1 | subroutine physiq(ngrid,nlayer,nq, |
---|
2 | * firstcall,lastcall, |
---|
3 | * pday,ptime,ptimestep, |
---|
4 | * pplev,pplay,pphi, |
---|
5 | * pu,pv,pt,pq, |
---|
6 | * pw, |
---|
7 | * pdu,pdv,pdt,pdq,pdpsrf,tracerdyn) |
---|
8 | |
---|
9 | use radinc_h, only : naerkind |
---|
10 | |
---|
11 | implicit none |
---|
12 | |
---|
13 | |
---|
14 | !================================================================== |
---|
15 | ! |
---|
16 | ! Purpose |
---|
17 | ! ------- |
---|
18 | ! Central subroutine for all the physics parameterisations in the |
---|
19 | ! universal model. Originally adapted from the Mars LMDZ model. |
---|
20 | ! |
---|
21 | ! The model can be run without or with tracer transport |
---|
22 | ! depending on the value of "tracer" in file "callphys.def". |
---|
23 | ! |
---|
24 | ! |
---|
25 | ! It includes: |
---|
26 | ! |
---|
27 | ! 1. Initialization: |
---|
28 | ! 1.1 Firstcall initializations |
---|
29 | ! 1.2 Initialization for every call to physiq |
---|
30 | ! 1.2.5 Compute mean mass and cp, R and thermal conduction coeff. |
---|
31 | ! 2. Compute radiative transfer tendencies |
---|
32 | ! (longwave and shortwave). |
---|
33 | ! 4. Vertical diffusion (turbulent mixing): |
---|
34 | ! 5. Convective adjustment |
---|
35 | ! 6. Condensation and sublimation of gases (currently just CO2). |
---|
36 | ! 7. TRACERS : |
---|
37 | ! 7a. water and water ice |
---|
38 | ! 7c. other schemes for tracer transport (lifting, sedimentation) |
---|
39 | ! 7d. updates (pressure variations, surface budget) |
---|
40 | ! 9. Surface and sub-surface temperature calculations |
---|
41 | ! 10. Write outputs : |
---|
42 | ! - "startfi", "histfi" if it's time |
---|
43 | ! - Saving statistics if "callstats = .true." |
---|
44 | ! - Output any needed variables in "diagfi" |
---|
45 | ! 10. Diagnostics: mass conservation of tracers, radiative energy balance etc. |
---|
46 | ! |
---|
47 | ! arguments |
---|
48 | ! --------- |
---|
49 | ! |
---|
50 | ! input |
---|
51 | ! ----- |
---|
52 | ! ecri period (in dynamical timestep) to write output |
---|
53 | ! ngrid Size of the horizontal grid. |
---|
54 | ! All internal loops are performed on that grid. |
---|
55 | ! nlayer Number of vertical layers. |
---|
56 | ! nq Number of advected fields |
---|
57 | ! firstcall True at the first call |
---|
58 | ! lastcall True at the last call |
---|
59 | ! pday Number of days counted from the North. Spring |
---|
60 | ! equinoxe. |
---|
61 | ! ptime Universal time (0<ptime<1): ptime=0.5 at 12:00 UT |
---|
62 | ! ptimestep timestep (s) |
---|
63 | ! pplay(ngrid,nlayer) Pressure at the middle of the layers (Pa) |
---|
64 | ! pplev(ngrid,nlayer+1) intermediate pressure levels (pa) |
---|
65 | ! pphi(ngrid,nlayer) Geopotential at the middle of the layers (m2s-2) |
---|
66 | ! pu(ngrid,nlayer) u component of the wind (ms-1) |
---|
67 | ! pv(ngrid,nlayer) v component of the wind (ms-1) |
---|
68 | ! pt(ngrid,nlayer) Temperature (K) |
---|
69 | ! pq(ngrid,nlayer,nq) Advected fields |
---|
70 | ! pudyn(ngrid,nlayer) \ |
---|
71 | ! pvdyn(ngrid,nlayer) \ Dynamical temporal derivative for the |
---|
72 | ! ptdyn(ngrid,nlayer) / corresponding variables |
---|
73 | ! pqdyn(ngrid,nlayer,nq) / |
---|
74 | ! pw(ngrid,?) vertical velocity |
---|
75 | ! |
---|
76 | ! output |
---|
77 | ! ------ |
---|
78 | ! |
---|
79 | ! pdu(ngrid,nlayermx) \ |
---|
80 | ! pdv(ngrid,nlayermx) \ Temporal derivative of the corresponding |
---|
81 | ! pdt(ngrid,nlayermx) / variables due to physical processes. |
---|
82 | ! pdq(ngrid,nlayermx) / |
---|
83 | ! pdpsrf(ngrid) / |
---|
84 | ! tracerdyn call tracer in dynamical part of GCM ? |
---|
85 | ! |
---|
86 | ! |
---|
87 | ! Authors |
---|
88 | ! ------- |
---|
89 | ! Frederic Hourdin 15/10/93 |
---|
90 | ! Francois Forget 1994 |
---|
91 | ! Christophe Hourdin 02/1997 |
---|
92 | ! Subroutine completly rewritten by F.Forget (01/2000) |
---|
93 | ! Water ice clouds: Franck Montmessin (update 06/2003) |
---|
94 | ! Radiatively active tracers: J.-B. Madeleine (10/2008-06/2009) |
---|
95 | ! New correlated-k radiative scheme: R. Wordsworth (2009) |
---|
96 | ! Many specifically Martian subroutines removed: R. Wordsworth (2009) |
---|
97 | ! |
---|
98 | !================================================================== |
---|
99 | |
---|
100 | |
---|
101 | c 0. Declarations : |
---|
102 | c ------------------ |
---|
103 | |
---|
104 | #include "dimensions.h" |
---|
105 | #include "dimphys.h" |
---|
106 | #include "comgeomfi.h" |
---|
107 | #include "surfdat.h" |
---|
108 | #include "comsoil.h" |
---|
109 | #include "comdiurn.h" |
---|
110 | #include "callkeys.h" |
---|
111 | #include "comcstfi.h" |
---|
112 | #include "planete.h" |
---|
113 | #include "comsaison.h" |
---|
114 | #include "control.h" |
---|
115 | #include "comg1d.h" |
---|
116 | #include "tracer.h" |
---|
117 | |
---|
118 | #include "watercap.h" |
---|
119 | |
---|
120 | #include "netcdf.inc" |
---|
121 | |
---|
122 | |
---|
123 | |
---|
124 | c Arguments : |
---|
125 | c ----------- |
---|
126 | |
---|
127 | c inputs: |
---|
128 | c ------- |
---|
129 | INTEGER ngrid,nlayer,nq |
---|
130 | REAL ptimestep |
---|
131 | REAL pplev(ngridmx,nlayer+1),pplay(ngridmx,nlayer) |
---|
132 | REAL pphi(ngridmx,nlayer) |
---|
133 | REAL pu(ngridmx,nlayer),pv(ngridmx,nlayer) |
---|
134 | REAL pt(ngridmx,nlayer),pq(ngridmx,nlayer,nq) |
---|
135 | REAL pw(ngridmx,nlayer) ! pvervel transmitted by dyn3d |
---|
136 | REAL zh(ngridmx,nlayermx) ! potential temperature (K) |
---|
137 | LOGICAL firstcall,lastcall |
---|
138 | |
---|
139 | REAL pday |
---|
140 | REAL ptime |
---|
141 | logical tracerdyn |
---|
142 | |
---|
143 | c outputs: |
---|
144 | c -------- |
---|
145 | c physical tendencies |
---|
146 | REAL pdu(ngridmx,nlayer),pdv(ngridmx,nlayer) |
---|
147 | REAL pdt(ngridmx,nlayer),pdq(ngridmx,nlayer,nq) |
---|
148 | REAL pdpsrf(ngridmx) ! surface pressure tendency |
---|
149 | |
---|
150 | |
---|
151 | c Local saved variables: |
---|
152 | c ---------------------- |
---|
153 | c aerosol (dust or ice) extinction optical depth at reference wavelength |
---|
154 | c "longrefvis" set in dimradmars.h , for one of the "naerkind" kind of |
---|
155 | c aerosol optical properties: |
---|
156 | c REAL aerosol(ngridmx,nlayermx,naerkind) |
---|
157 | ! this is now internal to callcorrk and hence no longer needed here |
---|
158 | |
---|
159 | INTEGER day_ini ! Initial date of the run (sol since Ls=0) |
---|
160 | INTEGER icount ! counter of calls to physiq during the run. |
---|
161 | REAL tsurf(ngridmx) ! Surface temperature (K) |
---|
162 | REAL tsoil(ngridmx,nsoilmx) ! sub-surface temperatures (K) |
---|
163 | REAL albedo(ngridmx) ! Surface albedo |
---|
164 | |
---|
165 | real albedo0(ngridmx) ! Surface albedo |
---|
166 | save albedo0 |
---|
167 | |
---|
168 | REAL emis(ngridmx) ! Thermal IR surface emissivity |
---|
169 | REAL dtrad(ngridmx,nlayermx) ! Net atm. radiative heating rate (K.s-1) |
---|
