[597] | 1 | subroutine physiq(ngrid,nlayer,nq, & |
---|
[253] | 2 | firstcall,lastcall, & |
---|
| 3 | pday,ptime,ptimestep, & |
---|
| 4 | pplev,pplay,pphi, & |
---|
| 5 | pu,pv,pt,pq, & |
---|
| 6 | pw, & |
---|
| 7 | pdu,pdv,pdt,pdq,pdpsrf,tracerdyn) |
---|
| 8 | |
---|
[526] | 9 | use radinc_h, only : naerkind,L_NSPECTI,L_NSPECTV |
---|
[650] | 10 | use watercommon_h, only : RLVTT |
---|
[471] | 11 | use gases_h |
---|
[600] | 12 | use radcommon_h, only: sigma |
---|
[253] | 13 | implicit none |
---|
| 14 | |
---|
| 15 | |
---|
| 16 | !================================================================== |
---|
| 17 | ! |
---|
| 18 | ! Purpose |
---|
| 19 | ! ------- |
---|
| 20 | ! Central subroutine for all the physics parameterisations in the |
---|
| 21 | ! universal model. Originally adapted from the Mars LMDZ model. |
---|
| 22 | ! |
---|
| 23 | ! The model can be run without or with tracer transport |
---|
| 24 | ! depending on the value of "tracer" in file "callphys.def". |
---|
| 25 | ! |
---|
| 26 | ! |
---|
| 27 | ! It includes: |
---|
| 28 | ! |
---|
| 29 | ! 1. Initialization: |
---|
| 30 | ! 1.1 Firstcall initializations |
---|
| 31 | ! 1.2 Initialization for every call to physiq |
---|
| 32 | ! 1.2.5 Compute mean mass and cp, R and thermal conduction coeff. |
---|
| 33 | ! 2. Compute radiative transfer tendencies |
---|
| 34 | ! (longwave and shortwave). |
---|
| 35 | ! 4. Vertical diffusion (turbulent mixing): |
---|
| 36 | ! 5. Convective adjustment |
---|
| 37 | ! 6. Condensation and sublimation of gases (currently just CO2). |
---|
| 38 | ! 7. TRACERS |
---|
| 39 | ! 7a. water and water ice |
---|
| 40 | ! 7c. other schemes for tracer transport (lifting, sedimentation) |
---|
| 41 | ! 7d. updates (pressure variations, surface budget) |
---|
| 42 | ! 9. Surface and sub-surface temperature calculations |
---|
| 43 | ! 10. Write outputs : |
---|
| 44 | ! - "startfi", "histfi" if it's time |
---|
| 45 | ! - Saving statistics if "callstats = .true." |
---|
| 46 | ! - Output any needed variables in "diagfi" |
---|
| 47 | ! 10. Diagnostics: mass conservation of tracers, radiative energy balance etc. |
---|
| 48 | ! |
---|
| 49 | ! arguments |
---|
| 50 | ! --------- |
---|
| 51 | ! |
---|
| 52 | ! input |
---|
| 53 | ! ----- |
---|
| 54 | ! ecri period (in dynamical timestep) to write output |
---|
| 55 | ! ngrid Size of the horizontal grid. |
---|
| 56 | ! All internal loops are performed on that grid. |
---|
| 57 | ! nlayer Number of vertical layers. |
---|
| 58 | ! nq Number of advected fields |
---|
| 59 | ! firstcall True at the first call |
---|
| 60 | ! lastcall True at the last call |
---|
| 61 | ! pday Number of days counted from the North. Spring |
---|
| 62 | ! equinoxe. |
---|
| 63 | ! ptime Universal time (0<ptime<1): ptime=0.5 at 12:00 UT |
---|
| 64 | ! ptimestep timestep (s) |
---|
| 65 | ! pplay(ngrid,nlayer) Pressure at the middle of the layers (Pa) |
---|
| 66 | ! pplev(ngrid,nlayer+1) intermediate pressure levels (pa) |
---|
| 67 | ! pphi(ngrid,nlayer) Geopotential at the middle of the layers (m2s-2) |
---|
| 68 | ! pu(ngrid,nlayer) u component of the wind (ms-1) |
---|
| 69 | ! pv(ngrid,nlayer) v component of the wind (ms-1) |
---|
| 70 | ! pt(ngrid,nlayer) Temperature (K) |
---|
| 71 | ! pq(ngrid,nlayer,nq) Advected fields |
---|
| 72 | ! pudyn(ngrid,nlayer) \ |
---|
| 73 | ! pvdyn(ngrid,nlayer) \ Dynamical temporal derivative for the |
---|
| 74 | ! ptdyn(ngrid,nlayer) / corresponding variables |
---|
| 75 | ! pqdyn(ngrid,nlayer,nq) / |
---|
| 76 | ! pw(ngrid,?) vertical velocity |
---|
| 77 | ! |
---|
| 78 | ! output |
---|
| 79 | ! ------ |
---|
| 80 | ! |
---|
| 81 | ! pdu(ngrid,nlayermx) \ |
---|
| 82 | ! pdv(ngrid,nlayermx) \ Temporal derivative of the corresponding |
---|
| 83 | ! pdt(ngrid,nlayermx) / variables due to physical processes. |
---|
| 84 | ! pdq(ngrid,nlayermx) / |
---|
| 85 | ! pdpsrf(ngrid) / |
---|
| 86 | ! tracerdyn call tracer in dynamical part of GCM ? |
---|
| 87 | ! |
---|
| 88 | ! |
---|
| 89 | ! Authors |
---|
| 90 | ! ------- |
---|
| 91 | ! Frederic Hourdin 15/10/93 |
---|
| 92 | ! Francois Forget 1994 |
---|
| 93 | ! Christophe Hourdin 02/1997 |
---|
| 94 | ! Subroutine completely rewritten by F. Forget (01/2000) |
---|
| 95 | ! Water ice clouds: Franck Montmessin (update 06/2003) |
---|
| 96 | ! Radiatively active tracers: J.-B. Madeleine (10/2008-06/2009) |
---|
| 97 | ! New correlated-k radiative scheme: R. Wordsworth (2009) |
---|
