1 | subroutine physiq(ngrid,nlayer,nq, & |
---|
2 | nametrac, & |
---|
3 | firstcall,lastcall, & |
---|
4 | pday,ptime,ptimestep, & |
---|
5 | pplev,pplay,pphi, & |
---|
6 | pu,pv,pt,pq, & |
---|
7 | pw, & |
---|
8 | pdu,pdv,pdt,pdq,pdpsrf,tracerdyn) |
---|
9 | |
---|
10 | use radinc_h, only : L_NSPECTI,L_NSPECTV,naerkind |
---|
11 | use watercommon_h, only : RLVTT, Psat_water,epsi |
---|
12 | use gases_h, only: gnom, gfrac |
---|
13 | use radcommon_h, only: sigma, eclipse, glat, grav |
---|
14 | use radii_mod, only: h2o_reffrad, co2_reffrad, h2o_cloudrad |
---|
15 | use aerosol_mod, only: iaero_co2, iaero_h2o |
---|
16 | use surfdat_h, only: phisfi, albedodat, zmea, zstd, zsig, zgam, zthe, & |
---|
17 | dryness, watercaptag |
---|
18 | use comdiurn_h, only: coslat, sinlat, coslon, sinlon |
---|
19 | use comsaison_h, only: mu0, fract, dist_star, declin |
---|
20 | use comsoil_h, only: nsoilmx, layer, mlayer, inertiedat |
---|
21 | USE comgeomfi_h, only: long, lati, area, totarea |
---|
22 | USE tracer_h, only: noms, mmol, radius, rho_q, qext, & |
---|
23 | alpha_lift, alpha_devil, qextrhor, & |
---|
24 | igcm_h2o_ice, igcm_h2o_vap, igcm_dustbin, & |
---|
25 | igcm_co2_ice |
---|
26 | use control_mod, only: ecritphy, iphysiq, nday |
---|
27 | use phyredem, only: physdem0, physdem1 |
---|
28 | |
---|
29 | implicit none |
---|
30 | |
---|
31 | |
---|
32 | !================================================================== |
---|
33 | ! |
---|
34 | ! Purpose |
---|
35 | ! ------- |
---|
36 | ! Central subroutine for all the physics parameterisations in the |
---|
37 | ! universal model. Originally adapted from the Mars LMDZ model. |
---|
38 | ! |
---|
39 | ! The model can be run without or with tracer transport |
---|
40 | ! depending on the value of "tracer" in file "callphys.def". |
---|
41 | ! |
---|
42 | ! |
---|
43 | ! It includes: |
---|
44 | ! |
---|
45 | ! 1. Initialization: |
---|
46 | ! 1.1 Firstcall initializations |
---|
47 | ! 1.2 Initialization for every call to physiq |
---|
48 | ! 1.2.5 Compute mean mass and cp, R and thermal conduction coeff. |
---|
49 | ! 2. Compute radiative transfer tendencies |
---|
50 | ! (longwave and shortwave). |
---|
51 | ! 4. Vertical diffusion (turbulent mixing): |
---|
52 | ! 5. Convective adjustment |
---|
53 | ! 6. Condensation and sublimation of gases (currently just CO2). |
---|
54 | ! 7. TRACERS |
---|
55 | ! 7a. water and water ice |
---|
56 | ! 7c. other schemes for tracer transport (lifting, sedimentation) |
---|
57 | ! 7d. updates (pressure variations, surface budget) |
---|
58 | ! 9. Surface and sub-surface temperature calculations |
---|
59 | ! 10. Write outputs : |
---|
60 | ! - "startfi", "histfi" if it's time |
---|
61 | ! - Saving statistics if "callstats = .true." |
---|
62 | ! - Output any needed variables in "diagfi" |
---|
63 | ! 10. Diagnostics: mass conservation of tracers, radiative energy balance etc. |
---|
64 | ! |
---|
65 | ! arguments |
---|
66 | ! --------- |
---|
67 | ! |
---|
68 | ! input |
---|
69 | ! ----- |
---|
70 | ! ecri period (in dynamical timestep) to write output |
---|
71 | ! ngrid Size of the horizontal grid. |
---|
72 | ! All internal loops are performed on that grid. |
---|
73 | ! nlayer Number of vertical layers. |
---|
74 | ! nq Number of advected fields |
---|
75 | ! firstcall True at the first call |
---|
76 | ! lastcall True at the last call |
---|
77 | ! pday Number of days counted from the North. Spring |
---|
78 | ! equinoxe. |
---|
79 | ! ptime Universal time (0<ptime<1): ptime=0.5 at 12:00 UT |
---|
80 | ! ptimestep timestep (s) |
---|
81 | ! pplay(ngrid,nlayer) Pressure at the middle of the layers (Pa) |
---|
82 | ! pplev(ngrid,nlayer+1) intermediate pressure levels (pa) |
---|
83 | ! pphi(ngrid,nlayer) Geopotential at the middle of the layers (m2s-2) |
---|
84 | ! pu(ngrid,nlayer) u component of the wind (ms-1) |
---|
85 | ! pv(ngrid,nlayer) v component of the wind (ms-1) |
---|
86 | ! pt(ngrid,nlayer) Temperature (K) |
---|
87 | ! pq(ngrid,nlayer,nq) Advected fields |
---|
88 | ! pudyn(ngrid,nlayer) \ |
---|
89 | ! pvdyn(ngrid,nlayer) \ Dynamical temporal derivative for the |
---|
90 | ! ptdyn(ngrid,nlayer) / corresponding variables |
---|
91 | ! pqdyn(ngrid,nlayer,nq) / |
---|
92 | ! pw(ngrid,?) vertical velocity |
---|
93 | ! |
---|
94 | ! output |
---|
95 | ! ------ |
---|
96 | ! |
---|
97 | ! pdu(ngrid,nlayermx) \ |
---|
98 | ! pdv(ngrid,nlayermx) \ Temporal derivative of the corresponding |
---|
99 | ! pdt(ngrid,nlayermx) / variables due to physical processes. |
---|
100 | ! pdq(ngrid,nlayermx) / |
---|
101 | ! pdpsrf(ngrid) / |
---|
102 | ! tracerdyn call tracer in dynamical part of GCM ? |
---|
103 | ! |
---|
104 | ! |
---|
105 | ! Authors |
---|
106 | ! ------- |
---|
107 | ! Frederic Hourdin 15/10/93 |
---|
108 | ! Francois Forget 1994 |
---|
109 | ! Christophe Hourdin 02/1997 |
---|
110 | ! Subroutine completely rewritten by F. Forget (01/2000) |
---|
111 | ! Water ice clouds: Franck Montmessin (update 06/2003) |
---|
112 | ! Radiatively active tracers: J.-B. Madeleine (10/2008-06/2009) |
---|
113 | ! New correlated-k radiative scheme: R. Wordsworth (2009) |
---|
114 | ! Many specifically Martian subroutines removed: R. Wordsworth (2009) |
---|
115 | ! Improved water cycle: R. Wordsworth / B. Charnay (2010) |
---|
116 | ! To F90: R. Wordsworth (2010) |
---|
117 | ! New turbulent diffusion scheme: J. Leconte (2012) |
---|
118 | ! Loops converted to F90 matrix format: J. Leconte (2012) |
---|
119 | ! No more ngridmx/nqmx, F90 commons and adaptation to parallel: A. Spiga (2012) |
---|
120 | !================================================================== |
---|
121 | |
---|
122 | |
---|
123 | ! 0. Declarations : |
---|
124 | ! ------------------ |
---|
125 | |
---|
126 | #include "dimensions.h" |
---|
127 | #include "dimphys.h" |
---|
128 | #include "callkeys.h" |
---|
129 | #include "comcstfi.h" |
---|
130 | #include "planete.h" |
---|
131 | !#include "control.h" |
---|
132 | #include "netcdf.inc" |
---|
133 | |
---|
134 | ! Arguments : |
---|
135 | ! ----------- |
---|
136 | |
---|
137 | ! inputs: |
---|
138 | ! ------- |
---|
139 | integer,intent(in) :: ngrid ! number of atmospheric columns |
---|
140 | integer,intent(in) :: nlayer ! number of atmospheric layers |
---|
141 | integer,intent(in) :: nq ! number of tracers |
---|
142 | character*20,intent(in) :: nametrac(nq) ! name of the tracer from dynamics |
---|
143 | logical,intent(in) :: firstcall ! signals first call to physics |
---|
144 | logical,intent(in) :: lastcall ! signals last call to physics |
---|
145 | real,intent(in) :: pday ! number of elapsed sols since reference Ls=0 |
---|
146 | real,intent(in) :: ptime ! "universal time", given as fraction of sol (e.g.: 0.5 for noon) |
---|
147 | real,intent(in) :: ptimestep ! physics timestep (s) |
---|
148 | real,intent(in) :: pplev(ngrid,nlayer+1) ! inter-layer pressure (Pa) |
---|
149 | real,intent(in) :: pplay(ngrid,nlayer) ! mid-layer pressure (Pa) |
---|
150 | real,intent(in) :: pphi(ngrid,nlayer) ! geopotential at mid-layer (m2s-2) |
---|
151 | real,intent(in) :: pu(ngrid,nlayer) ! zonal wind component (m/s) |
---|
152 | real,intent(in) :: pv(ngrid,nlayer) ! meridional wind component (m/s) |
---|
153 | real,intent(in) :: pt(ngrid,nlayer) ! temperature (K) |
---|
154 | real,intent(in) :: pq(ngrid,nlayer,nq) ! tracers (.../kg_of_air) |
---|
155 | real,intent(in) :: pw(ngrid,nlayer) ! vertical velocity (m/s) |
---|
156 | |
---|
157 | |
---|
158 | |
---|
159 | ! outputs: |
---|
160 | ! -------- |
---|
161 | ! physical tendencies |
---|
162 | real,intent(out) :: pdu(ngrid,nlayer) ! zonal wind tendency (m/s/s) |
---|
163 | real,intent(out) :: pdv(ngrid,nlayer) ! meridional wind tendency (m/s/s) |
---|
164 | real,intent(out) :: pdt(ngrid,nlayer) ! temperature tendency (K/s) |
---|
165 | real,intent(out) :: pdq(ngrid,nlayer,nq) ! tracer tendencies (../kg/s) |
---|
166 | real,intent(out) :: pdpsrf(ngrid) ! surface pressure tendency (Pa/s) |
---|
167 | logical,intent(out) :: tracerdyn ! signal to the dynamics to advect tracers or not |
---|
168 | |
---|
169 | ! Local saved variables: |
---|
170 | ! ---------------------- |
---|
171 | ! aerosol (dust or ice) extinction optical depth at reference wavelength |
---|
172 | ! "longrefvis" set in dimradmars.h , for one of the "naerkind" kind of |
---|
173 | ! aerosol optical properties: |
---|
174 | ! real aerosol(ngrid,nlayermx,naerkind) |
---|
175 | ! this is now internal to callcorrk and hence no longer needed here |
---|
176 | |
---|
177 | integer day_ini ! Initial date of the run (sol since Ls=0) |
---|
178 | integer icount ! counter of calls to physiq during the run. |
---|
179 | real, dimension(:),allocatable,save :: tsurf ! Surface temperature (K) |
---|
180 | real, dimension(:,:),allocatable,save :: tsoil ! sub-surface temperatures (K) |
---|
181 | real, dimension(:),allocatable,save :: albedo ! Surface albedo |
---|
182 | |
---|
183 | real,dimension(:),allocatable,save :: albedo0 ! Surface albedo |
---|
184 | integer,dimension(:),allocatable,save :: rnat ! added by BC |
---|
185 | |
---|
186 | real,dimension(:),allocatable,save :: emis ! Thermal IR surface emissivity |
---|
187 | real,dimension(:,:),allocatable,save :: dtrad ! Net atm. radiative heating rate (K.s-1) |
---|
188 | real,dimension(:),allocatable,save :: fluxrad_sky ! rad. flux from sky absorbed by surface (W.m-2) |
---|
189 | real,dimension(:),allocatable,save :: fluxrad ! Net radiative surface flux (W.m-2) |
---|
190 | real,dimension(:),allocatable,save :: capcal ! surface heat capacity (J m-2 K-1) |
---|
191 | real,dimension(:),allocatable,save :: fluxgrd ! surface conduction flux (W.m-2) |
---|
192 | real,dimension(:,:),allocatable,save :: qsurf ! tracer on surface (e.g. kg.m-2) |
---|
193 | real,dimension(:,:),allocatable,save :: q2 ! Turbulent Kinetic Energy |
---|
194 | |
---|
195 | save day_ini, icount |
---|
196 | |
---|
197 | ! Local variables : |
---|
198 | ! ----------------- |
---|
199 | |
---|
200 | ! aerosol (dust or ice) extinction optical depth at reference wavelength |
---|
201 | ! for the "naerkind" optically active aerosols: |
---|
202 | real aerosol(ngrid,nlayermx,naerkind) |
---|
203 | real zh(ngrid,nlayermx) ! potential temperature (K) |
---|
204 | |
---|
205 | character*80 fichier |
---|
206 | integer l,ig,ierr,iq,iaer |
---|
207 | |
---|
208 | !!! this is saved for diagnostic |
---|
209 | real,dimension(:),allocatable,save :: fluxsurf_lw ! incident LW (IR) surface flux (W.m-2) |
---|
210 | real,dimension(:),allocatable,save :: fluxsurf_sw ! incident SW (stellar) surface flux (W.m-2) |
---|
211 | real,dimension(:),allocatable,save :: fluxtop_lw ! Outgoing LW (IR) flux to space (W.m-2) |
---|
212 | real,dimension(:),allocatable,save :: fluxabs_sw ! Absorbed SW (stellar) flux (W.m-2) |
---|
213 | real,dimension(:),allocatable,save :: fluxtop_dn |
---|
214 | real,dimension(:),allocatable,save :: fluxdyn ! horizontal heat transport by dynamics |
---|
215 | real,dimension(:,:),allocatable,save :: OLR_nu ! Outgoing LW radition in each band (Normalized to the band width (W/m2/cm-1) |
---|
216 | real,dimension(:,:),allocatable,save :: OSR_nu ! Outgoing SW radition in each band (Normalized to the band width (W/m2/cm-1) |
---|
217 | real,dimension(:,:),allocatable,save :: zdtlw ! (K/s) |
---|
218 | real,dimension(:,:),allocatable,save :: zdtsw ! (K/s) |
---|
219 | real,dimension(:),allocatable,save :: sensibFlux ! turbulent flux given by the atm to the surface |
---|
220 | |
---|
221 | real zls ! solar longitude (rad) |
---|
222 | real zday ! date (time since Ls=0, in martian days) |
---|