170 | REAL fluxrad_sky(ngridmx) ! rad. flux from sky absorbed by surface (W.m-2) |
---|
171 | REAL fluxrad(ngridmx) ! Net radiative surface flux (W.m-2) |
---|
172 | REAL capcal(ngridmx) ! surface heat capacity (J m-2 K-1) |
---|
173 | REAL fluxgrd(ngridmx) ! surface conduction flux (W.m-2) |
---|
174 | REAL qsurf(ngridmx,nqmx) ! tracer on surface (e.g. kg.m-2) |
---|
175 | REAL q2(ngridmx,nlayermx+1) ! Turbulent Kinetic Energy |
---|
176 | |
---|
177 | SAVE day_ini, icount |
---|
178 | SAVE tsurf,tsoil |
---|
179 | SAVE albedo,emis, q2 |
---|
180 | SAVE capcal,fluxgrd,dtrad,fluxrad,fluxrad_sky,qsurf |
---|
181 | |
---|
182 | REAL stephan |
---|
183 | DATA stephan/5.67e-08/ ! Stephan Boltzman constant |
---|
184 | SAVE stephan |
---|
185 | |
---|
186 | c Local variables : |
---|
187 | c ----------------- |
---|
188 | |
---|
189 | ! aerosol (dust or ice) extinction optical depth at reference wavelength |
---|
190 | ! for the "naerkind" optically active aerosols: |
---|
191 | REAL aerosol(ngridmx,nlayermx,naerkind) |
---|
192 | |
---|
193 | CHARACTER*80 fichier |
---|
194 | INTEGER l,ig,ierr,igout,iq,i, tapphys |
---|
195 | ! INTEGER iqmin ! Used if iceparty engaged |
---|
196 | |
---|
197 | REAL fluxsurf_lw(ngridmx) ! incident LW (IR) surface flux (W.m-2) |
---|
198 | REAL fluxsurf_sw(ngridmx) ! incident SW (solar) surface flux (W.m-2) |
---|
199 | REAL fluxtop_lw(ngridmx) ! Outgoing LW (IR) flux to space (W.m-2) |
---|
200 | REAL fluxtop_sw(ngridmx) ! Outgoing SW (solar) flux to space (W.m-2) |
---|
201 | |
---|
202 | ! included by RW for equilibration test |
---|
203 | real fluxtop_dn(ngridmx) |
---|
204 | real fluxabs_sw(ngridmx) ! absorbed shortwave radiation |
---|
205 | real fluxdyn(ngridmx) ! horizontal heat transport by dynamics |
---|
206 | |
---|
207 | REAL zls ! solar longitude (rad) |
---|
208 | REAL zday ! date (time since Ls=0, in martian days) |
---|
209 | REAL zzlay(ngridmx,nlayermx) ! altitude at the middle of the layers |
---|
210 | REAL zzlev(ngridmx,nlayermx+1) ! altitude at layer boundaries |
---|
211 | REAL latvl1,lonvl1 ! Viking Lander 1 point (for diagnostic) |
---|
212 | |
---|
213 | c Aerosol effective radius used for radiative transfer (units=meters) |
---|
214 | REAL reffrad(ngridmx,nlayermx,naerkind) |
---|
215 | |
---|
216 | c Tendencies due to various processes: |
---|
217 | REAL dqsurf(ngridmx,nqmx) |
---|
218 | REAL zdtlw(ngridmx,nlayermx) ! (K/s) |
---|
219 | REAL zdtsw(ngridmx,nlayermx) ! (K/s) |
---|
220 | REAL cldtlw(ngridmx,nlayermx) ! (K/s) LW heating rate for clear areas |
---|
221 | REAL cldtsw(ngridmx,nlayermx) ! (K/s) SW heating rate for clear areas |
---|
222 | REAL zdtsurf(ngridmx) ! (K/s) |
---|
223 | REAL zdtlscale(ngridmx,nlayermx) |
---|
224 | REAL zdvdif(ngridmx,nlayermx),zdudif(ngridmx,nlayermx) ! (m.s-2) |
---|
225 | REAL zdhdif(ngridmx,nlayermx), zdtsdif(ngridmx) ! (K/s) |
---|
226 | REAL zdvadj(ngridmx,nlayermx),zduadj(ngridmx,nlayermx) ! (m.s-2) |
---|
227 | REAL zdhadj(ngridmx,nlayermx) ! (K/s) |
---|
228 | REAL zdtgw(ngridmx,nlayermx) ! (K/s) |
---|
229 | REAL zdugw(ngridmx,nlayermx),zdvgw(ngridmx,nlayermx) ! (m.s-2) |
---|
230 | REAL zdtc(ngridmx,nlayermx),zdtsurfc(ngridmx) |
---|
231 | REAL zdvc(ngridmx,nlayermx),zduc(ngridmx,nlayermx) |
---|
232 | |
---|
233 | REAL zdqdif(ngridmx,nlayermx,nqmx), zdqsdif(ngridmx,nqmx) |
---|
234 | REAL zdqsed(ngridmx,nlayermx,nqmx), zdqssed(ngridmx,nqmx) |
---|
235 | REAL zdqdev(ngridmx,nlayermx,nqmx), zdqsdev(ngridmx,nqmx) |
---|
236 | REAL zdqadj(ngridmx,nlayermx,nqmx) |
---|
237 | REAL zdqc(ngridmx,nlayermx,nqmx) |
---|
238 | REAL zdqlscale(ngridmx,nlayermx,nqmx) |
---|
239 | REAL zdqslscale(ngridmx,nqmx) |
---|
240 | REAL zdqchim(ngridmx,nlayermx,nqmx) |
---|
241 | REAL zdqschim(ngridmx,nqmx) |
---|
242 | |
---|
243 | REAL zdteuv(ngridmx,nlayermx) ! (K/s) |
---|
244 | REAL zdtconduc(ngridmx,nlayermx) ! (K/s) |
---|
245 | REAL zdumolvis(ngridmx,nlayermx) |
---|
246 | REAL zdvmolvis(ngridmx,nlayermx) |
---|
247 | real zdqmoldiff(ngridmx,nlayermx,nqmx) |
---|
248 | |
---|
249 | c Local variable for local intermediate calcul: |
---|
250 | REAL zflubid(ngridmx) |
---|
251 | REAL zplanck(ngridmx),zpopsk(ngridmx,nlayermx) |
---|
252 | REAL zdum1(ngridmx,nlayermx) |
---|
253 | REAL zdum2(ngridmx,nlayermx) |
---|
254 | REAL ztim1,ztim2,ztim3, z1,z2 |
---|
255 | REAL ztime_fin |
---|
256 | REAL zdh(ngridmx,nlayermx) |
---|
257 | INTEGER length |
---|
258 | PARAMETER (length=100) |
---|
259 | |
---|
260 | c local variables only used for diagnostic (output in file "diagfi" or "stats") |
---|
261 | c ----------------------------------------------------------------------------- |
---|
262 | REAL ps(ngridmx), zt(ngridmx,nlayermx) |
---|
263 | REAL zu(ngridmx,nlayermx),zv(ngridmx,nlayermx) |
---|
264 | REAL zq(ngridmx,nlayermx,nqmx) |
---|
265 | REAL fluxtop_sw_tot(ngridmx), fluxsurf_sw_tot(ngridmx) |
---|
266 | character*2 str2 |
---|
267 | character*5 str5 |
---|
268 | real zdtdif(ngridmx,nlayermx), zdtadj(ngridmx,nlayermx) |
---|
269 | real zdtdyn(ngridmx,nlayermx),ztprevious(ngridmx,nlayermx) |
---|
270 | save ztprevious |
---|
271 | real reff(ngridmx,nlayermx) ! effective dust radius (used if doubleq=T) |
---|
272 | real qtot1,qtot2 ! total aerosol mass |
---|
273 | integer igmin, lmin |
---|
274 | logical tdiag |
---|
275 | |
---|
276 | real co2col(ngridmx) ! CO2 column |
---|
277 | REAL zplev(ngrid,nlayermx+1),zplay(ngrid,nlayermx) |
---|
278 | REAL zstress(ngrid), cd |
---|
279 | real hco2(nqmx),tmean, zlocal(nlayermx) |
---|
280 | real rho(ngridmx,nlayermx) ! density |
---|
281 | real vmr(ngridmx,nlayermx) ! volume mixing ratio |
---|
282 | |
---|
283 | REAL time_phys |
---|
284 | |
---|
285 | ! included by RW for kastprof scheme |
---|
286 | logical kastprof |
---|
287 | |
---|
288 | ! reinstated by RW for diagnostic |
---|
289 | REAL tau_col(ngrid) |
---|
290 | |
---|
291 | ! included by RW for tidally locked dynamics |
---|
292 | ! logical tlocked |
---|
293 | |
---|
294 | ! included by RW to reduce insanity of code |
---|
295 | real flux1,flux2,flux3,ts1,ts2,ts3 |
---|
296 | |
---|
297 | ! included by RW for temporary comparison |
---|
298 | REAL zdtnirco2(ngridmx,nlayermx) ! (K/s) |
---|
299 | |
---|
300 | ! included by RW to compute tracer column densities |
---|
301 | real qcol(ngridmx,nqmx) |
---|
302 | |
---|
303 | ! included by RW for H2O precipitation |
---|
304 | REAL zdtrain(ngridmx,nlayermx) |
---|
305 | REAL zdqrain(ngridmx,nlayermx,nqmx) |
---|
306 | REAL zdqsrain(ngridmx) |
---|
307 | REAL zdqssnow(ngridmx) |
---|
308 | REAL rainout(ngridmx) |
---|
309 | |
---|
310 | ! included by RW for H2O Manabe scheme |
---|
311 | REAL dtmoist(ngridmx,nlayermx) |
---|
312 | REAL dqmoist(ngridmx,nlayermx,nqmx) |
---|
313 | |
---|
314 | real qvap(ngridmx,nlayermx) |
---|
315 | real dqvaplscale(ngridmx,nlayermx) |
---|
316 | real dqcldlscale(ngridmx,nlayermx) |
---|
317 | real cloudfrac(ngridmx,nlayermx) |
---|
318 | real rneb_man(ngridmx,nlayermx) |
---|
319 | real rneb_lsc(ngridmx,nlayermx) |
