[751] | 1 | subroutine physiq(ngrid,nlayer,nq, & |
---|
[253] | 2 | firstcall,lastcall, & |
---|
| 3 | pday,ptime,ptimestep, & |
---|
| 4 | pplev,pplay,pphi, & |
---|
| 5 | pu,pv,pt,pq, & |
---|
| 6 | pw, & |
---|
| 7 | pdu,pdv,pdt,pdq,pdpsrf,tracerdyn) |
---|
| 8 | |
---|
[726] | 9 | use radinc_h, only : L_NSPECTI,L_NSPECTV,naerkind |
---|
[728] | 10 | use watercommon_h, only : RLVTT, Psat_water |
---|
[471] | 11 | use gases_h |
---|
[600] | 12 | use radcommon_h, only: sigma |
---|
[728] | 13 | use radii_mod, only: h2o_reffrad, co2_reffrad |
---|
[726] | 14 | use aerosol_mod |
---|
[253] | 15 | implicit none |
---|
| 16 | |
---|
| 17 | |
---|
| 18 | !================================================================== |
---|
| 19 | ! |
---|
| 20 | ! Purpose |
---|
| 21 | ! ------- |
---|
| 22 | ! Central subroutine for all the physics parameterisations in the |
---|
| 23 | ! universal model. Originally adapted from the Mars LMDZ model. |
---|
| 24 | ! |
---|
| 25 | ! The model can be run without or with tracer transport |
---|
| 26 | ! depending on the value of "tracer" in file "callphys.def". |
---|
| 27 | ! |
---|
| 28 | ! |
---|
| 29 | ! It includes: |
---|
| 30 | ! |
---|
| 31 | ! 1. Initialization: |
---|
| 32 | ! 1.1 Firstcall initializations |
---|
| 33 | ! 1.2 Initialization for every call to physiq |
---|
| 34 | ! 1.2.5 Compute mean mass and cp, R and thermal conduction coeff. |
---|
| 35 | ! 2. Compute radiative transfer tendencies |
---|
| 36 | ! (longwave and shortwave). |
---|
| 37 | ! 4. Vertical diffusion (turbulent mixing): |
---|
| 38 | ! 5. Convective adjustment |
---|
| 39 | ! 6. Condensation and sublimation of gases (currently just CO2). |
---|
| 40 | ! 7. TRACERS |
---|
| 41 | ! 7a. water and water ice |
---|
| 42 | ! 7c. other schemes for tracer transport (lifting, sedimentation) |
---|
| 43 | ! 7d. updates (pressure variations, surface budget) |
---|
| 44 | ! 9. Surface and sub-surface temperature calculations |
---|
| 45 | ! 10. Write outputs : |
---|
| 46 | ! - "startfi", "histfi" if it's time |
---|
| 47 | ! - Saving statistics if "callstats = .true." |
---|
| 48 | ! - Output any needed variables in "diagfi" |
---|
| 49 | ! 10. Diagnostics: mass conservation of tracers, radiative energy balance etc. |
---|
| 50 | ! |
---|
| 51 | ! arguments |
---|
| 52 | ! --------- |
---|
| 53 | ! |
---|
| 54 | ! input |
---|
| 55 | ! ----- |
---|
| 56 | ! ecri period (in dynamical timestep) to write output |
---|
| 57 | ! ngrid Size of the horizontal grid. |
---|
| 58 | ! All internal loops are performed on that grid. |
---|
| 59 | ! nlayer Number of vertical layers. |
---|
| 60 | ! nq Number of advected fields |
---|
| 61 | ! firstcall True at the first call |
---|
| 62 | ! lastcall True at the last call |
---|
| 63 | ! pday Number of days counted from the North. Spring |
---|
| 64 | ! equinoxe. |
---|
| 65 | ! ptime Universal time (0<ptime<1): ptime=0.5 at 12:00 UT |
---|
| 66 | ! ptimestep timestep (s) |
---|
| 67 | ! pplay(ngrid,nlayer) Pressure at the middle of the layers (Pa) |
---|
| 68 | ! pplev(ngrid,nlayer+1) intermediate pressure levels (pa) |
---|
| 69 | ! pphi(ngrid,nlayer) Geopotential at the middle of the layers (m2s-2) |
---|
| 70 | ! pu(ngrid,nlayer) u component of the wind (ms-1) |
---|
| 71 | ! pv(ngrid,nlayer) v component of the wind (ms-1) |
---|
| 72 | ! pt(ngrid,nlayer) Temperature (K) |
---|
| 73 | ! pq(ngrid,nlayer,nq) Advected fields |
---|
| 74 | ! pudyn(ngrid,nlayer) \ |
---|
| 75 | ! pvdyn(ngrid,nlayer) \ Dynamical temporal derivative for the |
---|
| 76 | ! ptdyn(ngrid,nlayer) / corresponding variables |
---|
| 77 | ! pqdyn(ngrid,nlayer,nq) / |
---|
| 78 | ! pw(ngrid,?) vertical velocity |
---|
| 79 | ! |
---|
| 80 | ! output |
---|
| 81 | ! ------ |
---|
| 82 | ! |
---|
| 83 | ! pdu(ngrid,nlayermx) \ |
---|
| 84 | ! pdv(ngrid,nlayermx) \ Temporal derivative of the corresponding |
---|
| 85 | ! pdt(ngrid,nlayermx) / variables due to physical processes. |
---|
| 86 | ! pdq(ngrid,nlayermx) / |
---|
| 87 | ! pdpsrf(ngrid) / |
---|
| 88 | ! tracerdyn call tracer in dynamical part of GCM ? |
---|
| 89 | ! |
---|
| 90 | ! |
---|
| 91 | ! Authors |
---|
| 92 | ! ------- |
---|
| 93 | ! Frederic Hourdin 15/10/93 |
---|
| 94 | ! Francois Forget 1994 |
---|
| 95 | ! Christophe Hourdin 02/1997 |
---|
| 96 | ! Subroutine completely rewritten by F. Forget (01/2000) |
---|
| 97 | ! Water ice clouds: Franck Montmessin (update 06/2003) |
---|
| 98 | ! Radiatively active tracers: J.-B. Madeleine (10/2008-06/2009) |
---|
| 99 | ! New correlated-k radiative scheme: R. Wordsworth (2009) |
---|
| 100 | ! Many specifically Martian subroutines removed: R. Wordsworth (2009) |
---|
| 101 | ! Improved water cycle: R. Wordsworth / B. Charnay (2010) |
---|
| 102 | ! To F90: R. Wordsworth (2010) |
---|
[594] | 103 | ! New turbulent diffusion scheme: J. Leconte (2012) |
---|
[716] | 104 | ! Loops converted to F90 matrix format: J. Leconte (2012) |
---|
[253] | 105 | ! |
---|
| 106 | !================================================================== |
---|
| 107 | |
---|
| 108 | |
---|
| 109 | ! 0. Declarations : |
---|
| 110 | ! ------------------ |
---|
| 111 | |
---|
| 112 | #include "dimensions.h" |
---|
| 113 | #include "dimphys.h" |
---|
| 114 | #include "comgeomfi.h" |
---|
| 115 | #include "surfdat.h" |
---|
| 116 | #include "comsoil.h" |
---|
| 117 | #include "comdiurn.h" |
---|
| 118 | #include "callkeys.h" |
---|
| 119 | #include "comcstfi.h" |
---|
| 120 | #include "planete.h" |
---|
| 121 | #include "comsaison.h" |
---|
| 122 | #include "control.h" |
---|
| 123 | #include "tracer.h" |
---|
| 124 | #include "watercap.h" |
---|
| 125 | #include "netcdf.inc" |
---|
| 126 | |
---|
| 127 | ! Arguments : |
---|
| 128 | ! ----------- |
---|
| 129 | |
---|
| 130 | ! inputs: |
---|
| 131 | ! ------- |
---|
| 132 | integer ngrid,nlayer,nq |
---|
| 133 | real ptimestep |
---|
| 134 | real pplev(ngridmx,nlayer+1),pplay(ngridmx,nlayer) |
---|
| 135 | real pphi(ngridmx,nlayer) |
---|
| 136 | real pu(ngridmx,nlayer),pv(ngridmx,nlayer) |
---|
| 137 | real pt(ngridmx,nlayer),pq(ngridmx,nlayer,nq) |
---|
| 138 | real pw(ngridmx,nlayer) ! pvervel transmitted by dyn3d |
---|
| 139 | real zh(ngridmx,nlayermx) ! potential temperature (K) |
---|
| 140 | logical firstcall,lastcall |
---|
| 141 | |
---|
| 142 | real pday |
---|
| 143 | real ptime |
---|
| 144 | logical tracerdyn |
---|
| 145 | |
---|
| 146 | ! outputs: |
---|
| 147 | ! -------- |
---|
| 148 | ! physical tendencies |
---|
| 149 | real pdu(ngridmx,nlayer),pdv(ngridmx,nlayer) |
---|
| 150 | real pdt(ngridmx,nlayer),pdq(ngridmx,nlayer,nq) |
---|
| 151 | real pdpsrf(ngridmx) ! surface pressure tendency |
---|
| 152 | |
---|
| 153 | |
---|
| 154 | ! Local saved variables: |
---|
| 155 | ! ---------------------- |
---|
| 156 | ! aerosol (dust or ice) extinction optical depth at reference wavelength |
---|
| 157 | ! "longrefvis" set in dimradmars.h , for one of the "naerkind" kind of |
---|
| 158 | ! aerosol optical properties: |
---|
| 159 | ! real aerosol(ngridmx,nlayermx,naerkind) |
---|
| 160 | ! this is now internal to callcorrk and hence no longer needed here |
---|
| 161 | |
---|
| 162 | integer day_ini ! Initial date of the run (sol since Ls=0) |
---|
| 163 | integer icount ! counter of calls to physiq during the run. |
---|
| 164 | real tsurf(ngridmx) ! Surface temperature (K) |
---|
| 165 | real tsoil(ngridmx,nsoilmx) ! sub-surface temperatures (K) |
---|
| 166 | real albedo(ngridmx) ! Surface albedo |
---|
| 167 | |
---|
| 168 | real albedo0(ngridmx) ! Surface albedo |
---|
| 169 | integer rnat(ngridmx) ! added by BC |
---|
| 170 | save rnat |
---|
| 171 | |
---|
| 172 | real emis(ngridmx) ! Thermal IR surface emissivity |
---|
| 173 | real dtrad(ngridmx,nlayermx) ! Net atm. radiative heating rate (K.s-1) |
---|
| 174 | real fluxrad_sky(ngridmx) ! rad. flux from sky absorbed by surface (W.m-2) |
---|
| 175 | real fluxrad(ngridmx) ! Net radiative surface flux (W.m-2) |
---|
| 176 | real capcal(ngridmx) ! surface heat capacity (J m-2 K-1) |
---|
| 177 | real fluxgrd(ngridmx) ! surface conduction flux (W.m-2) |
---|
| 178 | real qsurf(ngridmx,nqmx) ! tracer on surface (e.g. kg.m-2) |
---|
| 179 | real q2(ngridmx,nlayermx+1) ! Turbulent Kinetic Energy |
---|
| 180 | |
---|
| 181 | save day_ini, icount |
---|
| 182 | save tsurf,tsoil |
---|
| 183 | save albedo0,albedo,emis,q2 |
---|
| 184 | save capcal,fluxgrd,dtrad,fluxrad,fluxrad_sky,qsurf |
---|
| 185 | |
---|
| 186 | ! Local variables : |
---|
| 187 | ! ----------------- |
---|
| 188 | |
---|
| 189 | ! aerosol (dust or ice) extinction optical depth at reference wavelength |
---|
| 190 | ! for the "naerkind" optically active aerosols: |
---|
| 191 | real aerosol(ngridmx,nlayermx,naerkind) |
---|
| 192 | |
---|
| 193 | character*80 fichier |
---|
[728] | 194 | integer l,ig,ierr,iq,iaer |
---|
[253] | 195 | |
---|
| 196 | real fluxsurf_lw(ngridmx) ! incident LW (IR) surface flux (W.m-2) |
---|
| 197 | real fluxsurf_sw(ngridmx) ! incident SW (stellar) surface flux (W.m-2) |
---|
| 198 | real fluxtop_lw(ngridmx) ! Outgoing LW (IR) flux to space (W.m-2) |
---|
| 199 | real fluxabs_sw(ngridmx) ! Absorbed SW (stellar) flux (W.m-2) |
---|
| 200 | |
---|
| 201 | real fluxtop_dn(ngridmx) |
---|
| 202 | real fluxdyn(ngridmx) ! horizontal heat transport by dynamics |
---|
[526] | 203 | real OLR_nu(ngridmx,L_NSPECTI)! Outgoing LW radition in each band (Normalized to the band width (W/m2/cm-1) |
---|
| 204 | real OSR_nu(ngridmx,L_NSPECTV)! Outgoing SW radition in each band (Normalized to the band width (W/m2/cm-1) |
---|
[594] | 205 | |
---|
[597] | 206 | real,save :: sensibFlux(ngridmx) ! turbulent flux given by the atm to the surface |
---|
[594] | 207 | |
---|
[597] | 208 | save fluxsurf_lw,fluxsurf_sw,fluxtop_lw,fluxabs_sw,fluxtop_dn,fluxdyn,OLR_nu,OSR_nu |
---|
[253] | 209 | |
---|
| 210 | |
---|
| 211 | real zls ! solar longitude (rad) |
---|
| 212 | real zday ! date (time since Ls=0, in martian days) |
---|
| 213 | real zzlay(ngridmx,nlayermx) ! altitude at the middle of the layers |
---|
| 214 | real zzlev(ngridmx,nlayermx+1) ! altitude at layer boundaries |
---|
| 215 | real latvl1,lonvl1 ! Viking Lander 1 point (for diagnostic) |
---|
| 216 | |
---|
| 217 | ! Tendencies due to various processes: |
---|
| 218 | real dqsurf(ngridmx,nqmx) |
---|
[588] | 219 | real,save :: zdtlw(ngridmx,nlayermx) ! (K/s) |
---|
| 220 | real,save :: zdtsw(ngridmx,nlayermx) ! (K/s) |
---|
[253] | 221 | |
---|
| 222 | real cldtlw(ngridmx,nlayermx) ! (K/s) LW heating rate for clear areas |
---|
| 223 | real cldtsw(ngridmx,nlayermx) ! (K/s) SW heating rate for clear areas |
---|