223 | real zzlay(ngrid,nlayermx) ! altitude at the middle of the layers |
---|
224 | real zzlev(ngrid,nlayermx+1) ! altitude at layer boundaries |
---|
225 | real latvl1,lonvl1 ! Viking Lander 1 point (for diagnostic) |
---|
226 | |
---|
227 | ! Tendencies due to various processes: |
---|
228 | real dqsurf(ngrid,nq) |
---|
229 | real cldtlw(ngrid,nlayermx) ! (K/s) LW heating rate for clear areas |
---|
230 | real cldtsw(ngrid,nlayermx) ! (K/s) SW heating rate for clear areas |
---|
231 | real zdtsurf(ngrid) ! (K/s) |
---|
232 | real dtlscale(ngrid,nlayermx) |
---|
233 | real zdvdif(ngrid,nlayermx),zdudif(ngrid,nlayermx) ! (m.s-2) |
---|
234 | real zdhdif(ngrid,nlayermx), zdtsdif(ngrid) ! (K/s) |
---|
235 | real zdtdif(ngrid,nlayermx) ! (K/s) |
---|
236 | real zdvadj(ngrid,nlayermx),zduadj(ngrid,nlayermx) ! (m.s-2) |
---|
237 | real zdhadj(ngrid,nlayermx) ! (K/s) |
---|
238 | real zdtgw(ngrid,nlayermx) ! (K/s) |
---|
239 | real zdtmr(ngrid,nlayermx) |
---|
240 | real zdugw(ngrid,nlayermx),zdvgw(ngrid,nlayermx) ! (m.s-2) |
---|
241 | real zdtc(ngrid,nlayermx),zdtsurfc(ngrid) |
---|
242 | real zdvc(ngrid,nlayermx),zduc(ngrid,nlayermx) |
---|
243 | real zdumr(ngrid,nlayermx),zdvmr(ngrid,nlayermx) |
---|
244 | real zdtsurfmr(ngrid) |
---|
245 | |
---|
246 | real zdmassmr(ngrid,nlayermx),zdpsrfmr(ngrid) |
---|
247 | real zdmassmr_col(ngrid) |
---|
248 | |
---|
249 | real zdqdif(ngrid,nlayermx,nq), zdqsdif(ngrid,nq) |
---|
250 | real zdqevap(ngrid,nlayermx) |
---|
251 | real zdqsed(ngrid,nlayermx,nq), zdqssed(ngrid,nq) |
---|
252 | real zdqdev(ngrid,nlayermx,nq), zdqsdev(ngrid,nq) |
---|
253 | real zdqadj(ngrid,nlayermx,nq) |
---|
254 | real zdqc(ngrid,nlayermx,nq) |
---|
255 | real zdqmr(ngrid,nlayermx,nq),zdqsurfmr(ngrid,nq) |
---|
256 | real zdqlscale(ngrid,nlayermx,nq) |
---|
257 | real zdqslscale(ngrid,nq) |
---|
258 | real zdqchim(ngrid,nlayermx,nq) |
---|
259 | real zdqschim(ngrid,nq) |
---|
260 | |
---|
261 | real zdteuv(ngrid,nlayermx) ! (K/s) |
---|
262 | real zdtconduc(ngrid,nlayermx) ! (K/s) |
---|
263 | real zdumolvis(ngrid,nlayermx) |
---|
264 | real zdvmolvis(ngrid,nlayermx) |
---|
265 | real zdqmoldiff(ngrid,nlayermx,nq) |
---|
266 | |
---|
267 | ! Local variables for local calculations: |
---|
268 | real zflubid(ngrid) |
---|
269 | real zplanck(ngrid),zpopsk(ngrid,nlayermx) |
---|
270 | real zdum1(ngrid,nlayermx) |
---|
271 | real zdum2(ngrid,nlayermx) |
---|
272 | real ztim1,ztim2,ztim3, z1,z2 |
---|
273 | real ztime_fin |
---|
274 | real zdh(ngrid,nlayermx) |
---|
275 | real gmplanet |
---|
276 | |
---|
277 | integer length |
---|
278 | parameter (length=100) |
---|
279 | |
---|
280 | ! local variables only used for diagnostics (output in file "diagfi" or "stats") |
---|
281 | ! ------------------------------------------------------------------------------ |
---|
282 | real ps(ngrid), zt(ngrid,nlayermx) |
---|
283 | real zu(ngrid,nlayermx),zv(ngrid,nlayermx) |
---|
284 | real zq(ngrid,nlayermx,nq) |
---|
285 | character*2 str2 |
---|
286 | character*5 str5 |
---|
287 | real zdtadj(ngrid,nlayermx) |
---|
288 | real zdtdyn(ngrid,nlayermx) |
---|
289 | real,allocatable,dimension(:,:),save :: ztprevious |
---|
290 | real reff(ngrid,nlayermx) ! effective dust radius (used if doubleq=T) |
---|
291 | real qtot1,qtot2 ! total aerosol mass |
---|
292 | integer igmin, lmin |
---|
293 | logical tdiag |
---|
294 | |
---|
295 | real zplev(ngrid,nlayermx+1),zplay(ngrid,nlayermx) |
---|
296 | real zstress(ngrid), cd |
---|
297 | real hco2(nq), tmean, zlocal(nlayermx) |
---|
298 | real vmr(ngrid,nlayermx) ! volume mixing ratio |
---|
299 | |
---|
300 | real time_phys |
---|
301 | |
---|
302 | ! reinstated by RW for diagnostic |
---|
303 | real,allocatable,dimension(:),save :: tau_col |
---|
304 | |
---|
305 | ! included by RW to reduce insanity of code |
---|
306 | real ISR,ASR,OLR,GND,DYN,GSR,Ts1,Ts2,Ts3,TsS |
---|
307 | |
---|
308 | ! included by RW to compute tracer column densities |
---|
309 | real qcol(ngrid,nq) |
---|
310 | |
---|
311 | ! included by RW for H2O precipitation |
---|
312 | real zdtrain(ngrid,nlayermx) |
---|
313 | real zdqrain(ngrid,nlayermx,nq) |
---|
314 | real zdqsrain(ngrid) |
---|
315 | real zdqssnow(ngrid) |
---|
316 | real rainout(ngrid) |
---|
317 | |
---|
318 | ! included by RW for H2O Manabe scheme |
---|
319 | real dtmoist(ngrid,nlayermx) |
---|
320 | real dqmoist(ngrid,nlayermx,nq) |
---|
321 | |
---|
322 | real qvap(ngrid,nlayermx) |
---|
323 | real dqvaplscale(ngrid,nlayermx) |
---|
324 | real dqcldlscale(ngrid,nlayermx) |
---|
325 | real rneb_man(ngrid,nlayermx) |
---|
326 | real rneb_lsc(ngrid,nlayermx) |
---|
327 | |
---|
328 | ! included by RW to account for surface cooling by evaporation |
---|
329 | real dtsurfh2olat(ngrid) |
---|
330 | |
---|
331 | |
---|
332 | ! to test energy conservation (RW+JL) |
---|
333 | real mass(ngrid,nlayermx),massarea(ngrid,nlayermx) |
---|
334 | real dEtot, dEtots, AtmToSurf_TurbFlux |
---|
335 | real,save :: dEtotSW, dEtotsSW, dEtotLW, dEtotsLW |
---|
336 | real dEzRadsw(ngrid,nlayermx),dEzRadlw(ngrid,nlayermx),dEzdiff(ngrid,nlayermx) |
---|
337 | real dEdiffs(ngrid),dEdiff(ngrid) |
---|
338 | real madjdE(ngrid), lscaledE(ngrid),madjdEz(ngrid,nlayermx), lscaledEz(ngrid,nlayermx) |
---|
339 | !JL12 conservation test for mean flow kinetic energy has been disabled temporarily |
---|
340 | |
---|
341 | real dItot, dVtot |
---|
342 | |
---|
343 | ! included by BC for evaporation |
---|
344 | real qevap(ngrid,nlayermx,nq) |
---|
345 | real tevap(ngrid,nlayermx) |
---|
346 | real dqevap1(ngrid,nlayermx) |
---|
347 | real dtevap1(ngrid,nlayermx) |
---|
348 | |
---|
349 | ! included by BC for hydrology |
---|
350 | real hice(ngrid) |
---|
351 | |
---|
352 | ! included by RW to test water conservation (by routine) |
---|
353 | real h2otot |
---|
354 | real dWtot, dWtots |
---|
355 | real h2o_surf_all |
---|
356 | logical watertest |
---|
357 | save watertest |
---|
358 | |
---|
359 | ! included by RW for RH diagnostic |
---|
360 | real qsat(ngrid,nlayermx), RH(ngrid,nlayermx), H2Omaxcol(ngrid),psat_tmp |
---|
361 | |
---|
362 | ! included by RW for hydrology |
---|
363 | real dqs_hyd(ngrid,nq) |
---|
364 | real zdtsurf_hyd(ngrid) |
---|
365 | |
---|
366 | ! included by RW for water cycle conservation tests |
---|
367 | real icesrf,liqsrf,icecol,vapcol |
---|
368 | |
---|
369 | ! included by BC for double radiative transfer call |
---|
370 | logical clearsky |
---|
371 | real zdtsw1(ngrid,nlayermx) |
---|
372 | real zdtlw1(ngrid,nlayermx) |
---|
373 | real fluxsurf_lw1(ngrid) |
---|
374 | real fluxsurf_sw1(ngrid) |
---|
375 | real fluxtop_lw1(ngrid) |
---|
376 | real fluxabs_sw1(ngrid) |
---|
377 | real tau_col1(ngrid) |
---|
378 | real OLR_nu1(ngrid,L_NSPECTI) |
---|
379 | real OSR_nu1(ngrid,L_NSPECTV) |
---|
380 | real tf, ntf |
---|
381 | |
---|
382 | ! included by BC for cloud fraction computations |
---|
383 | real,allocatable,dimension(:,:),save :: cloudfrac |
---|
384 | real,allocatable,dimension(:),save :: totcloudfrac |
---|
385 | |
---|
386 | ! included by RW for vdifc water conservation test |
---|
387 | real nconsMAX |
---|
388 | real vdifcncons(ngrid) |
---|
389 | real cadjncons(ngrid) |
---|
390 | |
---|
391 | ! double precision qsurf_hist(ngrid,nq) |
---|
392 | real,allocatable,dimension(:,:),save :: qsurf_hist |
---|
393 | |
---|
394 | ! included by RW for temp convadj conservation test |
---|
395 | real playtest(nlayermx) |
---|
396 | real plevtest(nlayermx) |
---|
397 | real ttest(nlayermx) |
---|
398 | real qtest(nlayermx) |
---|
399 | integer igtest |
---|
400 | |
---|
401 | ! included by RW for runway greenhouse 1D study |
---|
402 | real muvar(ngrid,nlayermx+1) |
---|
403 | |
---|
404 | ! included by RW for variable H2O particle sizes |
---|
405 | real,allocatable,dimension(:,:,:),save :: reffrad ! aerosol effective radius (m) |
---|
406 | real,allocatable,dimension(:,:,:),save :: nueffrad ! aerosol effective radius variance |
---|
407 | ! real :: nueffrad_dummy(ngrid,nlayermx,naerkind) !! AS. This is temporary. Check below why. |
---|
408 | real :: reffh2oliq(ngrid,nlayermx) ! liquid water particles effective radius (m) |
---|
409 | real :: reffh2oice(ngrid,nlayermx) ! water ice particles effective radius (m) |
---|
410 | ! real reffH2O(ngrid,nlayermx) |
---|
411 | real reffcol(ngrid,naerkind) |
---|
412 | |
---|
413 | ! included by RW for sourceevol |
---|
414 | real,allocatable,dimension(:),save :: ice_initial |
---|
415 | real delta_ice,ice_tot |
---|
416 | real,allocatable,dimension(:),save :: ice_min |
---|
417 | |
---|
418 | integer num_run |
---|
419 | logical,save :: ice_update |
---|
420 | |
---|
421 | ! included by MS to compute the daily average of rings shadowing |
---|
422 | integer, parameter :: nb_hours = 1536 ! set how many times per day are used |
---|
423 | real :: pas |
---|
424 | integer :: m |
---|
425 | ! temporary variables computed at each step of this average |
---|
426 | real :: ptime_day ! Universal time in sol fraction |
---|
427 | real :: tmp_zls ! solar longitude |
---|
428 | real, dimension(:), allocatable :: tmp_fract ! day fraction of the time interval |
---|
429 | real, dimension(:), allocatable :: tmp_mu0 ! equivalent solar angle |
---|
430 | !======================================================================= |
---|
431 | |
---|
432 | ! 1. Initialisation |
---|
433 | ! ----------------- |
---|
434 | |
---|
435 | ! 1.1 Initialisation only at first call |
---|
436 | ! --------------------------------------- |
---|
437 | if (firstcall) then |
---|
438 | |
---|
439 | !!! ALLOCATE SAVED ARRAYS |
---|
440 | ALLOCATE(tsurf(ngrid)) |
---|
441 | ALLOCATE(tsoil(ngrid,nsoilmx)) |
---|
442 | ALLOCATE(albedo(ngrid)) |
---|
443 | ALLOCATE(albedo0(ngrid)) |
---|
444 | ALLOCATE(rnat(ngrid)) |
---|
445 | ALLOCATE(emis(ngrid)) |
---|
446 | ALLOCATE(dtrad(ngrid,nlayermx)) |
---|
447 | ALLOCATE(fluxrad_sky(ngrid)) |
---|
448 | ALLOCATE(fluxrad(ngrid)) |
---|
449 | ALLOCATE(capcal(ngrid)) |
---|
450 | ALLOCATE(fluxgrd(ngrid)) |
---|
451 | ALLOCATE(qsurf(ngrid,nq)) |
---|
452 | ALLOCATE(q2(ngrid,nlayermx+1)) |
---|
453 | ALLOCATE(ztprevious(ngrid,nlayermx)) |
---|
454 | ALLOCATE(cloudfrac(ngrid,nlayermx)) |
---|
455 | ALLOCATE(totcloudfrac(ngrid)) |
---|
456 | ALLOCATE(qsurf_hist(ngrid,nq)) |
---|
457 | ALLOCATE(reffrad(ngrid,nlayermx,naerkind)) |
---|
458 | ALLOCATE(nueffrad(ngrid,nlayermx,naerkind)) |
---|
459 | ALLOCATE(ice_initial(ngrid)) |
---|
460 | ALLOCATE(ice_min(ngrid)) |
---|
461 | ALLOCATE(fluxsurf_lw(ngrid)) |
---|
462 | ALLOCATE(fluxsurf_sw(ngrid)) |
---|
463 | ALLOCATE(fluxtop_lw(ngrid)) |
---|
464 | ALLOCATE(fluxabs_sw(ngrid)) |
---|
465 | ALLOCATE(fluxtop_dn(ngrid)) |
---|
466 | ALLOCATE(fluxdyn(ngrid)) |
---|
467 | ALLOCATE(OLR_nu(ngrid,L_NSPECTI)) |
---|
468 | ALLOCATE(OSR_nu(ngrid,L_NSPECTV)) |
---|
469 | ALLOCATE(sensibFlux(ngrid)) |
---|
470 | ALLOCATE(zdtlw(ngrid,nlayermx)) |
---|
471 | ALLOCATE(zdtsw(ngrid,nlayermx)) |
---|
472 | ALLOCATE(tau_col(ngrid)) |
---|
473 | |
---|
474 | !! this is defined in comsaison_h |
---|
475 | ALLOCATE(mu0(ngrid)) |
---|
476 | ALLOCATE(fract(ngrid)) |
---|
477 | |
---|
478 | |
---|
479 | !! this is defined in radcommon_h |
---|
480 | ALLOCATE(eclipse(ngrid)) |
---|
481 | ALLOCATE(glat(ngrid)) |
---|
482 | |
---|
483 | ! variables set to 0 |
---|
484 | ! ~~~~~~~~~~~~~~~~~~ |
---|
485 | dtrad(:,:) = 0.0 |
---|
486 | fluxrad(:) = 0.0 |
---|
487 | tau_col(:) = 0.0 |
---|
488 | zdtsw(:,:) = 0.0 |
---|
489 | zdtlw(:,:) = 0.0 |
---|
490 | |
---|
491 | ! initialize aerosol indexes |
---|
492 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
493 | call iniaerosol() |
---|
494 | |