---|
320 | |
---|
321 | ! included by RW to account for surface cooling by evaporation |
---|
322 | REAL dtsurfh2olat(ngridmx) |
---|
323 | |
---|
324 | ! included by RW to test energy conservation |
---|
325 | REAL dEtot, dEtots, masse, vabs, dvabs |
---|
326 | |
---|
327 | ! included by RW to test water conservation |
---|
328 | real h2otot |
---|
329 | |
---|
330 | ! included by RW to allow variations in cp with location |
---|
331 | REAL cpp3D(ngridmx,nlayermx) ! specific heat capacity at const. pressure |
---|
332 | REAL rcp3D(ngridmx,nlayermx) ! R / specific heat capacity |
---|
333 | real cppNI, rcpNI, nnu ! last one just for Seb version |
---|
334 | REAL zpopskNI(ngridmx,nlayermx) |
---|
335 | |
---|
336 | ! included by RW to make 1D saves not every timestep |
---|
337 | integer countG1D |
---|
338 | save countG1D |
---|
339 | |
---|
340 | c======================================================================= |
---|
341 | |
---|
342 | kastprof=.false. |
---|
343 | |
---|
344 | c 1. Initialisation: |
---|
345 | c ----------------- |
---|
346 | |
---|
347 | c 1.1 Initialisation only at first call |
---|
348 | c --------------------------------------- |
---|
349 | IF (firstcall) THEN |
---|
350 | |
---|
351 | if(ngrid.eq.1)then |
---|
352 | !saveG1D=day_step*10 |
---|
353 | saveG1D=1 |
---|
354 | countG1D=1 |
---|
355 | endif |
---|
356 | |
---|
357 | c variables set to 0 |
---|
358 | c ~~~~~~~~~~~~~~~~~~ |
---|
359 | call zerophys(ngrid*nlayer,dtrad) |
---|
360 | call zerophys(ngrid,fluxrad) |
---|
361 | |
---|
362 | c initialize tracer names, indexes and properties |
---|
363 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
364 | tracerdyn=tracer |
---|
365 | IF (tracer) THEN |
---|
366 | CALL initracer() |
---|
367 | ENDIF ! end tracer |
---|
368 | |
---|
369 | |
---|
370 | c read startfi (initial parameters) |
---|
371 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
372 | |
---|
373 | CALL phyetat0 ("startfi.nc",0,0, |
---|
374 | & nsoilmx,nq, |
---|
375 | & day_ini,time_phys, |
---|
376 | & tsurf,tsoil,emis,q2,qsurf) |
---|
377 | |
---|
378 | if (pday.ne.day_ini) then |
---|
379 | write(*,*) "PHYSIQ: ERROR: bad synchronization between ", |
---|
380 | & "physics and dynamics" |
---|
381 | write(*,*) "dynamics day: ",pday |
---|
382 | write(*,*) "physics day: ",day_ini |
---|
383 | stop |
---|
384 | endif |
---|
385 | |
---|
386 | write (*,*) 'In physiq day_ini =', day_ini |
---|
387 | |
---|
388 | |
---|
389 | c Initialize albedo and orbital calculation |
---|
390 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
391 | CALL surfini(ngrid,qsurf,albedo) |
---|
392 | ! surely for good CO2 ice feedback this must be called every turn? |
---|
393 | CALL iniorbit(aphelie,periheli,year_day,peri_day,obliquit) |
---|
394 | |
---|
395 | |
---|
396 | if(tlocked)then |
---|
397 | print*,'Planet is tidally locked at resonance n=',nres |
---|
398 | print*,'Make sure you have the right rotation rate!!!' |
---|
399 | endif |
---|
400 | |
---|
401 | |
---|
402 | c initialize soil |
---|
403 | c ~~~~~~~~~~~~~~~ |
---|
404 | IF (callsoil) THEN |
---|
405 | CALL soil(ngrid,nsoilmx,firstcall,inertiedat, |
---|
406 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
407 | ELSE |
---|
408 | PRINT*,'WARNING! Thermal conduction in the soil turned off' |
---|
409 | DO ig=1,ngrid |
---|
410 | capcal(ig)=1.e6 |
---|
411 | fluxgrd(ig)=0. |
---|
412 | ENDDO |
---|
413 | ENDIF |
---|
414 | icount=1 |
---|
415 | |
---|
416 | c Set temperature just above condensation temperature (for Early Mars) |
---|
417 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
418 | if(nearco2cond) then |
---|
419 | write(*,*)' WARNING, starting at Tcond+1K !!!' |
---|
420 | DO l=1, nlayer |
---|
421 | DO ig=1,ngrid |
---|
422 | pdt(ig,l)= ((-3167.8)/(log(.01*pplay(ig,l))-23.23)+4 |
---|
423 | & -pt(ig,l)) / ptimestep |
---|
424 | ENDDO |
---|
425 | ENDDO |
---|
426 | endif |
---|
427 | |
---|
428 | if(meanOLR)then |
---|
429 | ! to record global radiative balance |
---|
430 | call system('rm -f rad_bal.out') |
---|
431 | endif |
---|
432 | |
---|
433 | if(water)then |
---|
434 | ! initialise variables for water cycle |
---|
435 | |
---|
436 | if(ngrid.eq.1)then |
---|
437 | qsurf(1,igcm_h2o_ice) = 100.0 |
---|
438 | DO l=1, nlayer |
---|
439 | pq(1,l,igcm_h2o_ice)=0.0!1.0e-2 |
---|
440 | enddo |
---|
441 | endif |
---|
442 | |
---|
443 | endif |
---|
444 | call su_watercycle ! even if we don't have a water cycle, we might |
---|
445 | ! need epsi for the wvp definitions in callcorrk.F |
---|
446 | |
---|
447 | ENDIF ! (end of "if firstcall") |
---|
448 | |
---|
449 | c --------------------------------------------------- |
---|
450 | c 1.2 Initializations done at every physical timestep: |
---|
451 | c --------------------------------------------------- |
---|
452 | c |
---|
453 | IF (ngrid.NE.ngridmx) THEN |
---|
454 | PRINT*,'STOP in PHYSIQ' |
---|
455 | PRINT*,'Probleme de dimensions :' |
---|
456 | PRINT*,'ngrid = ',ngrid |
---|
457 | PRINT*,'ngridmx = ',ngridmx |
---|
458 | STOP |
---|
459 | ENDIF |
---|
460 | |
---|
461 | c Initialize various variables |
---|
462 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
463 | call zerophys(ngrid*nlayer, pdv) |
---|
464 | call zerophys(ngrid*nlayer, pdu) |
---|
465 | if ( (.not.nearco2cond).and.(.not.firstcall) ) then |
---|
466 | call zerophys(ngrid*nlayer,pdt) |
---|
467 | endif ! this was the source of an evil bug... |
---|
468 | call zerophys(ngrid*nlayer*nq, pdq) |
---|
469 | call zerophys(ngrid, pdpsrf) |
---|
470 | call zerophys(ngrid, zflubid) |
---|
471 | call zerophys(ngrid, zdtsurf) |
---|
472 | call zerophys(ngrid*nq, dqsurf) |
---|
473 | igout=ngrid/2+1 |
---|
474 | |
---|
475 | zday=pday+ptime ! compute time, in sols (and fraction thereof) |
---|
476 | |
---|
477 | c Compute Solar Longitude (Ls) : |
---|
478 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
479 | if (season) then |
---|
480 | call solarlong(zday,zls) |
---|
481 | else |
---|
482 | call solarlong(float(day_ini),zls) |
---|
483 | end if |
---|
484 | |
---|
485 | c Compute geopotential between layers |
---|
486 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
487 | |
---|
488 | DO l=1,nlayer |
---|
489 | DO ig=1,ngrid |
---|
490 | zzlay(ig,l)=pphi(ig,l)/g |
---|
491 | ENDDO |
---|
492 | ENDDO |
---|
493 | DO ig=1,ngrid |
---|
494 | zzlev(ig,1)=0. |
---|
495 | zzlev(ig,nlayer+1)=1.e7 ! dummy top of last layer above 10000 km... |
---|
496 | ENDDO |
---|
497 | DO l=2,nlayer |
---|
498 | DO ig=1,ngrid |
---|
499 | z1=(pplay(ig,l-1)+pplev(ig,l))/(pplay(ig,l-1)-pplev(ig,l)) |
---|
500 | z2=(pplev(ig,l)+pplay(ig,l))/(pplev(ig,l)-pplay(ig,l)) |
---|
501 | zzlev(ig,l)=(z1*zzlay(ig,l-1)+z2*zzlay(ig,l))/(z1+z2) |
---|
502 | ENDDO |
---|
503 | ENDDO |
---|
504 | |
---|
505 | ! Potential temperature calculation not the same in physiq and dynamic... |
---|
506 | |
---|
507 | c Compute potential temperature |
---|
508 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