| 224 | real zdtsurf(ngridmx) ! (K/s) |
---|
| 225 | real dtlscale(ngridmx,nlayermx) |
---|
| 226 | real zdvdif(ngridmx,nlayermx),zdudif(ngridmx,nlayermx) ! (m.s-2) |
---|
| 227 | real zdhdif(ngridmx,nlayermx), zdtsdif(ngridmx) ! (K/s) |
---|
[597] | 228 | real zdtdif(ngridmx,nlayermx) ! (K/s) |
---|
[253] | 229 | real zdvadj(ngridmx,nlayermx),zduadj(ngridmx,nlayermx) ! (m.s-2) |
---|
| 230 | real zdhadj(ngridmx,nlayermx) ! (K/s) |
---|
| 231 | real zdtgw(ngridmx,nlayermx) ! (K/s) |
---|
[728] | 232 | real zdtmr(ngridmx,nlayermx) |
---|
[253] | 233 | real zdugw(ngridmx,nlayermx),zdvgw(ngridmx,nlayermx) ! (m.s-2) |
---|
| 234 | real zdtc(ngridmx,nlayermx),zdtsurfc(ngridmx) |
---|
| 235 | real zdvc(ngridmx,nlayermx),zduc(ngridmx,nlayermx) |
---|
[728] | 236 | real zdumr(ngridmx,nlayermx),zdvmr(ngridmx,nlayermx) |
---|
| 237 | real zdtsurfmr(ngridmx) |
---|
| 238 | |
---|
| 239 | real zdmassmr(ngridmx,nlayermx),zdpsrfmr(ngridmx) |
---|
[253] | 240 | |
---|
| 241 | real zdqdif(ngridmx,nlayermx,nqmx), zdqsdif(ngridmx,nqmx) |
---|
[728] | 242 | real zdqevap(ngridmx,nlayermx) |
---|
[253] | 243 | real zdqsed(ngridmx,nlayermx,nqmx), zdqssed(ngridmx,nqmx) |
---|
| 244 | real zdqdev(ngridmx,nlayermx,nqmx), zdqsdev(ngridmx,nqmx) |
---|
| 245 | real zdqadj(ngridmx,nlayermx,nqmx) |
---|
| 246 | real zdqc(ngridmx,nlayermx,nqmx) |
---|
[728] | 247 | real zdqmr(ngridmx,nlayermx,nqmx),zdqsurfmr(ngridmx,nqmx) |
---|
[253] | 248 | real zdqlscale(ngridmx,nlayermx,nqmx) |
---|
| 249 | real zdqslscale(ngridmx,nqmx) |
---|
| 250 | real zdqchim(ngridmx,nlayermx,nqmx) |
---|
| 251 | real zdqschim(ngridmx,nqmx) |
---|
| 252 | |
---|
| 253 | real zdteuv(ngridmx,nlayermx) ! (K/s) |
---|
| 254 | real zdtconduc(ngridmx,nlayermx) ! (K/s) |
---|
| 255 | real zdumolvis(ngridmx,nlayermx) |
---|
| 256 | real zdvmolvis(ngridmx,nlayermx) |
---|
| 257 | real zdqmoldiff(ngridmx,nlayermx,nqmx) |
---|
| 258 | |
---|
| 259 | ! Local variables for local calculations: |
---|
| 260 | real zflubid(ngridmx) |
---|
| 261 | real zplanck(ngridmx),zpopsk(ngridmx,nlayermx) |
---|
| 262 | real zdum1(ngridmx,nlayermx) |
---|
| 263 | real zdum2(ngridmx,nlayermx) |
---|
| 264 | real ztim1,ztim2,ztim3, z1,z2 |
---|
| 265 | real ztime_fin |
---|
| 266 | real zdh(ngridmx,nlayermx) |
---|
| 267 | integer length |
---|
| 268 | parameter (length=100) |
---|
| 269 | |
---|
| 270 | ! local variables only used for diagnostics (output in file "diagfi" or "stats") |
---|
| 271 | ! ------------------------------------------------------------------------------ |
---|
| 272 | real ps(ngridmx), zt(ngridmx,nlayermx) |
---|
| 273 | real zu(ngridmx,nlayermx),zv(ngridmx,nlayermx) |
---|
| 274 | real zq(ngridmx,nlayermx,nqmx) |
---|
| 275 | character*2 str2 |
---|
| 276 | character*5 str5 |
---|
[597] | 277 | real zdtadj(ngridmx,nlayermx) |
---|
[253] | 278 | real zdtdyn(ngridmx,nlayermx),ztprevious(ngridmx,nlayermx) |
---|
| 279 | save ztprevious |
---|
| 280 | real reff(ngridmx,nlayermx) ! effective dust radius (used if doubleq=T) |
---|
| 281 | real qtot1,qtot2 ! total aerosol mass |
---|
| 282 | integer igmin, lmin |
---|
| 283 | logical tdiag |
---|
| 284 | |
---|
| 285 | real zplev(ngrid,nlayermx+1),zplay(ngrid,nlayermx) |
---|
| 286 | real zstress(ngrid), cd |
---|
| 287 | real hco2(nqmx), tmean, zlocal(nlayermx) |
---|
| 288 | real vmr(ngridmx,nlayermx) ! volume mixing ratio |
---|
| 289 | |
---|
| 290 | real time_phys |
---|
| 291 | |
---|
| 292 | ! reinstated by RW for diagnostic |
---|
| 293 | real tau_col(ngridmx) |
---|
| 294 | save tau_col |
---|
[597] | 295 | |
---|
[253] | 296 | ! included by RW to reduce insanity of code |
---|
| 297 | real ISR,ASR,OLR,GND,DYN,GSR,Ts1,Ts2,Ts3,TsS |
---|
| 298 | |
---|
| 299 | ! included by RW to compute tracer column densities |
---|
| 300 | real qcol(ngridmx,nqmx) |
---|
| 301 | |
---|
| 302 | ! included by RW for H2O precipitation |
---|
| 303 | real zdtrain(ngridmx,nlayermx) |
---|
| 304 | real zdqrain(ngridmx,nlayermx,nqmx) |
---|
| 305 | real zdqsrain(ngridmx) |
---|
| 306 | real zdqssnow(ngridmx) |
---|
| 307 | real rainout(ngridmx) |
---|
| 308 | |
---|
| 309 | ! included by RW for H2O Manabe scheme |
---|
| 310 | real dtmoist(ngridmx,nlayermx) |
---|
| 311 | real dqmoist(ngridmx,nlayermx,nqmx) |
---|
| 312 | |
---|
| 313 | real qvap(ngridmx,nlayermx) |
---|
| 314 | real dqvaplscale(ngridmx,nlayermx) |
---|
| 315 | real dqcldlscale(ngridmx,nlayermx) |
---|
| 316 | real rneb_man(ngridmx,nlayermx) |
---|
| 317 | real rneb_lsc(ngridmx,nlayermx) |
---|
| 318 | |
---|
| 319 | ! included by RW to account for surface cooling by evaporation |
---|
| 320 | real dtsurfh2olat(ngridmx) |
---|
| 321 | |
---|
[597] | 322 | |
---|
[594] | 323 | ! to test energy conservation (RW+JL) |
---|
[651] | 324 | real mass(ngridmx,nlayermx),massarea(ngridmx,nlayermx) |
---|
| 325 | real dEtot, dEtots, AtmToSurf_TurbFlux |
---|
[253] | 326 | real dEtotSW, dEtotsSW, dEtotLW, dEtotsLW |
---|
[622] | 327 | real dEzRadsw(ngridmx,nlayermx),dEzRadlw(ngridmx,nlayermx),dEzdiff(ngridmx,nlayermx) |
---|
| 328 | real dEdiffs(ngridmx),dEdiff(ngridmx) |
---|
[594] | 329 | real madjdE(ngridmx), lscaledE(ngridmx) |
---|
| 330 | !JL12 conservation test for mean flow kinetic energy has been disabled temporarily |
---|
| 331 | |
---|
[253] | 332 | real dItot, dVtot |
---|
| 333 | |
---|
| 334 | ! included by BC for evaporation |
---|
| 335 | real qevap(ngridmx,nlayermx,nqmx) |
---|
| 336 | real tevap(ngridmx,nlayermx) |
---|
[728] | 337 | real dqevap1(ngridmx,nlayermx) |
---|
| 338 | real dtevap1(ngridmx,nlayermx) |
---|
[253] | 339 | |
---|
| 340 | ! included by BC for hydrology |
---|
| 341 | real hice(ngridmx) |
---|
| 342 | |
---|
| 343 | ! included by RW to test water conservation (by routine) |
---|
[594] | 344 | real h2otot |
---|
[253] | 345 | real dWtot, dWtots |
---|
| 346 | real h2o_surf_all |
---|
| 347 | logical watertest |
---|
| 348 | save watertest |
---|
| 349 | |
---|
| 350 | ! included by RW for RH diagnostic |
---|
[728] | 351 | real qsat(ngridmx,nlayermx), RH(ngridmx,nlayermx), H2Omaxcol(ngridmx),psat_tmp |
---|
[253] | 352 | |
---|
| 353 | ! included by RW for hydrology |
---|
| 354 | real dqs_hyd(ngridmx,nqmx) |
---|
| 355 | real zdtsurf_hyd(ngridmx) |
---|
| 356 | |
---|
| 357 | ! included by RW for water cycle conservation tests |
---|
| 358 | real icesrf,liqsrf,icecol,vapcol |
---|
| 359 | |
---|
| 360 | ! included by BC for double radiative transfer call |
---|
| 361 | logical clearsky |
---|
[526] | 362 | real zdtsw1(ngridmx,nlayermx) |
---|
| 363 | real zdtlw1(ngridmx,nlayermx) |
---|
| 364 | real fluxsurf_lw1(ngridmx) |
---|
| 365 | real fluxsurf_sw1(ngridmx) |
---|
| 366 | real fluxtop_lw1(ngridmx) |
---|
| 367 | real fluxabs_sw1(ngridmx) |
---|
| 368 | real tau_col1(ngrid) |
---|
| 369 | real OLR_nu1(ngrid,L_NSPECTI) |
---|
| 370 | real OSR_nu1(ngrid,L_NSPECTV) |
---|
[253] | 371 | real tf, ntf |
---|
| 372 | |
---|
| 373 | ! included by BC for cloud fraction computations |
---|
[728] | 374 | real,save :: cloudfrac(ngridmx,nlayermx) |
---|
| 375 | real,save :: totcloudfrac(ngridmx) |
---|
[253] | 376 | |
---|
| 377 | ! included by RW for vdifc water conservation test |
---|
| 378 | real nconsMAX |
---|
| 379 | real vdifcncons(ngridmx) |
---|
| 380 | real cadjncons(ngridmx) |
---|
| 381 | |
---|
| 382 | ! double precision qsurf_hist(ngridmx,nqmx) |
---|
| 383 | real qsurf_hist(ngridmx,nqmx) |
---|
| 384 | save qsurf_hist |
---|
| 385 | |
---|
| 386 | ! included by RW for temp convadj conservation test |
---|
| 387 | real playtest(nlayermx) |
---|
| 388 | real plevtest(nlayermx) |
---|
| 389 | real ttest(nlayermx) |
---|
| 390 | real qtest(nlayermx) |
---|
| 391 | integer igtest |
---|
| 392 | |
---|
[305] | 393 | ! included by RW for runway greenhouse 1D study |
---|
| 394 | real muvar(ngridmx,nlayermx+1) |
---|
[253] | 395 | |
---|
| 396 | ! included by RW for variable H2O particle sizes |
---|
[728] | 397 | real,save :: reffrad(ngridmx,nlayermx,naerkind) ! aerosol effective radius (m) |
---|
| 398 | real,save :: nueffrad(ngridmx,nlayermx,naerkind) ! aerosol effective radius variance |
---|
| 399 | real :: reffh2oliq(ngridmx,nlayermx) ! liquid water particles effective radius (m) |
---|
| 400 | real :: reffh2oice(ngridmx,nlayermx) ! water ice particles effective radius (m) |
---|
[253] | 401 | real reffH2O(ngridmx,nlayermx) |
---|
[726] | 402 | real reffcol(ngridmx,naerkind) |
---|
[253] | 403 | |
---|
| 404 | ! included by RW for sourceevol |
---|
[728] | 405 | real, save :: ice_initial(ngridmx)!, isoil |
---|
[305] | 406 | real delta_ice,ice_tot |
---|
[728] | 407 | real, save :: ice_min(ngridmx) |
---|
| 408 | |
---|
[253] | 409 | integer num_run |
---|
[728] | 410 | logical,save :: ice_update |
---|
| 411 | |
---|
[253] | 412 | !======================================================================= |
---|
| 413 | |
---|
| 414 | |
---|
| 415 | ! 1. Initialisation |
---|
| 416 | ! ----------------- |
---|
| 417 | |
---|
| 418 | ! 1.1 Initialisation only at first call |
---|
| 419 | ! --------------------------------------- |
---|
| 420 | if (firstcall) then |
---|
| 421 | |
---|
| 422 | |
---|
| 423 | ! variables set to 0 |
---|
| 424 | ! ~~~~~~~~~~~~~~~~~~ |
---|
| 425 | dtrad(:,:) = 0.0 |
---|
| 426 | fluxrad(:) = 0.0 |
---|
| 427 | tau_col(:) = 0.0 |
---|
| 428 | zdtsw(:,:) = 0.0 |
---|
| 429 | zdtlw(:,:) = 0.0 |
---|
[726] | 430 | |
---|
| 431 | ! initialize aerosol indexes |
---|
| 432 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 433 | call iniaerosol() |
---|
| 434 | |
---|
[253] | 435 | |
---|
| 436 | ! initialize tracer names, indexes and properties |
---|
| 437 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 438 | tracerdyn=tracer |
---|
| 439 | if (tracer) then |
---|
| 440 | call initracer() |
---|
| 441 | endif ! end tracer |
---|
| 442 | |
---|
[726] | 443 | ! |
---|
| 444 | |
---|
[253] | 445 | ! read startfi (initial parameters) |
---|
| 446 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 447 | call phyetat0("startfi.nc",0,0,nsoilmx,nq, & |
---|
| 448 | day_ini,time_phys,tsurf,tsoil,emis,q2,qsurf, & |
---|
| 449 | cloudfrac,totcloudfrac,hice) |
---|
| 450 | |
---|
| 451 | if (pday.ne.day_ini) then |
---|
| 452 | write(*,*) "ERROR in physiq.F90:" |
---|
| 453 | write(*,*) "bad synchronization between physics and dynamics" |
---|
| 454 | write(*,*) "dynamics day: ",pday |
---|
| 455 | write(*,*) "physics day: ",day_ini |
---|
| 456 | stop |
---|
| 457 | endif |
---|
| 458 | |
---|
| 459 | write (*,*) 'In physiq day_ini =', day_ini |
---|
| 460 | |
---|
| 461 | ! Initialize albedo and orbital calculation |
---|
