+(1-pctsrf_sic(ig))*(dt_hdiff(ig,1)+dt_ekman(ig,1)) |
|---|
| 1738 | do iq=1,nsoilmx |
|---|
| 1739 | tsoil(ig,iq)=tsurf(ig) |
|---|
| 1740 | enddo |
|---|
| 1741 | if (pctsrf_sic(ig).gt.0.5) then |
|---|
| 1742 | capcal(ig)=capcalseaice |
|---|
| 1743 | if (qsurf(ig,igcm_h2o_ice).gt.0.) then |
|---|
| 1744 | capcal(ig)=capcalsno |
|---|
| 1745 | endif |
|---|
| 1746 | endif |
|---|
| 1747 | endif |
|---|
| 1748 | |
|---|
| 1749 | enddo |
|---|
| 1750 | |
|---|
| 1751 | endif !end of 'ok_slab_ocean' |
|---|
| 1752 | |
|---|
| 1753 | |
|---|
| 1754 | ! Test energy conservation |
|---|
| 1755 | if(enertest)then |
|---|
| 1756 | call planetwide_sumval(cell_area(:)*capcal(:)*zdtsurf(:)/totarea_planet,dEtots) |
|---|
| 1757 | if (is_master) print*,'Surface energy change =',dEtots,' W m-2' |
|---|
| 1758 | endif |
|---|
| 1759 | |
|---|
| 1760 | |
|---|
| 1761 | !--------------------------------------------------- |
|---|
| 1762 | ! VIII. Perform diagnostics and write output files |
|---|
| 1763 | !--------------------------------------------------- |
|---|
| 1764 | |
|---|
| 1765 | ! Note : For output only: the actual model integration is performed in the dynamics. |
|---|
| 1766 | |
|---|
| 1767 | |
|---|
| 1768 | |
|---|
| 1769 | ! Temperature, zonal and meridional winds. |
|---|
| 1770 | zt(1:ngrid,1:nlayer) = pt(1:ngrid,1:nlayer) + pdt(1:ngrid,1:nlayer)*ptimestep |
|---|
| 1771 | zu(1:ngrid,1:nlayer) = pu(1:ngrid,1:nlayer) + pdu(1:ngrid,1:nlayer)*ptimestep |
|---|
| 1772 | zv(1:ngrid,1:nlayer) = pv(1:ngrid,1:nlayer) + pdv(1:ngrid,1:nlayer)*ptimestep |
|---|
| 1773 | |
|---|
| 1774 | ! Recast thermal plume vertical velocity array for outputs |
|---|
| 1775 | IF (calltherm) THEN |
|---|
| 1776 | DO ig=1,ngrid |
|---|
| 1777 | DO l=1,nlayer |
|---|
| 1778 | zw2_bis(ig,l) = zw2(ig,l) |
|---|
| 1779 | fm_bis(ig,l) = fm(ig,l) |
|---|
| 1780 | ENDDO |
|---|
| 1781 | ENDDO |
|---|
| 1782 | ENDIF |
|---|
| 1783 | |
|---|
| 1784 | ! Diagnostic. |
|---|
| 1785 | zdtdyn(1:ngrid,1:nlayer) = (pt(1:ngrid,1:nlayer)-ztprevious(1:ngrid,1:nlayer)) / ptimestep |
|---|
| 1786 | ztprevious(1:ngrid,1:nlayer) = zt(1:ngrid,1:nlayer) |
|---|
| 1787 | |
|---|
| 1788 | zdudyn(1:ngrid,1:nlayer) = (pu(1:ngrid,1:nlayer)-zuprevious(1:ngrid,1:nlayer)) / ptimestep |
|---|
| 1789 | zuprevious(1:ngrid,1:nlayer) = zu(1:ngrid,1:nlayer) |
|---|
| 1790 | |
|---|
| 1791 | if(firstcall)then |
|---|
| 1792 | zdtdyn(1:ngrid,1:nlayer)=0.0 |
|---|
| 1793 | zdudyn(1:ngrid,1:nlayer)=0.0 |
|---|
| 1794 | endif |
|---|
| 1795 | |
|---|
| 1796 | ! Dynamical heating diagnostic. |
|---|
| 1797 | do ig=1,ngrid |
|---|
| 1798 | fluxdyn(ig)= SUM(zdtdyn(ig,:) *mass(ig,:))*cpp |
|---|
| 1799 | enddo |
|---|
| 1800 | |
|---|
| 1801 | ! Tracers. |
|---|
| 1802 | zq(1:ngrid,1:nlayer,1:nq) = pq(1:ngrid,1:nlayer,1:nq) + pdq(1:ngrid,1:nlayer,1:nq)*ptimestep |
|---|
| 1803 | |
|---|
| 1804 | ! Surface pressure. |
|---|
| 1805 | ps(1:ngrid) = pplev(1:ngrid,1) + pdpsrf(1:ngrid)*ptimestep |
|---|
| 1806 | |
|---|
| 1807 | |
|---|
| 1808 | |
|---|
| 1809 | ! Surface and soil temperature information |
|---|
| 1810 | call planetwide_sumval(cell_area(:)*tsurf(:)/totarea_planet,Ts1) |
|---|
| 1811 | call planetwide_minval(tsurf(:),Ts2) |
|---|
| 1812 | call planetwide_maxval(tsurf(:),Ts3) |
|---|
| 1813 | if(callsoil)then |
|---|
| 1814 | TsS = SUM(cell_area(:)*tsoil(:,nsoilmx))/totarea ! mean temperature at bottom soil layer |
|---|
| 1815 | if (is_master) then |
|---|
| 1816 | print*,' ave[Tsurf] min[Tsurf] max[Tsurf] ave[Tdeep]' |
|---|
| 1817 | print*,Ts1,Ts2,Ts3,TsS |
|---|
| 1818 | end if |
|---|
| 1819 | else |
|---|
| 1820 | if (is_master) then |
|---|
| 1821 | print*,' ave[Tsurf] min[Tsurf] max[Tsurf]' |
|---|
| 1822 | print*,Ts1,Ts2,Ts3 |
|---|
| 1823 | endif |
|---|
| 1824 | end if |
|---|
| 1825 | |
|---|
| 1826 | |
|---|
| 1827 | ! Check the energy balance of the simulation during the run |
|---|
| 1828 | if(corrk)then |
|---|
| 1829 | |
|---|
| 1830 | call planetwide_sumval(cell_area(:)*fluxtop_dn(:)/totarea_planet,ISR) |
|---|
| 1831 | call planetwide_sumval(cell_area(:)*fluxabs_sw(:)/totarea_planet,ASR) |
|---|
| 1832 | call planetwide_sumval(cell_area(:)*fluxtop_lw(:)/totarea_planet,OLR) |