---|
495 | |
---|
496 | ! initialize tracer names, indexes and properties |
---|
497 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
498 | tracerdyn=tracer |
---|
499 | IF (.NOT.ALLOCATED(noms)) ALLOCATE(noms(nq)) !! because noms is an argument of physdem1 |
---|
500 | !! whether or not tracer is on |
---|
501 | if (tracer) then |
---|
502 | call initracer(ngrid,nq,nametrac) |
---|
503 | endif ! end tracer |
---|
504 | |
---|
505 | ! |
---|
506 | |
---|
507 | ! read startfi (initial parameters) |
---|
508 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
509 | call phyetat0(ngrid,"startfi.nc",0,0,nsoilmx,nq, & |
---|
510 | day_ini,time_phys,tsurf,tsoil,emis,q2,qsurf, & |
---|
511 | cloudfrac,totcloudfrac,hice) |
---|
512 | |
---|
513 | if (pday.ne.day_ini) then |
---|
514 | write(*,*) "ERROR in physiq.F90:" |
---|
515 | write(*,*) "bad synchronization between physics and dynamics" |
---|
516 | write(*,*) "dynamics day: ",pday |
---|
517 | write(*,*) "physics day: ",day_ini |
---|
518 | stop |
---|
519 | endif |
---|
520 | |
---|
521 | write (*,*) 'In physiq day_ini =', day_ini |
---|
522 | |
---|
523 | ! Initialize albedo and orbital calculation |
---|
524 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
525 | call surfini(ngrid,nq,qsurf,albedo0) |
---|
526 | call iniorbit(apoastr,periastr,year_day,peri_day,obliquit) |
---|
527 | |
---|
528 | albedo(:)=albedo0(:) |
---|
529 | |
---|
530 | if(tlocked)then |
---|
531 | print*,'Planet is tidally locked at resonance n=',nres |
---|
532 | print*,'Make sure you have the right rotation rate!!!' |
---|
533 | endif |
---|
534 | |
---|
535 | ! initialize soil |
---|
536 | ! ~~~~~~~~~~~~~~~ |
---|
537 | if (callsoil) then |
---|
538 | call soil(ngrid,nsoilmx,firstcall,lastcall,inertiedat, & |
---|
539 | ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
540 | else |
---|
541 | print*,'WARNING! Thermal conduction in the soil turned off' |
---|
542 | capcal(:)=1.e6 |
---|
543 | fluxgrd(:)=intheat |
---|
544 | print*,'Flux from ground = ',intheat,' W m^-2' |
---|
545 | endif |
---|
546 | icount=1 |
---|
547 | |
---|
548 | ! decide whether to update ice at end of run |
---|
549 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
550 | ice_update=.false. |
---|
551 | if(sourceevol)then |
---|
552 | open(128,file='num_run',form='formatted', & |
---|
553 | status="old",iostat=ierr) |
---|
554 | if (ierr.ne.0) then |
---|
555 | write(*,*) "physiq: Error! No num_run file!" |
---|
556 | write(*,*) " (which is needed for sourceevol option)" |
---|
557 | stop |
---|
558 | endif |
---|
559 | read(128,*) num_run |
---|
560 | close(128) |
---|
561 | |
---|
562 | if(num_run.ne.0.and.mod(num_run,2).eq.0)then |
---|
563 | !if(num_run.ne.0.and.mod(num_run,3).eq.0)then |
---|
564 | print*,'Updating ice at end of this year!' |
---|
565 | ice_update=.true. |
---|
566 | ice_min(:)=1.e4 |
---|
567 | endif |
---|
568 | endif |
---|
569 | |
---|
570 | ! define surface as continent or ocean |
---|
571 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
572 | rnat(:)=1 |
---|
573 | do ig=1,ngrid |
---|
574 | ! if(iceball.or.oceanball.or.(inertiedat(ig,1).gt.1.E4))then |
---|
575 | if(inertiedat(ig,1).gt.1.E4)then |
---|
576 | rnat(ig)=0 |
---|
577 | endif |
---|
578 | enddo |
---|
579 | |
---|
580 | print*,'WARNING! Surface type currently decided by surface inertia' |
---|
581 | print*,'This should be improved e.g. in newstart.F' |
---|
582 | |
---|
583 | |
---|
584 | ! initialise surface history variable |
---|
585 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
586 | qsurf_hist(:,:)=qsurf(:,:) |
---|
587 | |
---|
588 | ! initialise variable for dynamical heating diagnostic |
---|
589 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
590 | ztprevious(:,:)=pt(:,:) |
---|
591 | |
---|
592 | ! Set temperature just above condensation temperature (for Early Mars) |
---|
593 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
594 | if(nearco2cond) then |
---|
595 | write(*,*)' WARNING! Starting at Tcond+1K' |
---|
596 | do l=1, nlayer |
---|
597 | do ig=1,ngrid |
---|
598 | pdt(ig,l)= ((-3167.8)/(log(.01*pplay(ig,l))-23.23)+4 & |
---|
599 | -pt(ig,l)) / ptimestep |
---|
600 | enddo |
---|
601 | enddo |
---|
602 | endif |
---|
603 | |
---|
604 | if(meanOLR)then |
---|
605 | ! to record global radiative balance |
---|
606 | call system('rm -f rad_bal.out') |
---|
607 | ! to record global mean/max/min temperatures |
---|
608 | call system('rm -f tem_bal.out') |
---|
609 | ! to record global hydrological balance |
---|
610 | call system('rm -f h2o_bal.out') |
---|
611 | endif |
---|
612 | |
---|
613 | watertest=.false. |
---|
614 | if(water)then |
---|
615 | ! initialise variables for water cycle |
---|
616 | |
---|
617 | if(enertest)then |
---|
618 | watertest = .true. |
---|
619 | endif |
---|
620 | |
---|
621 | if(ice_update)then |
---|
622 | ice_initial(:)=qsurf(:,igcm_h2o_ice) |
---|
623 | endif |
---|
624 | |
---|
625 | endif |
---|
626 | call su_watercycle ! even if we don't have a water cycle, we might |
---|
627 | ! need epsi for the wvp definitions in callcorrk.F |
---|
628 | |
---|
629 | if (ngrid.ne.1) then ! no need to create a restart file in 1d |
---|
630 | call physdem0("restartfi.nc",long,lati,nsoilmx,ngrid,nlayer,nq, & |
---|
631 | ptimestep,pday+nday,time_phys,area, & |
---|
632 | albedodat,inertiedat,zmea,zstd,zsig,zgam,zthe) |
---|
633 | endif |
---|
634 | |
---|
635 | endif ! (end of "if firstcall") |
---|
636 | |
---|
637 | ! --------------------------------------------------- |
---|
638 | ! 1.2 Initializations done at every physical timestep: |
---|
639 | ! --------------------------------------------------- |
---|
640 | ! Initialize various variables |
---|
641 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
642 | |
---|
643 | pdu(1:ngrid,1:nlayermx) = 0.0 |
---|
644 | pdv(1:ngrid,1:nlayermx) = 0.0 |
---|
645 | if ( .not.nearco2cond ) then |
---|
646 | pdt(1:ngrid,1:nlayermx) = 0.0 |
---|
647 | endif |
---|
648 | pdq(1:ngrid,1:nlayermx,1:nq) = 0.0 |
---|
649 | pdpsrf(1:ngrid) = 0.0 |
---|
650 | zflubid(1:ngrid) = 0.0 |
---|
651 | zdtsurf(1:ngrid) = 0.0 |
---|
652 | dqsurf(1:ngrid,1:nq)= 0.0 |
---|
653 | |
---|
654 | zday=pday+ptime ! compute time, in sols (and fraction thereof) |
---|
655 | |
---|
656 | ! Compute Stellar Longitude (Ls) |
---|
657 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
658 | if (season) then |
---|
659 | call stellarlong(zday,zls) |
---|
660 | else |
---|
661 | call stellarlong(float(day_ini),zls) |
---|
662 | end if |
---|
663 | |
---|
664 | |
---|
665 | |
---|
666 | ! Compute variations of g with latitude (oblate case) |
---|
667 | ! |
---|
668 | if (oblate .eqv. .false.) then |
---|
669 | glat(:) = g |
---|
670 | else if (flatten .eq. 0.0 .or. J2 .eq. 0.0 .or. Rmean .eq. 0.0 .or. MassPlanet .eq. 0.0) then |
---|
671 | print*,'I need values for flatten, J2, Rmean and MassPlanet to compute glat (else set oblate=.false.)' |
---|
672 | call abort |
---|
673 | else |
---|
674 | |
---|
675 | gmplanet = MassPlanet*grav*1e24 |
---|
676 | do ig=1,ngrid |
---|
677 | glat(ig)= gmplanet/(Rmean**2) * (1.D0 + 0.75 *J2 - 2.0*flatten/3. + (2.*flatten - 15./4.* J2) * cos(2. * (pi/2. - lati(ig)))) |
---|
678 | end do |
---|
679 | endif |
---|
680 | |
---|
681 | !! write(*,*) 'lati, glat =',lati(1)*180./pi,glat(1), lati(ngrid/2)*180./pi, glat(ngrid/2) |
---|
682 | |
---|
683 | |
---|
684 | |
---|
685 | ! Compute geopotential between layers |
---|
686 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
687 | |
---|
688 | zzlay(1:ngrid,1:nlayermx)=pphi(1:ngrid,1:nlayermx) |
---|
689 | do l=1,nlayermx |
---|
690 | zzlay(1:ngrid,l)= zzlay(1:ngrid,l)/glat(1:ngrid) |
---|
691 | enddo |
---|
692 | |
---|
693 | zzlev(1:ngrid,1)=0. |
---|
694 | zzlev(1:ngrid,nlayer+1)=1.e7 ! dummy top of last layer above 10000 km... |
---|
695 | |
---|
696 | do l=2,nlayer |
---|
697 | do ig=1,ngrid |
---|
698 | z1=(pplay(ig,l-1)+pplev(ig,l))/(pplay(ig,l-1)-pplev(ig,l)) |
---|
699 | z2=(pplev(ig,l)+pplay(ig,l))/(pplev(ig,l)-pplay(ig,l)) |
---|
700 | zzlev(ig,l)=(z1*zzlay(ig,l-1)+z2*zzlay(ig,l))/(z1+z2) |
---|
701 | enddo |
---|
702 | enddo |
---|
703 | ! Potential temperature calculation may not be the same in physiq and dynamic... |
---|
704 | |
---|
705 | ! Compute potential temperature |
---|
706 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
707 | |
---|
708 | do l=1,nlayer |
---|
709 | do ig=1,ngrid |
---|
710 | zpopsk(ig,l)=(pplay(ig,l)/pplev(ig,1))**rcp |
---|
711 | zh(ig,l)=pt(ig,l)/zpopsk(ig,l) |
---|
712 | mass(ig,l) = (pplev(ig,l) - pplev(ig,l+1))/glat(ig) |
---|
713 | massarea(ig,l)=mass(ig,l)*area(ig) |
---|
714 | enddo |
---|
715 | enddo |
---|
716 | |
---|
717 | |
---|
718 | !----------------------------------------------------------------------- |
---|
719 | ! 2. Compute radiative tendencies |
---|
720 | !----------------------------------------------------------------------- |
---|
721 | |
---|
722 | if (callrad) then |
---|
723 | if( mod(icount-1,iradia).eq.0.or.lastcall) then |
---|
724 | |
---|
725 | ! Compute local stellar zenith angles |
---|
726 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
727 | call orbite(zls,dist_star,declin) |
---|
728 | |
---|
729 | if (tlocked) then |
---|
730 | ztim1=SIN(declin) |
---|
731 | ! ztim2=COS(declin)*COS(2.*pi*(zday/year_day) - zls*nres) |
---|
732 | ! ztim3=-COS(declin)*SIN(2. zday/year_day) - zls*nres) |
---|
733 | ! JL12 corrects tidally resonant cases. nres=omega_rot/omega_orb |
---|
734 | ztim2=COS(declin)*COS(2.*pi*(zday/year_day)*nres - zls) |
---|
735 | ztim3=-COS(declin)*SIN(2.*pi*(zday/year_day)*nres - zls) |
---|
736 | |
---|
737 | call stelang(ngrid,sinlon,coslon,sinlat,coslat, & |
---|
738 | ztim1,ztim2,ztim3,mu0,fract, flatten) |
---|
739 | |
---|
740 | elseif (diurnal) then |
---|
741 | ztim1=SIN(declin) |
---|
742 | ztim2=COS(declin)*COS(2.*pi*(zday-.5)) |
---|
743 | ztim3=-COS(declin)*SIN(2.*pi*(zday-.5)) |
---|
744 | |
---|
745 | call stelang(ngrid,sinlon,coslon,sinlat,coslat, & |
---|
746 | ztim1,ztim2,ztim3,mu0,fract, flatten) |
---|
747 | else if(diurnal .eqv. .false.) then |
---|
748 | |
---|
749 | call mucorr(ngrid,declin,lati,mu0,fract,10000.,rad,flatten) |
---|
750 | ! WARNING: this function appears not to work in 1D |
---|
751 | |
---|
752 | endif |
---|
753 | |
---|
754 | !! Eclipse incoming sunlight (e.g. Saturn ring shadowing) |
---|
755 | |
---|
756 | if(rings_shadow) then |
---|
757 | write(*,*) 'Rings shadow activated' |
---|
758 | if(diurnal .eqv. .false.) then ! we need to compute the daily average insolation |
---|
759 | pas = 1./nb_hours |
---|
760 | ptime_day = 0. |
---|
761 | fract(:) = 0. |
---|
762 | ALLOCATE(tmp_fract(ngrid)) |
---|
763 | ALLOCATE(tmp_mu0(ngrid)) |
---|
764 | tmp_fract(:) = 0. |
---|
765 | eclipse(:) = 0. |
---|
766 | tmp_mu0(:) = 0. |
---|
767 | |
---|
768 | do m=1, nb_hours |
---|
769 | ptime_day = m*pas |
---|
770 | call stellarlong(pday+ptime_day,tmp_zls) |
---|
771 | call orbite(tmp_zls,dist_star,declin) |
---|
772 | ztim1=SIN(declin) |
---|
773 | ztim2=COS(declin)*COS(2.*pi*(pday+ptime_day-.5)) |
---|
774 | ztim3=-COS(declin)*SIN(2.*pi*(pday+ptime_day-.5)) |
---|
775 | |
---|
776 | call stelang(ngrid,sinlon,coslon,sinlat,coslat, & |
---|
777 | ztim1,ztim2,ztim3,tmp_mu0,tmp_fract, flatten) |
---|
778 | |
---|
779 | call rings(ngrid, declin, ptime_day, rad, flatten, eclipse) |
---|
780 | |
---|
781 | fract(:) = fract(:) + (1.-eclipse(:))*tmp_fract(:) !! fract prend en compte l'ombre des anneaux et l'alternance jour/nuit |
---|
782 | enddo |
---|
783 | |
---|
784 | DEALLOCATE(tmp_fract) |
---|
785 | DEALLOCATE(tmp_mu0) |
---|
786 | |
---|