| 462 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 463 | call surfini(ngrid,qsurf,albedo0) |
---|
| 464 | call iniorbit(apoastr,periastr,year_day,peri_day,obliquit) |
---|
| 465 | |
---|
[728] | 466 | albedo(:)=albedo0(:) |
---|
[253] | 467 | |
---|
| 468 | if(tlocked)then |
---|
| 469 | print*,'Planet is tidally locked at resonance n=',nres |
---|
| 470 | print*,'Make sure you have the right rotation rate!!!' |
---|
| 471 | endif |
---|
| 472 | |
---|
| 473 | ! initialize soil |
---|
| 474 | ! ~~~~~~~~~~~~~~~ |
---|
| 475 | if (callsoil) then |
---|
| 476 | call soil(ngrid,nsoilmx,firstcall,inertiedat, & |
---|
| 477 | ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
| 478 | else |
---|
| 479 | print*,'WARNING! Thermal conduction in the soil turned off' |
---|
[728] | 480 | capcal(:)=1.e6 |
---|
| 481 | fluxgrd(:)=0. |
---|
| 482 | if(noradsurf)then |
---|
| 483 | fluxgrd(:)=10.0 |
---|
| 484 | endif |
---|
[253] | 485 | print*,'Flux from ground = ',fluxgrd,' W m^-2' |
---|
| 486 | endif |
---|
| 487 | icount=1 |
---|
| 488 | |
---|
| 489 | ! decide whether to update ice at end of run |
---|
| 490 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 491 | ice_update=.false. |
---|
| 492 | if(sourceevol)then |
---|
| 493 | open(128,file='num_run',form='formatted') |
---|
| 494 | read(128,*) num_run |
---|
| 495 | close(128) |
---|
| 496 | |
---|
[365] | 497 | if(num_run.ne.0.and.mod(num_run,2).eq.0)then |
---|
| 498 | !if(num_run.ne.0.and.mod(num_run,3).eq.0)then |
---|
[253] | 499 | print*,'Updating ice at end of this year!' |
---|
| 500 | ice_update=.true. |
---|
| 501 | ice_min(:)=1.e4 |
---|
| 502 | endif |
---|
| 503 | endif |
---|
| 504 | |
---|
| 505 | ! define surface as continent or ocean |
---|
| 506 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[728] | 507 | rnat(:)=1 |
---|
[253] | 508 | do ig=1,ngridmx |
---|
| 509 | ! if(iceball.or.oceanball.or.(inertiedat(ig,1).gt.1.E4))then |
---|
| 510 | if(inertiedat(ig,1).gt.1.E4)then |
---|
| 511 | rnat(ig)=0 |
---|
| 512 | endif |
---|
| 513 | enddo |
---|
| 514 | |
---|
| 515 | print*,'WARNING! Surface type currently decided by surface inertia' |
---|
| 516 | print*,'This should be improved e.g. in newstart.F' |
---|
| 517 | |
---|
| 518 | |
---|
| 519 | ! initialise surface history variable |
---|
| 520 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[728] | 521 | qsurf_hist(:,:)=qsurf(:,:) |
---|
[253] | 522 | |
---|
| 523 | ! initialise variable for dynamical heating diagnostic |
---|
| 524 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 525 | ztprevious(:,:)=pt(:,:) |
---|
| 526 | |
---|
| 527 | ! Set temperature just above condensation temperature (for Early Mars) |
---|
| 528 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 529 | if(nearco2cond) then |
---|
| 530 | write(*,*)' WARNING! Starting at Tcond+1K' |
---|
| 531 | do l=1, nlayer |
---|
| 532 | do ig=1,ngrid |
---|
| 533 | pdt(ig,l)= ((-3167.8)/(log(.01*pplay(ig,l))-23.23)+4 & |
---|
| 534 | -pt(ig,l)) / ptimestep |
---|
| 535 | enddo |
---|
| 536 | enddo |
---|
| 537 | endif |
---|
| 538 | |
---|
| 539 | if(meanOLR)then |
---|
| 540 | ! to record global radiative balance |
---|
| 541 | call system('rm -f rad_bal.out') |
---|
| 542 | ! to record global mean/max/min temperatures |
---|
| 543 | call system('rm -f tem_bal.out') |
---|
| 544 | ! to record global hydrological balance |
---|
| 545 | call system('rm -f h2o_bal.out') |
---|
| 546 | endif |
---|
| 547 | |
---|
| 548 | watertest=.false. |
---|
| 549 | if(water)then |
---|
| 550 | ! initialise variables for water cycle |
---|
| 551 | |
---|
[365] | 552 | if(enertest)then |
---|
| 553 | watertest = .true. |
---|
| 554 | endif |
---|
| 555 | |
---|
[728] | 556 | if(ice_update)then |
---|
| 557 | ice_initial(:)=qsurf(:,igcm_h2o_ice) |
---|
| 558 | endif |
---|
[253] | 559 | |
---|
| 560 | endif |
---|
| 561 | call su_watercycle ! even if we don't have a water cycle, we might |
---|
| 562 | ! need epsi for the wvp definitions in callcorrk.F |
---|
| 563 | |
---|
| 564 | endif ! (end of "if firstcall") |
---|
| 565 | |
---|
| 566 | ! --------------------------------------------------- |
---|
| 567 | ! 1.2 Initializations done at every physical timestep: |
---|
| 568 | ! --------------------------------------------------- |
---|
| 569 | |
---|
| 570 | if (ngrid.NE.ngridmx) then |
---|
| 571 | print*,'STOP in PHYSIQ' |
---|
| 572 | print*,'Probleme de dimensions :' |
---|
| 573 | print*,'ngrid = ',ngrid |
---|
| 574 | print*,'ngridmx = ',ngridmx |
---|
| 575 | stop |
---|
| 576 | endif |
---|
| 577 | |
---|
| 578 | ! Initialize various variables |
---|
| 579 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 580 | |
---|
[728] | 581 | pdu(1:ngridmx,1:nlayermx) = 0.0 |
---|
| 582 | pdv(1:ngridmx,1:nlayermx) = 0.0 |
---|
[253] | 583 | if ( .not.nearco2cond ) then |
---|
[728] | 584 | pdt(1:ngridmx,1:nlayermx) = 0.0 |
---|
| 585 | endif |
---|
| 586 | pdq(1:ngridmx,1:nlayermx,1:nqmx) = 0.0 |
---|
| 587 | pdpsrf(1:ngridmx) = 0.0 |
---|
| 588 | zflubid(1:ngridmx) = 0.0 |
---|
| 589 | zdtsurf(1:ngridmx) = 0.0 |
---|
| 590 | dqsurf(1:ngridmx,1:nqmx)= 0.0 |
---|
[253] | 591 | |
---|
| 592 | zday=pday+ptime ! compute time, in sols (and fraction thereof) |
---|
| 593 | |
---|
| 594 | ! Compute Stellar Longitude (Ls) |
---|
| 595 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 596 | if (season) then |
---|
| 597 | call stellarlong(zday,zls) |
---|
| 598 | else |
---|
| 599 | call stellarlong(float(day_ini),zls) |
---|
| 600 | end if |
---|
| 601 | |
---|
| 602 | ! Compute geopotential between layers |
---|
| 603 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 604 | |
---|
[728] | 605 | zzlay(1:ngridmx,1:nlayermx)=pphi(1:ngridmx,1:nlayermx)/g |
---|
| 606 | |
---|
| 607 | zzlev(1:ngridmx,1)=0. |
---|
| 608 | zzlev(1:ngridmx,nlayer+1)=1.e7 ! dummy top of last layer above 10000 km... |
---|
| 609 | |
---|
[253] | 610 | do l=2,nlayer |
---|
| 611 | do ig=1,ngrid |
---|
| 612 | z1=(pplay(ig,l-1)+pplev(ig,l))/(pplay(ig,l-1)-pplev(ig,l)) |
---|
| 613 | z2=(pplev(ig,l)+pplay(ig,l))/(pplev(ig,l)-pplay(ig,l)) |
---|
| 614 | zzlev(ig,l)=(z1*zzlay(ig,l-1)+z2*zzlay(ig,l))/(z1+z2) |
---|
| 615 | enddo |
---|
| 616 | enddo |
---|
| 617 | ! Potential temperature calculation may not be the same in physiq and dynamic... |
---|
| 618 | |
---|
| 619 | ! Compute potential temperature |
---|
| 620 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 621 | |
---|
[597] | 622 | do l=1,nlayer |
---|
[253] | 623 | do ig=1,ngrid |
---|
| 624 | zpopsk(ig,l)=(pplay(ig,l)/pplev(ig,1))**rcp |
---|
[597] | 625 | zh(ig,l)=pt(ig,l)/zpopsk(ig,l) |
---|
[651] | 626 | mass(ig,l) = (pplev(ig,l) - pplev(ig,l+1))/g |
---|
| 627 | massarea(ig,l)=mass(ig,l)*area(ig) |
---|
[253] | 628 | enddo |
---|
| 629 | enddo |
---|
| 630 | |
---|
| 631 | !----------------------------------------------------------------------- |
---|
| 632 | ! 2. Compute radiative tendencies |
---|
| 633 | !----------------------------------------------------------------------- |
---|
| 634 | |
---|
| 635 | if (callrad) then |
---|
[526] | 636 | if( mod(icount-1,iradia).eq.0.or.lastcall) then |
---|
[253] | 637 | |
---|
| 638 | ! Compute local stellar zenith angles |
---|
| 639 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 640 | call orbite(zls,dist_star,declin) |
---|
| 641 | |
---|
| 642 | if (tlocked) then |
---|
| 643 | ztim1=SIN(declin) |
---|
[773] | 644 | ! ztim2=COS(declin)*COS(2.*pi*(zday/year_day) - zls*nres) |
---|
| 645 | ! ztim3=-COS(declin)*SIN(2.*pi*(zday/year_day) - zls*nres) |
---|
| 646 | ! JL12 corrects tidally resonant cases. nres=omega_rot/omega_orb |
---|
[775] | 647 | ztim2=COS(declin)*COS(2.*pi*(zday/year_day)*nres - zls) |
---|
| 648 | ztim3=-COS(declin)*SIN(2.*pi*(zday/year_day)*nres - zls) |
---|
[253] | 649 | |
---|
[728] | 650 | call stelang(ngrid,sinlon,coslon,sinlat,coslat, & |
---|
[253] | 651 | ztim1,ztim2,ztim3,mu0,fract) |
---|
| 652 | |
---|
| 653 | elseif (diurnal) then |
---|
| 654 | ztim1=SIN(declin) |
---|
| 655 | ztim2=COS(declin)*COS(2.*pi*(zday-.5)) |
---|
| 656 | ztim3=-COS(declin)*SIN(2.*pi*(zday-.5)) |
---|
| 657 | |
---|
| 658 | call stelang(ngrid,sinlon,coslon,sinlat,coslat, & |
---|
| 659 | ztim1,ztim2,ztim3,mu0,fract) |
---|
| 660 | |
---|
| 661 | else |
---|
| 662 | |
---|
| 663 | call mucorr(ngrid,declin,lati,mu0,fract,10000.,rad) |
---|
| 664 | ! WARNING: this function appears not to work in 1D |
---|
| 665 | |
---|
| 666 | endif |
---|
| 667 | |
---|
| 668 | if (corrk) then |
---|
| 669 | |
---|
| 670 | ! a) Call correlated-k radiative transfer scheme |
---|
| 671 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 672 | |
---|
| 673 | if(kastprof)then |
---|
[305] | 674 | print*,'kastprof should not = true here' |
---|
| 675 | call abort |
---|
[253] | 676 | endif |
---|
[538] | 677 | muvar(:,:)=0.0 ! only used for climate evolution studies (kcm1d) for now |
---|
| 678 | |
---|
[526] | 679 | ! standard callcorrk |
---|
| 680 | clearsky=.false. |
---|
[538] | 681 | call callcorrk(ngrid,nlayer,pq,nq,qsurf, & |
---|
[526] | 682 | albedo,emis,mu0,pplev,pplay,pt, & |
---|
[586] | 683 | tsurf,fract,dist_star,aerosol,muvar, & |
---|
[526] | 684 | zdtlw,zdtsw,fluxsurf_lw,fluxsurf_sw,fluxtop_lw, & |
---|
[538] | 685 | fluxabs_sw,fluxtop_dn,OLR_nu,OSR_nu, & |
---|
[526] | 686 | reffrad,tau_col,cloudfrac,totcloudfrac, & |
---|
| 687 | clearsky,firstcall,lastcall) |
---|
[253] | 688 | |
---|
[526] | 689 | ! Option to call scheme once more for clear regions |
---|
[253] | 690 | if(CLFvarying)then |
---|
| 691 | |
---|
[716] | 692 | ! ---> PROBLEMS WITH ALLOCATED ARRAYS |
---|
| 693 | ! (temporary solution in callcorrk: do not deallocate if CLFvarying ...) |
---|
[253] | 694 | clearsky=.true. |
---|
[538] | 695 | call callcorrk(ngrid,nlayer,pq,nq,qsurf, & |
---|
[253] | 696 | albedo,emis,mu0,pplev,pplay,pt, & |
---|
[586] | 697 | tsurf,fract,dist_star,aerosol,muvar, & |
---|
[253] | 698 | zdtlw1,zdtsw1,fluxsurf_lw1,fluxsurf_sw1,fluxtop_lw1, & |
---|
[526] | 699 | fluxabs_sw1,fluxtop_dn,OLR_nu1,OSR_nu1, & |
---|
[749] | 700 | reffrad,tau_col1,cloudfrac,totcloudfrac, & |
---|
[538] | 701 | clearsky,firstcall,lastcall) |
---|
[716] | 702 | clearsky = .false. ! just in case. |
---|
[253] | 703 | |
---|
| 704 | ! Sum the fluxes and heating rates from cloudy/clear cases |
---|
| 705 | do ig=1,ngrid |
---|
| 706 | tf=totcloudfrac(ig) |
---|
| 707 | ntf=1.-tf |
---|
| 708 | |
---|
[526] | 709 | fluxsurf_lw(ig) = ntf*fluxsurf_lw1(ig) + tf*fluxsurf_lw(ig) |
---|
| 710 | fluxsurf_sw(ig) = ntf*fluxsurf_sw1(ig) + tf*fluxsurf_sw(ig) |
---|
| 711 | fluxtop_lw(ig) = ntf*fluxtop_lw1(ig) + tf*fluxtop_lw(ig) |
---|