| 98 | ! Many specifically Martian subroutines removed: R. Wordsworth (2009) |
---|
| 99 | ! Improved water cycle: R. Wordsworth / B. Charnay (2010) |
---|
| 100 | ! To F90: R. Wordsworth (2010) |
---|
[594] | 101 | ! New turbulent diffusion scheme: J. Leconte (2012) |
---|
[716] | 102 | ! Loops converted to F90 matrix format: J. Leconte (2012) |
---|
[253] | 103 | ! |
---|
| 104 | !================================================================== |
---|
| 105 | |
---|
| 106 | |
---|
| 107 | ! 0. Declarations : |
---|
| 108 | ! ------------------ |
---|
| 109 | |
---|
| 110 | #include "dimensions.h" |
---|
| 111 | #include "dimphys.h" |
---|
| 112 | #include "comgeomfi.h" |
---|
| 113 | #include "surfdat.h" |
---|
| 114 | #include "comsoil.h" |
---|
| 115 | #include "comdiurn.h" |
---|
| 116 | #include "callkeys.h" |
---|
| 117 | #include "comcstfi.h" |
---|
| 118 | #include "planete.h" |
---|
| 119 | #include "comsaison.h" |
---|
| 120 | #include "control.h" |
---|
| 121 | #include "tracer.h" |
---|
| 122 | #include "watercap.h" |
---|
| 123 | #include "netcdf.inc" |
---|
| 124 | |
---|
| 125 | ! Arguments : |
---|
| 126 | ! ----------- |
---|
| 127 | |
---|
| 128 | ! inputs: |
---|
| 129 | ! ------- |
---|
| 130 | integer ngrid,nlayer,nq |
---|
| 131 | real ptimestep |
---|
| 132 | real pplev(ngridmx,nlayer+1),pplay(ngridmx,nlayer) |
---|
| 133 | real pphi(ngridmx,nlayer) |
---|
| 134 | real pu(ngridmx,nlayer),pv(ngridmx,nlayer) |
---|
| 135 | real pt(ngridmx,nlayer),pq(ngridmx,nlayer,nq) |
---|
| 136 | real pw(ngridmx,nlayer) ! pvervel transmitted by dyn3d |
---|
| 137 | real zh(ngridmx,nlayermx) ! potential temperature (K) |
---|
| 138 | logical firstcall,lastcall |
---|
| 139 | |
---|
| 140 | real pday |
---|
| 141 | real ptime |
---|
| 142 | logical tracerdyn |
---|
| 143 | |
---|
| 144 | ! outputs: |
---|
| 145 | ! -------- |
---|
| 146 | ! physical tendencies |
---|
| 147 | real pdu(ngridmx,nlayer),pdv(ngridmx,nlayer) |
---|
| 148 | real pdt(ngridmx,nlayer),pdq(ngridmx,nlayer,nq) |
---|
| 149 | real pdpsrf(ngridmx) ! surface pressure tendency |
---|
| 150 | |
---|
| 151 | |
---|
| 152 | ! Local saved variables: |
---|
| 153 | ! ---------------------- |
---|
| 154 | ! aerosol (dust or ice) extinction optical depth at reference wavelength |
---|
| 155 | ! "longrefvis" set in dimradmars.h , for one of the "naerkind" kind of |
---|
| 156 | ! aerosol optical properties: |
---|
| 157 | ! real aerosol(ngridmx,nlayermx,naerkind) |
---|
| 158 | ! this is now internal to callcorrk and hence no longer needed here |
---|
| 159 | |
---|
| 160 | integer day_ini ! Initial date of the run (sol since Ls=0) |
---|
| 161 | integer icount ! counter of calls to physiq during the run. |
---|
| 162 | real tsurf(ngridmx) ! Surface temperature (K) |
---|
| 163 | real tsoil(ngridmx,nsoilmx) ! sub-surface temperatures (K) |
---|
| 164 | real albedo(ngridmx) ! Surface albedo |
---|
| 165 | |
---|
| 166 | real albedo0(ngridmx) ! Surface albedo |
---|
| 167 | integer rnat(ngridmx) ! added by BC |
---|
| 168 | save rnat |
---|
| 169 | |
---|
| 170 | real emis(ngridmx) ! Thermal IR surface emissivity |
---|
| 171 | real dtrad(ngridmx,nlayermx) ! Net atm. radiative heating rate (K.s-1) |
---|
| 172 | real fluxrad_sky(ngridmx) ! rad. flux from sky absorbed by surface (W.m-2) |
---|
| 173 | real fluxrad(ngridmx) ! Net radiative surface flux (W.m-2) |
---|
| 174 | real capcal(ngridmx) ! surface heat capacity (J m-2 K-1) |
---|
| 175 | real fluxgrd(ngridmx) ! surface conduction flux (W.m-2) |
---|
| 176 | real qsurf(ngridmx,nqmx) ! tracer on surface (e.g. kg.m-2) |
---|
| 177 | real q2(ngridmx,nlayermx+1) ! Turbulent Kinetic Energy |
---|
| 178 | |
---|
| 179 | save day_ini, icount |
---|
| 180 | save tsurf,tsoil |
---|
| 181 | save albedo0,albedo,emis,q2 |
---|
| 182 | save capcal,fluxgrd,dtrad,fluxrad,fluxrad_sky,qsurf |
---|
| 183 | |
---|
| 184 | ! Local variables : |
---|
| 185 | ! ----------------- |
---|
| 186 | |
---|
| 187 | ! aerosol (dust or ice) extinction optical depth at reference wavelength |
---|
| 188 | ! for the "naerkind" optically active aerosols: |
---|
| 189 | real aerosol(ngridmx,nlayermx,naerkind) |
---|
| 190 | |
---|
| 191 | character*80 fichier |
---|
[526] | 192 | integer l,ig,ierr,iq,i, tapphys,nw |
---|
[253] | 193 | |
---|
| 194 | real fluxsurf_lw(ngridmx) ! incident LW (IR) surface flux (W.m-2) |
---|
| 195 | real fluxsurf_sw(ngridmx) ! incident SW (stellar) surface flux (W.m-2) |
---|