787 | fract(:) = fract(:)/nb_hours |
---|
788 | |
---|
789 | else |
---|
790 | call rings(ngrid, declin, ptime, rad, 0., eclipse) |
---|
791 | fract(:) = fract(:) * (1.-eclipse) |
---|
792 | endif |
---|
793 | else |
---|
794 | eclipse(:) = 0.0 |
---|
795 | endif |
---|
796 | |
---|
797 | if (corrk) then |
---|
798 | |
---|
799 | ! a) Call correlated-k radiative transfer scheme |
---|
800 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
801 | |
---|
802 | if(kastprof)then |
---|
803 | print*,'kastprof should not = true here' |
---|
804 | call abort |
---|
805 | endif |
---|
806 | if(water) then |
---|
807 | muvar(1:ngrid,1:nlayermx)=mugaz/(1.e0+(1.e0/epsi-1.e0)*pq(1:ngrid,1:nlayermx,igcm_h2o_vap)) |
---|
808 | muvar(1:ngrid,nlayermx+1)=mugaz/(1.e0+(1.e0/epsi-1.e0)*pq(1:ngrid,nlayermx,igcm_h2o_vap)) |
---|
809 | ! take into account water effect on mean molecular weight |
---|
810 | else |
---|
811 | muvar(1:ngrid,1:nlayermx+1)=mugaz |
---|
812 | endif |
---|
813 | |
---|
814 | ! standard callcorrk |
---|
815 | clearsky=.false. |
---|
816 | call callcorrk(ngrid,nlayer,pq,nq,qsurf, & |
---|
817 | albedo,emis,mu0,pplev,pplay,pt, & |
---|
818 | tsurf,fract,dist_star,aerosol,muvar, & |
---|
819 | zdtlw,zdtsw,fluxsurf_lw,fluxsurf_sw,fluxtop_lw, & |
---|
820 | fluxabs_sw,fluxtop_dn,OLR_nu,OSR_nu, & |
---|
821 | tau_col,cloudfrac,totcloudfrac, & |
---|
822 | clearsky,firstcall,lastcall) |
---|
823 | |
---|
824 | ! Option to call scheme once more for clear regions |
---|
825 | if(CLFvarying)then |
---|
826 | |
---|
827 | ! ---> PROBLEMS WITH ALLOCATED ARRAYS |
---|
828 | ! (temporary solution in callcorrk: do not deallocate if CLFvarying ...) |
---|
829 | clearsky=.true. |
---|
830 | call callcorrk(ngrid,nlayer,pq,nq,qsurf, & |
---|
831 | albedo,emis,mu0,pplev,pplay,pt, & |
---|
832 | tsurf,fract,dist_star,aerosol,muvar, & |
---|
833 | zdtlw1,zdtsw1,fluxsurf_lw1,fluxsurf_sw1,fluxtop_lw1, & |
---|
834 | fluxabs_sw1,fluxtop_dn,OLR_nu1,OSR_nu1, & |
---|
835 | tau_col1,cloudfrac,totcloudfrac, & |
---|
836 | clearsky,firstcall,lastcall) |
---|
837 | clearsky = .false. ! just in case. |
---|
838 | |
---|
839 | ! Sum the fluxes and heating rates from cloudy/clear cases |
---|
840 | do ig=1,ngrid |
---|
841 | tf=totcloudfrac(ig) |
---|
842 | ntf=1.-tf |
---|
843 | |
---|
844 | fluxsurf_lw(ig) = ntf*fluxsurf_lw1(ig) + tf*fluxsurf_lw(ig) |
---|
845 | fluxsurf_sw(ig) = ntf*fluxsurf_sw1(ig) + tf*fluxsurf_sw(ig) |
---|
846 | fluxtop_lw(ig) = ntf*fluxtop_lw1(ig) + tf*fluxtop_lw(ig) |
---|
847 | fluxabs_sw(ig) = ntf*fluxabs_sw1(ig) + tf*fluxabs_sw(ig) |
---|
848 | tau_col(ig) = ntf*tau_col1(ig) + tf*tau_col(ig) |
---|
849 | |
---|
850 | zdtlw(ig,1:nlayermx) = ntf*zdtlw1(ig,1:nlayermx) + tf*zdtlw(ig,1:nlayermx) |
---|
851 | zdtsw(ig,1:nlayermx) = ntf*zdtsw1(ig,1:nlayermx) + tf*zdtsw(ig,1:nlayermx) |
---|
852 | |
---|
853 | OSR_nu(ig,1:L_NSPECTV) = ntf*OSR_nu1(ig,1:L_NSPECTV) + tf*OSR_nu(ig,1:L_NSPECTV) |
---|
854 | OLR_nu(ig,1:L_NSPECTI) = ntf*OLR_nu1(ig,1:L_NSPECTI) + tf*OLR_nu(ig,1:L_NSPECTI) |
---|
855 | |
---|
856 | enddo |
---|
857 | |
---|
858 | endif !CLFvarying |
---|
859 | |
---|
860 | ! Radiative flux from the sky absorbed by the surface (W.m-2) |
---|
861 | GSR=0.0 |
---|
862 | fluxrad_sky(1:ngrid)=emis(1:ngrid)*fluxsurf_lw(1:ngrid)+fluxsurf_sw(1:ngrid)*(1.-albedo(1:ngrid)) |
---|
863 | |
---|
864 | !if(noradsurf)then ! no lower surface; SW flux just disappears |
---|
865 | ! GSR = SUM(fluxsurf_sw(1:ngrid)*area(1:ngrid))/totarea |
---|
866 | ! fluxrad_sky(1:ngrid)=emis(1:ngrid)*fluxsurf_lw(1:ngrid) |
---|
867 | ! print*,'SW lost in deep atmosphere = ',GSR,' W m^-2' |
---|
868 | !endif |
---|
869 | |
---|
870 | ! Net atmospheric radiative heating rate (K.s-1) |
---|
871 | dtrad(1:ngrid,1:nlayermx)=zdtsw(1:ngrid,1:nlayermx)+zdtlw(1:ngrid,1:nlayermx) |
---|
872 | |
---|
873 | elseif(newtonian)then |
---|
874 | |
---|
875 | ! b) Call Newtonian cooling scheme |
---|
876 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
877 | call newtrelax(ngrid,mu0,sinlat,zpopsk,pt,pplay,pplev,dtrad,firstcall) |
---|
878 | |
---|
879 | zdtsurf(1:ngrid) = +(pt(1:ngrid,1)-tsurf(1:ngrid))/ptimestep |
---|
880 | ! e.g. surface becomes proxy for 1st atmospheric layer ? |
---|
881 | |
---|
882 | else |
---|
883 | |
---|
884 | ! c) Atmosphere has no radiative effect |
---|
885 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
886 | fluxtop_dn(1:ngrid) = fract(1:ngrid)*mu0(1:ngrid)*Fat1AU/dist_star**2 |
---|
887 | if(ngrid.eq.1)then ! / by 4 globally in 1D case... |
---|
888 | fluxtop_dn(1) = fract(1)*Fat1AU/dist_star**2/2.0 |
---|
889 | endif |
---|
890 | fluxsurf_sw(1:ngrid) = fluxtop_dn(1:ngrid) |
---|
891 | fluxrad_sky(1:ngrid) = fluxtop_dn(1:ngrid)*(1.-albedo(1:ngrid)) |
---|
892 | fluxtop_lw(1:ngrid) = emis(1:ngrid)*sigma*tsurf(1:ngrid)**4 |
---|
893 | ! radiation skips the atmosphere entirely |
---|
894 | |
---|
895 | |
---|
896 | dtrad(1:ngrid,1:nlayermx)=0.0 |
---|
897 | ! hence no atmospheric radiative heating |
---|
898 | |
---|
899 | endif ! if corrk |
---|
900 | |
---|
901 | endif ! of if(mod(icount-1,iradia).eq.0) |
---|
902 | |
---|
903 | |
---|
904 | ! Transformation of the radiative tendencies |
---|
905 | ! ------------------------------------------ |
---|
906 | |
---|
907 | zplanck(1:ngrid)=tsurf(1:ngrid)*tsurf(1:ngrid) |
---|
908 | zplanck(1:ngrid)=emis(1:ngrid)*sigma*zplanck(1:ngrid)*zplanck(1:ngrid) |
---|
909 | fluxrad(1:ngrid)=fluxrad_sky(1:ngrid)-zplanck(1:ngrid) |
---|
910 | pdt(1:ngrid,1:nlayermx)=pdt(1:ngrid,1:nlayermx)+dtrad(1:ngrid,1:nlayermx) |
---|
911 | |
---|
912 | !------------------------- |
---|
913 | ! test energy conservation |
---|
914 | if(enertest)then |
---|
915 | dEtotSW = cpp*SUM(massarea(:,:)*zdtsw(:,:))/totarea |
---|
916 | dEtotLW = cpp*SUM(massarea(:,:)*zdtlw(:,:))/totarea |
---|
917 | dEtotsSW = SUM(fluxsurf_sw(:)*(1.-albedo(:))*area(:))/totarea !JL13 carefull, albedo can have changed since the last time we called corrk |
---|
918 | dEtotsLW = SUM((fluxsurf_lw(:)*emis(:)-zplanck(:))*area(:))/totarea |
---|
919 | dEzRadsw(:,:)=cpp*mass(:,:)*zdtsw(:,:) |
---|
920 | dEzRadlw(:,:)=cpp*mass(:,:)*zdtlw(:,:) |
---|
921 | print*,'---------------------------------------------------------------' |
---|
922 | print*,'In corrk SW atmospheric heating =',dEtotSW,' W m-2' |
---|
923 | print*,'In corrk LW atmospheric heating =',dEtotLW,' W m-2' |
---|
924 | print*,'atmospheric net rad heating (SW+LW) =',dEtotLW+dEtotSW,' W m-2' |
---|
925 | print*,'In corrk SW surface heating =',dEtotsSW,' W m-2' |
---|
926 | print*,'In corrk LW surface heating =',dEtotsLW,' W m-2' |
---|
927 | print*,'surface net rad heating (SW+LW) =',dEtotsLW+dEtotsSW,' W m-2' |
---|
928 | endif |
---|
929 | !------------------------- |
---|
930 | |
---|
931 | endif ! of if (callrad) |
---|
932 | |
---|
933 | !----------------------------------------------------------------------- |
---|
934 | ! 4. Vertical diffusion (turbulent mixing): |
---|
935 | ! ----------------------------------------- |
---|
936 | |
---|
937 | if (calldifv) then |
---|
938 | |
---|
939 | zflubid(1:ngrid)=fluxrad(1:ngrid)+fluxgrd(1:ngrid) |
---|
940 | |
---|
941 | zdum1(1:ngrid,1:nlayermx)=0.0 |
---|
942 | zdum2(1:ngrid,1:nlayermx)=0.0 |
---|
943 | |
---|
944 | |
---|
945 | !JL12 the following if test is temporarily there to allow us to compare the old vdifc with turbdiff |
---|
946 | if (UseTurbDiff) then |
---|
947 | |
---|
948 | call turbdiff(ngrid,nlayer,nq,rnat, & |
---|
949 | ptimestep,capcal,lwrite, & |
---|
950 | pplay,pplev,zzlay,zzlev,z0, & |
---|
951 | pu,pv,pt,zpopsk,pq,tsurf,emis,qsurf, & |
---|
952 | zdum1,zdum2,pdt,pdq,zflubid, & |
---|
953 | zdudif,zdvdif,zdtdif,zdtsdif, & |
---|
954 | sensibFlux,q2,zdqdif,zdqevap,zdqsdif,lastcall) |
---|
955 | |
---|
956 | else |
---|
957 | |
---|
958 | zdh(1:ngrid,1:nlayermx)=pdt(1:ngrid,1:nlayermx)/zpopsk(1:ngrid,1:nlayermx) |
---|
959 | |
---|
960 | call vdifc(ngrid,nlayer,nq,rnat,zpopsk, & |
---|
961 | ptimestep,capcal,lwrite, & |
---|
962 | pplay,pplev,zzlay,zzlev,z0, & |
---|
963 | pu,pv,zh,pq,tsurf,emis,qsurf, & |
---|
964 | zdum1,zdum2,zdh,pdq,zflubid, & |
---|
965 | zdudif,zdvdif,zdhdif,zdtsdif, & |
---|
966 | sensibFlux,q2,zdqdif,zdqsdif,lastcall) |
---|
967 | |
---|
968 | zdtdif(1:ngrid,1:nlayermx)=zdhdif(1:ngrid,1:nlayermx)*zpopsk(1:ngrid,1:nlayermx) ! for diagnostic only |
---|
969 | zdqevap(1:ngrid,1:nlayermx)=0. |
---|
970 | |
---|
971 | end if !turbdiff |
---|
972 | |
---|
973 | pdv(1:ngrid,1:nlayermx)=pdv(1:ngrid,1:nlayermx)+zdvdif(1:ngrid,1:nlayermx) |
---|
974 | pdu(1:ngrid,1:nlayermx)=pdu(1:ngrid,1:nlayermx)+zdudif(1:ngrid,1:nlayermx) |
---|
975 | pdt(1:ngrid,1:nlayermx)=pdt(1:ngrid,1:nlayermx)+zdtdif(1:ngrid,1:nlayermx) |
---|
976 | zdtsurf(1:ngrid)=zdtsurf(1:ngrid)+zdtsdif(1:ngrid) |
---|
977 | if (tracer) then |
---|
978 | pdq(1:ngrid,1:nlayermx,1:nq)=pdq(1:ngrid,1:nlayermx,1:nq)+ zdqdif(1:ngrid,1:nlayermx,1:nq) |
---|
979 | dqsurf(1:ngrid,1:nq)=dqsurf(1:ngrid,1:nq) + zdqsdif(1:ngrid,1:nq) |
---|
980 | end if ! of if (tracer) |
---|
981 | |
---|
982 | !------------------------- |
---|
983 | ! test energy conservation |
---|
984 | if(enertest)then |
---|
985 | dEzdiff(:,:)=cpp*mass(:,:)*zdtdif(:,:) |
---|
986 | do ig = 1, ngrid |
---|
987 | dEdiff(ig)=SUM(dEzdiff (ig,:))+ sensibFlux(ig)! subtract flux to the ground |
---|
988 | dEzdiff(ig,1)= dEzdiff(ig,1)+ sensibFlux(ig)! subtract flux to the ground |
---|
989 | enddo |
---|
990 | dEtot = SUM(dEdiff(:)*area(:))/totarea |
---|
991 | dEdiffs(:)=capcal(:)*zdtsdif(:)-zflubid(:)-sensibFlux(:) |
---|
992 | dEtots = SUM(dEdiffs(:)*area(:))/totarea |
---|
993 | AtmToSurf_TurbFlux=SUM(sensibFlux(:)*area(:))/totarea |
---|
994 | if (UseTurbDiff) then |
---|
995 | print*,'In TurbDiff sensible flux (atm=>surf) =',AtmToSurf_TurbFlux,' W m-2' |
---|
996 | print*,'In TurbDiff non-cons atm nrj change =',dEtot,' W m-2' |
---|
997 | print*,'In TurbDiff (correc rad+latent heat) surf nrj change =',dEtots,' W m-2' |
---|
998 | else |
---|
999 | print*,'In vdifc sensible flux (atm=>surf) =',AtmToSurf_TurbFlux,' W m-2' |
---|
1000 | print*,'In vdifc non-cons atm nrj change =',dEtot,' W m-2' |
---|
1001 | print*,'In vdifc (correc rad+latent heat) surf nrj change =',dEtots,' W m-2' |
---|
1002 | end if |
---|
1003 | ! JL12 note that the black body radiative flux emitted by the surface has been updated by the implicit scheme |
---|
1004 | ! but not given back elsewhere |
---|
1005 | endif |
---|
1006 | !------------------------- |
---|
1007 | |
---|
1008 | !------------------------- |
---|
1009 | ! test water conservation |
---|
1010 | if(watertest.and.water)then |
---|
1011 | dWtot = SUM(massarea(:,:)*zdqdif(:,:,igcm_h2o_vap))*ptimestep/totarea |
---|
1012 | dWtots = SUM(zdqsdif(:,igcm_h2o_vap)*area(:))*ptimestep/totarea |
---|
1013 | do ig = 1, ngrid |
---|
1014 | vdifcncons(ig)=SUM(mass(ig,:)*zdqdif(ig,:,igcm_h2o_vap)) |
---|
1015 | Enddo |
---|
1016 | dWtot = dWtot + SUM(massarea(:,:)*zdqdif(:,:,igcm_h2o_ice))*ptimestep/totarea |
---|
1017 | dWtots = dWtots + SUM(zdqsdif(:,igcm_h2o_ice)*area(:))*ptimestep/totarea |
---|
1018 | do ig = 1, ngrid |
---|
1019 | vdifcncons(ig)=vdifcncons(ig) + SUM(mass(ig,:)*zdqdif(ig,:,igcm_h2o_ice)) |
---|
1020 | Enddo |
---|
1021 | nconsMAX=MAXVAL(vdifcncons(:)) |
---|
1022 | |
---|
1023 | print*,'---------------------------------------------------------------' |
---|
1024 | print*,'In difv atmospheric water change =',dWtot,' kg m-2' |
---|
1025 | print*,'In difv surface water change =',dWtots,' kg m-2' |
---|
1026 | print*,'In difv non-cons factor =',dWtot+dWtots,' kg m-2' |
---|
1027 | print*,'In difv MAX non-cons factor =',nconsMAX,' kg m-2 s-1' |