| 712 | fluxabs_sw(ig) = ntf*fluxabs_sw1(ig) + tf*fluxabs_sw(ig) |
---|
| 713 | tau_col(ig) = ntf*tau_col1(ig) + tf*tau_col(ig) |
---|
[253] | 714 | |
---|
[728] | 715 | zdtlw(ig,1:nlayermx) = ntf*zdtlw1(ig,1:nlayermx) + tf*zdtlw(ig,1:nlayermx) |
---|
| 716 | zdtsw(ig,1:nlayermx) = ntf*zdtsw1(ig,1:nlayermx) + tf*zdtsw(ig,1:nlayermx) |
---|
[253] | 717 | |
---|
[728] | 718 | OSR_nu(ig,1:L_NSPECTV) = ntf*OSR_nu1(ig,1:L_NSPECTV) + tf*OSR_nu(ig,1:L_NSPECTV) |
---|
[743] | 719 | OLR_nu(ig,1:L_NSPECTI) = ntf*OLR_nu1(ig,1:L_NSPECTI) + tf*OLR_nu(ig,1:L_NSPECTI) |
---|
[253] | 720 | |
---|
[526] | 721 | enddo |
---|
[253] | 722 | |
---|
[526] | 723 | endif !CLFvarying |
---|
[253] | 724 | |
---|
| 725 | ! Radiative flux from the sky absorbed by the surface (W.m-2) |
---|
| 726 | GSR=0.0 |
---|
[728] | 727 | fluxrad_sky(1:ngridmx)=emis(1:ngridmx)*fluxsurf_lw(1:ngridmx)+fluxsurf_sw(1:ngridmx)*(1.-albedo(1:ngridmx)) |
---|
[253] | 728 | |
---|
[728] | 729 | if(noradsurf)then ! no lower surface; SW flux just disappears |
---|
| 730 | GSR = SUM(fluxsurf_sw(1:ngridmx)*area(1:ngridmx))/totarea |
---|
| 731 | fluxrad_sky(1:ngridmx)=emis(1:ngridmx)*fluxsurf_lw(1:ngridmx) |
---|
| 732 | print*,'SW lost in deep atmosphere = ',GSR,' W m^-2' |
---|
[253] | 733 | endif |
---|
| 734 | |
---|
| 735 | ! Net atmospheric radiative heating rate (K.s-1) |
---|
[728] | 736 | dtrad(1:ngridmx,1:nlayermx)=zdtsw(1:ngridmx,1:nlayermx)+zdtlw(1:ngridmx,1:nlayermx) |
---|
[253] | 737 | |
---|
| 738 | elseif(newtonian)then |
---|
| 739 | |
---|
| 740 | ! b) Call Newtonian cooling scheme |
---|
| 741 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 742 | call newtrelax(mu0,sinlat,zpopsk,pt,pplay,pplev,dtrad,firstcall) |
---|
| 743 | |
---|
[728] | 744 | zdtsurf(1:ngridmx) = +(pt(1:ngridmx,1)-tsurf(1:ngridmx))/ptimestep |
---|
[253] | 745 | ! e.g. surface becomes proxy for 1st atmospheric layer ? |
---|
| 746 | |
---|
| 747 | else |
---|
| 748 | |
---|
| 749 | ! c) Atmosphere has no radiative effect |
---|
| 750 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[728] | 751 | fluxtop_dn(1:ngridmx) = fract(1:ngridmx)*mu0(1:ngridmx)*Fat1AU/dist_star**2 |
---|
| 752 | if(ngrid.eq.1)then ! / by 4 globally in 1D case... |
---|
| 753 | fluxtop_dn(1) = fract(1)*Fat1AU/dist_star**2/2.0 |
---|
| 754 | endif |
---|
| 755 | fluxsurf_sw(1:ngridmx) = fluxtop_dn(1:ngridmx) |
---|
| 756 | fluxrad_sky(1:ngridmx) = fluxtop_dn(1:ngridmx)*(1.-albedo(1:ngridmx)) |
---|
| 757 | fluxtop_lw(1:ngridmx) = emis(1:ngridmx)*sigma*tsurf(1:ngridmx)**4 |
---|
| 758 | ! radiation skips the atmosphere entirely |
---|
[253] | 759 | |
---|
| 760 | |
---|
[728] | 761 | dtrad(1:ngridmx,1:nlayermx)=0.0 |
---|
| 762 | ! hence no atmospheric radiative heating |
---|
| 763 | |
---|
[253] | 764 | endif ! if corrk |
---|
| 765 | |
---|
| 766 | endif ! of if(mod(icount-1,iradia).eq.0) |
---|
| 767 | |
---|
| 768 | |
---|
| 769 | ! Transformation of the radiative tendencies |
---|
| 770 | ! ------------------------------------------ |
---|
| 771 | |
---|
[728] | 772 | zplanck(1:ngridmx)=tsurf(1:ngridmx)*tsurf(1:ngridmx) |
---|
| 773 | zplanck(1:ngridmx)=emis(1:ngridmx)*sigma*zplanck(1:ngridmx)*zplanck(1:ngridmx) |
---|
| 774 | fluxrad(1:ngridmx)=fluxrad_sky(1:ngridmx)-zplanck(1:ngridmx) |
---|
| 775 | pdt(1:ngridmx,1:nlayermx)=pdt(1:ngridmx,1:nlayermx)+dtrad(1:ngridmx,1:nlayermx) |
---|
[253] | 776 | |
---|
| 777 | !------------------------- |
---|
| 778 | ! test energy conservation |
---|
| 779 | if(enertest)then |
---|
[651] | 780 | dEtotSW = cpp*SUM(massarea(:,:)*zdtsw(:,:))/totarea |
---|
| 781 | dEtotLW = cpp*SUM(massarea(:,:)*zdtlw(:,:))/totarea |
---|
| 782 | dEtotsSW = SUM(fluxsurf_sw(:)*(1.-albedo(:))*area(:))/totarea |
---|
[726] | 783 | dEtotsLW = SUM((fluxsurf_lw(:)*emis(:)-zplanck(:))*area(:))/totarea |
---|
[651] | 784 | dEzRadsw(:,:)=cpp*mass(:,:)*zdtsw(:,:) |
---|
| 785 | dEzRadlw(:,:)=cpp*mass(:,:)*zdtlw(:,:) |
---|
[253] | 786 | print*,'---------------------------------------------------------------' |
---|
[594] | 787 | print*,'In corrk SW atmospheric heating =',dEtotSW,' W m-2' |
---|
| 788 | print*,'In corrk LW atmospheric heating =',dEtotLW,' W m-2' |
---|
| 789 | print*,'atmospheric net rad heating (SW+LW) =',dEtotLW+dEtotSW,' W m-2' |
---|
| 790 | print*,'In corrk SW surface heating =',dEtotsSW,' W m-2' |
---|
| 791 | print*,'In corrk LW surface heating =',dEtotsLW,' W m-2' |
---|
| 792 | print*,'surface net rad heating (SW+LW) =',dEtotsLW+dEtotsSW,' W m-2' |
---|
[253] | 793 | endif |
---|
| 794 | !------------------------- |
---|
| 795 | |
---|
| 796 | endif ! of if (callrad) |
---|
| 797 | |
---|
| 798 | !----------------------------------------------------------------------- |
---|
| 799 | ! 4. Vertical diffusion (turbulent mixing): |
---|
| 800 | ! ----------------------------------------- |
---|
| 801 | |
---|
| 802 | if (calldifv) then |
---|
[526] | 803 | |
---|
[728] | 804 | zflubid(1:ngridmx)=fluxrad(1:ngridmx)+fluxgrd(1:ngridmx) |
---|
[253] | 805 | |
---|
[728] | 806 | zdum1(1:ngridmx,1:nlayermx)=0.0 |
---|
| 807 | zdum2(1:ngridmx,1:nlayermx)=0.0 |
---|
[253] | 808 | |
---|
[594] | 809 | |
---|
| 810 | !JL12 the following if test is temporarily there to allow us to compare the old vdifc with turbdiff |
---|
| 811 | if (UseTurbDiff) then |
---|
| 812 | |
---|
| 813 | call turbdiff(ngrid,nlayer,nq,rnat, & |
---|
[253] | 814 | ptimestep,capcal,lwrite, & |
---|
| 815 | pplay,pplev,zzlay,zzlev,z0, & |
---|
[594] | 816 | pu,pv,pt,zpopsk,pq,tsurf,emis,qsurf, & |
---|
| 817 | zdum1,zdum2,pdt,pdq,zflubid, & |
---|
| 818 | zdudif,zdvdif,zdtdif,zdtsdif, & |
---|
[728] | 819 | sensibFlux,q2,zdqdif,zdqevap,zdqsdif,lastcall) |
---|
[594] | 820 | |
---|
| 821 | else |
---|
| 822 | |
---|
[728] | 823 | zdh(1:ngridmx,1:nlayermx)=pdt(1:ngridmx,1:nlayermx)/zpopsk(1:ngridmx,1:nlayermx) |
---|
[594] | 824 | |
---|
| 825 | call vdifc(ngrid,nlayer,nq,rnat,zpopsk, & |
---|
| 826 | ptimestep,capcal,lwrite, & |
---|
| 827 | pplay,pplev,zzlay,zzlev,z0, & |
---|
[253] | 828 | pu,pv,zh,pq,tsurf,emis,qsurf, & |
---|
| 829 | zdum1,zdum2,zdh,pdq,zflubid, & |
---|
[594] | 830 | zdudif,zdvdif,zdhdif,zdtsdif, & |
---|
| 831 | sensibFlux,q2,zdqdif,zdqsdif,lastcall) |
---|
[253] | 832 | |
---|
[728] | 833 | zdtdif(1:ngridmx,1:nlayermx)=zdhdif(1:ngridmx,1:nlayermx)*zpopsk(1:ngridmx,1:nlayermx) ! for diagnostic only |
---|
| 834 | zdqevap(1:ngridmx,1:nlayermx)=0. |
---|
[594] | 835 | |
---|
| 836 | end if !turbdiff |
---|
| 837 | |
---|
[728] | 838 | pdv(1:ngridmx,1:nlayermx)=pdv(1:ngridmx,1:nlayermx)+zdvdif(1:ngridmx,1:nlayermx) |
---|
| 839 | pdu(1:ngridmx,1:nlayermx)=pdu(1:ngridmx,1:nlayermx)+zdudif(1:ngridmx,1:nlayermx) |
---|
| 840 | pdt(1:ngridmx,1:nlayermx)=pdt(1:ngridmx,1:nlayermx)+zdtdif(1:ngridmx,1:nlayermx) |
---|
| 841 | zdtsurf(1:ngridmx)=zdtsurf(1:ngridmx)+zdtsdif(1:ngridmx) |
---|
[253] | 842 | if (tracer) then |
---|
[728] | 843 | pdq(1:ngridmx,1:nlayermx,1:nqmx)=pdq(1:ngridmx,1:nlayermx,1:nqmx)+ zdqdif(1:ngridmx,1:nlayermx,1:nqmx) |
---|
| 844 | dqsurf(1:ngridmx,1:nqmx)=dqsurf(1:ngridmx,1:nqmx) + zdqsdif(1:ngridmx,1:nqmx) |
---|
[253] | 845 | end if ! of if (tracer) |
---|
| 846 | |
---|
| 847 | !------------------------- |
---|
| 848 | ! test energy conservation |
---|
| 849 | if(enertest)then |
---|
[651] | 850 | dEzdiff(:,:)=cpp*mass(:,:)*zdtdif(:,:) |
---|
[253] | 851 | do ig = 1, ngrid |
---|
[651] | 852 | dEdiff(ig)=SUM(dEzdiff (ig,:))+ sensibFlux(ig)! subtract flux to the ground |
---|
[622] | 853 | dEzdiff(ig,1)= dEzdiff(ig,1)+ sensibFlux(ig)! subtract flux to the ground |
---|
[253] | 854 | enddo |
---|
[651] | 855 | dEtot = SUM(dEdiff(:)*area(:))/totarea |
---|
| 856 | dEdiffs(:)=capcal(:)*zdtsdif(:)-zflubid(:)-sensibFlux(:) |
---|
| 857 | dEtots = SUM(dEdiffs(:)*area(:))/totarea |
---|
| 858 | AtmToSurf_TurbFlux=SUM(sensibFlux(:)*area(:))/totarea |
---|
[597] | 859 | if (UseTurbDiff) then |
---|
| 860 | print*,'In TurbDiff sensible flux (atm=>surf) =',AtmToSurf_TurbFlux,' W m-2' |
---|
| 861 | print*,'In TurbDiff non-cons atm nrj change =',dEtot,' W m-2' |
---|
| 862 | print*,'In TurbDiff (correc rad+latent heat) surf nrj change =',dEtots,' W m-2' |
---|
| 863 | else |
---|
| 864 | print*,'In vdifc sensible flux (atm=>surf) =',AtmToSurf_TurbFlux,' W m-2' |
---|
| 865 | print*,'In vdifc non-cons atm nrj change =',dEtot,' W m-2' |
---|
| 866 | print*,'In vdifc (correc rad+latent heat) surf nrj change =',dEtots,' W m-2' |
---|
| 867 | end if |
---|
[594] | 868 | ! JL12 note that the black body radiative flux emitted by the surface has been updated by the implicit scheme |
---|
| 869 | ! but not given back elsewhere |
---|
[253] | 870 | endif |
---|
| 871 | !------------------------- |
---|
| 872 | |
---|
| 873 | !------------------------- |
---|
| 874 | ! test water conservation |
---|
| 875 | if(watertest.and.water)then |
---|
[651] | 876 | dWtot = SUM(massarea(:,:)*zdqdif(:,:,igcm_h2o_vap))*ptimestep/totarea |
---|
| 877 | dWtots = SUM(zdqsdif(:,igcm_h2o_vap)*area(:))*ptimestep/totarea |
---|
[253] | 878 | do ig = 1, ngrid |
---|
[651] | 879 | vdifcncons(ig)=SUM(mass(ig,:)*zdqdif(ig,:,igcm_h2o_vap)) |
---|
| 880 | Enddo |
---|
| 881 | dWtot = dWtot + SUM(massarea(:,:)*zdqdif(:,:,igcm_h2o_ice))*ptimestep/totarea |
---|
| 882 | dWtots = dWtots + SUM(zdqsdif(:,igcm_h2o_ice)*area(:))*ptimestep/totarea |
---|
| 883 | do ig = 1, ngrid |
---|
| 884 | vdifcncons(ig)=vdifcncons(ig) + SUM(mass(ig,:)*zdqdif(ig,:,igcm_h2o_ice)) |
---|
| 885 | Enddo |
---|
| 886 | nconsMAX=MAXVAL(vdifcncons(:)) |
---|
[253] | 887 | |
---|
| 888 | print*,'---------------------------------------------------------------' |
---|
| 889 | print*,'In difv atmospheric water change =',dWtot,' kg m-2' |
---|
| 890 | print*,'In difv surface water change =',dWtots,' kg m-2' |
---|
| 891 | print*,'In difv non-cons factor =',dWtot+dWtots,' kg m-2' |
---|
| 892 | print*,'In difv MAX non-cons factor =',nconsMAX,' kg m-2 s-1' |
---|
| 893 | |
---|
| 894 | endif |
---|
| 895 | !------------------------- |
---|
| 896 | |
---|
| 897 | else |
---|
| 898 | |
---|
| 899 | if(.not.newtonian)then |
---|
| 900 | |
---|
[728] | 901 | zdtsurf(1:ngridmx) = zdtsurf(1:ngridmx) + (fluxrad(1:ngridmx) + fluxgrd(1:ngridmx))/capcal(1:ngridmx) |
---|
[253] | 902 | |
---|
| 903 | endif |
---|
| 904 | |
---|
| 905 | endif ! of if (calldifv) |
---|
| 906 | |
---|
| 907 | |
---|
| 908 | !----------------------------------------------------------------------- |
---|
| 909 | ! 5. Dry convective adjustment: |
---|
| 910 | ! ----------------------------- |
---|
| 911 | |
---|
| 912 | if(calladj) then |
---|
| 913 | |
---|
[728] | 914 | zdh(1:ngridmx,1:nlayermx) = pdt(1:ngridmx,1:nlayermx)/zpopsk(1:ngridmx,1:nlayermx) |