| 196 | real fluxtop_lw(ngridmx) ! Outgoing LW (IR) flux to space (W.m-2) |
---|
| 197 | real fluxabs_sw(ngridmx) ! Absorbed SW (stellar) flux (W.m-2) |
---|
| 198 | |
---|
| 199 | real fluxtop_dn(ngridmx) |
---|
| 200 | real fluxdyn(ngridmx) ! horizontal heat transport by dynamics |
---|
[526] | 201 | real OLR_nu(ngridmx,L_NSPECTI)! Outgoing LW radition in each band (Normalized to the band width (W/m2/cm-1) |
---|
| 202 | real OSR_nu(ngridmx,L_NSPECTV)! Outgoing SW radition in each band (Normalized to the band width (W/m2/cm-1) |
---|
[594] | 203 | |
---|
[597] | 204 | real,save :: sensibFlux(ngridmx) ! turbulent flux given by the atm to the surface |
---|
[594] | 205 | |
---|
[597] | 206 | save fluxsurf_lw,fluxsurf_sw,fluxtop_lw,fluxabs_sw,fluxtop_dn,fluxdyn,OLR_nu,OSR_nu |
---|
[253] | 207 | |
---|
| 208 | |
---|
| 209 | real zls ! solar longitude (rad) |
---|
| 210 | real zday ! date (time since Ls=0, in martian days) |
---|
| 211 | real zzlay(ngridmx,nlayermx) ! altitude at the middle of the layers |
---|
| 212 | real zzlev(ngridmx,nlayermx+1) ! altitude at layer boundaries |
---|
| 213 | real latvl1,lonvl1 ! Viking Lander 1 point (for diagnostic) |
---|
| 214 | |
---|
[588] | 215 | real,save :: reffrad(ngridmx,nlayermx,naerkind) ! aerosol effective radius (m) |
---|
[253] | 216 | |
---|
| 217 | ! Tendencies due to various processes: |
---|
| 218 | real dqsurf(ngridmx,nqmx) |
---|
[588] | 219 | real,save :: zdtlw(ngridmx,nlayermx) ! (K/s) |
---|
| 220 | real,save :: zdtsw(ngridmx,nlayermx) ! (K/s) |
---|
[253] | 221 | |
---|
| 222 | real cldtlw(ngridmx,nlayermx) ! (K/s) LW heating rate for clear areas |
---|
| 223 | real cldtsw(ngridmx,nlayermx) ! (K/s) SW heating rate for clear areas |
---|
| 224 | real zdtsurf(ngridmx) ! (K/s) |
---|
| 225 | real dtlscale(ngridmx,nlayermx) |
---|
| 226 | real zdvdif(ngridmx,nlayermx),zdudif(ngridmx,nlayermx) ! (m.s-2) |
---|
| 227 | real zdhdif(ngridmx,nlayermx), zdtsdif(ngridmx) ! (K/s) |
---|
[597] | 228 | real zdtdif(ngridmx,nlayermx) ! (K/s) |
---|
[253] | 229 | real zdvadj(ngridmx,nlayermx),zduadj(ngridmx,nlayermx) ! (m.s-2) |
---|
| 230 | real zdhadj(ngridmx,nlayermx) ! (K/s) |
---|
| 231 | real zdtgw(ngridmx,nlayermx) ! (K/s) |
---|
| 232 | real zdugw(ngridmx,nlayermx),zdvgw(ngridmx,nlayermx) ! (m.s-2) |
---|
| 233 | real zdtc(ngridmx,nlayermx),zdtsurfc(ngridmx) |
---|
| 234 | real zdvc(ngridmx,nlayermx),zduc(ngridmx,nlayermx) |
---|
| 235 | |
---|
| 236 | real zdqdif(ngridmx,nlayermx,nqmx), zdqsdif(ngridmx,nqmx) |
---|
| 237 | real zdqsed(ngridmx,nlayermx,nqmx), zdqssed(ngridmx,nqmx) |
---|
| 238 | real zdqdev(ngridmx,nlayermx,nqmx), zdqsdev(ngridmx,nqmx) |
---|
| 239 | real zdqadj(ngridmx,nlayermx,nqmx) |
---|
| 240 | real zdqc(ngridmx,nlayermx,nqmx) |
---|
| 241 | real zdqlscale(ngridmx,nlayermx,nqmx) |
---|
| 242 | real zdqslscale(ngridmx,nqmx) |
---|
| 243 | real zdqchim(ngridmx,nlayermx,nqmx) |
---|
| 244 | real zdqschim(ngridmx,nqmx) |
---|
| 245 | |
---|
| 246 | real zdteuv(ngridmx,nlayermx) ! (K/s) |
---|
| 247 | real zdtconduc(ngridmx,nlayermx) ! (K/s) |
---|
| 248 | real zdumolvis(ngridmx,nlayermx) |
---|
| 249 | real zdvmolvis(ngridmx,nlayermx) |
---|
| 250 | real zdqmoldiff(ngridmx,nlayermx,nqmx) |
---|
| 251 | |
---|
| 252 | ! Local variables for local calculations: |
---|
| 253 | real zflubid(ngridmx) |
---|
| 254 | real zplanck(ngridmx),zpopsk(ngridmx,nlayermx) |
---|
| 255 | real zdum1(ngridmx,nlayermx) |
---|
| 256 | real zdum2(ngridmx,nlayermx) |
---|
| 257 | real ztim1,ztim2,ztim3, z1,z2 |
---|
| 258 | real ztime_fin |
---|
| 259 | real zdh(ngridmx,nlayermx) |
---|
| 260 | integer length |
---|
| 261 | parameter (length=100) |
---|
| 262 | |
---|
| 263 | ! local variables only used for diagnostics (output in file "diagfi" or "stats") |
---|
| 264 | ! ------------------------------------------------------------------------------ |
---|
| 265 | real ps(ngridmx), zt(ngridmx,nlayermx) |
---|
| 266 | real zu(ngridmx,nlayermx),zv(ngridmx,nlayermx) |
---|
| 267 | real zq(ngridmx,nlayermx,nqmx) |
---|
| 268 | character*2 str2 |
---|
| 269 | character*5 str5 |
---|
[597] | 270 | real zdtadj(ngridmx,nlayermx) |
---|
[253] | 271 | real zdtdyn(ngridmx,nlayermx),ztprevious(ngridmx,nlayermx) |
---|
| 272 | save ztprevious |
---|
| 273 | real reff(ngridmx,nlayermx) ! effective dust radius (used if doubleq=T) |
---|
| 274 | real qtot1,qtot2 ! total aerosol mass |
---|
| 275 | integer igmin, lmin |
---|
| 276 | logical tdiag |
---|
| 277 | |
---|
| 278 | real zplev(ngrid,nlayermx+1),zplay(ngrid,nlayermx) |