509 | if(nonideal)then |
---|
510 | |
---|
511 | DO l=1,nlayer |
---|
512 | DO ig=1,ngrid |
---|
513 | call calc_cpp3d(cppNI,rcpNI,pt(ig,l),pplay(ig,l)) |
---|
514 | cpp3D(ig,l) = cppNI |
---|
515 | rcp3D(ig,l) = rcpNI |
---|
516 | ENDDO |
---|
517 | ENDDO |
---|
518 | |
---|
519 | DO l=1,nlayer |
---|
520 | DO ig=1,ngrid |
---|
521 | |
---|
522 | ! nnu=0.35 |
---|
523 | ! zh(ig,l) = (pt(ig,l)**nnu + |
---|
524 | ! & nnu*(460**nnu)*(8.314/1000.)* |
---|
525 | ! & log(pplev(ig,1)/pplay(ig,l)) )**(-nnu) ! Sebastian's version |
---|
526 | ! zpopskNI(ig,l) = (pplay(ig,l)/pplev(ig,1))**rcp3D(ig,l) |
---|
527 | |
---|
528 | zh(ig,l) = pt(ig,l)*1.0024 - 0.659 |
---|
529 | zpopskNI(ig,l) = pt(ig,l)/zh(ig,l) |
---|
530 | ! we're only after zpopskNI here, not zh |
---|
531 | ! zh is calculated seperately before both vdifc and convadj |
---|
532 | ENDDO |
---|
533 | ENDDO |
---|
534 | |
---|
535 | endif |
---|
536 | ! else |
---|
537 | |
---|
538 | DO l=1,nlayer |
---|
539 | DO ig=1,ngrid |
---|
540 | zpopsk(ig,l)=(pplay(ig,l)/pplev(ig,1))**rcp |
---|
541 | zh(ig,l)=pt(ig,l)/zpopsk(ig,l) |
---|
542 | ENDDO |
---|
543 | ENDDO |
---|
544 | |
---|
545 | ! endif |
---|
546 | |
---|
547 | |
---|
548 | c----------------------------------------------------------------------- |
---|
549 | c 2. Compute radiative tendencies : |
---|
550 | c----------------------------------------------------------------------- |
---|
551 | |
---|
552 | IF (callrad) THEN |
---|
553 | IF( MOD(icount-1,iradia).EQ.0) THEN |
---|
554 | |
---|
555 | c Local stellar zenith angle |
---|
556 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
557 | CALL orbite(zls,dist_sol,declin) |
---|
558 | |
---|
559 | IF (tlocked) THEN |
---|
560 | ztim1=SIN(declin) |
---|
561 | ztim2=COS(declin)*COS(2.*pi*(zday/year_day) - zls*nres) |
---|
562 | ztim3=-COS(declin)*SIN(2.*pi*(zday/year_day) - zls*nres) |
---|
563 | |
---|
564 | CALL solang(ngrid,sinlon,coslon,sinlat,coslat, |
---|
565 | s ztim1,ztim2,ztim3,mu0,fract) |
---|
566 | |
---|
567 | ELSEIF (diurnal) THEN |
---|
568 | ztim1=SIN(declin) |
---|
569 | ztim2=COS(declin)*COS(2.*pi*(zday-.5)) |
---|
570 | ztim3=-COS(declin)*SIN(2.*pi*(zday-.5)) |
---|
571 | |
---|
572 | CALL solang(ngrid,sinlon,coslon,sinlat,coslat, |
---|
573 | s ztim1,ztim2,ztim3,mu0,fract) |
---|
574 | |
---|
575 | ELSE |
---|
576 | |
---|
577 | CALL mucorr(ngrid,declin,lati,mu0,fract,10000.,rad) |
---|
578 | ! WARNING: this function appears not to work in 1D |
---|
579 | |
---|
580 | ENDIF |
---|
581 | |
---|
582 | c Call main radiative transfer scheme |
---|
583 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
584 | |
---|
585 | c Radiative transfer |
---|
586 | c ------------------ |
---|
587 | |
---|
588 | if (corrk) then |
---|
589 | if(kastprof)then |
---|
590 | call kastprof_fn(tsurf,pt,pplay,pplev) |
---|
591 | print*,'pt',pt |
---|
592 | print*,'pplay',pplay |
---|
593 | endif |
---|
594 | |
---|
595 | CALL callcorrk(icount,ngrid,nlayer,pq,nq,qsurf, |
---|
596 | & albedo,emis,mu0,pplev,pplay,pt, |
---|
597 | & tsurf,fract,dist_sol,igout,aerosol,cpp3D, |
---|
598 | & zdtlw,zdtsw,fluxsurf_lw,fluxsurf_sw,fluxtop_lw, |
---|
599 | & fluxtop_sw,fluxtop_dn,reffrad,tau_col,ptime,pday, |
---|
600 | & firstcall,lastcall) |
---|
601 | |
---|
602 | |
---|
603 | |
---|
604 | c Radiative flux from the sky absorbed by the surface (W.m-2) |
---|
605 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
606 | DO ig=1,ngrid |
---|
607 | fluxrad_sky(ig)=emis(ig)*fluxsurf_lw(ig) |
---|
608 | & +fluxsurf_sw(ig)*(1.-albedo(ig)) |
---|
609 | ENDDO |
---|
610 | |
---|
611 | c Net atmospheric radiative heating rate (K.s-1) |
---|
612 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
613 | |
---|
614 | DO l=1,nlayer |
---|
615 | DO ig=1,ngrid |
---|
616 | dtrad(ig,l)=zdtsw(ig,l)+zdtlw(ig,l) |
---|
617 | ENDDO |
---|
618 | ENDDO |
---|
619 | |
---|
620 | else |
---|
621 | |
---|
622 | c Atmosphere has no radiative effect |
---|
623 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
624 | DO ig=1,ngrid |
---|
625 | fluxtop_dn(ig) = fract(ig)*mu0(ig)*Fat1AU/dist_sol**2 |
---|
626 | fluxrad_sky(ig) = fluxtop_dn(ig)*(1.-albedo(ig)) |
---|
627 | fluxtop_sw(ig) = fluxtop_dn(ig)*albedo(ig) |
---|
628 | fluxtop_lw(ig) = emis(ig)*stephan*tsurf(ig)**4 |
---|
629 | ENDDO ! radiation skips the atmosphere entirely |
---|
630 | |
---|
631 | |
---|
632 | DO l=1,nlayer |
---|
633 | DO ig=1,ngrid |
---|
634 | dtrad(ig,l)=0.0 |
---|
635 | ENDDO |
---|
636 | ENDDO ! hence no atmospheric radiative heating |
---|
637 | |
---|
638 | endif ! if corrk |
---|
639 | |
---|
640 | ENDIF ! of if(mod(icount-1,iradia).eq.0) |
---|
641 | |
---|
642 | ! Transformation of the radiative tendencies: |
---|
643 | ! ------------------------------------------- |
---|
644 | |
---|
645 | ! Net radiative surface flux (W.m-2) |
---|
646 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
647 | |
---|
648 | DO ig=1,ngrid |
---|
649 | zplanck(ig)=tsurf(ig)*tsurf(ig) |
---|
650 | zplanck(ig)=emis(ig)* |
---|
651 | & stephan*zplanck(ig)*zplanck(ig) |
---|
652 | fluxrad(ig)=fluxrad_sky(ig)-zplanck(ig) |
---|
653 | ENDDO |
---|
654 | |
---|
655 | DO l=1,nlayer |
---|
656 | DO ig=1,ngrid |
---|
657 | pdt(ig,l)=pdt(ig,l)+dtrad(ig,l) |
---|
658 | ENDDO |
---|
659 | ENDDO |
---|
660 | |
---|
661 | !------------------------- |
---|
662 | ! test energy conservation |
---|
663 | if(enertest)then |
---|
664 | dEtot=0.0 |
---|
665 | dEtots=0.0 |
---|
666 | DO ig = 1, ngrid |
---|
667 | DO l = 1, nlayer |
---|
668 | masse = (pplev(ig,l) - pplev(ig,l+1))/g |
---|
669 | dEtot = dEtot + cpp*masse*dtrad(ig,l)*area(ig) |
---|
670 | !print*,'l=',l,'dEtot=',cpp*masse*dtrad(ig,l)*area(ig) |
---|
671 | ENDDO |
---|
672 | dEtots = dEtots + fluxrad(ig)*area(ig) |
---|
673 | ENDDO |
---|
674 | dEtot=dEtot/totarea |
---|
675 | dEtots=dEtots/totarea |
---|
676 | print*,'In corrk atmospheric energy change=',dEtot,' W m-2' |
---|
677 | print*,'In corrk surface energy change=',dEtots,' W m-2' |
---|
678 | endif |
---|
679 | !------------------------- |
---|
680 | |
---|
681 | ENDIF ! of IF (callrad) |
---|
682 | |
---|
683 | |
---|
684 | !----------------------------------------------------------------------- |
---|
685 | ! 4. Vertical diffusion (turbulent mixing): |
---|
686 | ! ----------------------------------------- |
---|
687 | |
---|
688 | IF (calldifv) THEN |
---|
689 | |
---|
690 | DO ig=1,ngrid |
---|
691 | zflubid(ig)=fluxrad(ig)+fluxgrd(ig) |
---|
692 | ENDDO |
---|
693 | |
---|
694 | CALL zerophys(ngrid*nlayer,zdum1) |
---|
695 | CALL zerophys(ngrid*nlayer,zdum2) |
---|
696 | do l=1,nlayer |
---|
697 | do ig=1,ngrid |
---|
698 | zdh(ig,l)=pdt(ig,l)/zpopsk(ig,l) |
---|
699 | enddo |
---|
700 | enddo |
---|
701 | |
---|
702 | c Calling vdif (Martian version WITH CO2 condensation) |
---|
703 | CALL vdifc(ngrid,nlayer,nq,zpopsk, |
---|
704 | & ptimestep,capcal,lwrite, |
---|
705 | & pplay,pplev,zzlay,zzlev,z0, |
---|
706 | & pu,pv,zh,pq,tsurf,emis,qsurf, |