---|
| 915 | zduadj(1:ngridmx,1:nlayermx)=0.0 |
---|
| 916 | zdvadj(1:ngridmx,1:nlayermx)=0.0 |
---|
| 917 | zdhadj(1:ngridmx,1:nlayermx)=0.0 |
---|
[253] | 918 | |
---|
| 919 | |
---|
[586] | 920 | call convadj(ngrid,nlayer,nq,ptimestep, & |
---|
| 921 | pplay,pplev,zpopsk, & |
---|
| 922 | pu,pv,zh,pq, & |
---|
| 923 | pdu,pdv,zdh,pdq, & |
---|
| 924 | zduadj,zdvadj,zdhadj, & |
---|
| 925 | zdqadj) |
---|
[253] | 926 | |
---|
[728] | 927 | pdu(1:ngridmx,1:nlayermx) = pdu(1:ngridmx,1:nlayermx) + zduadj(1:ngridmx,1:nlayermx) |
---|
| 928 | pdv(1:ngridmx,1:nlayermx) = pdv(1:ngridmx,1:nlayermx) + zdvadj(1:ngridmx,1:nlayermx) |
---|
| 929 | pdt(1:ngridmx,1:nlayermx) = pdt(1:ngridmx,1:nlayermx) + zdhadj(1:ngridmx,1:nlayermx)*zpopsk(1:ngridmx,1:nlayermx) |
---|
| 930 | zdtadj(1:ngridmx,1:nlayermx) = zdhadj(1:ngridmx,1:nlayermx)*zpopsk(1:ngridmx,1:nlayermx) ! for diagnostic only |
---|
| 931 | |
---|
[253] | 932 | if(tracer) then |
---|
[728] | 933 | pdq(1:ngridmx,1:nlayermx,1:nqmx) = pdq(1:ngridmx,1:nlayermx,1:nqmx) + zdqadj(1:ngridmx,1:nlayermx,1:nqmx) |
---|
[253] | 934 | end if |
---|
| 935 | |
---|
| 936 | !------------------------- |
---|
| 937 | ! test energy conservation |
---|
| 938 | if(enertest)then |
---|
[651] | 939 | dEtot=cpp*SUM(massarea(:,:)*zdtadj(:,:))/totarea |
---|
[594] | 940 | print*,'In convadj atmospheric energy change =',dEtot,' W m-2' |
---|
[253] | 941 | endif |
---|
| 942 | !------------------------- |
---|
| 943 | |
---|
| 944 | !------------------------- |
---|
| 945 | ! test water conservation |
---|
| 946 | if(watertest)then |
---|
[651] | 947 | dWtot = SUM(massarea(:,:)*zdqadj(:,:,igcm_h2o_vap))*ptimestep/totarea |
---|
[253] | 948 | do ig = 1, ngrid |
---|
[651] | 949 | cadjncons(ig)=SUM(mass(ig,:)*zdqadj(ig,:,igcm_h2o_vap)) |
---|
| 950 | Enddo |
---|
| 951 | dWtot = dWtot + SUM(massarea(:,:)*zdqadj(:,:,igcm_h2o_ice))*ptimestep/totarea |
---|
| 952 | do ig = 1, ngrid |
---|
| 953 | cadjncons(ig)=cadjncons(ig) + SUM(mass(ig,:)*zdqadj(ig,:,igcm_h2o_ice)) |
---|
| 954 | Enddo |
---|
| 955 | nconsMAX=MAXVAL(cadjncons(:)) |
---|
[253] | 956 | |
---|
| 957 | print*,'In convadj atmospheric water change =',dWtot,' kg m-2' |
---|
[651] | 958 | print*,'In convadj MAX non-cons factor =',nconsMAX,' kg m-2 s-1' |
---|
[253] | 959 | endif |
---|
| 960 | !------------------------- |
---|
| 961 | |
---|
| 962 | endif ! of if(calladj) |
---|
| 963 | |
---|
| 964 | !----------------------------------------------------------------------- |
---|
| 965 | ! 6. Carbon dioxide condensation-sublimation: |
---|
| 966 | ! ------------------------------------------- |
---|
| 967 | |
---|
| 968 | if (co2cond) then |
---|
| 969 | if (.not.tracer) then |
---|
| 970 | print*,'We need a CO2 ice tracer to condense CO2' |
---|
| 971 | call abort |
---|
| 972 | endif |
---|
[726] | 973 | print*, 'we are in co2cond!!!!!' |
---|
[305] | 974 | call condense_cloud(ngrid,nlayer,nq,ptimestep, & |
---|
[253] | 975 | capcal,pplay,pplev,tsurf,pt, & |
---|
| 976 | pphi,pdt,pdu,pdv,zdtsurf,pu,pv,pq,pdq, & |
---|
| 977 | qsurf(1,igcm_co2_ice),albedo,emis, & |
---|
| 978 | zdtc,zdtsurfc,pdpsrf,zduc,zdvc, & |
---|
[586] | 979 | zdqc,reffrad) |
---|
[253] | 980 | |
---|
| 981 | |
---|
[728] | 982 | pdt(1:ngridmx,1:nlayermx)=pdt(1:ngridmx,1:nlayermx)+zdtc(1:ngridmx,1:nlayermx) |
---|
| 983 | pdv(1:ngridmx,1:nlayermx)=pdv(1:ngridmx,1:nlayermx)+zdvc(1:ngridmx,1:nlayermx) |
---|
| 984 | pdu(1:ngridmx,1:nlayermx)=pdu(1:ngridmx,1:nlayermx)+zduc(1:ngridmx,1:nlayermx) |
---|
| 985 | zdtsurf(1:ngridmx) = zdtsurf(1:ngridmx) + zdtsurfc(1:ngridmx) |
---|
| 986 | |
---|
| 987 | pdq(1:ngridmx,1:nlayermx,1:nqmx)=pdq(1:ngridmx,1:nlayermx,1:nqmx)+ zdqc(1:ngridmx,1:nlayermx,1:nqmx) |
---|
[253] | 988 | ! Note: we do not add surface co2ice tendency |
---|
| 989 | ! because qsurf(:,igcm_co2_ice) is updated in condens_co2cloud |
---|
| 990 | |
---|
| 991 | !------------------------- |
---|
| 992 | ! test energy conservation |
---|
| 993 | if(enertest)then |
---|
[651] | 994 | dEtot = cpp*SUM(massarea(:,:)*zdtc(:,:))/totarea |
---|
| 995 | dEtots = SUM(capcal(:)*zdtsurfc(:)*area(:))/totarea |
---|
[253] | 996 | print*,'In co2cloud atmospheric energy change =',dEtot,' W m-2' |
---|
| 997 | print*,'In co2cloud surface energy change =',dEtots,' W m-2' |
---|
| 998 | endif |
---|
| 999 | !------------------------- |
---|
| 1000 | |
---|
| 1001 | endif ! of if (co2cond) |
---|
| 1002 | |
---|
| 1003 | |
---|
| 1004 | !----------------------------------------------------------------------- |
---|
| 1005 | ! 7. Specific parameterizations for tracers |
---|
| 1006 | ! ----------------------------------------- |
---|
| 1007 | |
---|
| 1008 | if (tracer) then |
---|
| 1009 | |
---|
| 1010 | ! 7a. Water and ice |
---|
| 1011 | ! --------------- |
---|
| 1012 | if (water) then |
---|
| 1013 | |
---|
| 1014 | ! ---------------------------------------- |
---|
| 1015 | ! Water ice condensation in the atmosphere |
---|
| 1016 | ! ---------------------------------------- |
---|
[728] | 1017 | if(watercond.and.(RLVTT.gt.1.e-8))then |
---|
[253] | 1018 | |
---|
[728] | 1019 | ! ---------------- |
---|
| 1020 | ! Moist convection |
---|
| 1021 | ! ---------------- |
---|
[773] | 1022 | |
---|
[728] | 1023 | dqmoist(1:ngridmx,1:nlayermx,1:nqmx)=0. |
---|
| 1024 | dtmoist(1:ngridmx,1:nlayermx)=0. |
---|
[253] | 1025 | |
---|
[728] | 1026 | call moistadj(pt,pq,pdq,pplev,pplay,dtmoist,dqmoist,ptimestep,rneb_man) |
---|
[253] | 1027 | |
---|
[728] | 1028 | pdq(1:ngridmx,1:nlayermx,igcm_h2o_vap) = pdq(1:ngridmx,1:nlayermx,igcm_h2o_vap) & |
---|
| 1029 | +dqmoist(1:ngridmx,1:nlayermx,igcm_h2o_vap) |
---|
| 1030 | pdq(1:ngridmx,1:nlayermx,igcm_h2o_ice) =pdq(1:ngridmx,1:nlayermx,igcm_h2o_ice) & |
---|
| 1031 | +dqmoist(1:ngridmx,1:nlayermx,igcm_h2o_ice) |
---|
| 1032 | pdt(1:ngridmx,1:nlayermx) = pdt(1:ngridmx,1:nlayermx)+dtmoist(1:ngridmx,1:nlayermx) |
---|
| 1033 | |
---|
[253] | 1034 | !------------------------- |
---|
| 1035 | ! test energy conservation |
---|
| 1036 | if(enertest)then |
---|
[728] | 1037 | dEtot=cpp*SUM(massarea(:,:)*dtmoist(:,:))/totarea |
---|
[253] | 1038 | do ig = 1, ngrid |
---|
[728] | 1039 | madjdE(ig) = cpp*SUM(mass(:,:)*dtmoist(:,:)) |
---|
[253] | 1040 | enddo |
---|
| 1041 | print*,'In moistadj atmospheric energy change =',dEtot,' W m-2' |
---|
[773] | 1042 | print*,'In moistadj MAX atmospheric energy change =',MAXVAL(dtmoist(:,:))*ptimestep,'K/step' |
---|
| 1043 | print*,'In moistadj MIN atmospheric energy change =',MINVAL(dtmoist(:,:))*ptimestep,'K/step' |
---|
[651] | 1044 | |
---|
| 1045 | ! test energy conservation |
---|
| 1046 | dWtot = SUM(massarea(:,:)*dqmoist(:,:,igcm_h2o_vap))*ptimestep/totarea |
---|
| 1047 | dWtot = dWtot + SUM(massarea(:,:)*dqmoist(:,:,igcm_h2o_ice))*ptimestep/totarea |
---|
[253] | 1048 | print*,'In moistadj atmospheric water change =',dWtot,' kg m-2' |
---|
| 1049 | endif |
---|
| 1050 | !------------------------- |
---|
| 1051 | |
---|
| 1052 | |
---|
[728] | 1053 | ! -------------------------------- |
---|
| 1054 | ! Large scale condensation/evaporation |
---|
| 1055 | ! -------------------------------- |
---|
[253] | 1056 | |
---|
[728] | 1057 | call largescale(ptimestep,pplev,pplay,pt,pq,pdt,pdq,dtlscale,dqvaplscale,dqcldlscale,rneb_lsc) |
---|
[253] | 1058 | |
---|
[728] | 1059 | pdt(1:ngridmx,1:nlayermx) = pdt(1:ngridmx,1:nlayermx)+dtlscale(1:ngridmx,1:nlayermx) |
---|
| 1060 | pdq(1:ngridmx,1:nlayermx,igcm_h2o_vap) = pdq(1:ngridmx,1:nlayermx,igcm_h2o_vap)+dqvaplscale(1:ngridmx,1:nlayermx) |
---|
| 1061 | pdq(1:ngridmx,1:nlayermx,igcm_h2o_ice) = pdq(1:ngridmx,1:nlayermx,igcm_h2o_ice)+dqcldlscale(1:ngridmx,1:nlayermx) |
---|
[253] | 1062 | |
---|
| 1063 | !------------------------- |
---|
| 1064 | ! test energy conservation |
---|
| 1065 | if(enertest)then |
---|
| 1066 | do ig = 1, ngrid |
---|
[728] | 1067 | lscaledE(ig) = cpp*SUM(mass(:,:)*dtlscale(:,:)) |
---|
[253] | 1068 | enddo |
---|
[728] | 1069 | dEtot=cpp*SUM(massarea(:,:)*(dtlscale(:,:)))/totarea |
---|
| 1070 | if(isnan(dEtot)) then |
---|
| 1071 | print*,'Nan in largescale, abort' |
---|
| 1072 | STOP |
---|
| 1073 | endif |
---|
| 1074 | print*,'In largescale atmospheric energy change =',dEtot,' W m-2' |
---|
| 1075 | |
---|
| 1076 | ! test water conservation |
---|
| 1077 | dWtot = SUM(massarea(:,:)*dqvaplscale(:,:))*ptimestep/totarea |
---|
| 1078 | dWtot = dWtot + SUM(massarea(:,:)*dqcldlscale(:,:))*ptimestep/totarea |
---|
| 1079 | print*,'In largescale atmospheric water change =',dWtot,' kg m-2' |
---|
[253] | 1080 | endif |
---|
| 1081 | !------------------------- |
---|
| 1082 | |
---|
| 1083 | ! compute cloud fraction |
---|
| 1084 | do l = 1, nlayer |
---|
| 1085 | do ig = 1,ngrid |
---|
| 1086 | cloudfrac(ig,l)=MAX(rneb_lsc(ig,l),rneb_man(ig,l)) |
---|
| 1087 | enddo |
---|
| 1088 | enddo |
---|
| 1089 | |
---|
[728] | 1090 | endif ! of if (watercondense) |
---|
[253] | 1091 | |
---|
| 1092 | |
---|
| 1093 | ! -------------------------------- |
---|
| 1094 | ! Water ice / liquid precipitation |
---|
| 1095 | ! -------------------------------- |
---|
[728] | 1096 | if(waterrain)then |
---|
[253] | 1097 | |
---|
[728] | 1098 | zdqrain(1:ngridmx,1:nlayermx,1:nqmx) = 0.0 |
---|
| 1099 | zdqsrain(1:ngridmx) = 0.0 |
---|
| 1100 | zdqssnow(1:ngridmx) = 0.0 |
---|
[253] | 1101 | |
---|
[728] | 1102 | call rain(ptimestep,pplev,pplay,pt,pdt,pq,pdq, & |
---|
[253] | 1103 | zdtrain,zdqrain,zdqsrain,zdqssnow,cloudfrac) |
---|
| 1104 | |
---|
[728] | 1105 | pdq(1:ngridmx,1:nlayermx,igcm_h2o_vap) = pdq(1:ngridmx,1:nlayermx,igcm_h2o_vap) & |
---|
| 1106 | +zdqrain(1:ngridmx,1:nlayermx,igcm_h2o_vap) |
---|
| 1107 | pdq(1:ngridmx,1:nlayermx,igcm_h2o_ice) = pdq(1:ngridmx,1:nlayermx,igcm_h2o_ice) & |
---|
| 1108 | +zdqrain(1:ngridmx,1:nlayermx,igcm_h2o_ice) |
---|
| 1109 | pdt(1:ngridmx,1:nlayermx) = pdt(1:ngridmx,1:nlayermx)+zdtrain(1:ngridmx,1:nlayermx) |
---|
| 1110 | dqsurf(1:ngridmx,igcm_h2o_vap) = dqsurf(1:ngridmx,igcm_h2o_vap)+zdqsrain(1:ngridmx) ! a bug was here |
---|
| 1111 | dqsurf(1:ngridmx,igcm_h2o_ice) = dqsurf(1:ngridmx,igcm_h2o_ice)+zdqssnow(1:ngridmx) |
---|
| 1112 | rainout(1:ngridmx) = zdqsrain(1:ngridmx)+zdqssnow(1:ngridmx) ! diagnostic |
---|
[253] | 1113 | |
---|
| 1114 | |
---|
[651] | 1115 | !------------------------- |
---|
| 1116 | ! test energy conservation |
---|
| 1117 | if(enertest)then |
---|
| 1118 | dEtot=cpp*SUM(massarea(:,:)*zdtrain(:,:))/totarea |
---|
[253] | 1119 | print*,'In rain atmospheric T energy change =',dEtot,' W m-2' |
---|
[651] | 1120 | dItot = SUM(massarea(:,:)*zdqrain(:,:,igcm_h2o_ice))/totarea*RLVTT/cpp |
---|
| 1121 | dItot = dItot + SUM(area(:)*zdqssnow(:))/totarea*RLVTT/cpp |