|---|
| 1833 | call planetwide_sumval(cell_area(:)*fluxgrd(:)/totarea_planet,GND) |
|---|
| 1834 | call planetwide_sumval(cell_area(:)*fluxdyn(:)/totarea_planet,DYN) |
|---|
| 1835 | do ig=1,ngrid |
|---|
| 1836 | if(fluxtop_dn(ig).lt.0.0)then |
|---|
| 1837 | print*,'fluxtop_dn has gone crazy' |
|---|
| 1838 | print*,'fluxtop_dn=',fluxtop_dn(ig) |
|---|
| 1839 | print*,'tau_col=',tau_col(ig) |
|---|
| 1840 | print*,'aerosol=',aerosol(ig,:,:) |
|---|
| 1841 | print*,'temp= ',pt(ig,:) |
|---|
| 1842 | print*,'pplay= ',pplay(ig,:) |
|---|
| 1843 | call abort |
|---|
| 1844 | endif |
|---|
| 1845 | end do |
|---|
| 1846 | |
|---|
| 1847 | if(ngrid.eq.1)then |
|---|
| 1848 | DYN=0.0 |
|---|
| 1849 | endif |
|---|
| 1850 | |
|---|
| 1851 | if (is_master) then |
|---|
| 1852 | print*,' ISR ASR OLR GND DYN [W m^-2]' |
|---|
| 1853 | print*, ISR,ASR,OLR,GND,DYN |
|---|
| 1854 | endif |
|---|
| 1855 | |
|---|
| 1856 | if(enertest .and. is_master)then |
|---|
| 1857 | print*,'SW flux/heating difference SW++ - ASR = ',dEtotSW+dEtotsSW-ASR,' W m-2' |
|---|
| 1858 | print*,'LW flux/heating difference LW++ - OLR = ',dEtotLW+dEtotsLW+OLR,' W m-2' |
|---|
| 1859 | print*,'LW energy balance LW++ + ASR = ',dEtotLW+dEtotsLW+ASR,' W m-2' |
|---|
| 1860 | endif |
|---|
| 1861 | |
|---|
| 1862 | if(meanOLR .and. is_master)then |
|---|
| 1863 | if((ngrid.gt.1) .or. (mod(icount-1,ecritphy).eq.0))then |
|---|
| 1864 | ! to record global radiative balance |
|---|
| 1865 | open(92,file="rad_bal.out",form='formatted',position='append') |
|---|
| 1866 | write(92,*) zday,ISR,ASR,OLR |
|---|
| 1867 | close(92) |
|---|
| 1868 | open(93,file="tem_bal.out",form='formatted',position='append') |
|---|
| 1869 | if(callsoil)then |
|---|
| 1870 | write(93,*) zday,Ts1,Ts2,Ts3,TsS |
|---|
| 1871 | else |
|---|
| 1872 | write(93,*) zday,Ts1,Ts2,Ts3 |
|---|
| 1873 | endif |
|---|
| 1874 | close(93) |
|---|
| 1875 | endif |
|---|
| 1876 | endif |
|---|
| 1877 | |
|---|
| 1878 | endif ! end of 'corrk' |
|---|
| 1879 | |
|---|
| 1880 | |
|---|
| 1881 | ! Diagnostic to test radiative-convective timescales in code. |
|---|
| 1882 | if(testradtimes)then |
|---|
| 1883 | open(38,file="tau_phys.out",form='formatted',position='append') |
|---|
| 1884 | ig=1 |
|---|
| 1885 | do l=1,nlayer |
|---|
| 1886 | write(38,*) -1./pdt(ig,l),pt(ig,l),pplay(ig,l) |
|---|
| 1887 | enddo |
|---|
| 1888 | close(38) |
|---|
| 1889 | print*,'As testradtimes enabled,' |
|---|
| 1890 | print*,'exiting physics on first call' |
|---|
| 1891 | call abort |
|---|
| 1892 | endif |
|---|
| 1893 | |
|---|
| 1894 | |
|---|
| 1895 | ! Compute column amounts (kg m-2) if tracers are enabled. |
|---|
| 1896 | if(tracer)then |
|---|
| 1897 | qcol(1:ngrid,1:nq)=0.0 |
|---|
| 1898 | do iq=1,nq |
|---|
| 1899 | do ig=1,ngrid |
|---|
| 1900 | qcol(ig,iq) = SUM( zq(ig,1:nlayer,iq) * mass(ig,1:nlayer)) |
|---|
| 1901 | enddo |
|---|
| 1902 | enddo |
|---|
| 1903 | |
|---|
| 1904 | ! Generalised for arbitrary aerosols now. By LK |
|---|
| 1905 | reffcol(1:ngrid,1:naerkind)=0.0 |
|---|
| 1906 | if(co2cond.and.(iaero_co2.ne.0))then |
|---|
| 1907 | call co2_reffrad(ngrid,nlayer,nq,zq,reffrad(1,1,iaero_co2)) |
|---|
| 1908 | do ig=1,ngrid |
|---|
| 1909 | reffcol(ig,iaero_co2) = SUM(zq(ig,1:nlayer,igcm_co2_ice)*reffrad(ig,1:nlayer,iaero_co2)*mass(ig,1:nlayer)) |
|---|
| 1910 | enddo |
|---|
| 1911 | endif |
|---|
| 1912 | if(water.and.(iaero_h2o.ne.0))then |
|---|
| 1913 | call h2o_reffrad(ngrid,nlayer,zq(1,1,igcm_h2o_ice),zt, & |
|---|
| 1914 | reffrad(1,1,iaero_h2o),nueffrad(1,1,iaero_h2o)) |
|---|
| 1915 | do ig=1,ngrid |
|---|
| 1916 | reffcol(ig,iaero_h2o) = SUM(zq(ig,1:nlayer,igcm_h2o_ice)*reffrad(ig,1:nlayer,iaero_h2o)*mass(ig,1:nlayer)) |
|---|
| 1917 | enddo |
|---|
| 1918 | endif |
|---|
| 1919 | |
|---|
| 1920 | endif ! end of 'tracer' |
|---|
| 1921 | |
|---|
| 1922 | |
|---|
| 1923 | ! Test for water conservation. |
|---|
| 1924 | if(water)then |
|---|
| 1925 | |
|---|
| 1926 | call planetwide_sumval(cell_area(:)*qsurf_hist(:,igcm_h2o_ice)/totarea_planet,icesrf) |
|---|
| 1927 | call planetwide_sumval(cell_area(:)*qsurf_hist(:,igcm_h2o_vap)/totarea_planet,liqsrf) |
|---|