---|
| 279 | real zstress(ngrid), cd |
---|
| 280 | real hco2(nqmx), tmean, zlocal(nlayermx) |
---|
| 281 | real vmr(ngridmx,nlayermx) ! volume mixing ratio |
---|
| 282 | |
---|
| 283 | real time_phys |
---|
| 284 | |
---|
| 285 | ! reinstated by RW for diagnostic |
---|
| 286 | real tau_col(ngridmx) |
---|
| 287 | save tau_col |
---|
[597] | 288 | |
---|
[253] | 289 | ! included by RW to reduce insanity of code |
---|
| 290 | real ISR,ASR,OLR,GND,DYN,GSR,Ts1,Ts2,Ts3,TsS |
---|
| 291 | |
---|
| 292 | ! included by RW to compute tracer column densities |
---|
| 293 | real qcol(ngridmx,nqmx) |
---|
| 294 | |
---|
| 295 | ! included by RW for H2O precipitation |
---|
| 296 | real zdtrain(ngridmx,nlayermx) |
---|
| 297 | real zdqrain(ngridmx,nlayermx,nqmx) |
---|
| 298 | real zdqsrain(ngridmx) |
---|
| 299 | real zdqssnow(ngridmx) |
---|
| 300 | real rainout(ngridmx) |
---|
| 301 | |
---|
| 302 | ! included by RW for H2O Manabe scheme |
---|
| 303 | real dtmoist(ngridmx,nlayermx) |
---|
| 304 | real dqmoist(ngridmx,nlayermx,nqmx) |
---|
| 305 | |
---|
| 306 | real qvap(ngridmx,nlayermx) |
---|
| 307 | real dqvaplscale(ngridmx,nlayermx) |
---|
| 308 | real dqcldlscale(ngridmx,nlayermx) |
---|
| 309 | real rneb_man(ngridmx,nlayermx) |
---|
| 310 | real rneb_lsc(ngridmx,nlayermx) |
---|
| 311 | |
---|
| 312 | ! included by RW to account for surface cooling by evaporation |
---|
| 313 | real dtsurfh2olat(ngridmx) |
---|
| 314 | |
---|
[597] | 315 | |
---|
[594] | 316 | ! to test energy conservation (RW+JL) |
---|
[651] | 317 | real mass(ngridmx,nlayermx),massarea(ngridmx,nlayermx) |
---|
| 318 | real dEtot, dEtots, AtmToSurf_TurbFlux |
---|
[253] | 319 | real dEtotSW, dEtotsSW, dEtotLW, dEtotsLW |
---|
[622] | 320 | real dEzRadsw(ngridmx,nlayermx),dEzRadlw(ngridmx,nlayermx),dEzdiff(ngridmx,nlayermx) |
---|
| 321 | real dEdiffs(ngridmx),dEdiff(ngridmx) |
---|
[594] | 322 | real madjdE(ngridmx), lscaledE(ngridmx) |
---|
| 323 | !JL12 conservation test for mean flow kinetic energy has been disabled temporarily |
---|
| 324 | |
---|
[253] | 325 | real dItot, dVtot |
---|
| 326 | |
---|
| 327 | ! included by BC for evaporation |
---|
| 328 | real qevap(ngridmx,nlayermx,nqmx) |
---|
| 329 | real tevap(ngridmx,nlayermx) |
---|
| 330 | real dqevap(ngridmx,nlayermx) |
---|
| 331 | real dtevap(ngridmx,nlayermx) |
---|
| 332 | |
---|
| 333 | ! included by BC for hydrology |
---|
| 334 | real hice(ngridmx) |
---|
| 335 | |
---|
| 336 | ! included by RW to test water conservation (by routine) |
---|
[594] | 337 | real h2otot |
---|
[253] | 338 | real dWtot, dWtots |
---|
| 339 | real h2o_surf_all |
---|
| 340 | logical watertest |
---|
| 341 | save watertest |
---|
| 342 | |
---|
| 343 | ! included by RW for RH diagnostic |
---|
| 344 | real qsat(ngridmx,nlayermx), RH(ngridmx,nlayermx), H2Omaxcol(ngridmx) |
---|
| 345 | |
---|
| 346 | ! included by RW for hydrology |
---|
| 347 | real dqs_hyd(ngridmx,nqmx) |
---|
| 348 | real zdtsurf_hyd(ngridmx) |
---|
| 349 | |
---|
| 350 | ! included by RW for water cycle conservation tests |
---|
| 351 | real icesrf,liqsrf,icecol,vapcol |
---|
| 352 | |
---|
| 353 | ! included by BC for double radiative transfer call |
---|
| 354 | logical clearsky |
---|
[526] | 355 | real zdtsw1(ngridmx,nlayermx) |
---|
| 356 | real zdtlw1(ngridmx,nlayermx) |
---|
| 357 | real fluxsurf_lw1(ngridmx) |
---|
| 358 | real fluxsurf_sw1(ngridmx) |
---|
| 359 | real fluxtop_lw1(ngridmx) |
---|
| 360 | real fluxabs_sw1(ngridmx) |
---|
| 361 | real tau_col1(ngrid) |
---|
| 362 | real OLR_nu1(ngrid,L_NSPECTI) |
---|
| 363 | real OSR_nu1(ngrid,L_NSPECTV) |
---|
[253] | 364 | real tf, ntf |
---|
| 365 | |
---|
| 366 | ! included by BC for cloud fraction computations |
---|
| 367 | real cloudfrac(ngridmx,nlayermx) |
---|
| 368 | real totcloudfrac(ngridmx) |
---|
| 369 | |
---|
| 370 | ! included by RW for vdifc water conservation test |
---|
| 371 | real nconsMAX |
---|
| 372 | real vdifcncons(ngridmx) |
---|
| 373 | real cadjncons(ngridmx) |
---|
| 374 | |
---|
| 375 | ! double precision qsurf_hist(ngridmx,nqmx) |
---|
| 376 | real qsurf_hist(ngridmx,nqmx) |
---|
| 377 | save qsurf_hist |
---|
| 378 | |
---|
| 379 | ! included by RW for temp convadj conservation test |
---|
| 380 | real playtest(nlayermx) |
---|
| 381 | real plevtest(nlayermx) |
---|
| 382 | real ttest(nlayermx) |
---|
| 383 | real qtest(nlayermx) |
---|
| 384 | integer igtest |
---|
| 385 | |
---|
[305] | 386 | ! included by RW for runway greenhouse 1D study |