---|
707 | & zdum1,zdum2,zdh,pdq,zflubid, |
---|
708 | & zdudif,zdvdif,zdhdif,zdtsdif,q2, |
---|
709 | & zdqdif,zdqsdif) |
---|
710 | |
---|
711 | DO l=1,nlayer |
---|
712 | DO ig=1,ngrid |
---|
713 | pdv(ig,l)=pdv(ig,l)+zdvdif(ig,l) |
---|
714 | pdu(ig,l)=pdu(ig,l)+zdudif(ig,l) |
---|
715 | pdt(ig,l)=pdt(ig,l)+zdhdif(ig,l)*zpopsk(ig,l) |
---|
716 | |
---|
717 | zdtdif(ig,l)=zdhdif(ig,l)*zpopsk(ig,l) ! for diagnostic only |
---|
718 | ENDDO |
---|
719 | ENDDO |
---|
720 | |
---|
721 | DO ig=1,ngrid |
---|
722 | zdtsurf(ig)=zdtsurf(ig)+zdtsdif(ig) |
---|
723 | ENDDO |
---|
724 | |
---|
725 | if (tracer) then |
---|
726 | DO iq=1, nq |
---|
727 | DO l=1,nlayer |
---|
728 | DO ig=1,ngrid |
---|
729 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqdif(ig,l,iq) |
---|
730 | ENDDO |
---|
731 | ENDDO |
---|
732 | ENDDO |
---|
733 | DO iq=1, nq |
---|
734 | DO ig=1,ngrid |
---|
735 | dqsurf(ig,iq)=dqsurf(ig,iq) + zdqsdif(ig,iq) |
---|
736 | ENDDO |
---|
737 | ENDDO |
---|
738 | |
---|
739 | end if ! of if (tracer) |
---|
740 | |
---|
741 | !print*,'surface temp loss:' |
---|
742 | !print*, dtsurfh2olat |
---|
743 | |
---|
744 | !------------------------- |
---|
745 | ! test energy conservation |
---|
746 | if(enertest)then |
---|
747 | dEtot=0.0 |
---|
748 | dEtots=0.0 |
---|
749 | DO ig = 1, ngrid |
---|
750 | DO l = 1, nlayer |
---|
751 | masse = (pplev(ig,l) - pplev(ig,l+1))/g |
---|
752 | |
---|
753 | dEtot = dEtot + cpp*masse*zdtdif(ig,l)*area(ig) |
---|
754 | |
---|
755 | vabs = sqrt(pdu(ig,l)**2 + pdv(ig,l)**2) |
---|
756 | dvabs = sqrt(zdudif(ig,l)**2 + zdvdif(ig,l)**2) |
---|
757 | dEtot = dEtot + masse*vabs*dvabs*area(ig) |
---|
758 | ENDDO |
---|
759 | dEtots = dEtots + capcal(ig)*zdtsdif(ig)*area(ig) |
---|
760 | ENDDO |
---|
761 | dEtot=dEtot/totarea |
---|
762 | dEtots=dEtots/totarea |
---|
763 | print*,'In difv atmospheric energy change=',dEtot,' W m-2' |
---|
764 | print*,'In difv surface energy change=',dEtots,' W m-2' |
---|
765 | endif |
---|
766 | !------------------------- |
---|
767 | |
---|
768 | ELSE |
---|
769 | |
---|
770 | DO ig=1,ngrid |
---|
771 | zdtsurf(ig)=zdtsurf(ig)+ |
---|
772 | s (fluxrad(ig)+fluxgrd(ig))/capcal(ig) |
---|
773 | ENDDO |
---|
774 | |
---|
775 | ENDIF ! of IF (calldifv) |
---|
776 | |
---|
777 | |
---|
778 | !----------------------------------------------------------------------- |
---|
779 | ! 5. Dry convective adjustment: |
---|
780 | ! ----------------------------- |
---|
781 | |
---|
782 | IF(calladj) THEN |
---|
783 | |
---|
784 | DO l=1,nlayer |
---|
785 | DO ig=1,ngrid |
---|
786 | if(nonideal)then |
---|
787 | zdh(ig,l)=pdt(ig,l)/zpopskNI(ig,l) |
---|
788 | else |
---|
789 | zdh(ig,l)=pdt(ig,l)/zpopsk(ig,l) |
---|
790 | endif |
---|
791 | ENDDO |
---|
792 | ENDDO |
---|
793 | CALL zerophys(ngrid*nlayer,zduadj) |
---|
794 | CALL zerophys(ngrid*nlayer,zdvadj) |
---|
795 | CALL zerophys(ngrid*nlayer,zdhadj) |
---|
796 | |
---|
797 | if(nonideal)then |
---|
798 | CALL convadj(ngrid,nlayer,nq,ptimestep, |
---|
799 | & pplay,pplev,zpopskNI, |
---|
800 | & pu,pv,zh,pq, |
---|
801 | & pdu,pdv,zdh,pdq, |
---|
802 | & zduadj,zdvadj,zdhadj, |
---|
803 | & zdqadj) |
---|
804 | else |
---|
805 | CALL convadj(ngrid,nlayer,nq,ptimestep, |
---|
806 | & pplay,pplev,zpopsk, |
---|
807 | & pu,pv,zh,pq, |
---|
808 | & pdu,pdv,zdh,pdq, |
---|
809 | & zduadj,zdvadj,zdhadj, |
---|
810 | & zdqadj) |
---|
811 | endif |
---|
812 | |
---|
813 | |
---|
814 | DO l=1,nlayer |
---|
815 | DO ig=1,ngrid |
---|
816 | pdu(ig,l)=pdu(ig,l)+zduadj(ig,l) |
---|
817 | pdv(ig,l)=pdv(ig,l)+zdvadj(ig,l) |
---|
818 | if(nonideal)then |
---|
819 | pdt(ig,l)=pdt(ig,l)+zdhadj(ig,l)*zpopskNI(ig,l) |
---|
820 | zdtadj(ig,l)=zdhadj(ig,l)*zpopskNI(ig,l) ! for diagnostic only |
---|
821 | else |
---|
822 | pdt(ig,l)=pdt(ig,l)+zdhadj(ig,l)*zpopsk(ig,l) |
---|
823 | zdtadj(ig,l)=zdhadj(ig,l)*zpopsk(ig,l) ! for diagnostic only |
---|
824 | endif |
---|
825 | ENDDO |
---|
826 | ENDDO |
---|
827 | |
---|
828 | if(tracer) then |
---|
829 | DO iq=1, nq |
---|
830 | DO l=1,nlayer |
---|
831 | DO ig=1,ngrid |
---|
832 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqadj(ig,l,iq) |
---|
833 | ENDDO |
---|
834 | ENDDO |
---|
835 | ENDDO |
---|
836 | end if |
---|
837 | |
---|
838 | !------------------------- |
---|
839 | ! test energy conservation |
---|
840 | if(enertest)then |
---|
841 | dEtot=0.0 |
---|
842 | DO ig = 1, ngrid |
---|
843 | DO l = 1, nlayer |
---|
844 | masse = (pplev(ig,l) - pplev(ig,l+1))/g |
---|
845 | dEtot = dEtot + cpp*masse*zdtadj(ig,l)*area(ig) |
---|
846 | ENDDO |
---|
847 | ENDDO |
---|
848 | dEtot=dEtot/totarea |
---|
849 | print*,'In convadj atmospheric energy change=',dEtot,' W m-2' |
---|
850 | endif |
---|
851 | !------------------------- |
---|
852 | |
---|
853 | ENDIF ! of IF(calladj) |
---|
854 | |
---|
855 | !----------------------------------------------------------------------- |
---|
856 | ! 6. Carbon dioxide condensation-sublimation: |
---|
857 | ! ------------------------------------------- |
---|
858 | |
---|
859 | IF (co2cond) THEN |
---|
860 | if (.not.tracer) then |
---|
861 | print*,'We need a CO2 ice tracer to condense CO2' |
---|
862 | call abort |
---|
863 | endif |
---|
864 | |
---|
865 | call condens_co2cloud(ngrid,nlayer,nq,ptimestep, |
---|
866 | & capcal,pplay,pplev,tsurf,pt, |
---|
867 | & pphi,pdt,pdu,pdv,zdtsurf,pu,pv,pq,pdq, |
---|
868 | & qsurf(1,igcm_co2_ice),albedo,emis, |
---|
869 | & zdtc,zdtsurfc,pdpsrf,zduc,zdvc, |
---|
870 | & zdqc,reffrad,cpp3D) |
---|
871 | |
---|
872 | DO l=1,nlayer |
---|
873 | DO ig=1,ngrid |
---|
874 | pdt(ig,l)=pdt(ig,l)+zdtc(ig,l) |
---|
875 | pdv(ig,l)=pdv(ig,l)+zdvc(ig,l) |
---|
876 | pdu(ig,l)=pdu(ig,l)+zduc(ig,l) |
---|
877 | ENDDO |
---|
878 | ENDDO |
---|
879 | DO ig=1,ngrid |
---|
880 | zdtsurf(ig) = zdtsurf(ig) + zdtsurfc(ig) |
---|
881 | ENDDO |
---|
882 | |
---|
883 | ! IF (tracer) THEN |
---|
884 | DO iq=1, nq ! should use new notation here ! |
---|
885 | DO l=1,nlayer |
---|
886 | DO ig=1,ngrid |
---|
887 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqc(ig,l,iq) |
---|
888 | ENDDO |
---|
889 | ENDDO |
---|
890 | ENDDO |
---|
891 | !NB: we do not add tendency on surface co2ice ; |
---|
892 | ! since qsurf(:,igcm_co2_ice) is updated in condens_co2cloud |
---|
893 | ! ENDIF ! of IF (tracer) |
---|
894 | |
---|
895 | |
---|
896 | !------------------------- |
---|
897 | ! test energy conservation |
---|
898 | if(enertest)then |
---|
899 | dEtot=0.0 |
---|
900 | DO ig = 1, ngrid |
---|
901 | DO l = 1, nlayer |
---|
902 | masse = (pplev(ig,l) - pplev(ig,l+1))/g |
---|
903 | dEtot = dEtot + cpp*masse*zdtc(ig,l) |
---|
904 | ENDDO |
---|
905 | dEtot = dEtot + capcal(ig)*zdtsurfc(ig) |
---|
906 | ENDDO |
---|
907 | print*,'In co2cloud energy change=',dEtot,' W m-2' |
---|
908 | endif ! we're missing the latent heat... |
---|
909 | !------------------------- |
---|
910 | |
---|
911 | ENDIF ! of IF (co2cond) |
---|
912 | |
---|
913 | |
---|
914 | |
---|