---|
1028 | |
---|
1029 | endif |
---|
1030 | !------------------------- |
---|
1031 | |
---|
1032 | else |
---|
1033 | |
---|
1034 | if(.not.newtonian)then |
---|
1035 | |
---|
1036 | zdtsurf(1:ngrid) = zdtsurf(1:ngrid) + (fluxrad(1:ngrid) + fluxgrd(1:ngrid))/capcal(1:ngrid) |
---|
1037 | |
---|
1038 | endif |
---|
1039 | |
---|
1040 | endif ! of if (calldifv) |
---|
1041 | |
---|
1042 | |
---|
1043 | !----------------------------------------------------------------------- |
---|
1044 | ! 5. Dry convective adjustment: |
---|
1045 | ! ----------------------------- |
---|
1046 | |
---|
1047 | if(calladj) then |
---|
1048 | |
---|
1049 | zdh(1:ngrid,1:nlayermx) = pdt(1:ngrid,1:nlayermx)/zpopsk(1:ngrid,1:nlayermx) |
---|
1050 | zduadj(1:ngrid,1:nlayermx)=0.0 |
---|
1051 | zdvadj(1:ngrid,1:nlayermx)=0.0 |
---|
1052 | zdhadj(1:ngrid,1:nlayermx)=0.0 |
---|
1053 | |
---|
1054 | |
---|
1055 | call convadj(ngrid,nlayer,nq,ptimestep, & |
---|
1056 | pplay,pplev,zpopsk, & |
---|
1057 | pu,pv,zh,pq, & |
---|
1058 | pdu,pdv,zdh,pdq, & |
---|
1059 | zduadj,zdvadj,zdhadj, & |
---|
1060 | zdqadj) |
---|
1061 | |
---|
1062 | pdu(1:ngrid,1:nlayermx) = pdu(1:ngrid,1:nlayermx) + zduadj(1:ngrid,1:nlayermx) |
---|
1063 | pdv(1:ngrid,1:nlayermx) = pdv(1:ngrid,1:nlayermx) + zdvadj(1:ngrid,1:nlayermx) |
---|
1064 | pdt(1:ngrid,1:nlayermx) = pdt(1:ngrid,1:nlayermx) + zdhadj(1:ngrid,1:nlayermx)*zpopsk(1:ngrid,1:nlayermx) |
---|
1065 | zdtadj(1:ngrid,1:nlayermx) = zdhadj(1:ngrid,1:nlayermx)*zpopsk(1:ngrid,1:nlayermx) ! for diagnostic only |
---|
1066 | |
---|
1067 | if(tracer) then |
---|
1068 | pdq(1:ngrid,1:nlayermx,1:nq) = pdq(1:ngrid,1:nlayermx,1:nq) + zdqadj(1:ngrid,1:nlayermx,1:nq) |
---|
1069 | end if |
---|
1070 | |
---|
1071 | !------------------------- |
---|
1072 | ! test energy conservation |
---|
1073 | if(enertest)then |
---|
1074 | dEtot=cpp*SUM(massarea(:,:)*zdtadj(:,:))/totarea |
---|
1075 | print*,'In convadj atmospheric energy change =',dEtot,' W m-2' |
---|
1076 | endif |
---|
1077 | !------------------------- |
---|
1078 | |
---|
1079 | !------------------------- |
---|
1080 | ! test water conservation |
---|
1081 | if(watertest)then |
---|
1082 | dWtot = SUM(massarea(:,:)*zdqadj(:,:,igcm_h2o_vap))*ptimestep/totarea |
---|
1083 | do ig = 1, ngrid |
---|
1084 | cadjncons(ig)=SUM(mass(ig,:)*zdqadj(ig,:,igcm_h2o_vap)) |
---|
1085 | Enddo |
---|
1086 | dWtot = dWtot + SUM(massarea(:,:)*zdqadj(:,:,igcm_h2o_ice))*ptimestep/totarea |
---|
1087 | do ig = 1, ngrid |
---|
1088 | cadjncons(ig)=cadjncons(ig) + SUM(mass(ig,:)*zdqadj(ig,:,igcm_h2o_ice)) |
---|
1089 | Enddo |
---|
1090 | nconsMAX=MAXVAL(cadjncons(:)) |
---|
1091 | |
---|
1092 | print*,'In convadj atmospheric water change =',dWtot,' kg m-2' |
---|
1093 | print*,'In convadj MAX non-cons factor =',nconsMAX,' kg m-2 s-1' |
---|
1094 | endif |
---|
1095 | !------------------------- |
---|
1096 | |
---|
1097 | endif ! of if(calladj) |
---|
1098 | |
---|
1099 | !----------------------------------------------------------------------- |
---|
1100 | ! 6. Carbon dioxide condensation-sublimation: |
---|
1101 | ! ------------------------------------------- |
---|
1102 | |
---|
1103 | if (co2cond) then |
---|
1104 | if (.not.tracer) then |
---|
1105 | print*,'We need a CO2 ice tracer to condense CO2' |
---|
1106 | call abort |
---|
1107 | endif |
---|
1108 | call condense_cloud(ngrid,nlayer,nq,ptimestep, & |
---|
1109 | capcal,pplay,pplev,tsurf,pt, & |
---|
1110 | pphi,pdt,pdu,pdv,zdtsurf,pu,pv,pq,pdq, & |
---|
1111 | qsurf(1,igcm_co2_ice),albedo,emis, & |
---|
1112 | zdtc,zdtsurfc,pdpsrf,zduc,zdvc, & |
---|
1113 | zdqc) |
---|
1114 | |
---|
1115 | |
---|
1116 | pdt(1:ngrid,1:nlayermx)=pdt(1:ngrid,1:nlayermx)+zdtc(1:ngrid,1:nlayermx) |
---|
1117 | pdv(1:ngrid,1:nlayermx)=pdv(1:ngrid,1:nlayermx)+zdvc(1:ngrid,1:nlayermx) |
---|
1118 | pdu(1:ngrid,1:nlayermx)=pdu(1:ngrid,1:nlayermx)+zduc(1:ngrid,1:nlayermx) |
---|
1119 | zdtsurf(1:ngrid) = zdtsurf(1:ngrid) + zdtsurfc(1:ngrid) |
---|
1120 | |
---|
1121 | pdq(1:ngrid,1:nlayermx,1:nq)=pdq(1:ngrid,1:nlayermx,1:nq)+ zdqc(1:ngrid,1:nlayermx,1:nq) |
---|
1122 | ! Note: we do not add surface co2ice tendency |
---|
1123 | ! because qsurf(:,igcm_co2_ice) is updated in condens_co2cloud |
---|
1124 | |
---|
1125 | !------------------------- |
---|
1126 | ! test energy conservation |
---|
1127 | if(enertest)then |
---|
1128 | dEtot = cpp*SUM(massarea(:,:)*zdtc(:,:))/totarea |
---|
1129 | dEtots = SUM(capcal(:)*zdtsurfc(:)*area(:))/totarea |
---|
1130 | print*,'In co2cloud atmospheric energy change =',dEtot,' W m-2' |
---|
1131 | print*,'In co2cloud surface energy change =',dEtots,' W m-2' |
---|
1132 | endif |
---|
1133 | !------------------------- |
---|
1134 | |
---|
1135 | endif ! of if (co2cond) |
---|
1136 | |
---|
1137 | |
---|
1138 | !----------------------------------------------------------------------- |
---|
1139 | ! 7. Specific parameterizations for tracers |
---|
1140 | ! ----------------------------------------- |
---|
1141 | |
---|
1142 | if (tracer) then |
---|
1143 | |
---|
1144 | ! 7a. Water and ice |
---|
1145 | ! --------------- |
---|
1146 | if (water) then |
---|
1147 | |
---|
1148 | ! ---------------------------------------- |
---|
1149 | ! Water ice condensation in the atmosphere |
---|
1150 | ! ---------------------------------------- |
---|
1151 | if(watercond.and.(RLVTT.gt.1.e-8))then |
---|
1152 | |
---|
1153 | ! ---------------- |
---|
1154 | ! Moist convection |
---|
1155 | ! ---------------- |
---|
1156 | |
---|
1157 | dqmoist(1:ngrid,1:nlayermx,1:nq)=0. |
---|
1158 | dtmoist(1:ngrid,1:nlayermx)=0. |
---|
1159 | |
---|
1160 | call moistadj(ngrid,nq,pt,pq,pdq,pplev,pplay,dtmoist,dqmoist,ptimestep,rneb_man) |
---|
1161 | |
---|
1162 | pdq(1:ngrid,1:nlayermx,igcm_h2o_vap) = pdq(1:ngrid,1:nlayermx,igcm_h2o_vap) & |
---|
1163 | +dqmoist(1:ngrid,1:nlayermx,igcm_h2o_vap) |
---|
1164 | pdq(1:ngrid,1:nlayermx,igcm_h2o_ice) =pdq(1:ngrid,1:nlayermx,igcm_h2o_ice) & |
---|
1165 | +dqmoist(1:ngrid,1:nlayermx,igcm_h2o_ice) |
---|
1166 | pdt(1:ngrid,1:nlayermx) = pdt(1:ngrid,1:nlayermx)+dtmoist(1:ngrid,1:nlayermx) |
---|
1167 | |
---|
1168 | !------------------------- |
---|
1169 | ! test energy conservation |
---|
1170 | if(enertest)then |
---|
1171 | dEtot=cpp*SUM(massarea(:,:)*dtmoist(:,:))/totarea |
---|
1172 | madjdEz(:,:)=cpp*mass(:,:)*dtmoist(:,:) |
---|
1173 | do ig=1,ngrid |
---|
1174 | madjdE(ig) = cpp*SUM(mass(:,:)*dtmoist(:,:)) |
---|
1175 | enddo |
---|
1176 | print*,'In moistadj atmospheric energy change =',dEtot,' W m-2' |
---|
1177 | print*,'In moistadj MAX atmospheric energy change =',MAXVAL(dtmoist(:,:))*ptimestep,'K/step' |
---|
1178 | print*,'In moistadj MIN atmospheric energy change =',MINVAL(dtmoist(:,:))*ptimestep,'K/step' |
---|
1179 | |
---|
1180 | ! test energy conservation |
---|
1181 | dWtot = SUM(massarea(:,:)*dqmoist(:,:,igcm_h2o_vap))*ptimestep/totarea |
---|
1182 | dWtot = dWtot + SUM(massarea(:,:)*dqmoist(:,:,igcm_h2o_ice))*ptimestep/totarea |
---|
1183 | print*,'In moistadj atmospheric water change =',dWtot,' kg m-2' |
---|
1184 | endif |
---|
1185 | !------------------------- |
---|
1186 | |
---|
1187 | |
---|
1188 | ! -------------------------------- |
---|
1189 | ! Large scale condensation/evaporation |
---|
1190 | ! -------------------------------- |
---|
1191 | call largescale(ngrid,nq,ptimestep,pplev,pplay,pt,pq,pdt,pdq,dtlscale,dqvaplscale,dqcldlscale,rneb_lsc) |
---|
1192 | |
---|
1193 | pdt(1:ngrid,1:nlayermx) = pdt(1:ngrid,1:nlayermx)+dtlscale(1:ngrid,1:nlayermx) |
---|
1194 | pdq(1:ngrid,1:nlayermx,igcm_h2o_vap) = pdq(1:ngrid,1:nlayermx,igcm_h2o_vap)+dqvaplscale(1:ngrid,1:nlayermx) |
---|
1195 | pdq(1:ngrid,1:nlayermx,igcm_h2o_ice) = pdq(1:ngrid,1:nlayermx,igcm_h2o_ice)+dqcldlscale(1:ngrid,1:nlayermx) |
---|
1196 | |
---|
1197 | !------------------------- |
---|
1198 | ! test energy conservation |
---|
1199 | if(enertest)then |
---|
1200 | lscaledEz(:,:) = cpp*mass(:,:)*dtlscale(:,:) |
---|
1201 | do ig=1,ngrid |
---|
1202 | lscaledE(ig) = cpp*SUM(mass(:,:)*dtlscale(:,:)) |
---|
1203 | enddo |
---|
1204 | dEtot=cpp*SUM(massarea(:,:)*(dtlscale(:,:)))/totarea |
---|
1205 | ! if(isnan(dEtot)) then ! NB: isnan() is not a standard function... |
---|
1206 | ! print*,'Nan in largescale, abort' |
---|
1207 | ! STOP |
---|
1208 | ! endif |
---|
1209 | print*,'In largescale atmospheric energy change =',dEtot,' W m-2' |
---|
1210 | |
---|
1211 | ! test water conservation |
---|
1212 | dWtot = SUM(massarea(:,:)*dqvaplscale(:,:))*ptimestep/totarea |
---|
1213 | dWtot = dWtot + SUM(massarea(:,:)*dqcldlscale(:,:))*ptimestep/totarea |
---|
1214 | print*,'In largescale atmospheric water change =',dWtot,' kg m-2' |
---|
1215 | endif |
---|
1216 | !------------------------- |
---|
1217 | |
---|
1218 | ! compute cloud fraction |
---|
1219 | do l = 1, nlayer |
---|
1220 | do ig=1,ngrid |
---|
1221 | cloudfrac(ig,l)=MAX(rneb_lsc(ig,l),rneb_man(ig,l)) |
---|
1222 | enddo |
---|
1223 | enddo |
---|
1224 | |
---|
1225 | endif ! of if (watercondense) |
---|
1226 | |
---|
1227 | |
---|
1228 | ! -------------------------------- |
---|
1229 | ! Water ice / liquid precipitation |
---|
1230 | ! -------------------------------- |
---|
1231 | if(waterrain)then |
---|
1232 | |
---|
1233 | zdqrain(1:ngrid,1:nlayermx,1:nq) = 0.0 |
---|
1234 | zdqsrain(1:ngrid) = 0.0 |
---|
1235 | zdqssnow(1:ngrid) = 0.0 |
---|
1236 | |
---|
1237 | call rain(ngrid,nq,ptimestep,pplev,pplay,pt,pdt,pq,pdq, & |
---|
1238 | zdtrain,zdqrain,zdqsrain,zdqssnow,cloudfrac) |
---|
1239 | |
---|
1240 | pdq(1:ngrid,1:nlayermx,igcm_h2o_vap) = pdq(1:ngrid,1:nlayermx,igcm_h2o_vap) & |
---|
1241 | +zdqrain(1:ngrid,1:nlayermx,igcm_h2o_vap) |
---|
1242 | pdq(1:ngrid,1:nlayermx,igcm_h2o_ice) = pdq(1:ngrid,1:nlayermx,igcm_h2o_ice) & |
---|
1243 | +zdqrain(1:ngrid,1:nlayermx,igcm_h2o_ice) |
---|
1244 | pdt(1:ngrid,1:nlayermx) = pdt(1:ngrid,1:nlayermx)+zdtrain(1:ngrid,1:nlayermx) |
---|
1245 | dqsurf(1:ngrid,igcm_h2o_vap) = dqsurf(1:ngrid,igcm_h2o_vap)+zdqsrain(1:ngrid) ! a bug was here |
---|
1246 | dqsurf(1:ngrid,igcm_h2o_ice) = dqsurf(1:ngrid,igcm_h2o_ice)+zdqssnow(1:ngrid) |
---|
1247 | rainout(1:ngrid) = zdqsrain(1:ngrid)+zdqssnow(1:ngrid) ! diagnostic |
---|
1248 | |
---|
1249 | |
---|
1250 | !------------------------- |
---|
1251 | ! test energy conservation |
---|
1252 | if(enertest)then |
---|
1253 | dEtot=cpp*SUM(massarea(:,:)*zdtrain(:,:))/totarea |
---|
1254 | print*,'In rain atmospheric T energy change =',dEtot,' W m-2' |
---|
1255 | dItot = SUM(massarea(:,:)*zdqrain(:,:,igcm_h2o_ice))/totarea*RLVTT/cpp |
---|
1256 | dItot = dItot + SUM(area(:)*zdqssnow(:))/totarea*RLVTT/cpp |
---|
1257 | dVtot = SUM(massarea(:,:)*zdqrain(:,:,igcm_h2o_vap))*ptimestep/totarea |
---|
1258 | dVtot = dVtot + SUM(area(:)*zdqsrain(:))/totarea*RLVTT/cpp |
---|
1259 | dEtot = dItot + dVtot |
---|
1260 | print*,'In rain dItot =',dItot,' W m-2' |
---|
1261 | print*,'In rain dVtot =',dVtot,' W m-2' |
---|
1262 | print*,'In rain atmospheric L energy change =',dEtot,' W m-2' |
---|
1263 | |
---|
1264 | ! test water conservation |
---|
1265 | dWtot = SUM(massarea(:,:)*zdqrain(:,:,igcm_h2o_vap))*ptimestep/totarea |
---|
1266 | dWtot = dWtot + SUM(massarea(:,:)*zdqrain(:,:,igcm_h2o_ice))*ptimestep/totarea |
---|
1267 | dWtots = SUM((zdqsrain(:)+zdqssnow(:))*area(:))*ptimestep/totarea |
---|
1268 | print*,'In rain atmospheric water change =',dWtot,' kg m-2' |
---|
1269 | print*,'In rain surface water change =',dWtots,' kg m-2' |
---|
1270 | print*,'In rain non-cons factor =',dWtot+dWtots,' kg m-2' |
---|
1271 | endif |
---|
1272 | !------------------------- |
---|
1273 | |
---|
1274 | end if ! of if (waterrain) |