---|
| 387 | real muvar(ngridmx,nlayermx+1) |
---|
[253] | 388 | |
---|
| 389 | ! included by RW for variable H2O particle sizes |
---|
| 390 | real reffH2O(ngridmx,nlayermx) |
---|
| 391 | real reffcol(ngridmx,2) |
---|
| 392 | |
---|
| 393 | ! included by RW for sourceevol |
---|
| 394 | real ice_initial(ngridmx)!, isoil |
---|
[305] | 395 | real delta_ice,ice_tot |
---|
[253] | 396 | real ice_min(ngridmx) |
---|
| 397 | save ice_min |
---|
| 398 | save ice_initial |
---|
| 399 | |
---|
| 400 | integer num_run |
---|
| 401 | logical ice_update |
---|
| 402 | save ice_update |
---|
| 403 | |
---|
| 404 | !======================================================================= |
---|
| 405 | |
---|
| 406 | |
---|
| 407 | ! 1. Initialisation |
---|
| 408 | ! ----------------- |
---|
| 409 | |
---|
| 410 | ! 1.1 Initialisation only at first call |
---|
| 411 | ! --------------------------------------- |
---|
| 412 | if (firstcall) then |
---|
| 413 | |
---|
| 414 | |
---|
| 415 | ! variables set to 0 |
---|
| 416 | ! ~~~~~~~~~~~~~~~~~~ |
---|
| 417 | dtrad(:,:) = 0.0 |
---|
| 418 | fluxrad(:) = 0.0 |
---|
| 419 | tau_col(:) = 0.0 |
---|
| 420 | zdtsw(:,:) = 0.0 |
---|
| 421 | zdtlw(:,:) = 0.0 |
---|
| 422 | |
---|
| 423 | ! initialize tracer names, indexes and properties |
---|
| 424 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 425 | tracerdyn=tracer |
---|
| 426 | if (tracer) then |
---|
| 427 | call initracer() |
---|
| 428 | endif ! end tracer |
---|
| 429 | |
---|
| 430 | ! read startfi (initial parameters) |
---|
| 431 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 432 | call phyetat0("startfi.nc",0,0,nsoilmx,nq, & |
---|
| 433 | day_ini,time_phys,tsurf,tsoil,emis,q2,qsurf, & |
---|
| 434 | cloudfrac,totcloudfrac,hice) |
---|
| 435 | |
---|
| 436 | if (pday.ne.day_ini) then |
---|
| 437 | write(*,*) "ERROR in physiq.F90:" |
---|
| 438 | write(*,*) "bad synchronization between physics and dynamics" |
---|
| 439 | write(*,*) "dynamics day: ",pday |
---|
| 440 | write(*,*) "physics day: ",day_ini |
---|
| 441 | stop |
---|
| 442 | endif |
---|
| 443 | |
---|
| 444 | write (*,*) 'In physiq day_ini =', day_ini |
---|
| 445 | |
---|
| 446 | ! Initialize albedo and orbital calculation |
---|
| 447 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 448 | call surfini(ngrid,qsurf,albedo0) |
---|
| 449 | call iniorbit(apoastr,periastr,year_day,peri_day,obliquit) |
---|
| 450 | |
---|
| 451 | do ig=1,ngrid |
---|
| 452 | albedo(ig)=albedo0(ig) |
---|
| 453 | enddo |
---|
| 454 | |
---|
| 455 | if(tlocked)then |
---|
| 456 | print*,'Planet is tidally locked at resonance n=',nres |
---|
| 457 | print*,'Make sure you have the right rotation rate!!!' |
---|
| 458 | endif |
---|
| 459 | |
---|
| 460 | ! initialize soil |
---|
| 461 | ! ~~~~~~~~~~~~~~~ |
---|
| 462 | if (callsoil) then |
---|
| 463 | call soil(ngrid,nsoilmx,firstcall,inertiedat, & |
---|
| 464 | ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
| 465 | else |
---|
| 466 | print*,'WARNING! Thermal conduction in the soil turned off' |
---|
| 467 | do ig=1,ngrid |
---|
| 468 | capcal(ig)=1.e6 |
---|
| 469 | fluxgrd(ig)=0. |
---|
| 470 | if(noradsurf)then |
---|
| 471 | fluxgrd(ig)=10.0 |
---|
| 472 | endif |
---|
| 473 | enddo |
---|
| 474 | print*,'Flux from ground = ',fluxgrd,' W m^-2' |
---|
| 475 | endif |
---|
| 476 | icount=1 |
---|
| 477 | |
---|
| 478 | ! decide whether to update ice at end of run |
---|
| 479 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 480 | ice_update=.false. |
---|
| 481 | if(sourceevol)then |
---|
| 482 | open(128,file='num_run',form='formatted') |
---|
| 483 | read(128,*) num_run |
---|
| 484 | close(128) |
---|
| 485 | |
---|
[365] | 486 | if(num_run.ne.0.and.mod(num_run,2).eq.0)then |
---|
| 487 | !if(num_run.ne.0.and.mod(num_run,3).eq.0)then |
---|
[253] | 488 | print*,'Updating ice at end of this year!' |
---|
| 489 | ice_update=.true. |
---|
| 490 | ice_min(:)=1.e4 |
---|
| 491 | endif |
---|
| 492 | endif |
---|
| 493 | |
---|
| 494 | ! define surface as continent or ocean |
---|
| 495 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 496 | do ig=1,ngridmx |
---|
| 497 | rnat(ig)=1 |
---|
| 498 | |
---|
| 499 | ! if(iceball.or.oceanball.or.(inertiedat(ig,1).gt.1.E4))then |
---|
| 500 | if(inertiedat(ig,1).gt.1.E4)then |
---|
| 501 | rnat(ig)=0 |
---|
| 502 | endif |
---|
| 503 | enddo |
---|
| 504 | |
---|
| 505 | print*,'WARNING! Surface type currently decided by surface inertia' |