915 | c----------------------------------------------------------------------- |
---|
916 | c 7. Specific parameterizations for tracers |
---|
917 | c ----------------------------------------- |
---|
918 | |
---|
919 | if (tracer) then |
---|
920 | |
---|
921 | c 7a. Water and ice |
---|
922 | c --------------- |
---|
923 | |
---|
924 | c --------------------------------------- |
---|
925 | c Water ice condensation in the atmosphere |
---|
926 | c ---------------------------------------- |
---|
927 | IF (water) THEN |
---|
928 | |
---|
929 | if(watercond)then |
---|
930 | |
---|
931 | if(1.eq.2)then |
---|
932 | call moistadj(pt,pq,pplev,pplay,dtmoist,dqmoist, |
---|
933 | & ptimestep,rneb_man) |
---|
934 | |
---|
935 | DO l=1,nlayer |
---|
936 | DO ig=1,ngrid |
---|
937 | pdq(ig,l,igcm_h2o_vap)=pdq(ig,l,igcm_h2o_vap)+ |
---|
938 | & dqmoist(ig,l,igcm_h2o_vap) |
---|
939 | pdq(ig,l,igcm_h2o_ice)=pdq(ig,l,igcm_h2o_ice)+ |
---|
940 | & dqmoist(ig,l,igcm_h2o_ice) |
---|
941 | pdt(ig,l)=pdt(ig,l)+dtmoist(ig,l) |
---|
942 | ENDDO |
---|
943 | ENDDO |
---|
944 | endif ! moistadj turned off for now |
---|
945 | |
---|
946 | DO l=1,nlayer |
---|
947 | DO ig=1,ngrid |
---|
948 | qvap(ig,l)=pq(ig,l,igcm_h2o_vap) |
---|
949 | ENDDO |
---|
950 | ENDDO |
---|
951 | call largescale2(ptimestep,pplev,pplay,pt,qvap, |
---|
952 | s zdtlscale, dqvaplscale,dqcldlscale,rneb_lsc) |
---|
953 | DO l=1,nlayer |
---|
954 | DO ig=1,ngrid |
---|
955 | pdq(ig,l,igcm_h2o_vap)=pdq(ig,l,igcm_h2o_vap)+ |
---|
956 | & dqvaplscale(ig,l) |
---|
957 | pdq(ig,l,igcm_h2o_ice)=pdq(ig,l,igcm_h2o_ice)+ |
---|
958 | & dqcldlscale(ig,l) |
---|
959 | ! pdt(ig,l)=pdt(ig,l)+zdtlscale(ig,l) |
---|
960 | ! for the moment this is removed, as it dont conserve energy |
---|
961 | ENDDO |
---|
962 | ENDDO |
---|
963 | |
---|
964 | ! compute cloud fraction |
---|
965 | DO l = 1, nlayer |
---|
966 | DO ig = 1,ngrid |
---|
967 | cloudfrac(ig,l)=MAX(rneb_lsc(ig,l),rneb_man(ig,l)) |
---|
968 | ENDDO |
---|
969 | ENDDO |
---|
970 | |
---|
971 | endif ! of IF (watercondense) |
---|
972 | |
---|
973 | if(waterrain)then |
---|
974 | |
---|
975 | call rain(ptimestep,pplev,pplay,pt,pdt,pq,pdq, |
---|
976 | & zdtrain,zdqrain,zdqsrain,zdqssnow,cloudfrac) |
---|
977 | |
---|
978 | DO l=1,nlayer |
---|
979 | DO ig=1,ngrid |
---|
980 | pdq(ig,l,igcm_h2o_vap)=pdq(ig,l,igcm_h2o_vap)+ |
---|
981 | & zdqrain(ig,l,igcm_h2o_vap) |
---|
982 | pdq(ig,l,igcm_h2o_ice)=pdq(ig,l,igcm_h2o_ice)+ |
---|
983 | & zdqrain(ig,l,igcm_h2o_ice) |
---|
984 | !pdt(ig,l)=pdt(ig,l)+zdtrain(ig,l) |
---|
985 | ENDDO |
---|
986 | ENDDO |
---|
987 | |
---|
988 | DO ig=1,ngrid |
---|
989 | dqsurf(ig,igcm_h2o_ice)=dqsurf(ig,igcm_h2o_ice)+ |
---|
990 | & zdqsrain(ig)+zdqssnow(ig) |
---|
991 | rainout(ig)=zdqsrain(ig)+zdqssnow(ig) ! diagnostic |
---|
992 | !rainout(ig)=zdqssnow(ig) |
---|
993 | ENDDO |
---|
994 | |
---|
995 | end if ! of IF (waterrain) |
---|
996 | |
---|
997 | end if ! of IF (water) |
---|
998 | |
---|
999 | |
---|
1000 | c 7c. Aerosol particles |
---|
1001 | c ------------------- |
---|
1002 | |
---|
1003 | c ------------- |
---|
1004 | c Sedimentation |
---|
1005 | c ------------- |
---|
1006 | IF (sedimentation) THEN |
---|
1007 | call zerophys(ngrid*nlayer*nq, zdqsed) |
---|
1008 | call zerophys(ngrid*nq, zdqssed) |
---|
1009 | |
---|
1010 | call callsedim(ngrid,nlayer, ptimestep, |
---|
1011 | & pplev,zzlev, pt, |
---|
1012 | & pq, pdq, zdqsed, zdqssed,nq) |
---|
1013 | |
---|
1014 | DO iq=2, nq ! should be updated |
---|
1015 | DO l=1,nlayer |
---|
1016 | DO ig=1,ngrid |
---|
1017 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqsed(ig,l,iq) |
---|
1018 | ENDDO |
---|
1019 | ENDDO |
---|
1020 | ENDDO |
---|
1021 | DO iq=2, nq |
---|
1022 | DO ig=1,ngrid |
---|
1023 | dqsurf(ig,iq)= dqsurf(ig,iq) + zdqssed(ig,iq) |
---|
1024 | ENDDO |
---|
1025 | ENDDO |
---|
1026 | END IF ! of IF (sedimentation) |
---|
1027 | |
---|
1028 | |
---|
1029 | c 7d. Updates |
---|
1030 | c --------- |
---|
1031 | |
---|
1032 | DO iq=1, nq |
---|
1033 | DO ig=1,ngrid |
---|
1034 | |
---|
1035 | c --------------------------------- |
---|
1036 | c Updating tracer budget on surface |
---|
1037 | c --------------------------------- |
---|
1038 | qsurf(ig,iq)=qsurf(ig,iq)+ptimestep*dqsurf(ig,iq) |
---|
1039 | |
---|
1040 | ENDDO ! (ig) |
---|
1041 | ENDDO ! (iq) |
---|
1042 | |
---|
1043 | endif ! of if (tracer) |
---|
1044 | |
---|
1045 | |
---|
1046 | !----------------------------------------------------------------------- |
---|
1047 | ! 9. Surface and sub-surface soil temperature |
---|
1048 | !----------------------------------------------------------------------- |
---|
1049 | ! |
---|
1050 | ! |
---|
1051 | ! 9.1 Increment Surface temperature: |
---|
1052 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1053 | |
---|
1054 | DO ig=1,ngrid |
---|
1055 | tsurf(ig)=tsurf(ig)+ptimestep*zdtsurf(ig) |
---|
1056 | ENDDO |
---|
1057 | |
---|
1058 | ! |
---|
1059 | ! 9.2 Compute soil temperatures and subsurface heat flux: |
---|
1060 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1061 | IF (callsoil) THEN |
---|
1062 | CALL soil(ngrid,nsoilmx,.false.,inertiedat, |
---|
1063 | & ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
1064 | ENDIF |
---|
1065 | |
---|
1066 | !------------------------- |
---|
1067 | ! test energy conservation |
---|
1068 | if(enertest)then |
---|
1069 | dEtots=0.0 |
---|
1070 | DO ig = 1, ngrid |
---|
1071 | dEtots = dEtots + capcal(ig)*zdtsurf(ig)*area(ig) |
---|
1072 | ENDDO |
---|
1073 | dEtots=dEtots/totarea |
---|
1074 | print*,'Surface energy change=',dEtots,' W m-2' |
---|
1075 | endif |
---|
1076 | !------------------------- |
---|
1077 | |
---|
1078 | |
---|
1079 | |
---|
1080 | |
---|
1081 | !----------------------------------------------------------------------- |
---|
1082 | ! 10. Perform diagnostics and write output files |
---|
1083 | !----------------------------------------------------------------------- |
---|
1084 | |
---|
1085 | ! --------------------------------------------------------- |
---|
1086 | ! Check the energy balance of the simulation during the run |
---|
1087 | ! --------------------------------------------------------- |
---|
1088 | flux1 = 0 |
---|
1089 | flux2 = 0 |
---|
1090 | flux3 = 0 |
---|
1091 | do ig=1,ngrid |
---|
1092 | |
---|
1093 | flux1 = flux1 + |
---|
1094 | & area(ig)*(fluxtop_dn(ig) - fluxtop_sw(ig)) |
---|
1095 | flux2 = flux2 + area(ig)*fluxtop_lw(ig) |
---|
1096 | flux3 = flux3 + area(ig)*fluxtop_dn(ig) |
---|
1097 | fluxabs_sw(ig)=fluxtop_dn(ig) - fluxtop_sw(ig) |
---|
1098 | |
---|
1099 | end do |
---|
1100 | print*,'Incident solar flux, absorbed solar flux, OLR (W/m2)' |
---|
1101 | print*, flux3/totarea, ' ', flux1/totarea , |
---|
1102 | & ' = ', flux2/totarea |
---|
1103 | |
---|
1104 | if(meanOLR)then |
---|
1105 | ! to record global radiative balance |
---|
1106 | open(92,file="rad_bal.out",form='formatted',access='append') |
---|
1107 | write(92,*) zday,flux3/totarea,flux1/totarea,flux2/totarea |