| 1928 | call planetwide_sumval(cell_area(:)*qcol(:,igcm_h2o_ice)/totarea_planet,icecol) |
|---|
| 1929 | call planetwide_sumval(cell_area(:)*qcol(:,igcm_h2o_vap)/totarea_planet,vapcol) |
|---|
| 1930 | |
|---|
| 1931 | h2otot = icesrf + liqsrf + icecol + vapcol |
|---|
| 1932 | |
|---|
| 1933 | if (is_master) then |
|---|
| 1934 | print*,' Total water amount [kg m^-2]: ',h2otot |
|---|
| 1935 | print*,' Surface ice Surface liq. Atmos. con. Atmos. vap. [kg m^-2] ' |
|---|
| 1936 | print*, icesrf,liqsrf,icecol,vapcol |
|---|
| 1937 | endif |
|---|
| 1938 | |
|---|
| 1939 | if(meanOLR .and. is_master)then |
|---|
| 1940 | if((ngrid.gt.1) .or. (mod(icount-1,ecritphy).eq.0))then |
|---|
| 1941 | ! to record global water balance |
|---|
| 1942 | open(98,file="h2o_bal.out",form='formatted',position='append') |
|---|
| 1943 | write(98,*) zday,icesrf,liqsrf,icecol,vapcol |
|---|
| 1944 | close(98) |
|---|
| 1945 | endif |
|---|
| 1946 | endif |
|---|
| 1947 | |
|---|
| 1948 | endif |
|---|
| 1949 | |
|---|
| 1950 | |
|---|
| 1951 | ! Calculate RH (Relative Humidity) for diagnostic. |
|---|
| 1952 | if(water)then |
|---|
| 1953 | |
|---|
| 1954 | do l = 1, nlayer |
|---|
| 1955 | do ig=1,ngrid |
|---|
| 1956 | call Psat_water(zt(ig,l),pplay(ig,l),psat_tmp,qsat(ig,l)) |
|---|
| 1957 | RH(ig,l) = zq(ig,l,igcm_h2o_vap) / qsat(ig,l) |
|---|
| 1958 | enddo |
|---|
| 1959 | enddo |
|---|
| 1960 | |
|---|
| 1961 | ! Compute maximum possible H2O column amount (100% saturation). |
|---|
| 1962 | do ig=1,ngrid |
|---|
| 1963 | H2Omaxcol(ig) = SUM( qsat(ig,:) * mass(ig,:)) |
|---|
| 1964 | enddo |
|---|
| 1965 | |
|---|
| 1966 | endif ! end of 'water' |
|---|
| 1967 | |
|---|
| 1968 | |
|---|
| 1969 | if (is_master) print*,'--> Ls =',zls*180./pi |
|---|
| 1970 | |
|---|
| 1971 | |
|---|
| 1972 | !---------------------------------------------------------------------- |
|---|
| 1973 | ! Writing NetCDF file "RESTARTFI" at the end of the run |
|---|
| 1974 | !---------------------------------------------------------------------- |
|---|
| 1975 | |
|---|
| 1976 | ! Note: 'restartfi' is stored just before dynamics are stored |
|---|
| 1977 | ! in 'restart'. Between now and the writting of 'restart', |
|---|
| 1978 | ! there will have been the itau=itau+1 instruction and |
|---|
| 1979 | ! a reset of 'time' (lastacll = .true. when itau+1= itaufin) |
|---|
| 1980 | ! thus we store for time=time+dtvr |
|---|
| 1981 | |
|---|
| 1982 | |
|---|
| 1983 | |
|---|
| 1984 | if(lastcall) then |
|---|
| 1985 | ztime_fin = ptime + ptimestep/(float(iphysiq)*daysec) |
|---|
| 1986 | |
|---|
| 1987 | ! Update surface ice distribution to iterate to steady state if requested |
|---|
| 1988 | if(ice_update)then |
|---|
| 1989 | |
|---|
| 1990 | do ig=1,ngrid |
|---|
| 1991 | |
|---|
| 1992 | delta_ice = (qsurf(ig,igcm_h2o_ice)-ice_initial(ig)) |
|---|
| 1993 | |
|---|
| 1994 | ! add multiple years of evolution |
|---|
| 1995 | qsurf_hist(ig,igcm_h2o_ice) = qsurf_hist(ig,igcm_h2o_ice) + delta_ice*icetstep |
|---|
| 1996 | |
|---|
| 1997 | ! if ice has gone -ve, set to zero |
|---|
| 1998 | if(qsurf_hist(ig,igcm_h2o_ice).lt.0.0)then |
|---|
| 1999 | qsurf_hist(ig,igcm_h2o_ice) = 0.0 |
|---|
| 2000 | endif |
|---|
| 2001 | |
|---|
| 2002 | ! if ice is seasonal, set to zero (NEW) |
|---|
| 2003 | if(ice_min(ig).lt.0.01)then |
|---|
| 2004 | qsurf_hist(ig,igcm_h2o_ice) = 0.0 |
|---|
| 2005 | endif |
|---|
| 2006 | |
|---|
| 2007 | enddo |
|---|
| 2008 | |
|---|
| 2009 | ! enforce ice conservation |
|---|
| 2010 | ice_tot= SUM(qsurf_hist(:,igcm_h2o_ice)*cell_area(:) )/SUM(cell_area(:)) |
|---|
| 2011 | qsurf_hist(:,igcm_h2o_ice) = qsurf_hist(:,igcm_h2o_ice)*(icesrf/ice_tot) |
|---|
| 2012 | |
|---|
| 2013 | endif |
|---|
| 2014 | #ifndef MESOSCALE |
|---|
| 2015 | |
|---|
| 2016 | if (ngrid.ne.1) then |
|---|
| 2017 | write(*,*)'PHYSIQ: for physdem ztime_fin =',ztime_fin |
|---|
| 2018 | |
|---|
| 2019 | call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq, & |
|---|
| 2020 | ptimestep,ztime_fin, & |
|---|
| 2021 | tsurf,tsoil,emis,q2,qsurf_hist, & |
|---|
| 2022 | cloudfrac,totcloudfrac,hice, & |
|---|
| 2023 | rnat,pctsrf_sic,tslab,tsea_ice,sea_ice) |
|---|
| 2024 | endif |
|---|
| 2025 | #endif |
|---|