---|
| 1122 | dVtot = SUM(massarea(:,:)*zdqrain(:,:,igcm_h2o_vap))*ptimestep/totarea |
---|
[728] | 1123 | dVtot = dVtot + SUM(area(:)*zdqsrain(:))/totarea*RLVTT/cpp |
---|
[651] | 1124 | dEtot = dItot + dVtot |
---|
| 1125 | print*,'In rain dItot =',dItot,' W m-2' |
---|
| 1126 | print*,'In rain dVtot =',dVtot,' W m-2' |
---|
[253] | 1127 | print*,'In rain atmospheric L energy change =',dEtot,' W m-2' |
---|
| 1128 | |
---|
[651] | 1129 | ! test water conservation |
---|
| 1130 | dWtot = SUM(massarea(:,:)*zdqrain(:,:,igcm_h2o_vap))*ptimestep/totarea |
---|
| 1131 | dWtot = dWtot + SUM(massarea(:,:)*zdqrain(:,:,igcm_h2o_ice))*ptimestep/totarea |
---|
| 1132 | dWtots = SUM((zdqsrain(:)+zdqssnow(:))*area(:))*ptimestep/totarea |
---|
[253] | 1133 | print*,'In rain atmospheric water change =',dWtot,' kg m-2' |
---|
| 1134 | print*,'In rain surface water change =',dWtots,' kg m-2' |
---|
| 1135 | print*,'In rain non-cons factor =',dWtot+dWtots,' kg m-2' |
---|
| 1136 | endif |
---|
| 1137 | !------------------------- |
---|
| 1138 | |
---|
[728] | 1139 | end if ! of if (waterrain) |
---|
| 1140 | end if ! of if (water) |
---|
[253] | 1141 | |
---|
| 1142 | |
---|
| 1143 | ! 7c. Aerosol particles |
---|
| 1144 | ! ------------------- |
---|
| 1145 | ! ------------- |
---|
| 1146 | ! Sedimentation |
---|
| 1147 | ! ------------- |
---|
| 1148 | if (sedimentation) then |
---|
[728] | 1149 | zdqsed(1:ngridmx,1:nlayermx,1:nqmx) = 0.0 |
---|
| 1150 | zdqssed(1:ngridmx,1:nqmx) = 0.0 |
---|
[253] | 1151 | |
---|
| 1152 | |
---|
| 1153 | !------------------------- |
---|
| 1154 | ! find qtot |
---|
| 1155 | if(watertest)then |
---|
| 1156 | iq=3 |
---|
[651] | 1157 | dWtot = SUM(massarea(:,:)*pq(:,:,iq))*ptimestep/totarea |
---|
| 1158 | dWtots = SUM(massarea(:,:)*pdq(:,:,iq))*ptimestep/totarea |
---|
[253] | 1159 | print*,'Before sedim pq =',dWtot,' kg m-2' |
---|
| 1160 | print*,'Before sedim pdq =',dWtots,' kg m-2' |
---|
| 1161 | endif |
---|
| 1162 | !------------------------- |
---|
| 1163 | |
---|
| 1164 | call callsedim(ngrid,nlayer,ptimestep, & |
---|
| 1165 | pplev,zzlev,pt,pq,pdq,zdqsed,zdqssed,nq,reffH2O) |
---|
| 1166 | |
---|
| 1167 | !------------------------- |
---|
| 1168 | ! find qtot |
---|
| 1169 | if(watertest)then |
---|
| 1170 | iq=3 |
---|
[651] | 1171 | dWtot = SUM(massarea(:,:)*pq(:,:,iq))*ptimestep/totarea |
---|
| 1172 | dWtots = SUM(massarea(:,:)*pdq(:,:,iq))*ptimestep/totarea |
---|
[253] | 1173 | print*,'After sedim pq =',dWtot,' kg m-2' |
---|
| 1174 | print*,'After sedim pdq =',dWtots,' kg m-2' |
---|
| 1175 | endif |
---|
| 1176 | !------------------------- |
---|
| 1177 | |
---|
[728] | 1178 | ! for now, we only allow H2O ice to sediment |
---|
[253] | 1179 | ! and as in rain.F90, whether it falls as rain or snow depends |
---|
| 1180 | ! only on the surface temperature |
---|
[728] | 1181 | pdq(1:ngridmx,1:nlayermx,1:nqmx) = pdq(1:ngridmx,1:nlayermx,1:nqmx) + zdqsed(1:ngridmx,1:nlayermx,1:nqmx) |
---|
| 1182 | dqsurf(1:ngridmx,1:nqmx) = dqsurf(1:ngridmx,1:nqmx) + zdqssed(1:ngridmx,1:nqmx) |
---|
[253] | 1183 | |
---|
| 1184 | !------------------------- |
---|
| 1185 | ! test water conservation |
---|
| 1186 | if(watertest)then |
---|
[651] | 1187 | dWtot = SUM(massarea(:,:)*(zdqsed(:,:,igcm_h2o_vap)+zdqsed(:,:,igcm_h2o_ice)))*ptimestep/totarea |
---|
| 1188 | dWtots = SUM((zdqssed(:,igcm_h2o_vap)+zdqssed(:,igcm_h2o_ice))*area(:))*ptimestep/totarea |
---|
[253] | 1189 | print*,'In sedim atmospheric ice change =',dWtot,' kg m-2' |
---|
| 1190 | print*,'In sedim surface ice change =',dWtots,' kg m-2' |
---|
| 1191 | print*,'In sedim non-cons factor =',dWtot+dWtots,' kg m-2' |
---|
| 1192 | endif |
---|
| 1193 | !------------------------- |
---|
| 1194 | |
---|
| 1195 | end if ! of if (sedimentation) |
---|
| 1196 | |
---|
| 1197 | |
---|
| 1198 | ! 7d. Updates |
---|
| 1199 | ! --------- |
---|
| 1200 | |
---|
[728] | 1201 | ! ----------------------------------- |
---|
| 1202 | ! Updating atm mass and tracer budget |
---|
| 1203 | ! ----------------------------------- |
---|
| 1204 | |
---|
| 1205 | if(mass_redistrib) then |
---|
| 1206 | |
---|
| 1207 | zdmassmr(1:ngridmx,1:nlayermx) = mass(1:ngridmx,1:nlayermx) * & |
---|
| 1208 | ( zdqevap(1:ngridmx,1:nlayermx) & |
---|
| 1209 | + zdqrain(1:ngridmx,1:nlayermx,igcm_h2o_vap) & |
---|
| 1210 | + dqmoist(1:ngridmx,1:nlayermx,igcm_h2o_vap) & |
---|
| 1211 | + dqvaplscale(1:ngridmx,1:nlayermx) ) |
---|
| 1212 | |
---|
| 1213 | |
---|
| 1214 | call writediagfi(ngridmx,"mass_evap","mass gain"," ",3,zdmassmr) |
---|
| 1215 | call writediagfi(ngridmx,"mass","mass"," ",3,mass) |
---|
| 1216 | |
---|
| 1217 | call mass_redistribution(ngrid,nlayer,nq,ptimestep, & |
---|
| 1218 | rnat,capcal,pplay,pplev,pt,tsurf,pq,qsurf, & |
---|
| 1219 | pu,pv,pdt,zdtsurf,pdq,pdu,pdv,zdmassmr, & |
---|
| 1220 | zdtmr,zdtsurfmr,zdpsrfmr,zdumr,zdvmr,zdqmr,zdqsurfmr) |
---|
| 1221 | |
---|
| 1222 | |
---|
| 1223 | pdq(1:ngridmx,1:nlayermx,1:nqmx) = pdq(1:ngridmx,1:nlayermx,1:nqmx) + zdqmr(1:ngridmx,1:nlayermx,1:nqmx) |
---|
| 1224 | dqsurf(1:ngridmx,1:nqmx) = dqsurf(1:ngridmx,1:nqmx) + zdqsurfmr(1:ngridmx,1:nqmx) |
---|
| 1225 | pdt(1:ngridmx,1:nlayermx) = pdt(1:ngridmx,1:nlayermx) + zdtmr(1:ngridmx,1:nlayermx) |
---|
| 1226 | pdu(1:ngridmx,1:nlayermx) = pdu(1:ngridmx,1:nlayermx) + zdumr(1:ngridmx,1:nlayermx) |
---|
| 1227 | pdv(1:ngridmx,1:nlayermx) = pdv(1:ngridmx,1:nlayermx) + zdvmr(1:ngridmx,1:nlayermx) |
---|
| 1228 | pdpsrf(1:ngridmx) = pdpsrf(1:ngridmx) + zdpsrfmr(1:ngridmx) |
---|
| 1229 | zdtsurf(1:ngridmx) = zdtsurf(1:ngridmx) + zdtsurfmr(1:ngridmx) |
---|
| 1230 | |
---|
| 1231 | ! print*,'after mass redistrib, q=',pq(211,1:nlayermx,igcm_h2o_vap)+ptimestep*pdq(211,1:nlayermx,igcm_h2o_vap) |
---|
| 1232 | endif |
---|
| 1233 | |
---|
| 1234 | |
---|
| 1235 | |
---|
[253] | 1236 | ! --------------------------------- |
---|
| 1237 | ! Updating tracer budget on surface |
---|
| 1238 | ! --------------------------------- |
---|
| 1239 | |
---|
| 1240 | if(hydrology)then |
---|
| 1241 | |
---|
| 1242 | call hydrol(ptimestep,rnat,tsurf,qsurf,dqsurf,dqs_hyd, & |
---|
| 1243 | capcal,albedo0,albedo,mu0,zdtsurf,zdtsurf_hyd,hice) |
---|
| 1244 | ! note: for now, also changes albedo in the subroutine |
---|
| 1245 | |
---|
[728] | 1246 | zdtsurf(1:ngridmx) = zdtsurf(1:ngridmx) + zdtsurf_hyd(1:ngridmx) |
---|
| 1247 | qsurf(1:ngridmx,1:nqmx) = qsurf(1:ngridmx,1:nqmx) + ptimestep*dqs_hyd(1:ngridmx,1:nqmx) |
---|
[253] | 1248 | ! when hydrology is used, other dqsurf tendencies are all added to dqs_hyd inside |
---|
| 1249 | |
---|
| 1250 | !------------------------- |
---|
| 1251 | ! test energy conservation |
---|
| 1252 | if(enertest)then |
---|
[651] | 1253 | dEtots = SUM(area(:)*capcal(:)*zdtsurf_hyd(:))/totarea |
---|
| 1254 | print*,'In hydrol surface energy change =',dEtots,' W m-2' |
---|
[253] | 1255 | endif |
---|
| 1256 | !------------------------- |
---|
| 1257 | |
---|
| 1258 | !------------------------- |
---|
| 1259 | ! test water conservation |
---|
| 1260 | if(watertest)then |
---|
[651] | 1261 | dWtots = SUM(dqs_hyd(:,igcm_h2o_ice)*area(:))*ptimestep/totarea |
---|
[253] | 1262 | print*,'In hydrol surface ice change =',dWtots,' kg m-2' |
---|
[651] | 1263 | dWtots = SUM(dqs_hyd(:,igcm_h2o_vap)*area(:))*ptimestep/totarea |
---|
[253] | 1264 | print*,'In hydrol surface water change =',dWtots,' kg m-2' |
---|
| 1265 | print*,'---------------------------------------------------------------' |
---|
| 1266 | endif |
---|
| 1267 | !------------------------- |
---|
| 1268 | |
---|
| 1269 | ELSE ! of if (hydrology) |
---|
| 1270 | |
---|
[728] | 1271 | qsurf(1:ngridmx,1:nqmx)=qsurf(1:ngridmx,1:nqmx)+ptimestep*dqsurf(1:ngridmx,1:nqmx) |
---|
[253] | 1272 | |
---|
| 1273 | END IF ! of if (hydrology) |
---|
| 1274 | |
---|
| 1275 | ! Add qsurf to qsurf_hist, which is what we save in |
---|
| 1276 | ! diagfi.nc etc. At the same time, we set the water |
---|
| 1277 | ! content of ocean gridpoints back to zero, in order |
---|
| 1278 | ! to avoid rounding errors in vdifc, rain |
---|
[622] | 1279 | qsurf_hist(:,:) = qsurf(:,:) |
---|
[253] | 1280 | |
---|
| 1281 | if(ice_update)then |
---|
[728] | 1282 | ice_min(1:ngridmx)=min(ice_min(1:ngridmx),qsurf(1:ngridmx,igcm_h2o_ice)) |
---|
[253] | 1283 | endif |
---|
| 1284 | |
---|
| 1285 | endif ! of if (tracer) |
---|
| 1286 | |
---|
| 1287 | !----------------------------------------------------------------------- |
---|
| 1288 | ! 9. Surface and sub-surface soil temperature |
---|
| 1289 | !----------------------------------------------------------------------- |
---|
| 1290 | |
---|
| 1291 | |
---|
| 1292 | ! Increment surface temperature |
---|
[728] | 1293 | tsurf(1:ngridmx)=tsurf(1:ngridmx)+ptimestep*zdtsurf(1:ngridmx) |
---|
[253] | 1294 | |
---|
| 1295 | ! Compute soil temperatures and subsurface heat flux |
---|
| 1296 | if (callsoil) then |
---|
| 1297 | call soil(ngrid,nsoilmx,.false.,inertiedat, & |
---|
| 1298 | ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
| 1299 | endif |
---|
| 1300 | |
---|
| 1301 | !------------------------- |
---|
| 1302 | ! test energy conservation |
---|
| 1303 | if(enertest)then |
---|
[728] | 1304 | dEtots = SUM(area(:)*capcal(:)*zdtsurf(:))/totarea |
---|
[597] | 1305 | print*,'Surface energy change =',dEtots,' W m-2' |
---|
[253] | 1306 | endif |
---|
| 1307 | !------------------------- |
---|
| 1308 | |
---|
| 1309 | !----------------------------------------------------------------------- |
---|
| 1310 | ! 10. Perform diagnostics and write output files |
---|
| 1311 | !----------------------------------------------------------------------- |
---|
| 1312 | |
---|
| 1313 | ! ------------------------------- |
---|
| 1314 | ! Dynamical fields incrementation |
---|
| 1315 | ! ------------------------------- |
---|
| 1316 | ! For output only: the actual model integration is performed in the dynamics |
---|
| 1317 | |
---|
| 1318 | ! temperature, zonal and meridional wind |
---|
[728] | 1319 | zt(1:ngridmx,1:nlayermx) = pt(1:ngridmx,1:nlayermx) + pdt(1:ngridmx,1:nlayermx)*ptimestep |
---|
| 1320 | zu(1:ngridmx,1:nlayermx) = pu(1:ngridmx,1:nlayermx) + pdu(1:ngridmx,1:nlayermx)*ptimestep |
---|
| 1321 | zv(1:ngridmx,1:nlayermx) = pv(1:ngridmx,1:nlayermx) + pdv(1:ngridmx,1:nlayermx)*ptimestep |
---|
[253] | 1322 | |
---|
[728] | 1323 | ! diagnostic |
---|
| 1324 | zdtdyn(1:ngridmx,1:nlayermx) = pt(1:ngridmx,1:nlayermx)-ztprevious(1:ngridmx,1:nlayermx) |
---|
| 1325 | ztprevious(1:ngridmx,1:nlayermx) = zt(1:ngridmx,1:nlayermx) |
---|
[253] | 1326 | |
---|
| 1327 | if(firstcall)then |
---|
[728] | 1328 | zdtdyn(1:ngridmx,1:nlayermx)=0.0 |