---|
1108 | close(92) |
---|
1109 | endif |
---|
1110 | |
---|
1111 | if(kastprof)then ! for f(p,T) computation (not needed in universal model) |
---|
1112 | open(15,file='ene_bal.out',form='formatted',access='append') |
---|
1113 | write(15,*) flux1 |
---|
1114 | close(15) |
---|
1115 | stop |
---|
1116 | endif |
---|
1117 | |
---|
1118 | ! Surface temperature information |
---|
1119 | ts1 = 0 |
---|
1120 | ts2 = 999 |
---|
1121 | ts3 = 0 |
---|
1122 | do ig=1,ngrid |
---|
1123 | ts1 = ts1 + area(ig)*tsurf(ig) |
---|
1124 | ts2 = min(ts2,tsurf(ig)) |
---|
1125 | ts3 = max(ts3,tsurf(ig)) |
---|
1126 | end do |
---|
1127 | print*,'Mean Tsurf =',ts1/totarea , ' Min Tsurf=',ts2, |
---|
1128 | & ' Max Tsurf =',ts3 |
---|
1129 | |
---|
1130 | ! ------------------------------- |
---|
1131 | ! Dynamical fields incrementation |
---|
1132 | ! ------------------------------- |
---|
1133 | ! (FOR OUTPUT ONLY : the actual model integration is performed in the dynamics) |
---|
1134 | ! temperature, zonal and meridional wind |
---|
1135 | DO l=1,nlayer |
---|
1136 | DO ig=1,ngrid |
---|
1137 | zt(ig,l)=pt(ig,l) + pdt(ig,l)*ptimestep |
---|
1138 | zu(ig,l)=pu(ig,l) + pdu(ig,l)*ptimestep |
---|
1139 | zv(ig,l)=pv(ig,l) + pdv(ig,l)*ptimestep |
---|
1140 | |
---|
1141 | ! diagnostic |
---|
1142 | zdtdyn(ig,l)=ztprevious(ig,l)-pt(ig,l) |
---|
1143 | ztprevious(ig,l)=zt(ig,l) |
---|
1144 | ENDDO |
---|
1145 | ENDDO |
---|
1146 | if(firstcall)call zerophys(zdtdyn) |
---|
1147 | |
---|
1148 | ! dynamical heating diagnostic |
---|
1149 | DO ig=1,ngrid |
---|
1150 | fluxdyn(ig)=0. |
---|
1151 | DO l=1,nlayer |
---|
1152 | if(nonideal)then |
---|
1153 | fluxdyn(ig)=fluxdyn(ig) - (zdtdyn(ig,l)/ptimestep) |
---|
1154 | & *(pplev(ig,l)-pplev(ig,l+1))*cpp3D(ig,l)/g |
---|
1155 | else |
---|
1156 | fluxdyn(ig)=fluxdyn(ig) - (zdtdyn(ig,l)/ptimestep) |
---|
1157 | & *(pplev(ig,l)-pplev(ig,l+1))*cpp/g |
---|
1158 | endif |
---|
1159 | ENDDO |
---|
1160 | ENDDO |
---|
1161 | |
---|
1162 | |
---|
1163 | ! tracers |
---|
1164 | DO iq=1, nq |
---|
1165 | DO l=1,nlayer |
---|
1166 | DO ig=1,ngrid |
---|
1167 | zq(ig,l,iq)=pq(ig,l,iq) +pdq(ig,l,iq)*ptimestep |
---|
1168 | ENDDO |
---|
1169 | ENDDO |
---|
1170 | ENDDO |
---|
1171 | |
---|
1172 | ! surface pressure |
---|
1173 | DO ig=1,ngrid |
---|
1174 | ps(ig)=pplev(ig,1) + pdpsrf(ig)*ptimestep |
---|
1175 | ENDDO |
---|
1176 | |
---|
1177 | ! pressure |
---|
1178 | DO l=1,nlayer |
---|
1179 | DO ig=1,ngrid |
---|
1180 | zplev(ig,l)=pplev(ig,l)/pplev(ig,1)*ps(ig) |
---|
1181 | zplay(ig,l)=pplay(ig,l)/pplev(ig,1)*ps(ig) |
---|
1182 | ENDDO |
---|
1183 | ENDDO |
---|
1184 | |
---|
1185 | |
---|
1186 | ! --------------------------------------------------------- |
---|
1187 | ! Compute column amounts (kg m-2) if tracers are enabled |
---|
1188 | ! --------------------------------------------------------- |
---|
1189 | if(tracer)then |
---|
1190 | call zerophys(ngrid*nq,qcol) |
---|
1191 | do iq=1,nq |
---|
1192 | DO ig=1,ngrid |
---|
1193 | DO l=1,nlayer |
---|
1194 | qcol(ig,iq) = qcol(ig,iq) + zq(ig,l,iq) * |
---|
1195 | & (pplev(ig,l) - pplev(ig,l+1)) / g |
---|
1196 | enddo |
---|
1197 | enddo |
---|
1198 | enddo |
---|
1199 | endif |
---|
1200 | |
---|
1201 | |
---|
1202 | ! --------------------------------------------------------- |
---|
1203 | ! Test for water conservation if water is enabled |
---|
1204 | ! --------------------------------------------------------- |
---|
1205 | if(water)then |
---|
1206 | |
---|
1207 | h2otot = 0 |
---|
1208 | do ig=1,ngrid |
---|
1209 | h2otot = h2otot + area(ig)* |
---|
1210 | & (qcol(ig,igcm_h2o_ice)+qcol(ig,igcm_h2o_vap) |
---|
1211 | & +qsurf(ig,igcm_h2o_ice)+qsurf(ig,igcm_h2o_vap)) |
---|
1212 | end do |
---|
1213 | print*,'Total water amount (kg): ',h2otot!/totarea |
---|
1214 | endif |
---|
1215 | |
---|
1216 | |
---|
1217 | ! TEMPORARY: save water cycle diagnostics |
---|
1218 | ! IF((ngrid.eq.1).and.lastcall) THEN |
---|
1219 | ! open(13,file='Ts.out') |
---|
1220 | ! open(14,file='T.out') |
---|
1221 | ! open(15,file='p.out') |
---|
1222 | ! open(16,file='vap.out') |
---|
1223 | ! open(17,file='alt.out') |
---|
1224 | ! ig=1 |
---|
1225 | ! write(13,*) tsurf(ig) |
---|
1226 | ! DO l=1,nlayer |
---|
1227 | ! write(14,*) pt(ig,l) |
---|
1228 | ! write(15,*) pplay(ig,l) |
---|
1229 | ! write(16,*) pq(ig,l,igcm_h2o_vap) |
---|
1230 | ! write(17,*) zzlay(ig,l) |
---|
1231 | ! enddo |
---|
1232 | ! close(13) |
---|
1233 | ! close(14) |
---|
1234 | ! close(15) |
---|
1235 | ! close(16) |
---|
1236 | ! close(17) |
---|
1237 | ! ENDIF |
---|
1238 | |
---|
1239 | |
---|
1240 | ! TEMPORARY: save data for LBL |
---|
1241 | ! IF((ngrid.eq.1).and.lastcall) THEN |
---|
1242 | ! open(14,file='T.dat') |
---|
1243 | ! open(15,file='p.dat') |
---|
1244 | ! ig=1 |
---|
1245 | ! write(14,*) nlayer+1 |
---|
1246 | ! write(15,*) nlayer+1 |
---|
1247 | ! write(14,*) tsurf(ig) |
---|
1248 | ! write(15,*) pplev(ig,1) |
---|
1249 | ! DO l=1,nlayer |
---|
1250 | ! write(14,*) pt(ig,l) |
---|
1251 | ! write(15,*) pplay(ig,l) |
---|
1252 | ! enddo |
---|
1253 | ! close(14) |
---|
1254 | ! close(15) |
---|
1255 | ! ENDIF |
---|
1256 | |
---|
1257 | |
---|
1258 | IF (ngrid.NE.1) THEN |
---|
1259 | print*,'Ls =',zls*180./pi |
---|
1260 | |
---|
1261 | ! ------------------------------------------------------------------- |
---|
1262 | ! Writing NetCDF file "RESTARTFI" at the end of the run |
---|
1263 | ! ------------------------------------------------------------------- |
---|
1264 | ! Note: 'restartfi' is stored just before dynamics are stored |
---|
1265 | ! in 'restart'. Between now and the writting of 'restart', |
---|
1266 | ! there will have been the itau=itau+1 instruction and |
---|
1267 | ! a reset of 'time' (lastacll = .true. when itau+1= itaufin) |
---|
1268 | ! thus we store for time=time+dtvr |
---|
1269 | |
---|
1270 | IF(lastcall) THEN |
---|
1271 | ztime_fin = ptime + ptimestep/(float(iphysiq)*daysec) |
---|
1272 | |
---|
1273 | write(*,*)'PHYSIQ: for physdem ztime_fin =',ztime_fin |
---|
1274 | call physdem1("restartfi.nc",long,lati,nsoilmx,nq, |
---|
1275 | . ptimestep,pday, |
---|
1276 | . ztime_fin,tsurf,tsoil,emis,q2,qsurf, |
---|
1277 | . area,albedodat,inertiedat,zmea,zstd,zsig, |
---|
1278 | . zgam,zthe) |
---|
1279 | ENDIF |
---|
1280 | |
---|
1281 | ! ----------------------------------------------------------------- |
---|
1282 | ! Saving statistics : |
---|
1283 | ! ----------------------------------------------------------------- |
---|
1284 | ! ("stats" stores and accumulates 8 key variables in file "stats.nc" |
---|
1285 | ! which can later be used to make the statistic files of the run: |
---|
1286 | ! "stats") only possible in 3D runs ! |
---|
1287 | |
---|
1288 | |
---|
1289 | IF (callstats) THEN |
---|
1290 | |
---|
1291 | call wstats(ngrid,"ps","Surface pressure","Pa",2,ps) |
---|
1292 | call wstats(ngrid,"tsurf","Surface temperature","K",2,tsurf) |
---|
1293 | call wstats(ngrid,"fluxsurf_lw", |