| 2026 | if(ok_slab_ocean) then |
|---|
| 2027 | call ocean_slab_final!(tslab, seaice) |
|---|
| 2028 | end if |
|---|
| 2029 | |
|---|
| 2030 | endif ! end of 'lastcall' |
|---|
| 2031 | |
|---|
| 2032 | |
|---|
| 2033 | !----------------------------------- |
|---|
| 2034 | ! Saving statistics : |
|---|
| 2035 | !----------------------------------- |
|---|
| 2036 | |
|---|
| 2037 | ! Note :("stats" stores and accumulates 8 key variables in file "stats.nc" |
|---|
| 2038 | ! which can later be used to make the statistic files of the run: |
|---|
| 2039 | ! "stats") only possible in 3D runs !!! |
|---|
| 2040 | |
|---|
| 2041 | |
|---|
| 2042 | if (callstats) then |
|---|
| 2043 | |
|---|
| 2044 | call wstats(ngrid,"ps","Surface pressure","Pa",2,ps) |
|---|
| 2045 | call wstats(ngrid,"tsurf","Surface temperature","K",2,tsurf) |
|---|
| 2046 | call wstats(ngrid,"fluxsurf_lw", & |
|---|
| 2047 | "Thermal IR radiative flux to surface","W.m-2",2, & |
|---|
| 2048 | fluxsurf_lw) |
|---|
| 2049 | call wstats(ngrid,"fluxtop_lw", & |
|---|
| 2050 | "Thermal IR radiative flux to space","W.m-2",2, & |
|---|
| 2051 | fluxtop_lw) |
|---|
| 2052 | |
|---|
| 2053 | ! call wstats(ngrid,"fluxsurf_sw", & |
|---|
| 2054 | ! "Solar radiative flux to surface","W.m-2",2, & |
|---|
| 2055 | ! fluxsurf_sw_tot) |
|---|
| 2056 | ! call wstats(ngrid,"fluxtop_sw", & |
|---|
| 2057 | ! "Solar radiative flux to space","W.m-2",2, & |
|---|
| 2058 | ! fluxtop_sw_tot) |
|---|
| 2059 | |
|---|
| 2060 | |
|---|
| 2061 | call wstats(ngrid,"ISR","incoming stellar rad.","W m-2",2,fluxtop_dn) |
|---|
| 2062 | call wstats(ngrid,"ASR","absorbed stellar rad.","W m-2",2,fluxabs_sw) |
|---|
| 2063 | call wstats(ngrid,"OLR","outgoing longwave rad.","W m-2",2,fluxtop_lw) |
|---|
| 2064 | !call wstats(ngrid,"ALB","Surface albedo"," ",2,albedo_equivalent) |
|---|
| 2065 | !call wstats(ngrid,"ALB_1st","First Band Surface albedo"," ",2,albedo(:,1)) |
|---|
| 2066 | call wstats(ngrid,"p","Pressure","Pa",3,pplay) |
|---|
| 2067 | call wstats(ngrid,"temp","Atmospheric temperature","K",3,zt) |
|---|
| 2068 | call wstats(ngrid,"u","Zonal (East-West) wind","m.s-1",3,zu) |
|---|
| 2069 | call wstats(ngrid,"v","Meridional (North-South) wind","m.s-1",3,zv) |
|---|
| 2070 | call wstats(ngrid,"w","Vertical (down-up) wind","m.s-1",3,pw) |
|---|
| 2071 | call wstats(ngrid,"q2","Boundary layer eddy kinetic energy","m2.s-2",3,q2) |
|---|
| 2072 | |
|---|
| 2073 | if (tracer) then |
|---|
| 2074 | do iq=1,nq |
|---|
| 2075 | call wstats(ngrid,noms(iq),noms(iq),'kg/kg',3,zq(1,1,iq)) |
|---|
| 2076 | call wstats(ngrid,trim(noms(iq))//'_surf',trim(noms(iq))//'_surf', & |
|---|
| 2077 | 'kg m^-2',2,qsurf(1,iq) ) |
|---|
| 2078 | call wstats(ngrid,trim(noms(iq))//'_col',trim(noms(iq))//'_col', & |
|---|
| 2079 | 'kg m^-2',2,qcol(1,iq) ) |
|---|
| 2080 | |
|---|
| 2081 | ! call wstats(ngrid,trim(noms(iq))//'_reff', & |
|---|
| 2082 | ! trim(noms(iq))//'_reff', & |
|---|
| 2083 | ! 'm',3,reffrad(1,1,iq)) |
|---|
| 2084 | |
|---|
| 2085 | end do |
|---|
| 2086 | |
|---|
| 2087 | if (water) then |
|---|
| 2088 | vmr=zq(1:ngrid,1:nlayer,igcm_h2o_vap)*mugaz/mmol(igcm_h2o_vap) |
|---|
| 2089 | call wstats(ngrid,"vmr_h2ovapor", & |
|---|
| 2090 | "H2O vapour volume mixing ratio","mol/mol", & |
|---|
| 2091 | 3,vmr) |
|---|
| 2092 | endif |
|---|
| 2093 | |
|---|
| 2094 | endif ! end of 'tracer' |
|---|
| 2095 | |
|---|
| 2096 | if(watercond.and.CLFvarying)then |
|---|
| 2097 | call wstats(ngrid,"rneb_man","H2O cloud fraction (conv)"," ",3,rneb_man) |
|---|
| 2098 | call wstats(ngrid,"rneb_lsc","H2O cloud fraction (large scale)"," ",3,rneb_lsc) |
|---|
| 2099 | call wstats(ngrid,"CLF","H2O cloud fraction"," ",3,cloudfrac) |
|---|
| 2100 | call wstats(ngrid,"CLFt","H2O column cloud fraction"," ",2,totcloudfrac) |
|---|
| 2101 | call wstats(ngrid,"RH","relative humidity"," ",3,RH) |
|---|
| 2102 | endif |
|---|
| 2103 | |
|---|
| 2104 | if (ok_slab_ocean) then |
|---|
| 2105 | call wstats(ngrid,"dt_hdiff1","dt_hdiff1","K/s",2,dt_hdiff(:,1)) |
|---|
| 2106 | call wstats(ngrid,"dt_hdiff2","dt_hdiff2","K/s",2,dt_hdiff(:,2)) |
|---|
| 2107 | call wstats(ngrid,"dt_ekman1","dt_ekman1","K/s",2,dt_ekman(:,1)) |
|---|