---|
[253] | 1329 | endif |
---|
| 1330 | |
---|
| 1331 | ! dynamical heating diagnostic |
---|
| 1332 | do ig=1,ngrid |
---|
[728] | 1333 | fluxdyn(ig)= SUM(zdtdyn(ig,:) *mass(ig,:))*cpp/ptimestep |
---|
[253] | 1334 | enddo |
---|
| 1335 | |
---|
| 1336 | ! tracers |
---|
[728] | 1337 | zq(1:ngridmx,1:nlayermx,1:nqmx) = pq(1:ngridmx,1:nlayermx,1:nqmx) + pdq(1:ngridmx,1:nlayermx,1:nqmx)*ptimestep |
---|
[253] | 1338 | |
---|
| 1339 | ! surface pressure |
---|
[728] | 1340 | ps(1:ngridmx) = pplev(1:ngridmx,1) + pdpsrf(1:ngridmx)*ptimestep |
---|
[253] | 1341 | |
---|
| 1342 | ! pressure |
---|
| 1343 | do l=1,nlayer |
---|
[728] | 1344 | zplev(1:ngridmx,l) = pplev(1:ngridmx,l)/pplev(1:ngridmx,1)*ps(:) |
---|
| 1345 | zplay(1:ngridmx,l) = pplay(1:ngridmx,l)/pplev(1:ngridmx,1)*ps(1:ngridmx) |
---|
[253] | 1346 | enddo |
---|
| 1347 | |
---|
| 1348 | ! --------------------------------------------------------- |
---|
| 1349 | ! Surface and soil temperature information |
---|
| 1350 | ! --------------------------------------------------------- |
---|
| 1351 | |
---|
[651] | 1352 | Ts1 = SUM(area(:)*tsurf(:))/totarea |
---|
| 1353 | Ts2 = MINVAL(tsurf(:)) |
---|
| 1354 | Ts3 = MAXVAL(tsurf(:)) |
---|
[253] | 1355 | if(callsoil)then |
---|
[651] | 1356 | TsS = SUM(area(:)*tsoil(:,nsoilmx))/totarea ! mean temperature at bottom soil layer |
---|
[253] | 1357 | print*,' ave[Tsurf] min[Tsurf] max[Tsurf] ave[Tdeep]' |
---|
| 1358 | print*,Ts1,Ts2,Ts3,TsS |
---|
| 1359 | else |
---|
| 1360 | print*,' ave[Tsurf] min[Tsurf] max[Tsurf]' |
---|
| 1361 | print*,Ts1,Ts2,Ts3 |
---|
| 1362 | endif |
---|
| 1363 | |
---|
| 1364 | ! --------------------------------------------------------- |
---|
| 1365 | ! Check the energy balance of the simulation during the run |
---|
| 1366 | ! --------------------------------------------------------- |
---|
| 1367 | |
---|
| 1368 | if(corrk)then |
---|
| 1369 | |
---|
[651] | 1370 | ISR = SUM(area(:)*fluxtop_dn(:))/totarea |
---|
| 1371 | ASR = SUM(area(:)*fluxabs_sw(:))/totarea |
---|
| 1372 | OLR = SUM(area(:)*fluxtop_lw(:))/totarea |
---|
| 1373 | GND = SUM(area(:)*fluxgrd(:))/totarea |
---|
| 1374 | DYN = SUM(area(:)*fluxdyn(:))/totarea |
---|
| 1375 | do ig=1,ngrid |
---|
[253] | 1376 | if(fluxtop_dn(ig).lt.0.0)then |
---|
| 1377 | print*,'fluxtop_dn has gone crazy' |
---|
| 1378 | print*,'fluxtop_dn=',fluxtop_dn(ig) |
---|
| 1379 | print*,'tau_col=',tau_col(ig) |
---|
| 1380 | print*,'aerosol=',aerosol(ig,:,:) |
---|
| 1381 | print*,'temp= ',pt(ig,:) |
---|
| 1382 | print*,'pplay= ',pplay(ig,:) |
---|
| 1383 | call abort |
---|
| 1384 | endif |
---|
| 1385 | end do |
---|
| 1386 | |
---|
| 1387 | if(ngridmx.eq.1)then |
---|
| 1388 | DYN=0.0 |
---|
| 1389 | endif |
---|
| 1390 | |
---|
| 1391 | print*,' ISR ASR OLR GND DYN [W m^-2]' |
---|
[651] | 1392 | print*, ISR,ASR,OLR,GND,DYN |
---|
[253] | 1393 | |
---|
| 1394 | if(enertest)then |
---|
[651] | 1395 | print*,'SW flux/heating difference SW++ - ASR = ',dEtotSW+dEtotsSW-ASR,' W m-2' |
---|
| 1396 | print*,'LW flux/heating difference LW++ - OLR = ',dEtotLW+dEtotsLW+OLR,' W m-2' |
---|
| 1397 | print*,'LW energy balance LW++ + ASR = ',dEtotLW+dEtotsLW+ASR,' W m-2' |
---|
[253] | 1398 | endif |
---|
| 1399 | |
---|
| 1400 | if(meanOLR)then |
---|
[526] | 1401 | if((ngridmx.gt.1) .or. (mod(icount-1,nint(ecritphy)).eq.0))then |
---|
[253] | 1402 | ! to record global radiative balance |
---|
[588] | 1403 | open(92,file="rad_bal.out",form='formatted',position='append') |
---|
[651] | 1404 | write(92,*) zday,ISR,ASR,OLR |
---|
[253] | 1405 | close(92) |
---|
[588] | 1406 | open(93,file="tem_bal.out",form='formatted',position='append') |
---|
[253] | 1407 | write(93,*) zday,Ts1,Ts2,Ts3,TsS |
---|
| 1408 | close(93) |
---|
| 1409 | endif |
---|
| 1410 | endif |
---|
| 1411 | |
---|
| 1412 | endif |
---|
| 1413 | |
---|
[651] | 1414 | |
---|
[253] | 1415 | ! ------------------------------------------------------------------ |
---|
| 1416 | ! Diagnostic to test radiative-convective timescales in code |
---|
| 1417 | ! ------------------------------------------------------------------ |
---|
| 1418 | if(testradtimes)then |
---|
[588] | 1419 | open(38,file="tau_phys.out",form='formatted',position='append') |
---|
[253] | 1420 | ig=1 |
---|
| 1421 | do l=1,nlayer |
---|
| 1422 | write(38,*) -1./pdt(ig,l),pt(ig,l),pplay(ig,l) |
---|
| 1423 | enddo |
---|
| 1424 | close(38) |
---|
[726] | 1425 | print*,'As testradtimes enabled,' |
---|
| 1426 | print*,'exiting physics on first call' |
---|
[253] | 1427 | call abort |
---|
| 1428 | endif |
---|
| 1429 | |
---|
| 1430 | ! --------------------------------------------------------- |
---|
| 1431 | ! Compute column amounts (kg m-2) if tracers are enabled |
---|
| 1432 | ! --------------------------------------------------------- |
---|
| 1433 | if(tracer)then |
---|
[728] | 1434 | qcol(1:ngridmx,1:nqmx)=0.0 |
---|
[253] | 1435 | do iq=1,nq |
---|
[728] | 1436 | do ig=1,ngridmx |
---|
| 1437 | qcol(ig,iq) = SUM( zq(ig,1:nlayermx,iq) * mass(ig,1:nlayermx)) |
---|
| 1438 | enddo |
---|
[253] | 1439 | enddo |
---|
| 1440 | |
---|
[726] | 1441 | ! Generalised for arbitrary aerosols now. (LK) |
---|
[728] | 1442 | reffcol(1:ngridmx,1:naerkind)=0.0 |
---|
| 1443 | if(co2cond.and.(iaero_co2.ne.0))then |
---|
| 1444 | call co2_reffrad(zq,reffrad) |
---|
| 1445 | do ig=1,ngridmx |
---|
| 1446 | reffcol(ig,iaero_co2) = SUM(zq(ig,1:nlayermx,igcm_co2_ice)*reffrad(ig,1:nlayermx,iaero_co2)*mass(ig,1:nlayermx)) |
---|
[253] | 1447 | enddo |
---|
[728] | 1448 | endif |
---|
| 1449 | if(water.and.(iaero_h2o.ne.0))then |
---|
| 1450 | call h2o_reffrad(zq,zt,reffrad,nueffrad) |
---|
| 1451 | do ig=1,ngridmx |
---|
| 1452 | reffcol(ig,iaero_h2o) = SUM(zq(ig,1:nlayermx,igcm_h2o_ice)*reffrad(ig,1:nlayermx,iaero_h2o)*mass(ig,1:nlayermx)) |
---|
| 1453 | enddo |
---|
| 1454 | endif |
---|
[253] | 1455 | |
---|
| 1456 | endif |
---|
| 1457 | |
---|
| 1458 | ! --------------------------------------------------------- |
---|
| 1459 | ! Test for water conservation if water is enabled |
---|
| 1460 | ! --------------------------------------------------------- |
---|
| 1461 | |
---|
| 1462 | if(water)then |
---|
| 1463 | |
---|
[651] | 1464 | icesrf = SUM(area(:)*qsurf_hist(:,igcm_h2o_ice))/totarea |
---|
| 1465 | liqsrf = SUM(area(:)*qsurf_hist(:,igcm_h2o_vap))/totarea |
---|
| 1466 | icecol = SUM(area(:)*qcol(:,igcm_h2o_ice))/totarea |
---|
| 1467 | vapcol = SUM(area(:)*qcol(:,igcm_h2o_vap))/totarea |
---|
[253] | 1468 | |
---|
[651] | 1469 | h2otot = icesrf + liqsrf + icecol + vapcol |
---|
[253] | 1470 | |
---|
[651] | 1471 | print*,' Total water amount [kg m^-2]: ',h2otot |
---|
[253] | 1472 | print*,' Surface ice Surface liq. Atmos. con. Atmos. vap. [kg m^-2] ' |
---|
[651] | 1473 | print*, icesrf,liqsrf,icecol,vapcol |
---|
[253] | 1474 | |
---|
| 1475 | if(meanOLR)then |
---|
[526] | 1476 | if((ngridmx.gt.1) .or. (mod(icount-1,nint(ecritphy)).eq.0))then |
---|
[253] | 1477 | ! to record global water balance |
---|
[588] | 1478 | open(98,file="h2o_bal.out",form='formatted',position='append') |
---|
[651] | 1479 | write(98,*) zday,icesrf,liqsrf,icecol,vapcol |
---|
[253] | 1480 | close(98) |
---|
| 1481 | endif |
---|
| 1482 | endif |
---|
| 1483 | |
---|
| 1484 | endif |
---|
| 1485 | |
---|
| 1486 | ! --------------------------------------------------------- |
---|
| 1487 | ! Calculate RH for diagnostic if water is enabled |
---|
| 1488 | ! --------------------------------------------------------- |
---|
| 1489 | |
---|
| 1490 | if(water)then |
---|
| 1491 | do l = 1, nlayer |
---|
| 1492 | do ig = 1, ngrid |
---|
[728] | 1493 | ! call watersat(pt(ig,l),pplay(ig,l),qsat(ig,l)) |
---|
| 1494 | call Psat_water(zt(ig,l),pplay(ig,l),psat_tmp,qsat(ig,l)) |
---|
| 1495 | |
---|
[253] | 1496 | RH(ig,l) = zq(ig,l,igcm_h2o_vap) / qsat(ig,l) |
---|
| 1497 | enddo |
---|
| 1498 | enddo |
---|
| 1499 | |
---|
| 1500 | ! compute maximum possible H2O column amount (100% saturation) |
---|
| 1501 | do ig=1,ngrid |
---|
[728] | 1502 | H2Omaxcol(ig) = SUM( qsat(ig,:) * mass(ig,:)) |
---|
[253] | 1503 | enddo |
---|
| 1504 | |
---|
| 1505 | endif |
---|
| 1506 | |
---|
| 1507 | |
---|
| 1508 | print*,'' |
---|
| 1509 | print*,'--> Ls =',zls*180./pi |
---|
| 1510 | ! ------------------------------------------------------------------- |
---|
| 1511 | ! Writing NetCDF file "RESTARTFI" at the end of the run |
---|
| 1512 | ! ------------------------------------------------------------------- |
---|
| 1513 | ! Note: 'restartfi' is stored just before dynamics are stored |
---|
| 1514 | ! in 'restart'. Between now and the writting of 'restart', |
---|
| 1515 | ! there will have been the itau=itau+1 instruction and |
---|
| 1516 | ! a reset of 'time' (lastacll = .true. when itau+1= itaufin) |
---|
| 1517 | ! thus we store for time=time+dtvr |
---|
| 1518 | |
---|
| 1519 | if(lastcall) then |
---|
| 1520 | ztime_fin = ptime + ptimestep/(float(iphysiq)*daysec) |
---|
| 1521 | |
---|
| 1522 | |
---|
| 1523 | ! Update surface ice distribution to iterate to steady state if requested |
---|
| 1524 | if(ice_update)then |
---|
[305] | 1525 | |
---|
[253] | 1526 | do ig = 1, ngrid |
---|
| 1527 | |
---|
[305] | 1528 | delta_ice = (qsurf(ig,igcm_h2o_ice)-ice_initial(ig)) |
---|
| 1529 | |
---|
[365] | 1530 | ! add multiple years of evolution |
---|
[728] | 1531 | qsurf_hist(ig,igcm_h2o_ice) = qsurf_hist(ig,igcm_h2o_ice) + delta_ice*icetstep |
---|
[305] | 1532 | |
---|
| 1533 | ! if ice has gone -ve, set to zero |
---|
| 1534 | if(qsurf_hist(ig,igcm_h2o_ice).lt.0.0)then |
---|
| 1535 | qsurf_hist(ig,igcm_h2o_ice) = 0.0 |
---|
[253] | 1536 | endif |
---|
[305] | 1537 | |
---|
[365] | 1538 | ! if ice is seasonal, set to zero (NEW) |
---|
| 1539 | if(ice_min(ig).lt.0.01)then |
---|
| 1540 | qsurf_hist(ig,igcm_h2o_ice) = 0.0 |
---|
[253] | 1541 | endif |
---|
| 1542 | |
---|
| 1543 | enddo |
---|
[305] | 1544 | |
---|
| 1545 | ! enforce ice conservation |
---|
[728] | 1546 | ice_tot= SUM(qsurf_hist(:,igcm_h2o_ice)*area(:) ) |
---|
| 1547 | qsurf_hist(:,igcm_h2o_ice) = qsurf_hist(:,igcm_h2o_ice)*(icesrf/ice_tot) |
---|
[305] | 1548 | |
---|
[253] | 1549 | endif |
---|
| 1550 | |
---|
| 1551 | write(*,*)'PHYSIQ: for physdem ztime_fin =',ztime_fin |
---|
| 1552 | call physdem1("restartfi.nc",long,lati,nsoilmx,nq, & |
---|
| 1553 | ptimestep,pday,ztime_fin,tsurf,tsoil,emis,q2,qsurf_hist, & |
---|
| 1554 | area,albedodat,inertiedat,zmea,zstd,zsig,zgam,zthe, & |
---|
| 1555 | cloudfrac,totcloudfrac,hice) |
---|
| 1556 | endif |
---|
| 1557 | |
---|
| 1558 | ! ----------------------------------------------------------------- |