---|
1275 | end if ! of if (water) |
---|
1276 | |
---|
1277 | |
---|
1278 | ! 7c. Aerosol particles |
---|
1279 | ! ------------------- |
---|
1280 | ! ------------- |
---|
1281 | ! Sedimentation |
---|
1282 | ! ------------- |
---|
1283 | if (sedimentation) then |
---|
1284 | zdqsed(1:ngrid,1:nlayermx,1:nq) = 0.0 |
---|
1285 | zdqssed(1:ngrid,1:nq) = 0.0 |
---|
1286 | |
---|
1287 | |
---|
1288 | !------------------------- |
---|
1289 | ! find qtot |
---|
1290 | if(watertest)then |
---|
1291 | iq=igcm_h2o_ice |
---|
1292 | dWtot = SUM(massarea(:,:)*pq(:,:,iq))*ptimestep/totarea |
---|
1293 | dWtots = SUM(massarea(:,:)*pdq(:,:,iq))*ptimestep/totarea |
---|
1294 | print*,'Before sedim pq =',dWtot,' kg m-2' |
---|
1295 | print*,'Before sedim pdq =',dWtots,' kg m-2' |
---|
1296 | endif |
---|
1297 | !------------------------- |
---|
1298 | |
---|
1299 | call callsedim(ngrid,nlayer,ptimestep, & |
---|
1300 | pplev,zzlev,pt,pdt,pq,pdq,zdqsed,zdqssed,nq) |
---|
1301 | |
---|
1302 | !------------------------- |
---|
1303 | ! find qtot |
---|
1304 | if(watertest)then |
---|
1305 | iq=igcm_h2o_ice |
---|
1306 | dWtot = SUM(massarea(:,:)*pq(:,:,iq))*ptimestep/totarea |
---|
1307 | dWtots = SUM(massarea(:,:)*pdq(:,:,iq))*ptimestep/totarea |
---|
1308 | print*,'After sedim pq =',dWtot,' kg m-2' |
---|
1309 | print*,'After sedim pdq =',dWtots,' kg m-2' |
---|
1310 | endif |
---|
1311 | !------------------------- |
---|
1312 | |
---|
1313 | ! for now, we only allow H2O ice to sediment |
---|
1314 | ! and as in rain.F90, whether it falls as rain or snow depends |
---|
1315 | ! only on the surface temperature |
---|
1316 | pdq(1:ngrid,1:nlayermx,1:nq) = pdq(1:ngrid,1:nlayermx,1:nq) + zdqsed(1:ngrid,1:nlayermx,1:nq) |
---|
1317 | dqsurf(1:ngrid,1:nq) = dqsurf(1:ngrid,1:nq) + zdqssed(1:ngrid,1:nq) |
---|
1318 | |
---|
1319 | !------------------------- |
---|
1320 | ! test water conservation |
---|
1321 | if(watertest)then |
---|
1322 | dWtot = SUM(massarea(:,:)*(zdqsed(:,:,igcm_h2o_vap)+zdqsed(:,:,igcm_h2o_ice)))*ptimestep/totarea |
---|
1323 | dWtots = SUM((zdqssed(:,igcm_h2o_vap)+zdqssed(:,igcm_h2o_ice))*area(:))*ptimestep/totarea |
---|
1324 | print*,'In sedim atmospheric ice change =',dWtot,' kg m-2' |
---|
1325 | print*,'In sedim surface ice change =',dWtots,' kg m-2' |
---|
1326 | print*,'In sedim non-cons factor =',dWtot+dWtots,' kg m-2' |
---|
1327 | endif |
---|
1328 | !------------------------- |
---|
1329 | |
---|
1330 | end if ! of if (sedimentation) |
---|
1331 | |
---|
1332 | |
---|
1333 | ! 7d. Updates |
---|
1334 | ! --------- |
---|
1335 | |
---|
1336 | ! ----------------------------------- |
---|
1337 | ! Updating atm mass and tracer budget |
---|
1338 | ! ----------------------------------- |
---|
1339 | |
---|
1340 | if(mass_redistrib) then |
---|
1341 | |
---|
1342 | zdmassmr(1:ngrid,1:nlayermx) = mass(1:ngrid,1:nlayermx) * & |
---|
1343 | ( zdqevap(1:ngrid,1:nlayermx) & |
---|
1344 | + zdqrain(1:ngrid,1:nlayermx,igcm_h2o_vap) & |
---|
1345 | + dqmoist(1:ngrid,1:nlayermx,igcm_h2o_vap) & |
---|
1346 | + dqvaplscale(1:ngrid,1:nlayermx) ) |
---|
1347 | |
---|
1348 | do ig = 1, ngrid |
---|
1349 | zdmassmr_col(ig)=SUM(zdmassmr(ig,1:nlayermx)) |
---|
1350 | enddo |
---|
1351 | |
---|
1352 | call writediagfi(ngrid,"mass_evap","mass gain"," ",3,zdmassmr) |
---|
1353 | call writediagfi(ngrid,"mass_evap_col","mass gain col"," ",2,zdmassmr_col) |
---|
1354 | call writediagfi(ngrid,"mass","mass"," ",3,mass) |
---|
1355 | |
---|
1356 | call mass_redistribution(ngrid,nlayer,nq,ptimestep, & |
---|
1357 | rnat,capcal,pplay,pplev,pt,tsurf,pq,qsurf, & |
---|
1358 | pu,pv,pdt,zdtsurf,pdq,pdu,pdv,zdmassmr, & |
---|
1359 | zdtmr,zdtsurfmr,zdpsrfmr,zdumr,zdvmr,zdqmr,zdqsurfmr) |
---|
1360 | |
---|
1361 | |
---|
1362 | pdq(1:ngrid,1:nlayermx,1:nq) = pdq(1:ngrid,1:nlayermx,1:nq) + zdqmr(1:ngrid,1:nlayermx,1:nq) |
---|
1363 | dqsurf(1:ngrid,1:nq) = dqsurf(1:ngrid,1:nq) + zdqsurfmr(1:ngrid,1:nq) |
---|
1364 | pdt(1:ngrid,1:nlayermx) = pdt(1:ngrid,1:nlayermx) + zdtmr(1:ngrid,1:nlayermx) |
---|
1365 | pdu(1:ngrid,1:nlayermx) = pdu(1:ngrid,1:nlayermx) + zdumr(1:ngrid,1:nlayermx) |
---|
1366 | pdv(1:ngrid,1:nlayermx) = pdv(1:ngrid,1:nlayermx) + zdvmr(1:ngrid,1:nlayermx) |
---|
1367 | pdpsrf(1:ngrid) = pdpsrf(1:ngrid) + zdpsrfmr(1:ngrid) |
---|
1368 | zdtsurf(1:ngrid) = zdtsurf(1:ngrid) + zdtsurfmr(1:ngrid) |
---|
1369 | |
---|
1370 | ! print*,'after mass redistrib, q=',pq(211,1:nlayermx,igcm_h2o_vap)+ptimestep*pdq(211,1:nlayermx,igcm_h2o_vap) |
---|
1371 | endif |
---|
1372 | |
---|
1373 | |
---|
1374 | |
---|
1375 | ! --------------------------------- |
---|
1376 | ! Updating tracer budget on surface |
---|
1377 | ! --------------------------------- |
---|
1378 | |
---|
1379 | if(hydrology)then |
---|
1380 | |
---|
1381 | call hydrol(ngrid,nq,ptimestep,rnat,tsurf,qsurf,dqsurf,dqs_hyd, & |
---|
1382 | capcal,albedo0,albedo,mu0,zdtsurf,zdtsurf_hyd,hice) |
---|
1383 | ! note: for now, also changes albedo in the subroutine |
---|
1384 | |
---|
1385 | zdtsurf(1:ngrid) = zdtsurf(1:ngrid) + zdtsurf_hyd(1:ngrid) |
---|
1386 | qsurf(1:ngrid,1:nq) = qsurf(1:ngrid,1:nq) + ptimestep*dqs_hyd(1:ngrid,1:nq) |
---|
1387 | ! when hydrology is used, other dqsurf tendencies are all added to dqs_hyd inside |
---|
1388 | |
---|
1389 | !------------------------- |
---|
1390 | ! test energy conservation |
---|
1391 | if(enertest)then |
---|
1392 | dEtots = SUM(area(:)*capcal(:)*zdtsurf_hyd(:))/totarea |
---|
1393 | print*,'In hydrol surface energy change =',dEtots,' W m-2' |
---|
1394 | endif |
---|
1395 | !------------------------- |
---|
1396 | |
---|
1397 | !------------------------- |
---|
1398 | ! test water conservation |
---|
1399 | if(watertest)then |
---|
1400 | dWtots = SUM(dqs_hyd(:,igcm_h2o_ice)*area(:))*ptimestep/totarea |
---|
1401 | print*,'In hydrol surface ice change =',dWtots,' kg m-2' |
---|
1402 | dWtots = SUM(dqs_hyd(:,igcm_h2o_vap)*area(:))*ptimestep/totarea |
---|
1403 | print*,'In hydrol surface water change =',dWtots,' kg m-2' |
---|
1404 | print*,'---------------------------------------------------------------' |
---|
1405 | endif |
---|
1406 | !------------------------- |
---|
1407 | |
---|
1408 | ELSE ! of if (hydrology) |
---|
1409 | |
---|
1410 | qsurf(1:ngrid,1:nq)=qsurf(1:ngrid,1:nq)+ptimestep*dqsurf(1:ngrid,1:nq) |
---|
1411 | |
---|
1412 | END IF ! of if (hydrology) |
---|
1413 | |
---|
1414 | ! Add qsurf to qsurf_hist, which is what we save in |
---|
1415 | ! diagfi.nc etc. At the same time, we set the water |
---|
1416 | ! content of ocean gridpoints back to zero, in order |
---|
1417 | ! to avoid rounding errors in vdifc, rain |
---|
1418 | qsurf_hist(:,:) = qsurf(:,:) |
---|
1419 | |
---|
1420 | if(ice_update)then |
---|
1421 | ice_min(1:ngrid)=min(ice_min(1:ngrid),qsurf(1:ngrid,igcm_h2o_ice)) |
---|
1422 | endif |
---|
1423 | |
---|
1424 | endif ! of if (tracer) |
---|
1425 | |
---|
1426 | !----------------------------------------------------------------------- |
---|
1427 | ! 9. Surface and sub-surface soil temperature |
---|
1428 | !----------------------------------------------------------------------- |
---|
1429 | |
---|
1430 | ! Increment surface temperature |
---|
1431 | tsurf(1:ngrid)=tsurf(1:ngrid)+ptimestep*zdtsurf(1:ngrid) |
---|
1432 | |
---|
1433 | ! Compute soil temperatures and subsurface heat flux |
---|
1434 | if (callsoil) then |
---|
1435 | call soil(ngrid,nsoilmx,.false.,lastcall,inertiedat, & |
---|
1436 | ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
1437 | endif |
---|
1438 | |
---|
1439 | !------------------------- |
---|
1440 | ! test energy conservation |
---|
1441 | if(enertest)then |
---|
1442 | dEtots = SUM(area(:)*capcal(:)*zdtsurf(:))/totarea |
---|
1443 | print*,'Surface energy change =',dEtots,' W m-2' |
---|
1444 | endif |
---|
1445 | !------------------------- |
---|
1446 | |
---|
1447 | !----------------------------------------------------------------------- |
---|
1448 | ! 10. Perform diagnostics and write output files |
---|
1449 | !----------------------------------------------------------------------- |
---|
1450 | |
---|
1451 | ! ------------------------------- |
---|
1452 | ! Dynamical fields incrementation |
---|
1453 | ! ------------------------------- |
---|
1454 | ! For output only: the actual model integration is performed in the dynamics |
---|
1455 | |
---|
1456 | ! temperature, zonal and meridional wind |
---|
1457 | zt(1:ngrid,1:nlayermx) = pt(1:ngrid,1:nlayermx) + pdt(1:ngrid,1:nlayermx)*ptimestep |
---|
1458 | zu(1:ngrid,1:nlayermx) = pu(1:ngrid,1:nlayermx) + pdu(1:ngrid,1:nlayermx)*ptimestep |
---|
1459 | zv(1:ngrid,1:nlayermx) = pv(1:ngrid,1:nlayermx) + pdv(1:ngrid,1:nlayermx)*ptimestep |
---|
1460 | |
---|
1461 | ! diagnostic |
---|
1462 | zdtdyn(1:ngrid,1:nlayermx) = pt(1:ngrid,1:nlayermx)-ztprevious(1:ngrid,1:nlayermx) |
---|
1463 | ztprevious(1:ngrid,1:nlayermx) = zt(1:ngrid,1:nlayermx) |
---|
1464 | |
---|
1465 | if(firstcall)then |
---|
1466 | zdtdyn(1:ngrid,1:nlayermx)=0.0 |
---|
1467 | endif |
---|
1468 | |
---|
1469 | ! dynamical heating diagnostic |
---|
1470 | do ig=1,ngrid |
---|
1471 | fluxdyn(ig)= SUM(zdtdyn(ig,:) *mass(ig,:))*cpp/ptimestep |
---|
1472 | enddo |
---|
1473 | |
---|
1474 | ! tracers |
---|
1475 | zq(1:ngrid,1:nlayermx,1:nq) = pq(1:ngrid,1:nlayermx,1:nq) + pdq(1:ngrid,1:nlayermx,1:nq)*ptimestep |
---|
1476 | |
---|
1477 | ! surface pressure |
---|
1478 | ps(1:ngrid) = pplev(1:ngrid,1) + pdpsrf(1:ngrid)*ptimestep |
---|
1479 | |
---|
1480 | ! pressure |
---|
1481 | do l=1,nlayer |
---|
1482 | zplev(1:ngrid,l) = pplev(1:ngrid,l)/pplev(1:ngrid,1)*ps(:) |
---|
1483 | zplay(1:ngrid,l) = pplay(1:ngrid,l)/pplev(1:ngrid,1)*ps(1:ngrid) |
---|
1484 | enddo |
---|
1485 | |
---|
1486 | ! --------------------------------------------------------- |
---|
1487 | ! Surface and soil temperature information |
---|
1488 | ! --------------------------------------------------------- |
---|
1489 | |
---|
1490 | Ts1 = SUM(area(:)*tsurf(:))/totarea |
---|
1491 | Ts2 = MINVAL(tsurf(:)) |
---|
1492 | Ts3 = MAXVAL(tsurf(:)) |
---|
1493 | if(callsoil)then |
---|
1494 | TsS = SUM(area(:)*tsoil(:,nsoilmx))/totarea ! mean temperature at bottom soil layer |
---|
1495 | if (cursor == 1) then |
---|
1496 | print*,' ave[Tsurf] min[Tsurf] max[Tsurf] ave[Tdeep]' |
---|
1497 | print*,Ts1,Ts2,Ts3,TsS |
---|
1498 | endif |
---|
1499 | else |
---|
1500 | if (cursor == 1) then |
---|
1501 | print*,' ave[Tsurf] min[Tsurf] max[Tsurf]' |
---|
1502 | print*,Ts1,Ts2,Ts3 |
---|
1503 | endif |
---|
1504 | end if |
---|
1505 | |
---|
1506 | ! --------------------------------------------------------- |
---|
1507 | ! Check the energy balance of the simulation during the run |
---|
1508 | ! --------------------------------------------------------- |
---|
1509 | |
---|
1510 | if(corrk)then |
---|
1511 | |
---|
1512 | ISR = SUM(area(:)*fluxtop_dn(:))/totarea |
---|
1513 | ASR = SUM(area(:)*fluxabs_sw(:))/totarea |
---|
1514 | OLR = SUM(area(:)*fluxtop_lw(:))/totarea |
---|
1515 | GND = SUM(area(:)*fluxgrd(:))/totarea |
---|
1516 | DYN = SUM(area(:)*fluxdyn(:))/totarea |
---|
1517 | do ig=1,ngrid |
---|
1518 | if(fluxtop_dn(ig).lt.0.0)then |
---|
1519 | print*,'fluxtop_dn has gone crazy' |
---|
1520 | print*,'fluxtop_dn=',fluxtop_dn(ig) |
---|
1521 | print*,'tau_col=',tau_col(ig) |
---|
1522 | print*,'aerosol=',aerosol(ig,:,:) |
---|
1523 | print*,'temp= ',pt(ig,:) |
---|
1524 | print*,'pplay= ',pplay(ig,:) |
---|
1525 | call abort |
---|
1526 | endif |
---|
1527 | end do |
---|
1528 | |
---|
1529 | if(ngrid.eq.1)then |
---|
1530 | DYN=0.0 |
---|
1531 | endif |
---|
1532 | |
---|