| 2108 | call wstats(ngrid,"dt_ekman2","dt_ekman2","K/s",2,dt_ekman(:,2)) |
|---|
| 2109 | call wstats(ngrid,"tslab1","tslab1","K",2,tslab(:,1)) |
|---|
| 2110 | call wstats(ngrid,"tslab2","tslab2","K",2,tslab(:,2)) |
|---|
| 2111 | call wstats(ngrid,"pctsrf_sic","pct ice/sea","",2,pctsrf_sic) |
|---|
| 2112 | call wstats(ngrid,"tsea_ice","tsea_ice","K",2,tsea_ice) |
|---|
| 2113 | call wstats(ngrid,"sea_ice","sea ice","kg/m2",2,sea_ice) |
|---|
| 2114 | call wstats(ngrid,"rnat","nature of the surface","",2,rnat) |
|---|
| 2115 | endif |
|---|
| 2116 | |
|---|
| 2117 | if(lastcall) then |
|---|
| 2118 | write (*,*) "Writing stats..." |
|---|
| 2119 | call mkstats(ierr) |
|---|
| 2120 | endif |
|---|
| 2121 | |
|---|
| 2122 | endif ! end of 'callstats' |
|---|
| 2123 | |
|---|
| 2124 | #ifndef MESOSCALE |
|---|
| 2125 | |
|---|
| 2126 | !----------------------------------------------------------------------------------------------------- |
|---|
| 2127 | ! OUTPUT in netcdf file "DIAGFI.NC", containing any variable for diagnostic |
|---|
| 2128 | ! |
|---|
| 2129 | ! Note 1 : output with period "ecritphy", set in "run.def" |
|---|
| 2130 | ! |
|---|
| 2131 | ! Note 2 : writediagfi can also be called from any other subroutine for any variable, |
|---|
| 2132 | ! but its preferable to keep all the calls in one place ... |
|---|
| 2133 | !----------------------------------------------------------------------------------------------------- |
|---|
| 2134 | |
|---|
| 2135 | call writediagfi(ngrid,"Ls","solar longitude","deg",0,zls*180./pi) |
|---|
| 2136 | call writediagfi(ngrid,"Lss","sub solar longitude","deg",0,zlss*180./pi) |
|---|
| 2137 | call writediagfi(ngrid,"RA","right ascension","deg",0,right_ascen*180./pi) |
|---|
| 2138 | call writediagfi(ngrid,"Declin","solar declination","deg",0,declin*180./pi) |
|---|
| 2139 | call writediagfi(ngrid,"tsurf","Surface temperature","K",2,tsurf) |
|---|
| 2140 | call writediagfi(ngrid,"ps","Surface pressure","Pa",2,ps) |
|---|
| 2141 | call writediagfi(ngrid,"temp","temperature","K",3,zt) |
|---|
| 2142 | call writediagfi(ngrid,"teta","potential temperature","K",3,zh) |
|---|
| 2143 | call writediagfi(ngrid,"u","Zonal wind","m.s-1",3,zu) |
|---|
| 2144 | call writediagfi(ngrid,"v","Meridional wind","m.s-1",3,zv) |
|---|
| 2145 | call writediagfi(ngrid,"w","Vertical wind","m.s-1",3,pw) |
|---|
| 2146 | call writediagfi(ngrid,"p","Pressure","Pa",3,pplay) |
|---|
| 2147 | |
|---|
| 2148 | ! Subsurface temperatures |
|---|
| 2149 | ! call writediagsoil(ngrid,"tsurf","Surface temperature","K",2,tsurf) |
|---|
| 2150 | ! call writediagsoil(ngrid,"temp","temperature","K",3,tsoil) |
|---|
| 2151 | |
|---|
| 2152 | ! Oceanic layers |
|---|
| 2153 | if(ok_slab_ocean) then |
|---|
| 2154 | call writediagfi(ngrid,"pctsrf_sic","pct ice/sea","",2,pctsrf_sic) |
|---|
| 2155 | call writediagfi(ngrid,"tsea_ice","tsea_ice","K",2,tsea_ice) |
|---|
| 2156 | call writediagfi(ngrid,"sea_ice","sea ice","kg/m2",2,sea_ice) |
|---|
| 2157 | call writediagfi(ngrid,"tslab1","tslab1","K",2,tslab(:,1)) |
|---|
| 2158 | call writediagfi(ngrid,"tslab2","tslab2","K",2,tslab(:,2)) |
|---|
| 2159 | call writediagfi(ngrid,"dt_hdiff1","dt_hdiff1","K/s",2,dt_hdiff(:,1)) |
|---|
| 2160 | call writediagfi(ngrid,"dt_hdiff2","dt_hdiff2","K/s",2,dt_hdiff(:,2)) |
|---|
| 2161 | call writediagfi(ngrid,"dt_ekman1","dt_ekman1","K/s",2,dt_ekman(:,1)) |
|---|
| 2162 | call writediagfi(ngrid,"dt_ekman2","dt_ekman2","K/s",2,dt_ekman(:,2)) |
|---|
| 2163 | call writediagfi(ngrid,"rnat","nature of the surface","",2,rnat) |
|---|
| 2164 | call writediagfi(ngrid,"sensibFlux","sensible heat flux","w.m^-2",2,sensibFlux) |
|---|
| 2165 | call writediagfi(ngrid,"latentFlux","latent heat flux","w.m^-2",2,zdqsdif(:,igcm_h2o_vap)*RLVTT) |
|---|
| 2166 | endif |
|---|
| 2167 | |
|---|
| 2168 | ! Thermal plume model |
|---|
| 2169 | if (calltherm) then |
|---|
| 2170 | call writediagfi(ngrid,'entr','Entrainment','kg m$^{-2}$ s$^{-1}$', 3, entr) |
|---|
| 2171 | call writediagfi(ngrid,'detr','Detrainment','kg m$^{-2}$ s$^{-1}$', 3, detr) |
|---|
| 2172 | call writediagfi(ngrid,'fm','Mass flux','kg m$^{-2}$ s$^{-1}$', 3, fm_bis) |
|---|