---|
| 1559 | ! Saving statistics : |
---|
| 1560 | ! ----------------------------------------------------------------- |
---|
| 1561 | ! ("stats" stores and accumulates 8 key variables in file "stats.nc" |
---|
| 1562 | ! which can later be used to make the statistic files of the run: |
---|
| 1563 | ! "stats") only possible in 3D runs ! |
---|
| 1564 | |
---|
| 1565 | |
---|
| 1566 | if (callstats) then |
---|
| 1567 | |
---|
| 1568 | call wstats(ngrid,"ps","Surface pressure","Pa",2,ps) |
---|
| 1569 | call wstats(ngrid,"tsurf","Surface temperature","K",2,tsurf) |
---|
| 1570 | call wstats(ngrid,"fluxsurf_lw", & |
---|
| 1571 | "Thermal IR radiative flux to surface","W.m-2",2, & |
---|
| 1572 | fluxsurf_lw) |
---|
| 1573 | ! call wstats(ngrid,"fluxsurf_sw", & |
---|
| 1574 | ! "Solar radiative flux to surface","W.m-2",2, & |
---|
| 1575 | ! fluxsurf_sw_tot) |
---|
| 1576 | call wstats(ngrid,"fluxtop_lw", & |
---|
| 1577 | "Thermal IR radiative flux to space","W.m-2",2, & |
---|
| 1578 | fluxtop_lw) |
---|
| 1579 | ! call wstats(ngrid,"fluxtop_sw", & |
---|
| 1580 | ! "Solar radiative flux to space","W.m-2",2, & |
---|
| 1581 | ! fluxtop_sw_tot) |
---|
[526] | 1582 | |
---|
| 1583 | call wstats(ngrid,"ISR","incoming stellar rad.","W m-2",2,fluxtop_dn) |
---|
| 1584 | call wstats(ngrid,"ASR","absorbed stellar rad.","W m-2",2,fluxabs_sw) |
---|
| 1585 | call wstats(ngrid,"OLR","outgoing longwave rad.","W m-2",2,fluxtop_lw) |
---|
| 1586 | |
---|
[253] | 1587 | call wstats(ngrid,"temp","Atmospheric temperature","K",3,zt) |
---|
| 1588 | call wstats(ngrid,"u","Zonal (East-West) wind","m.s-1",3,zu) |
---|
| 1589 | call wstats(ngrid,"v","Meridional (North-South) wind","m.s-1",3,zv) |
---|
| 1590 | call wstats(ngrid,"w","Vertical (down-up) wind","m.s-1",3,pw) |
---|
| 1591 | call wstats(ngrid,"q2","Boundary layer eddy kinetic energy","m2.s-2",3,q2) |
---|
| 1592 | |
---|
| 1593 | if (tracer) then |
---|
[526] | 1594 | do iq=1,nq |
---|
| 1595 | call wstats(ngrid,noms(iq),noms(iq),'kg/kg',3,zq(1,1,iq)) |
---|
| 1596 | call wstats(ngridmx,trim(noms(iq))//'_surf',trim(noms(iq))//'_surf', & |
---|
| 1597 | 'kg m^-2',2,qsurf(1,iq) ) |
---|
| 1598 | |
---|
| 1599 | call wstats(ngridmx,trim(noms(iq))//'_col',trim(noms(iq))//'_col', & |
---|
| 1600 | 'kg m^-2',2,qcol(1,iq) ) |
---|
[726] | 1601 | ! call wstats(ngridmx,trim(noms(iq))//'_reff', & |
---|
| 1602 | ! trim(noms(iq))//'_reff', & |
---|
| 1603 | ! 'm',3,reffrad(1,1,iq)) |
---|
[526] | 1604 | end do |
---|
[253] | 1605 | if (water) then |
---|
| 1606 | vmr=zq(1:ngridmx,1:nlayermx,igcm_h2o_vap)*mugaz/mmol(igcm_h2o_vap) |
---|
| 1607 | call wstats(ngrid,"vmr_h2ovapor", & |
---|
| 1608 | "H2O vapour volume mixing ratio","mol/mol", & |
---|
| 1609 | 3,vmr) |
---|
| 1610 | endif ! of if (water) |
---|
| 1611 | |
---|
| 1612 | endif !tracer |
---|
| 1613 | |
---|
| 1614 | if(lastcall) then |
---|
| 1615 | write (*,*) "Writing stats..." |
---|
| 1616 | call mkstats(ierr) |
---|
| 1617 | endif |
---|
| 1618 | endif !if callstats |
---|
| 1619 | |
---|
| 1620 | |
---|
| 1621 | ! ---------------------------------------------------------------------- |
---|
| 1622 | ! output in netcdf file "DIAGFI", containing any variable for diagnostic |
---|
| 1623 | ! (output with period "ecritphy", set in "run.def") |
---|
| 1624 | ! ---------------------------------------------------------------------- |
---|
| 1625 | ! writediagfi can also be called from any other subroutine for any variable. |
---|
| 1626 | ! but its preferable to keep all the calls in one place... |
---|
| 1627 | |
---|
| 1628 | call writediagfi(ngrid,"tsurf","Surface temperature","K",2,tsurf) |
---|
| 1629 | call writediagfi(ngrid,"ps","Surface pressure","Pa",2,ps) |
---|
| 1630 | call writediagfi(ngrid,"temp","temperature","K",3,zt) |
---|
[597] | 1631 | call writediagfi(ngrid,"teta","potential temperature","K",3,zh) |
---|
[253] | 1632 | call writediagfi(ngrid,"u","Zonal wind","m.s-1",3,zu) |
---|
| 1633 | call writediagfi(ngrid,"v","Meridional wind","m.s-1",3,zv) |
---|
| 1634 | call writediagfi(ngrid,"w","Vertical wind","m.s-1",3,pw) |
---|
[731] | 1635 | call writediagfi(ngrid,"p","Pressure","Pa",3,pplay) |
---|
[253] | 1636 | |
---|
| 1637 | ! Total energy balance diagnostics |
---|
| 1638 | if(callrad.and.(.not.newtonian))then |
---|
[731] | 1639 | call writediagfi(ngrid,"ALB","Surface albedo"," ",2,albedo) |
---|
[253] | 1640 | call writediagfi(ngrid,"ISR","incoming stellar rad.","W m-2",2,fluxtop_dn) |
---|
| 1641 | call writediagfi(ngrid,"ASR","absorbed stellar rad.","W m-2",2,fluxabs_sw) |
---|
| 1642 | call writediagfi(ngrid,"OLR","outgoing longwave rad.","W m-2",2,fluxtop_lw) |
---|
| 1643 | call writediagfi(ngrid,"GND","heat flux from ground","W m-2",2,fluxgrd) |
---|
| 1644 | call writediagfi(ngrid,"DYN","dynamical heat input","W m-2",2,fluxdyn) |
---|
| 1645 | endif |
---|
[594] | 1646 | |
---|
| 1647 | if(enertest) then |
---|
[622] | 1648 | if (calldifv) then |
---|
| 1649 | call writediagfi(ngridmx,"q2","turbulent kinetic energy","J.kg^-1",3,q2) |
---|
[731] | 1650 | ! call writediagfi(ngridmx,"dEzdiff","turbulent diffusion heating (-sensible flux)","w.m^-2",3,dEzdiff) |
---|
| 1651 | ! call writediagfi(ngridmx,"dEdiff","integrated turbulent diffusion heating (-sensible flux)","w.m^-2",2,dEdiff) |
---|
| 1652 | ! call writediagfi(ngridmx,"dEdiffs","In TurbDiff (correc rad+latent heat) surf nrj change","w.m^-2",2,dEdiffs) |
---|
[622] | 1653 | call writediagfi(ngridmx,"sensibFlux","sensible heat flux","w.m^-2",2,sensibFlux) |
---|
| 1654 | endif |
---|
[596] | 1655 | if (corrk) then |
---|
[731] | 1656 | ! call writediagfi(ngridmx,"dEzradsw","radiative heating","w.m^-2",3,dEzradsw) |
---|
| 1657 | ! call writediagfi(ngridmx,"dEzradlw","radiative heating","w.m^-2",3,dEzradlw) |
---|
[596] | 1658 | endif |
---|
[594] | 1659 | if(watercond) then |
---|
| 1660 | call writediagfi(ngrid,"lscaledE","heat from largescale","W m-2",2,lscaledE) |
---|
[622] | 1661 | call writediagfi(ngrid,"madjdE","heat from moistadj","W m-2",2,madjdE) |
---|
| 1662 | call writediagfi(ngridmx,"RH","relative humidity"," ",3,RH) |
---|
[731] | 1663 | ! call writediagfi(ngridmx,"qsatatm","atm qsat"," ",3,qsat) |
---|
| 1664 | ! call writediagfi(ngridmx,"h2o_max_col","maximum H2O column amount","kg.m^-2",2,H2Omaxcol) |
---|
[594] | 1665 | endif |
---|
| 1666 | endif |
---|
[253] | 1667 | |
---|
| 1668 | ! Temporary inclusions for heating diagnostics |
---|
| 1669 | ! call writediagfi(ngrid,"zdtdyn","Dyn. heating","T s-1",3,zdtdyn) |
---|
| 1670 | ! call writediagfi(ngrid,"zdtsw","SW heating","T s-1",3,zdtsw) |
---|
| 1671 | ! call writediagfi(ngrid,"zdtlw","LW heating","T s-1",3,zdtlw) |
---|
| 1672 | ! call writediagfi(ngrid,"dtrad","radiative heating","K s-1",3,dtrad) |
---|
| 1673 | |
---|
| 1674 | ! debugging |
---|
[368] | 1675 | !call writediagfi(ngrid,'rnat','Terrain type',' ',2,real(rnat)) |
---|
[253] | 1676 | !call writediagfi(ngrid,'pphi','Geopotential',' ',3,pphi) |
---|
| 1677 | |
---|
| 1678 | ! Output aerosols |
---|
[728] | 1679 | if (igcm_co2_ice.ne.0.and.iaero_co2.ne.0) & |
---|
| 1680 | call writediagfi(ngridmx,'CO2ice_reff','CO2ice_reff','m',3,reffrad(1,1,iaero_co2)) |
---|
| 1681 | if (igcm_h2o_ice.ne.0.and.iaero_h2o.ne.0) & |
---|
| 1682 | call writediagfi(ngridmx,'H2Oice_reff','H2Oice_reff','m',3,reffrad(:,:,iaero_h2o)) |
---|
| 1683 | if (igcm_co2_ice.ne.0.and.iaero_co2.ne.0) & |
---|
| 1684 | call writediagfi(ngridmx,'CO2ice_reffcol','CO2ice_reffcol','um kg m^-2',2,reffcol(1,iaero_co2)) |
---|
| 1685 | if (igcm_h2o_ice.ne.0.and.iaero_h2o.ne.0) & |
---|
| 1686 | call writediagfi(ngridmx,'H2Oice_reffcol','H2Oice_reffcol','um kg m^-2',2,reffcol(1,iaero_h2o)) |
---|
[253] | 1687 | |
---|
| 1688 | ! Output tracers |
---|
| 1689 | if (tracer) then |
---|
| 1690 | do iq=1,nq |
---|
[368] | 1691 | call writediagfi(ngrid,noms(iq),noms(iq),'kg/kg',3,zq(1,1,iq)) |
---|
[253] | 1692 | ! call writediagfi(ngridmx,trim(noms(iq))//'_surf',trim(noms(iq))//'_surf', & |
---|
| 1693 | ! 'kg m^-2',2,qsurf(1,iq) ) |
---|
| 1694 | call writediagfi(ngridmx,trim(noms(iq))//'_surf',trim(noms(iq))//'_surf', & |
---|
| 1695 | 'kg m^-2',2,qsurf_hist(1,iq) ) |
---|
| 1696 | call writediagfi(ngridmx,trim(noms(iq))//'_col',trim(noms(iq))//'_col', & |
---|
| 1697 | 'kg m^-2',2,qcol(1,iq) ) |
---|
| 1698 | |
---|
[594] | 1699 | if(watercond.or.CLFvarying)then |
---|
[731] | 1700 | ! call writediagfi(ngrid,"rneb_man","H2O cloud fraction (conv)"," ",3,rneb_man) |
---|
| 1701 | ! call writediagfi(ngrid,"rneb_lsc","H2O cloud fraction (large scale)"," ",3,rneb_lsc) |
---|
| 1702 | ! call writediagfi(ngrid,"CLF","H2O cloud fraction"," ",3,cloudfrac) |
---|
[253] | 1703 | call writediagfi(ngrid,"CLFt","H2O column cloud fraction"," ",2,totcloudfrac) |
---|
| 1704 | endif |
---|
| 1705 | |
---|
| 1706 | if(waterrain)then |
---|
| 1707 | call writediagfi(ngridmx,"rain","rainfall","kg m-2 s-1",2,zdqsrain) |
---|
| 1708 | call writediagfi(ngridmx,"snow","snowfall","kg m-2 s-1",2,zdqssnow) |
---|
| 1709 | endif |
---|
| 1710 | |
---|
| 1711 | if(hydrology)then |
---|
| 1712 | call writediagfi(ngridmx,"hice","oceanic ice height","m",2,hice) |
---|
| 1713 | endif |
---|
| 1714 | |
---|
| 1715 | if(ice_update)then |
---|
| 1716 | call writediagfi(ngridmx,"ice_min","min annual ice","m",2,ice_min) |
---|
| 1717 | call writediagfi(ngridmx,"ice_ini","initial annual ice","m",2,ice_initial) |
---|
| 1718 | endif |
---|
| 1719 | |
---|
| 1720 | do ig=1,ngrid |
---|
| 1721 | if(tau_col(ig).gt.1.e3)then |
---|
| 1722 | print*,'WARNING: tau_col=',tau_col(ig) |
---|
| 1723 | print*,'at ig=',ig,'in PHYSIQ' |
---|
| 1724 | endif |
---|
| 1725 | end do |
---|
| 1726 | |
---|
| 1727 | call writediagfi(ngridmx,"tau_col","Total aerosol optical depth","[]",2,tau_col) |
---|
| 1728 | |
---|
| 1729 | enddo |
---|
| 1730 | endif |
---|
| 1731 | |
---|
[526] | 1732 | ! output spectrum |
---|
| 1733 | if(specOLR.and.corrk)then |
---|
[728] | 1734 | call writediagspecIR(ngrid,"OLR3D","OLR(lon,lat,band)","W/m^2/cm^-1",3,OLR_nu) |
---|
| 1735 | call writediagspecVI(ngrid,"OSR3D","OSR(lon,lat,band)","W/m^2/cm^-1",3,OSR_nu) |
---|
[526] | 1736 | endif |
---|
[253] | 1737 | |
---|
| 1738 | |
---|
| 1739 | icount=icount+1 |
---|
| 1740 | |
---|
[716] | 1741 | ! deallocate gas variables |
---|
[471] | 1742 | if (lastcall) then |
---|
[716] | 1743 | IF ( ALLOCATED( gnom ) ) DEALLOCATE( gnom ) |
---|
| 1744 | IF ( ALLOCATED( gfrac ) ) DEALLOCATE( gfrac ) ! both allocated in su_gases.F90 |
---|
[471] | 1745 | endif |
---|
| 1746 | |
---|
| 1747 | |
---|
[253] | 1748 | return |
---|
[751] | 1749 | end subroutine physiq |
---|