1533 | print*,' ISR ASR OLR GND DYN [W m^-2]' |
---|
1534 | print*, ISR,ASR,OLR,GND,DYN |
---|
1535 | |
---|
1536 | if(enertest)then |
---|
1537 | print*,'SW flux/heating difference SW++ - ASR = ',dEtotSW+dEtotsSW-ASR,' W m-2' |
---|
1538 | print*,'LW flux/heating difference LW++ - OLR = ',dEtotLW+dEtotsLW+OLR,' W m-2' |
---|
1539 | print*,'LW energy balance LW++ + ASR = ',dEtotLW+dEtotsLW+ASR,' W m-2' |
---|
1540 | endif |
---|
1541 | |
---|
1542 | if(meanOLR)then |
---|
1543 | if((ngrid.gt.1) .or. (mod(icount-1,ecritphy).eq.0))then |
---|
1544 | ! to record global radiative balance |
---|
1545 | open(92,file="rad_bal.out",form='formatted',position='append') |
---|
1546 | write(92,*) zday,ISR,ASR,OLR |
---|
1547 | close(92) |
---|
1548 | open(93,file="tem_bal.out",form='formatted',position='append') |
---|
1549 | write(93,*) zday,Ts1,Ts2,Ts3,TsS |
---|
1550 | close(93) |
---|
1551 | endif |
---|
1552 | endif |
---|
1553 | |
---|
1554 | endif |
---|
1555 | |
---|
1556 | |
---|
1557 | ! ------------------------------------------------------------------ |
---|
1558 | ! Diagnostic to test radiative-convective timescales in code |
---|
1559 | ! ------------------------------------------------------------------ |
---|
1560 | if(testradtimes)then |
---|
1561 | open(38,file="tau_phys.out",form='formatted',position='append') |
---|
1562 | ig=1 |
---|
1563 | do l=1,nlayer |
---|
1564 | write(38,*) -1./pdt(ig,l),pt(ig,l),pplay(ig,l) |
---|
1565 | enddo |
---|
1566 | close(38) |
---|
1567 | print*,'As testradtimes enabled,' |
---|
1568 | print*,'exiting physics on first call' |
---|
1569 | call abort |
---|
1570 | endif |
---|
1571 | |
---|
1572 | ! --------------------------------------------------------- |
---|
1573 | ! Compute column amounts (kg m-2) if tracers are enabled |
---|
1574 | ! --------------------------------------------------------- |
---|
1575 | if(tracer)then |
---|
1576 | qcol(1:ngrid,1:nq)=0.0 |
---|
1577 | do iq=1,nq |
---|
1578 | do ig=1,ngrid |
---|
1579 | qcol(ig,iq) = SUM( zq(ig,1:nlayermx,iq) * mass(ig,1:nlayermx)) |
---|
1580 | enddo |
---|
1581 | enddo |
---|
1582 | |
---|
1583 | ! Generalised for arbitrary aerosols now. (LK) |
---|
1584 | reffcol(1:ngrid,1:naerkind)=0.0 |
---|
1585 | if(co2cond.and.(iaero_co2.ne.0))then |
---|
1586 | call co2_reffrad(ngrid,nq,zq,reffrad(1,1,iaero_co2)) |
---|
1587 | do ig=1,ngrid |
---|
1588 | reffcol(ig,iaero_co2) = SUM(zq(ig,1:nlayermx,igcm_co2_ice)*reffrad(ig,1:nlayermx,iaero_co2)*mass(ig,1:nlayermx)) |
---|
1589 | enddo |
---|
1590 | endif |
---|
1591 | if(water.and.(iaero_h2o.ne.0))then |
---|
1592 | call h2o_reffrad(ngrid,zq(1,1,igcm_h2o_ice),zt, & |
---|
1593 | reffrad(1,1,iaero_h2o),nueffrad(1,1,iaero_h2o)) |
---|
1594 | do ig=1,ngrid |
---|
1595 | reffcol(ig,iaero_h2o) = SUM(zq(ig,1:nlayermx,igcm_h2o_ice)*reffrad(ig,1:nlayermx,iaero_h2o)*mass(ig,1:nlayermx)) |
---|
1596 | enddo |
---|
1597 | endif |
---|
1598 | |
---|
1599 | endif |
---|
1600 | |
---|
1601 | ! --------------------------------------------------------- |
---|
1602 | ! Test for water conservation if water is enabled |
---|
1603 | ! --------------------------------------------------------- |
---|
1604 | |
---|
1605 | if(water)then |
---|
1606 | |
---|
1607 | icesrf = SUM(area(:)*qsurf_hist(:,igcm_h2o_ice))/totarea |
---|
1608 | liqsrf = SUM(area(:)*qsurf_hist(:,igcm_h2o_vap))/totarea |
---|
1609 | icecol = SUM(area(:)*qcol(:,igcm_h2o_ice))/totarea |
---|
1610 | vapcol = SUM(area(:)*qcol(:,igcm_h2o_vap))/totarea |
---|
1611 | |
---|
1612 | h2otot = icesrf + liqsrf + icecol + vapcol |
---|
1613 | |
---|
1614 | print*,' Total water amount [kg m^-2]: ',h2otot |
---|
1615 | print*,' Surface ice Surface liq. Atmos. con. Atmos. vap. [kg m^-2] ' |
---|
1616 | print*, icesrf,liqsrf,icecol,vapcol |
---|
1617 | |
---|
1618 | if(meanOLR)then |
---|
1619 | if((ngrid.gt.1) .or. (mod(icount-1,ecritphy).eq.0))then |
---|
1620 | ! to record global water balance |
---|
1621 | open(98,file="h2o_bal.out",form='formatted',position='append') |
---|
1622 | write(98,*) zday,icesrf,liqsrf,icecol,vapcol |
---|
1623 | close(98) |
---|
1624 | endif |
---|
1625 | endif |
---|
1626 | |
---|
1627 | endif |
---|
1628 | |
---|
1629 | ! --------------------------------------------------------- |
---|
1630 | ! Calculate RH for diagnostic if water is enabled |
---|
1631 | ! --------------------------------------------------------- |
---|
1632 | |
---|
1633 | if(water)then |
---|
1634 | do l = 1, nlayer |
---|
1635 | do ig=1,ngrid |
---|
1636 | call Psat_water(zt(ig,l),pplay(ig,l),psat_tmp,qsat(ig,l)) |
---|
1637 | RH(ig,l) = zq(ig,l,igcm_h2o_vap) / qsat(ig,l) |
---|
1638 | enddo |
---|
1639 | enddo |
---|
1640 | |
---|
1641 | ! compute maximum possible H2O column amount (100% saturation) |
---|
1642 | do ig=1,ngrid |
---|
1643 | H2Omaxcol(ig) = SUM( qsat(ig,:) * mass(ig,:)) |
---|
1644 | enddo |
---|
1645 | |
---|
1646 | endif |
---|
1647 | |
---|
1648 | |
---|
1649 | if (cursor == 1) then |
---|
1650 | print*,'--> Ls =',zls*180./pi |
---|
1651 | endif |
---|
1652 | ! ------------------------------------------------------------------- |
---|
1653 | ! Writing NetCDF file "RESTARTFI" at the end of the run |
---|
1654 | ! ------------------------------------------------------------------- |
---|
1655 | ! Note: 'restartfi' is stored just before dynamics are stored |
---|
1656 | ! in 'restart'. Between now and the writting of 'restart', |
---|
1657 | ! there will have been the itau=itau+1 instruction and |
---|
1658 | ! a reset of 'time' (lastacll = .true. when itau+1= itaufin) |
---|
1659 | ! thus we store for time=time+dtvr |
---|
1660 | |
---|
1661 | if(lastcall) then |
---|
1662 | ztime_fin = ptime + ptimestep/(float(iphysiq)*daysec) |
---|
1663 | |
---|
1664 | |
---|
1665 | ! Update surface ice distribution to iterate to steady state if requested |
---|
1666 | if(ice_update)then |
---|
1667 | |
---|
1668 | do ig=1,ngrid |
---|
1669 | |
---|
1670 | delta_ice = (qsurf(ig,igcm_h2o_ice)-ice_initial(ig)) |
---|
1671 | |
---|
1672 | ! add multiple years of evolution |
---|
1673 | qsurf_hist(ig,igcm_h2o_ice) = qsurf_hist(ig,igcm_h2o_ice) + delta_ice*icetstep |
---|
1674 | |
---|
1675 | ! if ice has gone -ve, set to zero |
---|
1676 | if(qsurf_hist(ig,igcm_h2o_ice).lt.0.0)then |
---|
1677 | qsurf_hist(ig,igcm_h2o_ice) = 0.0 |
---|
1678 | endif |
---|
1679 | |
---|
1680 | ! if ice is seasonal, set to zero (NEW) |
---|
1681 | if(ice_min(ig).lt.0.01)then |
---|
1682 | qsurf_hist(ig,igcm_h2o_ice) = 0.0 |
---|
1683 | endif |
---|
1684 | |
---|
1685 | enddo |
---|
1686 | |
---|
1687 | ! enforce ice conservation |
---|
1688 | ice_tot= SUM(qsurf_hist(:,igcm_h2o_ice)*area(:) ) |
---|
1689 | qsurf_hist(:,igcm_h2o_ice) = qsurf_hist(:,igcm_h2o_ice)*(icesrf/ice_tot) |
---|
1690 | |
---|
1691 | endif |
---|
1692 | |
---|
1693 | if (ngrid.ne.1) then |
---|
1694 | write(*,*)'PHYSIQ: for physdem ztime_fin =',ztime_fin |
---|
1695 | !#ifdef CPP_PARA |
---|
1696 | !! for now in parallel we use a different routine to write restartfi.nc |
---|
1697 | ! call phyredem(ngrid,"restartfi.nc", & |
---|
1698 | ! ptimestep,pday,ztime_fin,tsurf,tsoil,emis,q2,qsurf_hist, & |
---|
1699 | ! cloudfrac,totcloudfrac,hice) |
---|
1700 | !#else |
---|
1701 | ! call physdem1(ngrid,"restartfi.nc",long,lati,nsoilmx,nq, & |
---|
1702 | ! ptimestep,pday,ztime_fin,tsurf,tsoil,emis,q2,qsurf_hist, & |
---|
1703 | ! area,albedodat,inertiedat,zmea,zstd,zsig,zgam,zthe, & |
---|
1704 | ! cloudfrac,totcloudfrac,hice,noms) |
---|
1705 | !#endif |
---|
1706 | call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq, & |
---|
1707 | ptimestep,ztime_fin, & |
---|
1708 | tsurf,tsoil,emis,q2,qsurf_hist, & |
---|
1709 | cloudfrac,totcloudfrac,hice) |
---|
1710 | endif |
---|
1711 | |
---|
1712 | endif ! of if (lastcall) |
---|
1713 | |
---|
1714 | |
---|
1715 | ! ----------------------------------------------------------------- |
---|
1716 | ! Saving statistics : |
---|
1717 | ! ----------------------------------------------------------------- |
---|
1718 | ! ("stats" stores and accumulates 8 key variables in file "stats.nc" |
---|
1719 | ! which can later be used to make the statistic files of the run: |
---|
1720 | ! "stats") only possible in 3D runs ! |
---|
1721 | |
---|
1722 | |
---|
1723 | if (callstats) then |
---|
1724 | |
---|
1725 | call wstats(ngrid,"ps","Surface pressure","Pa",2,ps) |
---|
1726 | call wstats(ngrid,"tsurf","Surface temperature","K",2,tsurf) |
---|
1727 | call wstats(ngrid,"fluxsurf_lw", & |
---|
1728 | "Thermal IR radiative flux to surface","W.m-2",2, & |
---|
1729 | fluxsurf_lw) |
---|
1730 | ! call wstats(ngrid,"fluxsurf_sw", & |
---|
1731 | ! "Solar radiative flux to surface","W.m-2",2, & |
---|
1732 | ! fluxsurf_sw_tot) |
---|
1733 | call wstats(ngrid,"fluxtop_lw", & |
---|
1734 | "Thermal IR radiative flux to space","W.m-2",2, & |
---|
1735 | fluxtop_lw) |
---|
1736 | ! call wstats(ngrid,"fluxtop_sw", & |
---|
1737 | ! "Solar radiative flux to space","W.m-2",2, & |
---|
1738 | ! fluxtop_sw_tot) |
---|
1739 | |
---|
1740 | call wstats(ngrid,"ISR","incoming stellar rad.","W m-2",2,fluxtop_dn) |
---|
1741 | call wstats(ngrid,"ASR","absorbed stellar rad.","W m-2",2,fluxabs_sw) |
---|
1742 | call wstats(ngrid,"OLR","outgoing longwave rad.","W m-2",2,fluxtop_lw) |
---|
1743 | |
---|
1744 | call wstats(ngrid,"temp","Atmospheric temperature","K",3,zt) |
---|
1745 | call wstats(ngrid,"u","Zonal (East-West) wind","m.s-1",3,zu) |
---|
1746 | call wstats(ngrid,"v","Meridional (North-South) wind","m.s-1",3,zv) |
---|
1747 | call wstats(ngrid,"w","Vertical (down-up) wind","m.s-1",3,pw) |
---|
1748 | call wstats(ngrid,"q2","Boundary layer eddy kinetic energy","m2.s-2",3,q2) |
---|
1749 | |
---|
1750 | if (tracer) then |
---|
1751 | do iq=1,nq |
---|
1752 | call wstats(ngrid,noms(iq),noms(iq),'kg/kg',3,zq(1,1,iq)) |
---|
1753 | call wstats(ngrid,trim(noms(iq))//'_surf',trim(noms(iq))//'_surf', & |
---|
1754 | 'kg m^-2',2,qsurf(1,iq) ) |
---|
1755 | |
---|
1756 | call wstats(ngrid,trim(noms(iq))//'_col',trim(noms(iq))//'_col', & |
---|
1757 | 'kg m^-2',2,qcol(1,iq) ) |
---|
1758 | ! call wstats(ngrid,trim(noms(iq))//'_reff', & |
---|
1759 | ! trim(noms(iq))//'_reff', & |
---|
1760 | ! 'm',3,reffrad(1,1,iq)) |
---|
1761 | end do |
---|
1762 | if (water) then |
---|
1763 | vmr=zq(1:ngrid,1:nlayermx,igcm_h2o_vap)*mugaz/mmol(igcm_h2o_vap) |
---|
1764 | call wstats(ngrid,"vmr_h2ovapor", & |
---|
1765 | "H2O vapour volume mixing ratio","mol/mol", & |
---|
1766 | 3,vmr) |
---|
1767 | endif ! of if (water) |
---|
1768 | |
---|
1769 | endif !tracer |
---|
1770 | |
---|
1771 | if(lastcall) then |
---|
1772 | write (*,*) "Writing stats..." |
---|
1773 | call mkstats(ierr) |
---|
1774 | endif |
---|
1775 | endif !if callstats |
---|
1776 | |
---|
1777 | |
---|
1778 | ! ---------------------------------------------------------------------- |
---|
1779 | ! output in netcdf file "DIAGFI", containing any variable for diagnostic |
---|
1780 | ! (output with period "ecritphy", set in "run.def") |
---|
1781 | ! ---------------------------------------------------------------------- |
---|
1782 | ! writediagfi can also be called from any other subroutine for any variable. |
---|
1783 | ! but its preferable to keep all the calls in one place... |
---|
1784 | |
---|
1785 | call writediagfi(ngrid,"Ls","solar longitude","deg",0,zls*180./pi) |
---|
1786 | call writediagfi(ngrid,"tsurf","Surface temperature","K",2,tsurf) |
---|
1787 | call writediagfi(ngrid,"ps","Surface pressure","Pa",2,ps) |
---|
1788 | call writediagfi(ngrid,"temp","temperature","K",3,zt) |
---|
1789 | call writediagfi(ngrid,"teta","potential temperature","K",3,zh) |