---|
| 506 | print*,'This should be improved e.g. in newstart.F' |
---|
| 507 | |
---|
| 508 | |
---|
| 509 | ! initialise surface history variable |
---|
| 510 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 511 | do ig=1,ngridmx |
---|
| 512 | do iq=1,nqmx |
---|
| 513 | qsurf_hist(ig,iq)=qsurf(ig,iq) |
---|
| 514 | enddo |
---|
| 515 | enddo |
---|
| 516 | |
---|
| 517 | ! initialise variable for dynamical heating diagnostic |
---|
| 518 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 519 | ztprevious(:,:)=pt(:,:) |
---|
| 520 | |
---|
| 521 | ! Set temperature just above condensation temperature (for Early Mars) |
---|
| 522 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 523 | if(nearco2cond) then |
---|
| 524 | write(*,*)' WARNING! Starting at Tcond+1K' |
---|
| 525 | do l=1, nlayer |
---|
| 526 | do ig=1,ngrid |
---|
| 527 | pdt(ig,l)= ((-3167.8)/(log(.01*pplay(ig,l))-23.23)+4 & |
---|
| 528 | -pt(ig,l)) / ptimestep |
---|
| 529 | enddo |
---|
| 530 | enddo |
---|
| 531 | endif |
---|
| 532 | |
---|
| 533 | if(meanOLR)then |
---|
| 534 | ! to record global radiative balance |
---|
| 535 | call system('rm -f rad_bal.out') |
---|
| 536 | ! to record global mean/max/min temperatures |
---|
| 537 | call system('rm -f tem_bal.out') |
---|
| 538 | ! to record global hydrological balance |
---|
| 539 | call system('rm -f h2o_bal.out') |
---|
| 540 | endif |
---|
| 541 | |
---|
| 542 | watertest=.false. |
---|
| 543 | if(water)then |
---|
| 544 | ! initialise variables for water cycle |
---|
| 545 | |
---|
[365] | 546 | if(enertest)then |
---|
| 547 | watertest = .true. |
---|
| 548 | endif |
---|
| 549 | |
---|
[253] | 550 | do ig=1,ngrid |
---|
[622] | 551 | !already done above (JL12) |
---|
| 552 | ! qsurf_hist(ig,igcm_h2o_vap) = qsurf(ig,igcm_h2o_vap) |
---|
[253] | 553 | if(ice_update)then |
---|
| 554 | ice_initial(ig)=qsurf(ig,igcm_h2o_ice) |
---|
| 555 | endif |
---|
| 556 | enddo |
---|
| 557 | |
---|
| 558 | endif |
---|
| 559 | call su_watercycle ! even if we don't have a water cycle, we might |
---|
| 560 | ! need epsi for the wvp definitions in callcorrk.F |
---|
| 561 | |
---|
| 562 | endif ! (end of "if firstcall") |
---|
| 563 | |
---|
| 564 | ! --------------------------------------------------- |
---|
| 565 | ! 1.2 Initializations done at every physical timestep: |
---|
| 566 | ! --------------------------------------------------- |
---|
| 567 | |
---|
| 568 | if (ngrid.NE.ngridmx) then |
---|
| 569 | print*,'STOP in PHYSIQ' |
---|
| 570 | print*,'Probleme de dimensions :' |
---|
| 571 | print*,'ngrid = ',ngrid |
---|
| 572 | print*,'ngridmx = ',ngridmx |
---|
| 573 | stop |
---|
| 574 | endif |
---|
| 575 | |
---|
| 576 | ! Initialize various variables |
---|
| 577 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 578 | |
---|
| 579 | pdu(:,:) = 0.0 |
---|
| 580 | pdv(:,:) = 0.0 |
---|
| 581 | ! if ( (.not.nearco2cond).and.(.not.firstcall) ) then |
---|
| 582 | if ( .not.nearco2cond ) then |
---|
| 583 | pdt(:,:) = 0.0 |
---|
| 584 | endif ! this was the source of an evil bug... |
---|
| 585 | pdq(:,:,:) = 0.0 |
---|
| 586 | pdpsrf(:) = 0.0 |
---|
| 587 | zflubid(:) = 0.0 |
---|
| 588 | zdtsurf(:) = 0.0 |
---|
| 589 | dqsurf(:,:) = 0.0 |
---|
| 590 | |
---|
| 591 | zday=pday+ptime ! compute time, in sols (and fraction thereof) |
---|
| 592 | |
---|
| 593 | ! Compute Stellar Longitude (Ls) |
---|
| 594 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 595 | if (season) then |
---|
| 596 | call stellarlong(zday,zls) |
---|
| 597 | else |
---|
| 598 | call stellarlong(float(day_ini),zls) |
---|
| 599 | end if |
---|
| 600 | |
---|
| 601 | ! Compute geopotential between layers |
---|
| 602 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 603 | |
---|
| 604 | do l=1,nlayer |
---|
| 605 | do ig=1,ngrid |
---|
| 606 | zzlay(ig,l)=pphi(ig,l)/g |
---|
| 607 | enddo |
---|
| 608 | enddo |
---|
| 609 | do ig=1,ngrid |
---|
| 610 | zzlev(ig,1)=0. |
---|
| 611 | zzlev(ig,nlayer+1)=1.e7 ! dummy top of last layer above 10000 km... |
---|
| 612 | enddo |
---|
| 613 | do l=2,nlayer |
---|
| 614 | do ig=1,ngrid |
---|
| 615 | z1=(pplay(ig,l-1)+pplev(ig,l))/(pplay(ig,l-1)-pplev(ig,l)) |
---|
| 616 | z2=(pplev(ig,l)+pplay(ig,l))/(pplev(ig,l)-pplay(ig,l)) |
---|
| 617 | zzlev(ig,l)=(z1*zzlay(ig,l-1)+z2*zzlay(ig,l))/(z1+z2) |
---|
| 618 | enddo |
---|
| 619 | enddo |
---|
| 620 | ! Potential temperature calculation may not be the same in physiq and dynamic... |