| 2173 | call writediagfi(ngrid,'w_plm','Squared vertical velocity','m s$^{-1}$', 3, zw2_bis) |
|---|
| 2174 | call writediagfi(ngrid,'fraca','Updraft fraction','', 3, fraca) |
|---|
| 2175 | endif |
|---|
| 2176 | |
|---|
| 2177 | ! GW non-oro outputs |
|---|
| 2178 | if (calllott_nonoro) then |
|---|
| 2179 | call WRITEDIAGFI(ngrid,"dugwno","GW non-oro dU","m/s2", 3,d_u_hin) |
|---|
| 2180 | call WRITEDIAGFI(ngrid,"dvgwno","GW non-oro dV","m/s2", 3,d_v_hin) |
|---|
| 2181 | endif |
|---|
| 2182 | |
|---|
| 2183 | ! Total energy balance diagnostics |
|---|
| 2184 | if(callrad.and.(.not.newtonian))then |
|---|
| 2185 | |
|---|
| 2186 | !call writediagfi(ngrid,"ALB","Surface albedo"," ",2,albedo_equivalent) |
|---|
| 2187 | !call writediagfi(ngrid,"ALB_1st","First Band Surface albedo"," ",2,albedo(:,1)) |
|---|
| 2188 | call writediagfi(ngrid,"ISR","incoming stellar rad.","W m-2",2,fluxtop_dn) |
|---|
| 2189 | call writediagfi(ngrid,"ASR","absorbed stellar rad.","W m-2",2,fluxabs_sw) |
|---|
| 2190 | call writediagfi(ngrid,"OLR","outgoing longwave rad.","W m-2",2,fluxtop_lw) |
|---|
| 2191 | call writediagfi(ngrid,"shad","rings"," ", 2, fract) |
|---|
| 2192 | |
|---|
| 2193 | ! call writediagfi(ngrid,"ASRcs","absorbed stellar rad (cs).","W m-2",2,fluxabs_sw1) |
|---|
| 2194 | ! call writediagfi(ngrid,"OLRcs","outgoing longwave rad (cs).","W m-2",2,fluxtop_lw1) |
|---|
| 2195 | ! call writediagfi(ngrid,"fluxsurfsw","sw surface flux.","W m-2",2,fluxsurf_sw) |
|---|
| 2196 | ! call writediagfi(ngrid,"fluxsurflw","lw back radiation.","W m-2",2,fluxsurf_lw) |
|---|
| 2197 | ! call writediagfi(ngrid,"fluxsurfswcs","sw surface flux (cs).","W m-2",2,fluxsurf_sw1) |
|---|
| 2198 | ! call writediagfi(ngrid,"fluxsurflwcs","lw back radiation (cs).","W m-2",2,fluxsurf_lw1) |
|---|
| 2199 | |
|---|
| 2200 | if(ok_slab_ocean) then |
|---|
| 2201 | call writediagfi(ngrid,"GND","heat flux from ground","W m-2",2,fluxgrdocean) |
|---|
| 2202 | else |
|---|
| 2203 | call writediagfi(ngrid,"GND","heat flux from ground","W m-2",2,fluxgrd) |
|---|
| 2204 | endif |
|---|
| 2205 | |
|---|
| 2206 | call writediagfi(ngrid,"DYN","dynamical heat input","W m-2",2,fluxdyn) |
|---|
| 2207 | |
|---|
| 2208 | endif ! end of 'callrad' |
|---|
| 2209 | |
|---|
| 2210 | if(enertest) then |
|---|
| 2211 | |
|---|
| 2212 | if (calldifv) then |
|---|
| 2213 | |
|---|
| 2214 | call writediagfi(ngrid,"q2","turbulent kinetic energy","J.kg^-1",3,q2) |
|---|
| 2215 | call writediagfi(ngrid,"sensibFlux","sensible heat flux","w.m^-2",2,sensibFlux) |
|---|
| 2216 | |
|---|
| 2217 | ! call writediagfi(ngrid,"dEzdiff","turbulent diffusion heating (-sensible flux)","w.m^-2",3,dEzdiff) |
|---|
| 2218 | ! call writediagfi(ngrid,"dEdiff","integrated turbulent diffusion heating (-sensible flux)","w.m^-2",2,dEdiff) |
|---|
| 2219 | ! call writediagfi(ngrid,"dEdiffs","In TurbDiff (correc rad+latent heat) surf nrj change","w.m^-2",2,dEdiffs) |
|---|
| 2220 | |
|---|
| 2221 | endif |
|---|
| 2222 | |
|---|
| 2223 | if (corrk) then |
|---|
| 2224 | call writediagfi(ngrid,"dEzradsw","radiative heating","w.m^-2",3,dEzradsw) |
|---|
| 2225 | call writediagfi(ngrid,"dEzradlw","radiative heating","w.m^-2",3,dEzradlw) |
|---|
| 2226 | endif |
|---|
| 2227 | |
|---|
| 2228 | if(watercond) then |
|---|
| 2229 | |
|---|
| 2230 | call writediagfi(ngrid,"lscaledE","heat from largescale","W m-2",2,lscaledE) |
|---|
| 2231 | call writediagfi(ngrid,"madjdE","heat from moistadj","W m-2",2,madjdE) |
|---|
| 2232 | call writediagfi(ngrid,"qsatatm","atm qsat"," ",3,qsat) |
|---|
| 2233 | |
|---|
| 2234 | ! call writediagfi(ngrid,"lscaledEz","heat from largescale","W m-2",3,lscaledEz) |
|---|
| 2235 | ! call writediagfi(ngrid,"madjdEz","heat from moistadj","W m-2",3,madjdEz) |
|---|
| 2236 | ! call writediagfi(ngrid,"h2o_max_col","maximum H2O column amount","kg.m^-2",2,H2Omaxcol) |
|---|
| 2237 | |
|---|
| 2238 | endif |
|---|
| 2239 | |
|---|
| 2240 | endif ! end of 'enertest' |
|---|
| 2241 | |
|---|
| 2242 | ! Diagnostics of optical thickness |
|---|
| 2243 | ! Warning this is exp(-tau), I let you postproc with -log to have tau itself - JVO 19 |
|---|
| 2244 | if (diagdtau) then |
|---|
| 2245 | do nw=1,L_NSPECTV |
|---|