---|
1294 | . "Thermal IR radiative flux to surface","W.m-2",2, |
---|
1295 | . fluxsurf_lw) |
---|
1296 | call wstats(ngrid,"fluxsurf_sw", |
---|
1297 | . "Solar radiative flux to surface","W.m-2",2, |
---|
1298 | . fluxsurf_sw_tot) |
---|
1299 | call wstats(ngrid,"fluxtop_lw", |
---|
1300 | . "Thermal IR radiative flux to space","W.m-2",2, |
---|
1301 | . fluxtop_lw) |
---|
1302 | call wstats(ngrid,"fluxtop_sw", |
---|
1303 | . "Solar radiative flux to space","W.m-2",2, |
---|
1304 | . fluxtop_sw_tot) |
---|
1305 | |
---|
1306 | call wstats(ngrid,"temp","Atmospheric temperature","K",3,zt) |
---|
1307 | call wstats(ngrid,"u","Zonal (East-West) wind","m.s-1",3,zu) |
---|
1308 | call wstats(ngrid,"v","Meridional (North-South) wind", |
---|
1309 | . "m.s-1",3,zv) |
---|
1310 | call wstats(ngrid,"w","Vertical (down-up) wind", |
---|
1311 | . "m.s-1",3,pw) |
---|
1312 | call wstats(ngrid,"q2", |
---|
1313 | . "Boundary layer eddy kinetic energy","m2.s-2",3,q2) |
---|
1314 | |
---|
1315 | if (tracer) then |
---|
1316 | if (water) then |
---|
1317 | vmr=zq(1:ngridmx,1:nlayermx,igcm_h2o_vap) |
---|
1318 | & *mugaz/mmol(igcm_h2o_vap) |
---|
1319 | call wstats(ngrid,"vmr_h2ovapor", |
---|
1320 | . "H2O vapor volume mixing ratio","mol/mol", |
---|
1321 | . 3,vmr) |
---|
1322 | endif ! of if (water) |
---|
1323 | |
---|
1324 | endif !tracer |
---|
1325 | |
---|
1326 | IF(lastcall) THEN |
---|
1327 | write (*,*) "Writing stats..." |
---|
1328 | call mkstats(ierr) |
---|
1329 | ENDIF |
---|
1330 | ENDIF !if callstats |
---|
1331 | |
---|
1332 | |
---|
1333 | |
---|
1334 | ! ---------------------------------------------------------------------- |
---|
1335 | ! output in netcdf file "DIAGFI", containing any variable for diagnostic |
---|
1336 | ! (output with period "ecritphy", set in "run.def") |
---|
1337 | ! ---------------------------------------------------------------------- |
---|
1338 | ! WRITEDIAGFI can ALSO be called from any other subroutine |
---|
1339 | ! for any variable! |
---|
1340 | |
---|
1341 | ! is it not preferable to keep all the calls in one place? |
---|
1342 | |
---|
1343 | call WRITEDIAGFI(ngrid,"tsurf","Surface temperature","K",2, |
---|
1344 | & tsurf) |
---|
1345 | call WRITEDIAGFI(ngrid,"ps","surface pressure","Pa",2,ps) |
---|
1346 | call WRITEDIAGFI(ngrid,"temp","temperature","K",3,zt) |
---|
1347 | ! call WRITEDIAGFI(ngrid,"tau","tau"," ",2,tau) |
---|
1348 | ! call WRITEDIAGFI(ngrid,"u","Zonal wind","m.s-1",3,zu) |
---|
1349 | ! call WRITEDIAGFI(ngrid,"v","Meridional wind","m.s-1",3,zv) |
---|
1350 | ! call WRITEDIAGFI(ngrid,"w","Vertical wind","m.s-1",3,pw) |
---|
1351 | ! call WRITEDIAGFI(ngrid,"rho","density","none",3,rho) |
---|
1352 | ! call WRITEDIAGFI(ngrid,"q2","q2","kg.m-3",3,q2) |
---|
1353 | ! call WRITEDIAGFI(ngridm,'Teta','T potentielle','K',3,zh) |
---|
1354 | ! call WRITEDIAGFI(ngridm,'Pression','Pression','Pa',3,pplay) |
---|
1355 | |
---|
1356 | ! Total energy balance diagnostics |
---|
1357 | call WRITEDIAGFI(ngrid,"ISR","incoming stellar rad.","W m-2", |
---|
1358 | & 2,fluxtop_dn) |
---|
1359 | call WRITEDIAGFI(ngrid,"ASR","absorbed stellar rad.","W m-2", |
---|
1360 | & 2,fluxabs_sw) |
---|
1361 | call WRITEDIAGFI(ngrid,"OLR","outgoing longwave rad.","W m-2", |
---|
1362 | & 2,fluxtop_lw) |
---|
1363 | call WRITEDIAGFI(ngrid,"DYN","dynamical heat input","W m-2", |
---|
1364 | & 2,fluxdyn) |
---|
1365 | |
---|
1366 | ! Temporary inclusions for heating diagnostics |
---|
1367 | ! call WRITEDIAGFI(ngrid,"zdtdyn","Dyn. heating","T s-1",3,zdtdyn) |
---|
1368 | ! call WRITEDIAGFI(ngrid,"zdtsw","SW heating","T s-1",3,zdtsw) |
---|
1369 | ! call WRITEDIAGFI(ngrid,"zdtlw","LW heating","T s-1",3,zdtlw) |
---|
1370 | |
---|
1371 | ! Output tracers |
---|
1372 | if (tracer) then |
---|
1373 | do iq=1,nq |
---|
1374 | ! call WRITEDIAGFI(ngrid,noms(iq),noms(iq),'kg/kg',3,zq(1,1,iq)) |
---|
1375 | call WRITEDIAGFI(ngridmx,trim(noms(iq))//'_surf', |
---|
1376 | & trim(noms(iq))//'_surf', |
---|
1377 | & 'kg/kg',2,qsurf(1,iq) ) |
---|
1378 | |
---|
1379 | call WRITEDIAGFI(ngridmx,trim(noms(iq))//'_col', |
---|
1380 | & trim(noms(iq))//'_col', |
---|
1381 | & 'kg m^-2',2,qcol(1,iq) ) |
---|
1382 | |
---|
1383 | |
---|
1384 | |
---|
1385 | if(waterrain)then |
---|
1386 | CALL WRITEDIAGFI(ngridmx,"rain", |
---|
1387 | & "total precipitation","kg m-2 s-1",2,rainout) |
---|
1388 | endif |
---|
1389 | |
---|
1390 | ! call WRITEDIAGFI(ngridmx,trim(noms(iq))//'_aero', |
---|
1391 | ! & trim(noms(iq))//'_aero', |
---|
1392 | ! & 'kg/kg',3,aerosol(1,1,iq)) |
---|
1393 | |
---|
1394 | call WRITEDIAGFI(ngridmx,"tau_col", |
---|
1395 | & "Total aerosol optical depth","[]",2,tau_col) |
---|
1396 | |
---|
1397 | ! call WRITEDIAGFI(ngridmx,trim(noms(iq))//'_reff', |
---|
1398 | ! & trim(noms(iq))//'_reff', |
---|
1399 | ! & 'm',3,reffrad(1,1,iq)) |
---|
1400 | |
---|
1401 | enddo |
---|
1402 | endif |
---|
1403 | |
---|
1404 | ELSE ! if(ngrid.eq.1) |
---|
1405 | |
---|
1406 | |
---|
1407 | ! ---------------------------------------------------------------------- |
---|
1408 | ! Output in grads file "g1d" (ONLY when using testphys1d) |
---|
1409 | ! ---------------------------------------------------------------------- |
---|
1410 | |
---|
1411 | if(countG1D.eq.saveG1D)then |
---|
1412 | |
---|
1413 | ! call WRITEDIAGFI(ngrid,"tsurf","Surface temperature", |
---|
1414 | ! & "K",0,tsurf) |
---|
1415 | CALL writeg1d(ngrid,1,tsurf,'tsurf','K') |
---|
1416 | CALL writeg1d(ngrid,1,ps,'ps','Pa') |
---|
1417 | CALL writeg1d(ngrid,nlayer,zt,'T','K') |
---|
1418 | CALL writeg1d(ngrid,nlayer,pq(1,1,1),'q','kg/kg') |
---|
1419 | CALL writeg1d(ngrid,nlayer,aerosol,'aerosol','SI') |
---|
1420 | CALL writeg1d(ngrid,nlayer,reffrad,'reffrad','SI') |
---|
1421 | CALL writeg1d(ngrid,nlayer,zdtlw,'dtlw','SI') |
---|
1422 | CALL writeg1d(ngrid,nlayer,zdtsw,'dtsw','SI') |
---|
1423 | CALL writeg1d(ngrid,nlayer,zdtdyn,'dtdyn','SI') |
---|
1424 | |
---|
1425 | ! radiation balance (optional) |
---|
1426 | CALL writeg1d(ngrid,1,flux3/totarea,'ISR','W m-2') |
---|
1427 | CALL writeg1d(ngrid,1,flux1/totarea,'ASR','W m-2') |
---|
1428 | CALL writeg1d(ngrid,1,flux2/totarea,'OLR','W m-2') |
---|
1429 | |
---|
1430 | if(tracer) then |
---|
1431 | do iq=1,nq |
---|
1432 | CALL writeg1d(ngrid,1,qsurf(1,iq), |
---|
1433 | & trim(noms(iq))//'_s','kg m^-2') |
---|
1434 | CALL writeg1d(ngrid,1,qcol(1,iq), |
---|
1435 | & trim(noms(iq))//'_c','kg m^-2') |
---|
1436 | CALL writeg1d(ngrid,nlayer,zq(1,1,iq),noms(iq),'kg/kg') |
---|
1437 | end do |
---|
1438 | |
---|
1439 | if(waterrain)then |
---|
1440 | CALL writeg1d(ngrid,1,rainout, |
---|
1441 | & 'rainfall','kg m-2 s-1') |
---|
1442 | endif |
---|
1443 | end if |
---|
1444 | |
---|
1445 | countG1D=1 |
---|
1446 | else |
---|
1447 | countG1D=countG1D+1 |
---|
1448 | endif ! if time to save |
---|
1449 | |
---|
1450 | END IF ! if(ngrid.ne.1) |
---|
1451 | |
---|
1452 | icount=icount+1 |
---|
1453 | |
---|
1454 | RETURN |
---|
1455 | END |
---|