---|
1790 | call writediagfi(ngrid,"u","Zonal wind","m.s-1",3,zu) |
---|
1791 | call writediagfi(ngrid,"v","Meridional wind","m.s-1",3,zv) |
---|
1792 | call writediagfi(ngrid,"w","Vertical wind","m.s-1",3,pw) |
---|
1793 | call writediagfi(ngrid,"p","Pressure","Pa",3,pplay) |
---|
1794 | |
---|
1795 | ! Subsurface temperatures |
---|
1796 | ! call writediagsoil(ngrid,"tsurf","Surface temperature","K",2,tsurf) |
---|
1797 | ! call writediagsoil(ngrid,"temp","temperature","K",3,tsoil) |
---|
1798 | |
---|
1799 | ! Total energy balance diagnostics |
---|
1800 | if(callrad.and.(.not.newtonian))then |
---|
1801 | call writediagfi(ngrid,"ALB","Surface albedo"," ",2,albedo) |
---|
1802 | call writediagfi(ngrid,"ISR","incoming stellar rad.","W m-2",2,fluxtop_dn) |
---|
1803 | call writediagfi(ngrid,"ASR","absorbed stellar rad.","W m-2",2,fluxabs_sw) |
---|
1804 | call writediagfi(ngrid,"OLR","outgoing longwave rad.","W m-2",2,fluxtop_lw) |
---|
1805 | call writediagfi(ngrid,"shad","rings"," ", 2, fract) |
---|
1806 | ! call writediagfi(ngrid,"ASRcs","absorbed stellar rad (cs).","W m-2",2,fluxabs_sw1) |
---|
1807 | ! call writediagfi(ngrid,"OLRcs","outgoing longwave rad (cs).","W m-2",2,fluxtop_lw1) |
---|
1808 | ! call writediagfi(ngrid,"fluxsurfsw","sw surface flux.","W m-2",2,fluxsurf_sw) |
---|
1809 | ! call writediagfi(ngrid,"fluxsurflw","lw back radiation.","W m-2",2,fluxsurf_lw) |
---|
1810 | ! call writediagfi(ngrid,"fluxsurfswcs","sw surface flux (cs).","W m-2",2,fluxsurf_sw1) |
---|
1811 | ! call writediagfi(ngrid,"fluxsurflwcs","lw back radiation (cs).","W m-2",2,fluxsurf_lw1) |
---|
1812 | call writediagfi(ngrid,"GND","heat flux from ground","W m-2",2,fluxgrd) |
---|
1813 | call writediagfi(ngrid,"DYN","dynamical heat input","W m-2",2,fluxdyn) |
---|
1814 | endif |
---|
1815 | |
---|
1816 | if(enertest) then |
---|
1817 | if (calldifv) then |
---|
1818 | call writediagfi(ngrid,"q2","turbulent kinetic energy","J.kg^-1",3,q2) |
---|
1819 | ! call writediagfi(ngrid,"dEzdiff","turbulent diffusion heating (-sensible flux)","w.m^-2",3,dEzdiff) |
---|
1820 | ! call writediagfi(ngrid,"dEdiff","integrated turbulent diffusion heating (-sensible flux)","w.m^-2",2,dEdiff) |
---|
1821 | ! call writediagfi(ngrid,"dEdiffs","In TurbDiff (correc rad+latent heat) surf nrj change","w.m^-2",2,dEdiffs) |
---|
1822 | call writediagfi(ngrid,"sensibFlux","sensible heat flux","w.m^-2",2,sensibFlux) |
---|
1823 | endif |
---|
1824 | if (corrk) then |
---|
1825 | call writediagfi(ngrid,"dEzradsw","radiative heating","w.m^-2",3,dEzradsw) |
---|
1826 | call writediagfi(ngrid,"dEzradlw","radiative heating","w.m^-2",3,dEzradlw) |
---|
1827 | endif |
---|
1828 | if(watercond) then |
---|
1829 | ! call writediagfi(ngrid,"lscaledEz","heat from largescale","W m-2",3,lscaledEz) |
---|
1830 | ! call writediagfi(ngrid,"madjdEz","heat from moistadj","W m-2",3,madjdEz) |
---|
1831 | call writediagfi(ngrid,"lscaledE","heat from largescale","W m-2",2,lscaledE) |
---|
1832 | call writediagfi(ngrid,"madjdE","heat from moistadj","W m-2",2,madjdE) |
---|
1833 | call writediagfi(ngrid,"qsatatm","atm qsat"," ",3,qsat) |
---|
1834 | ! call writediagfi(ngrid,"h2o_max_col","maximum H2O column amount","kg.m^-2",2,H2Omaxcol) |
---|
1835 | endif |
---|
1836 | endif |
---|
1837 | |
---|
1838 | ! Temporary inclusions for heating diagnostics |
---|
1839 | ! call writediagfi(ngrid,"zdtdyn","Dyn. heating","T s-1",3,zdtdyn) |
---|
1840 | call writediagfi(ngrid,"zdtsw","SW heating","T s-1",3,zdtsw) |
---|
1841 | call writediagfi(ngrid,"zdtlw","LW heating","T s-1",3,zdtlw) |
---|
1842 | call writediagfi(ngrid,"dtrad","radiative heating","K s-1",3,dtrad) |
---|
1843 | |
---|
1844 | ! debugging |
---|
1845 | !call writediagfi(ngrid,'rnat','Terrain type',' ',2,real(rnat)) |
---|
1846 | !call writediagfi(ngrid,'pphi','Geopotential',' ',3,pphi) |
---|
1847 | |
---|
1848 | ! Output aerosols |
---|
1849 | if (igcm_co2_ice.ne.0.and.iaero_co2.ne.0) & |
---|
1850 | call writediagfi(ngrid,'CO2ice_reff','CO2ice_reff','m',3,reffrad(1,1,iaero_co2)) |
---|
1851 | if (igcm_h2o_ice.ne.0.and.iaero_h2o.ne.0) & |
---|
1852 | call writediagfi(ngrid,'H2Oice_reff','H2Oice_reff','m',3,reffrad(:,:,iaero_h2o)) |
---|
1853 | if (igcm_co2_ice.ne.0.and.iaero_co2.ne.0) & |
---|
1854 | call writediagfi(ngrid,'CO2ice_reffcol','CO2ice_reffcol','um kg m^-2',2,reffcol(1,iaero_co2)) |
---|
1855 | if (igcm_h2o_ice.ne.0.and.iaero_h2o.ne.0) & |
---|
1856 | call writediagfi(ngrid,'H2Oice_reffcol','H2Oice_reffcol','um kg m^-2',2,reffcol(1,iaero_h2o)) |
---|
1857 | |
---|
1858 | ! Output tracers |
---|
1859 | if (tracer) then |
---|
1860 | do iq=1,nq |
---|
1861 | call writediagfi(ngrid,noms(iq),noms(iq),'kg/kg',3,zq(1,1,iq)) |
---|
1862 | ! call writediagfi(ngrid,trim(noms(iq))//'_surf',trim(noms(iq))//'_surf', & |
---|
1863 | ! 'kg m^-2',2,qsurf(1,iq) ) |
---|
1864 | call writediagfi(ngrid,trim(noms(iq))//'_surf',trim(noms(iq))//'_surf', & |
---|
1865 | 'kg m^-2',2,qsurf_hist(1,iq) ) |
---|
1866 | call writediagfi(ngrid,trim(noms(iq))//'_col',trim(noms(iq))//'_col', & |
---|
1867 | 'kg m^-2',2,qcol(1,iq) ) |
---|
1868 | |
---|
1869 | if(watercond.or.CLFvarying)then |
---|
1870 | call writediagfi(ngrid,"rneb_man","H2O cloud fraction (conv)"," ",3,rneb_man) |
---|
1871 | call writediagfi(ngrid,"rneb_lsc","H2O cloud fraction (large scale)"," ",3,rneb_lsc) |
---|
1872 | call writediagfi(ngrid,"CLF","H2O cloud fraction"," ",3,cloudfrac) |
---|
1873 | call writediagfi(ngrid,"CLFt","H2O column cloud fraction"," ",2,totcloudfrac) |
---|
1874 | call writediagfi(ngrid,"RH","relative humidity"," ",3,RH) |
---|
1875 | endif |
---|
1876 | |
---|
1877 | if(waterrain)then |
---|
1878 | call writediagfi(ngrid,"rain","rainfall","kg m-2 s-1",2,zdqsrain) |
---|
1879 | call writediagfi(ngrid,"snow","snowfall","kg m-2 s-1",2,zdqssnow) |
---|
1880 | endif |
---|
1881 | |
---|
1882 | if(hydrology)then |
---|
1883 | call writediagfi(ngrid,"hice","oceanic ice height","m",2,hice) |
---|
1884 | endif |
---|
1885 | |
---|
1886 | if(ice_update)then |
---|
1887 | call writediagfi(ngrid,"ice_min","min annual ice","m",2,ice_min) |
---|
1888 | call writediagfi(ngrid,"ice_ini","initial annual ice","m",2,ice_initial) |
---|
1889 | endif |
---|
1890 | |
---|
1891 | do ig=1,ngrid |
---|
1892 | if(tau_col(ig).gt.1.e3)then |
---|
1893 | ! print*,'WARNING: tau_col=',tau_col(ig) |
---|
1894 | ! print*,'at ig=',ig,'in PHYSIQ' |
---|
1895 | endif |
---|
1896 | end do |
---|
1897 | |
---|
1898 | call writediagfi(ngrid,"tau_col","Total aerosol optical depth","[]",2,tau_col) |
---|
1899 | |
---|
1900 | enddo |
---|
1901 | endif |
---|
1902 | |
---|
1903 | ! output spectrum |
---|
1904 | if(specOLR.and.corrk)then |
---|
1905 | call writediagspecIR(ngrid,"OLR3D","OLR(lon,lat,band)","W/m^2/cm^-1",3,OLR_nu) |
---|
1906 | call writediagspecVI(ngrid,"OSR3D","OSR(lon,lat,band)","W/m^2/cm^-1",3,OSR_nu) |
---|
1907 | endif |
---|
1908 | |
---|
1909 | icount=icount+1 |
---|
1910 | |
---|
1911 | if (lastcall) then |
---|
1912 | |
---|
1913 | ! deallocate gas variables |
---|
1914 | IF ( ALLOCATED( gnom ) ) DEALLOCATE( gnom ) |
---|
1915 | IF ( ALLOCATED( gfrac ) ) DEALLOCATE( gfrac ) ! both allocated in su_gases.F90 |
---|
1916 | |
---|
1917 | ! deallocate saved arrays |
---|
1918 | ! this is probably not that necessary |
---|
1919 | ! ... but probably a good idea to clean the place before we leave |
---|
1920 | IF ( ALLOCATED(tsurf)) DEALLOCATE(tsurf) |
---|
1921 | IF ( ALLOCATED(tsoil)) DEALLOCATE(tsoil) |
---|
1922 | IF ( ALLOCATED(albedo)) DEALLOCATE(albedo) |
---|
1923 | IF ( ALLOCATED(albedo0)) DEALLOCATE(albedo0) |
---|
1924 | IF ( ALLOCATED(rnat)) DEALLOCATE(rnat) |
---|
1925 | IF ( ALLOCATED(emis)) DEALLOCATE(emis) |
---|
1926 | IF ( ALLOCATED(dtrad)) DEALLOCATE(dtrad) |
---|
1927 | IF ( ALLOCATED(fluxrad_sky)) DEALLOCATE(fluxrad_sky) |
---|
1928 | IF ( ALLOCATED(fluxrad)) DEALLOCATE(fluxrad) |
---|
1929 | IF ( ALLOCATED(capcal)) DEALLOCATE(capcal) |
---|
1930 | IF ( ALLOCATED(fluxgrd)) DEALLOCATE(fluxgrd) |
---|
1931 | IF ( ALLOCATED(qsurf)) DEALLOCATE(qsurf) |
---|
1932 | IF ( ALLOCATED(q2)) DEALLOCATE(q2) |
---|
1933 | IF ( ALLOCATED(ztprevious)) DEALLOCATE(ztprevious) |
---|
1934 | IF ( ALLOCATED(cloudfrac)) DEALLOCATE(cloudfrac) |
---|
1935 | IF ( ALLOCATED(totcloudfrac)) DEALLOCATE(totcloudfrac) |
---|
1936 | IF ( ALLOCATED(qsurf_hist)) DEALLOCATE(qsurf_hist) |
---|
1937 | IF ( ALLOCATED(reffrad)) DEALLOCATE(reffrad) |
---|
1938 | IF ( ALLOCATED(nueffrad)) DEALLOCATE(nueffrad) |
---|
1939 | IF ( ALLOCATED(ice_initial)) DEALLOCATE(ice_initial) |
---|
1940 | IF ( ALLOCATED(ice_min)) DEALLOCATE(ice_min) |
---|
1941 | |
---|
1942 | IF ( ALLOCATED(fluxsurf_lw)) DEALLOCATE(fluxsurf_lw) |
---|
1943 | IF ( ALLOCATED(fluxsurf_sw)) DEALLOCATE(fluxsurf_sw) |
---|
1944 | IF ( ALLOCATED(fluxtop_lw)) DEALLOCATE(fluxtop_lw) |
---|
1945 | IF ( ALLOCATED(fluxabs_sw)) DEALLOCATE(fluxabs_sw) |
---|
1946 | IF ( ALLOCATED(fluxtop_dn)) DEALLOCATE(fluxtop_dn) |
---|
1947 | IF ( ALLOCATED(fluxdyn)) DEALLOCATE(fluxdyn) |
---|
1948 | IF ( ALLOCATED(OLR_nu)) DEALLOCATE(OLR_nu) |
---|
1949 | IF ( ALLOCATED(OSR_nu)) DEALLOCATE(OSR_nu) |
---|
1950 | IF ( ALLOCATED(sensibFlux)) DEALLOCATE(sensibFlux) |
---|
1951 | IF ( ALLOCATED(zdtlw)) DEALLOCATE(zdtlw) |
---|
1952 | IF ( ALLOCATED(zdtsw)) DEALLOCATE(zdtsw) |
---|
1953 | IF ( ALLOCATED(tau_col)) DEALLOCATE(tau_col) |
---|
1954 | |
---|
1955 | !! this is defined in comsaison_h |
---|
1956 | IF ( ALLOCATED(mu0)) DEALLOCATE(mu0) |
---|
1957 | |
---|
1958 | IF ( ALLOCATED(fract)) DEALLOCATE(fract) |
---|
1959 | |
---|
1960 | |
---|
1961 | !! this is defined in radcommon_h |
---|
1962 | IF ( ALLOCATED(eclipse)) DEALLOCATE(eclipse) |
---|
1963 | |
---|
1964 | !! this is defined in comsoil_h |
---|
1965 | IF ( ALLOCATED(layer)) DEALLOCATE(layer) |
---|
1966 | IF ( ALLOCATED(mlayer)) DEALLOCATE(mlayer) |
---|
1967 | IF ( ALLOCATED(inertiedat)) DEALLOCATE(inertiedat) |
---|
1968 | |
---|
1969 | !! this is defined in surfdat_h |
---|
1970 | IF ( ALLOCATED(albedodat)) DEALLOCATE(albedodat) |
---|
1971 | IF ( ALLOCATED(phisfi)) DEALLOCATE(phisfi) |
---|
1972 | IF ( ALLOCATED(zmea)) DEALLOCATE(zmea) |
---|
1973 | IF ( ALLOCATED(zstd)) DEALLOCATE(zstd) |
---|
1974 | IF ( ALLOCATED(zsig)) DEALLOCATE(zsig) |
---|
1975 | IF ( ALLOCATED(zgam)) DEALLOCATE(zgam) |
---|
1976 | IF ( ALLOCATED(zthe)) DEALLOCATE(zthe) |
---|
1977 | IF ( ALLOCATED(dryness)) DEALLOCATE(dryness) |
---|
1978 | IF ( ALLOCATED(watercaptag)) DEALLOCATE(watercaptag) |
---|
1979 | |
---|
1980 | !! this is defined in tracer_h |
---|
1981 | IF ( ALLOCATED(noms)) DEALLOCATE(noms) |
---|
1982 | IF ( ALLOCATED(mmol)) DEALLOCATE(mmol) |
---|
1983 | IF ( ALLOCATED(radius)) DEALLOCATE(radius) |
---|
1984 | IF ( ALLOCATED(rho_q)) DEALLOCATE(rho_q) |
---|
1985 | IF ( ALLOCATED(qext)) DEALLOCATE(qext) |
---|
1986 | IF ( ALLOCATED(alpha_lift)) DEALLOCATE(alpha_lift) |
---|
1987 | IF ( ALLOCATED(alpha_devil)) DEALLOCATE(alpha_devil) |
---|
1988 | IF ( ALLOCATED(qextrhor)) DEALLOCATE(qextrhor) |
---|
1989 | IF ( ALLOCATED(igcm_dustbin)) DEALLOCATE(igcm_dustbin) |
---|
1990 | |
---|
1991 | !! this is defined in comgeomfi_h |
---|
1992 | IF ( ALLOCATED(lati)) DEALLOCATE(lati) |
---|
1993 | IF ( ALLOCATED(long)) DEALLOCATE(long) |
---|
1994 | IF ( ALLOCATED(area)) DEALLOCATE(area) |
---|
1995 | IF ( ALLOCATED(sinlat)) DEALLOCATE(sinlat) |
---|
1996 | IF ( ALLOCATED(coslat)) DEALLOCATE(coslat) |
---|
1997 | IF ( ALLOCATED(sinlon)) DEALLOCATE(sinlon) |
---|
1998 | IF ( ALLOCATED(coslon)) DEALLOCATE(coslon) |
---|
1999 | endif |
---|
2000 | |
---|
2001 | return |
---|
2002 | end subroutine physiq |
---|