| 2246 | write(str2,'(i2.2)') nw |
|---|
| 2247 | call writediagfi(ngrid,'dtauv'//str2,'Layer optical thickness attenuation in VI band '//str2,'',1,int_dtauv(:,nlayer:1:-1,nw)) |
|---|
| 2248 | enddo |
|---|
| 2249 | do nw=1,L_NSPECTI |
|---|
| 2250 | write(str2,'(i2.2)') nw |
|---|
| 2251 | call writediagfi(ngrid,'dtaui'//str2,'Layer optical thickness attenuation in IR band '//str2,'',1,int_dtaui(:,nlayer:1:-1,nw)) |
|---|
| 2252 | enddo |
|---|
| 2253 | endif |
|---|
| 2254 | |
|---|
| 2255 | |
|---|
| 2256 | ! Temporary inclusions for heating diagnostics. |
|---|
| 2257 | !call writediagfi(ngrid,"zdtsw","SW heating","T s-1",3,zdtsw) |
|---|
| 2258 | !call writediagfi(ngrid,"zdtlw","LW heating","T s-1",3,zdtlw) |
|---|
| 2259 | call writediagfi(ngrid,"dtrad","radiative heating","K s-1",3,dtrad) |
|---|
| 2260 | ! call writediagfi(ngrid,"zdtdyn","Dyn. heating","T s-1",3,zdtdyn) |
|---|
| 2261 | |
|---|
| 2262 | ! For Debugging. |
|---|
| 2263 | !call writediagfi(ngrid,'rnat','Terrain type',' ',2,real(rnat)) |
|---|
| 2264 | !call writediagfi(ngrid,'pphi','Geopotential',' ',3,pphi) |
|---|
| 2265 | |
|---|
| 2266 | |
|---|
| 2267 | ! Output aerosols. |
|---|
| 2268 | if (igcm_co2_ice.ne.0.and.iaero_co2.ne.0) & |
|---|
| 2269 | call writediagfi(ngrid,'CO2ice_reff','CO2ice_reff','m',3,reffrad(1,1,iaero_co2)) |
|---|
| 2270 | if (igcm_h2o_ice.ne.0.and.iaero_h2o.ne.0) & |
|---|
| 2271 | call writediagfi(ngrid,'H2Oice_reff','H2Oice_reff','m',3,reffrad(:,:,iaero_h2o)) |
|---|
| 2272 | if (igcm_co2_ice.ne.0.and.iaero_co2.ne.0) & |
|---|
| 2273 | call writediagfi(ngrid,'CO2ice_reffcol','CO2ice_reffcol','um kg m^-2',2,reffcol(1,iaero_co2)) |
|---|
| 2274 | if (igcm_h2o_ice.ne.0.and.iaero_h2o.ne.0) & |
|---|
| 2275 | call writediagfi(ngrid,'H2Oice_reffcol','H2Oice_reffcol','um kg m^-2',2,reffcol(1,iaero_h2o)) |
|---|
| 2276 | |
|---|
| 2277 | ! Output tracers. |
|---|
| 2278 | if (tracer) then |
|---|
| 2279 | |
|---|
| 2280 | do iq=1,nq |
|---|
| 2281 | call writediagfi(ngrid,noms(iq),noms(iq),'kg/kg',3,zq(1,1,iq)) |
|---|
| 2282 | call writediagfi(ngrid,trim(noms(iq))//'_surf',trim(noms(iq))//'_surf', & |
|---|
| 2283 | 'kg m^-2',2,qsurf_hist(1,iq) ) |
|---|
| 2284 | call writediagfi(ngrid,trim(noms(iq))//'_col',trim(noms(iq))//'_col', & |
|---|
| 2285 | 'kg m^-2',2,qcol(1,iq) ) |
|---|
| 2286 | |
|---|
| 2287 | ! call writediagfi(ngrid,trim(noms(iq))//'_surf',trim(noms(iq))//'_surf', & |
|---|
| 2288 | ! 'kg m^-2',2,qsurf(1,iq) ) |
|---|
| 2289 | |
|---|
| 2290 | if(watercond.or.CLFvarying)then |
|---|
| 2291 | call writediagfi(ngrid,"rneb_man","H2O cloud fraction (conv)"," ",3,rneb_man) |
|---|
| 2292 | call writediagfi(ngrid,"rneb_lsc","H2O cloud fraction (large scale)"," ",3,rneb_lsc) |
|---|
| 2293 | call writediagfi(ngrid,"CLF","H2O cloud fraction"," ",3,cloudfrac) |
|---|
| 2294 | call writediagfi(ngrid,"CLFt","H2O column cloud fraction"," ",2,totcloudfrac) |
|---|
| 2295 | call writediagfi(ngrid,"RH","relative humidity"," ",3,RH) |
|---|
| 2296 | endif |
|---|
| 2297 | |
|---|
| 2298 | if(waterrain)then |
|---|
| 2299 | call writediagfi(ngrid,"rain","rainfall","kg m-2 s-1",2,zdqsrain) |
|---|
| 2300 | call writediagfi(ngrid,"snow","snowfall","kg m-2 s-1",2,zdqssnow) |
|---|
| 2301 | call writediagfi(ngrid,"reevap","reevaporation of precipitation","kg m-2 s-1",2,reevap_precip) |
|---|
| 2302 | endif |
|---|
| 2303 | |
|---|
| 2304 | if((hydrology).and.(.not.ok_slab_ocean))then |
|---|
| 2305 | call writediagfi(ngrid,"hice","oceanic ice height","m",2,hice) |
|---|
| 2306 | endif |
|---|
| 2307 | |
|---|
| 2308 | if(ice_update)then |
|---|
| 2309 | call writediagfi(ngrid,"ice_min","min annual ice","m",2,ice_min) |
|---|
| 2310 | call writediagfi(ngrid,"ice_ini","initial annual ice","m",2,ice_initial) |
|---|
| 2311 | endif |
|---|
| 2312 | |
|---|
| 2313 | do ig=1,ngrid |
|---|
| 2314 | if(tau_col(ig).gt.1.e3)then |
|---|
| 2315 | print*,'WARNING: tau_col=',tau_col(ig) |
|---|
| 2316 | print*,'at ig=',ig,'in PHYSIQ' |
|---|
| 2317 | endif |
|---|
| 2318 | end do |
|---|
| 2319 | |
|---|
| 2320 | call writediagfi(ngrid,"tau_col","Total aerosol optical depth","[]",2,tau_col) |
|---|
| 2321 | |
|---|
| 2322 | enddo ! end of 'nq' loop |
|---|