---|
| 621 | |
---|
| 622 | ! Compute potential temperature |
---|
| 623 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 624 | |
---|
| 625 | |
---|
[597] | 626 | do l=1,nlayer |
---|
[253] | 627 | do ig=1,ngrid |
---|
| 628 | zpopsk(ig,l)=(pplay(ig,l)/pplev(ig,1))**rcp |
---|
[597] | 629 | zh(ig,l)=pt(ig,l)/zpopsk(ig,l) |
---|
[651] | 630 | mass(ig,l) = (pplev(ig,l) - pplev(ig,l+1))/g |
---|
| 631 | massarea(ig,l)=mass(ig,l)*area(ig) |
---|
[253] | 632 | enddo |
---|
| 633 | enddo |
---|
| 634 | |
---|
| 635 | !----------------------------------------------------------------------- |
---|
| 636 | ! 2. Compute radiative tendencies |
---|
| 637 | !----------------------------------------------------------------------- |
---|
| 638 | |
---|
| 639 | if (callrad) then |
---|
[526] | 640 | if( mod(icount-1,iradia).eq.0.or.lastcall) then |
---|
[253] | 641 | |
---|
| 642 | ! Compute local stellar zenith angles |
---|
| 643 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 644 | call orbite(zls,dist_star,declin) |
---|
| 645 | |
---|
| 646 | if (tlocked) then |
---|
| 647 | ztim1=SIN(declin) |
---|
| 648 | ztim2=COS(declin)*COS(2.*pi*(zday/year_day) - zls*nres) |
---|
| 649 | ztim3=-COS(declin)*SIN(2.*pi*(zday/year_day) - zls*nres) |
---|
| 650 | |
---|
| 651 | call stelang(ngrid,sinlon,coslon,sinlat,coslat, & |
---|
| 652 | ztim1,ztim2,ztim3,mu0,fract) |
---|
| 653 | |
---|
| 654 | elseif (diurnal) then |
---|
| 655 | ztim1=SIN(declin) |
---|
| 656 | ztim2=COS(declin)*COS(2.*pi*(zday-.5)) |
---|
| 657 | ztim3=-COS(declin)*SIN(2.*pi*(zday-.5)) |
---|
| 658 | |
---|
| 659 | call stelang(ngrid,sinlon,coslon,sinlat,coslat, & |
---|
| 660 | ztim1,ztim2,ztim3,mu0,fract) |
---|
| 661 | |
---|
| 662 | else |
---|
| 663 | |
---|
| 664 | call mucorr(ngrid,declin,lati,mu0,fract,10000.,rad) |
---|
| 665 | ! WARNING: this function appears not to work in 1D |
---|
| 666 | |
---|
| 667 | endif |
---|
| 668 | |
---|
| 669 | if (corrk) then |
---|
| 670 | |
---|
| 671 | ! a) Call correlated-k radiative transfer scheme |
---|
| 672 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 673 | |
---|
| 674 | if(kastprof)then |
---|
[305] | 675 | print*,'kastprof should not = true here' |
---|
| 676 | call abort |
---|
[253] | 677 | endif |
---|
[538] | 678 | muvar(:,:)=0.0 ! only used for climate evolution studies (kcm1d) for now |
---|
| 679 | |
---|
[526] | 680 | ! standard callcorrk |
---|
| 681 | clearsky=.false. |
---|
[538] | 682 | call callcorrk(ngrid,nlayer,pq,nq,qsurf, & |
---|
[526] | 683 | albedo,emis,mu0,pplev,pplay,pt, & |
---|
[586] | 684 | tsurf,fract,dist_star,aerosol,muvar, & |
---|
[526] | 685 | zdtlw,zdtsw,fluxsurf_lw,fluxsurf_sw,fluxtop_lw, & |
---|
[538] | 686 | fluxabs_sw,fluxtop_dn,OLR_nu,OSR_nu, & |
---|
[526] | 687 | reffrad,tau_col,cloudfrac,totcloudfrac, & |
---|
| 688 | clearsky,firstcall,lastcall) |
---|
[253] | 689 | |
---|
[526] | 690 | ! Option to call scheme once more for clear regions |
---|
[253] | 691 | if(CLFvarying)then |
---|
| 692 | |
---|
[716] | 693 | ! ---> PROBLEMS WITH ALLOCATED ARRAYS |
---|
| 694 | ! (temporary solution in callcorrk: do not deallocate if CLFvarying ...) |
---|
[253] | 695 | clearsky=.true. |
---|
[538] | 696 | call callcorrk(ngrid,nlayer,pq,nq,qsurf, & |
---|
[253] | 697 | albedo,emis,mu0,pplev,pplay,pt, & |
---|
[586] | 698 | tsurf,fract,dist_star,aerosol,muvar, & |
---|
[253] | 699 | zdtlw1,zdtsw1,fluxsurf_lw1,fluxsurf_sw1,fluxtop_lw1, & |
---|
[526] | 700 | fluxabs_sw1,fluxtop_dn,OLR_nu1,OSR_nu1, & |
---|
| 701 | reffrad,tau_col1,cloudfrac,totcloudfrac, & |
---|
[538] | 702 | clearsky,firstcall,lastcall) |
---|
[716] | 703 | clearsky = .false. ! just in case. |
---|
[253] | 704 | |
---|
| 705 | ! Sum the fluxes and heating rates from cloudy/clear cases |
---|
| 706 | do ig=1,ngrid |
---|
| 707 | tf=totcloudfrac(ig) |
---|
| 708 | ntf=1.-tf |
---|
| 709 | |
---|
[526] | 710 | fluxsurf_lw(ig) = ntf*fluxsurf_lw1(ig) + tf*fluxsurf_lw(ig) |
---|
| 711 | fluxsurf_sw(ig) = ntf*fluxsurf_sw1(ig) + tf*fluxsurf_sw(ig) |
---|
| 712 | fluxtop_lw(ig) = ntf*fluxtop_lw1(ig) + tf*fluxtop_lw(ig) |
---|
| 713 | fluxabs_sw(ig) = ntf*fluxabs_sw1(ig) + tf*fluxabs_sw(ig) |
---|
| 714 | tau_col(ig) = ntf*tau_col1(ig) + tf*tau_col(ig) |
---|
[253] | 715 | |
---|
| 716 | do l=1,nlayer |
---|
[526] | 717 | zdtlw(ig,l) = ntf*zdtlw1(ig,l) + tf*zdtlw(ig,l) |
---|
| 718 | zdtsw(ig,l) = ntf*zdtsw1(ig,l) + tf*zdtsw(ig,l) |
---|
[253] | 719 | enddo |
---|
| 720 | |
---|
[538] | 721 | do nw=1,L_NSPECTV |