| 2323 | |
|---|
| 2324 | endif ! end of 'tracer' |
|---|
| 2325 | |
|---|
| 2326 | |
|---|
| 2327 | ! Output spectrum. |
|---|
| 2328 | if(specOLR.and.corrk)then |
|---|
| 2329 | call writediagspecIR(ngrid,"OLR3D","OLR(lon,lat,band)","W/m^2/cm^-1",3,OLR_nu) |
|---|
| 2330 | call writediagspecVI(ngrid,"OSR3D","OSR(lon,lat,band)","W/m^2/cm^-1",3,OSR_nu) |
|---|
| 2331 | call writediagspecVI(ngrid,"GSR3D","GSR(lon,lat,band)","W/m^2/cm^-1",3,GSR_nu) |
|---|
| 2332 | endif |
|---|
| 2333 | |
|---|
| 2334 | #else |
|---|
| 2335 | comm_HR_SW(1:ngrid,1:nlayer) = zdtsw(1:ngrid,1:nlayer) |
|---|
| 2336 | comm_HR_LW(1:ngrid,1:nlayer) = zdtlw(1:ngrid,1:nlayer) |
|---|
| 2337 | if ((tracer).and.(water)) then |
|---|
| 2338 | comm_CLOUDFRAC(1:ngrid,1:nlayer)=cloudfrac(1:ngrid,1:nlayer) |
|---|
| 2339 | comm_TOTCLOUDFRAC(1:ngrid)=totcloudfrac(1:ngrid) |
|---|
| 2340 | comm_RAIN(1:ngrid,1:nlayer)=zdqrain(1:ngrid,1:nlayer,igcm_h2o_vap) |
|---|
| 2341 | comm_SURFRAIN(1:ngrid)=zdqsrain(1:ngrid) |
|---|
| 2342 | comm_SNOW(1:ngrid,1:nlayer)=zdqrain(1:ngrid,1:nlayer,igcm_h2o_ice) |
|---|
| 2343 | comm_ALBEQ(1:ngrid)=albedo_equivalent(1:ngrid) |
|---|
| 2344 | comm_H2OICE_REFF(1:ngrid,1:nlayer)=reffrad(1:ngrid,1:nlayer,iaero_h2o) |
|---|
| 2345 | comm_REEVAP(1:ngrid)=reevap_precip(1:ngrid) |
|---|
| 2346 | endif |
|---|
| 2347 | comm_FLUXTOP_DN(1:ngrid)=fluxtop_dn(1:ngrid) |
|---|
| 2348 | comm_FLUXABS_SW(1:ngrid)=fluxabs_sw(1:ngrid) |
|---|
| 2349 | comm_FLUXTOP_LW(1:ngrid)=fluxtop_lw(1:ngrid) |
|---|
| 2350 | comm_FLUXSURF_SW(1:ngrid)=fluxsurf_sw(1:ngrid) |
|---|
| 2351 | comm_FLUXSURF_LW(1:ngrid)=fluxsurf_lw(1:ngrid) |
|---|
| 2352 | comm_FLXGRD(1:ngrid)=fluxgrd(1:ngrid) |
|---|
| 2353 | comm_LSCEZ(1:ngrid,1:nlayer)=lscaledEz(1:ngrid,1:nlayer) |
|---|
| 2354 | sensibFlux(1:ngrid) = zflubid(1:ngrid) - capcal(1:ngrid)*zdtsdif(1:ngrid) !!! ???? |
|---|
| 2355 | |
|---|
| 2356 | if (turb_resolved) then |
|---|
| 2357 | open(17,file='lsf.txt',form='formatted',status='old') |
|---|
| 2358 | rewind(17) |
|---|
| 2359 | DO l=1,nlayer |
|---|
| 2360 | read(17,*) lsf_dt(l),lsf_dq(l) |
|---|
| 2361 | ENDDO |
|---|
| 2362 | close(17) |
|---|
| 2363 | do ig=1,ngrid |
|---|
| 2364 | if ((tracer).and.(water)) then |
|---|
| 2365 | pdq(ig,:,igcm_h2o_vap) = pdq(ig,:,igcm_h2o_vap) + lsf_dq(:) |
|---|
| 2366 | endif |
|---|
| 2367 | pdt(ig,:) = pdt(ig,:) + lsf_dt(:) |
|---|
| 2368 | comm_HR_DYN(ig,:) = lsf_dt(:) |
|---|
| 2369 | enddo |
|---|
| 2370 | endif |
|---|
| 2371 | #endif |
|---|
| 2372 | |
|---|
| 2373 | ! XIOS outputs |
|---|
| 2374 | #ifdef CPP_XIOS |
|---|
| 2375 | ! Send fields to XIOS: (NB these fields must also be defined as |
|---|
| 2376 | ! <field id="..." /> in context_lmdz_physics.xml to be correctly used) |
|---|
| 2377 | CALL send_xios_field("ls",zls) |
|---|
| 2378 | |
|---|
| 2379 | CALL send_xios_field("ps",ps) |
|---|
| 2380 | CALL send_xios_field("area",cell_area) |
|---|
| 2381 | |
|---|
| 2382 | CALL send_xios_field("temperature",zt) |
|---|
| 2383 | CALL send_xios_field("u",zu) |
|---|
| 2384 | CALL send_xios_field("v",zv) |
|---|
| 2385 | CALL send_xios_field("omega",omega) |
|---|
| 2386 | |
|---|
| 2387 | IF (calltherm) THEN |
|---|
| 2388 | CALL send_xios_field('w_plm',zw2_bis) |
|---|
| 2389 | CALL send_xios_field('entr',entr) |
|---|
| 2390 | CALL send_xios_field('detr',detr) |
|---|
| 2391 | ! CALL send_xios_field('fm',fm_bis) |
|---|
| 2392 | ! CALL send_xios_field('fraca',fraca) |
|---|
| 2393 | ENDIF |
|---|
| 2394 | |
|---|
| 2395 | IF (water) THEN |
|---|
| 2396 | CALL send_xios_field('h2o_vap',zq(:,:,igcm_h2o_vap)) |
|---|
| 2397 | CALL send_xios_field('h2o_ice',zq(:,:,igcm_h2o_ice)) |
|---|
| 2398 | ENDIF |
|---|
| 2399 | |
|---|
| 2400 | CALL send_xios_field("ISR",fluxtop_dn) |
|---|
| 2401 | CALL send_xios_field("OLR",fluxtop_lw) |
|---|
| 2402 | |
|---|
| 2403 | if (lastcall.and.is_omp_master) then |
|---|
| 2404 | write(*,*) "physiq: call xios_context_finalize" |
|---|
| 2405 | call xios_context_finalize |
|---|
| 2406 | endif |
|---|
| 2407 | #endif |
|---|
| 2408 | |
|---|
| 2409 | icount=icount+1 |
|---|
| 2410 | |
|---|
| 2411 | end subroutine physiq |
|---|
| 2412 | |
|---|
| 2413 | end module physiq_mod |
|---|