---|
[526] | 722 | OSR_nu(ig,nw) = ntf*OSR_nu1(ig,nw) + tf*OSR_nu(ig,nw) |
---|
[538] | 723 | enddo |
---|
| 724 | do nw=1,L_NSPECTI |
---|
[526] | 725 | OLR_nu(ig,nw) = ntf*OLR_nu1(ig,nw) + tf*OLR_nu(ig,nw) |
---|
[538] | 726 | enddo |
---|
[253] | 727 | |
---|
[526] | 728 | enddo |
---|
[253] | 729 | |
---|
[526] | 730 | endif !CLFvarying |
---|
[253] | 731 | |
---|
| 732 | ! Radiative flux from the sky absorbed by the surface (W.m-2) |
---|
| 733 | GSR=0.0 |
---|
| 734 | do ig=1,ngrid |
---|
| 735 | fluxrad_sky(ig)=emis(ig)*fluxsurf_lw(ig) & |
---|
| 736 | +fluxsurf_sw(ig)*(1.-albedo(ig)) |
---|
| 737 | |
---|
| 738 | if(noradsurf)then ! no lower surface; SW flux just disappears |
---|
| 739 | GSR = GSR + fluxsurf_sw(ig)*area(ig) |
---|
| 740 | fluxrad_sky(ig)=emis(ig)*fluxsurf_lw(ig) |
---|
| 741 | endif |
---|
| 742 | |
---|
| 743 | enddo |
---|
| 744 | if(noradsurf)then |
---|
| 745 | print*,'SW lost in deep atmosphere = ',GSR/totarea,' W m^-2' |
---|
| 746 | endif |
---|
| 747 | |
---|
| 748 | ! Net atmospheric radiative heating rate (K.s-1) |
---|
| 749 | do l=1,nlayer |
---|
| 750 | do ig=1,ngrid |
---|
| 751 | dtrad(ig,l)=zdtsw(ig,l)+zdtlw(ig,l) |
---|
| 752 | enddo |
---|
| 753 | enddo |
---|
| 754 | |
---|
| 755 | |
---|
| 756 | elseif(newtonian)then |
---|
| 757 | |
---|
| 758 | ! b) Call Newtonian cooling scheme |
---|
| 759 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 760 | call newtrelax(mu0,sinlat,zpopsk,pt,pplay,pplev,dtrad,firstcall) |
---|
| 761 | |
---|
| 762 | do ig=1,ngrid |
---|
| 763 | zdtsurf(ig) = +(pt(ig,1)-tsurf(ig))/ptimestep |
---|
| 764 | enddo |
---|
| 765 | ! e.g. surface becomes proxy for 1st atmospheric layer ? |
---|
| 766 | |
---|
| 767 | else |
---|
| 768 | |
---|
| 769 | ! c) Atmosphere has no radiative effect |
---|
| 770 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 771 | do ig=1,ngrid |
---|
| 772 | fluxtop_dn(ig) = fract(ig)*mu0(ig)*Fat1AU/dist_star**2 |
---|
| 773 | if(ngrid.eq.1)then ! / by 4 globally in 1D case... |
---|
| 774 | fluxtop_dn(1) = fract(1)*Fat1AU/dist_star**2/2.0 |
---|
| 775 | endif |
---|
| 776 | fluxsurf_sw(ig) = fluxtop_dn(ig) |
---|
| 777 | fluxrad_sky(ig) = fluxtop_dn(ig)*(1.-albedo(ig)) |
---|
[600] | 778 | fluxtop_lw(ig) = emis(ig)*sigma*tsurf(ig)**4 |
---|
[253] | 779 | enddo ! radiation skips the atmosphere entirely |
---|
| 780 | |
---|
| 781 | do l=1,nlayer |
---|
| 782 | do ig=1,ngrid |
---|
| 783 | dtrad(ig,l)=0.0 |
---|
| 784 | enddo |
---|
| 785 | enddo ! hence no atmospheric radiative heating |
---|
| 786 | |
---|
| 787 | endif ! if corrk |
---|
| 788 | |
---|
| 789 | endif ! of if(mod(icount-1,iradia).eq.0) |
---|
| 790 | |
---|
| 791 | |
---|
| 792 | ! Transformation of the radiative tendencies |
---|
| 793 | ! ------------------------------------------ |
---|
| 794 | |
---|
| 795 | do ig=1,ngrid |
---|
| 796 | zplanck(ig)=tsurf(ig)*tsurf(ig) |
---|
[600] | 797 | zplanck(ig)=emis(ig)*sigma*zplanck(ig)*zplanck(ig) |
---|
[253] | 798 | fluxrad(ig)=fluxrad_sky(ig)-zplanck(ig) |
---|
| 799 | enddo |
---|
| 800 | |
---|
| 801 | do l=1,nlayer |
---|
| 802 | do ig=1,ngrid |
---|
| 803 | pdt(ig,l)=pdt(ig,l)+dtrad(ig,l) |
---|
| 804 | enddo |
---|
| 805 | enddo |
---|
| 806 | |
---|
| 807 | !------------------------- |
---|
| 808 | ! test energy conservation |
---|
| 809 | if(enertest)then |
---|
[651] | 810 | dEtotSW = cpp*SUM(massarea(:,:)*zdtsw(:,:))/totarea |
---|
| 811 | dEtotLW = cpp*SUM(massarea(:,:)*zdtlw(:,:))/totarea |
---|
| 812 | dEtotsSW = SUM(fluxsurf_sw(:)*(1.-albedo(:))*area(:))/totarea |
---|
| 813 | dEtotsLW = SUM(fluxsurf_lw(:)*emis(:)*area(:)-zplanck(:))/totarea |
---|
| 814 | dEzRadsw(:,:)=cpp*mass(:,:)*zdtsw(:,:) |
---|
| 815 | dEzRadlw(:,:)=cpp*mass(:,:)*zdtlw(:,:) |
---|
[253] | 816 | print*,'---------------------------------------------------------------' |
---|
[594] | 817 | print*,'In corrk SW atmospheric heating =',dEtotSW,' W m-2' |
---|
| 818 | print*,'In corrk LW atmospheric heating =',dEtotLW,' W m-2' |
---|
| 819 | print*,'atmospheric net rad heating (SW+LW) =',dEtotLW+dEtotSW,' W m-2' |
---|
| 820 | print*,'In corrk SW surface heating =',dEtotsSW,' W m-2' |
---|
| 821 | print*,'In corrk LW surface heating =',dEtotsLW,' W m-2' |
---|
| 822 | print*,'surface net rad heating (SW+LW) =',dEtotsLW+dEtotsSW,' W m-2' |
---|
[253] | 823 | endif |
---|
| 824 | !------------------------- |
---|
| 825 | |
---|
| 826 | endif ! of if (callrad) |
---|
| 827 | |
---|
| 828 | !----------------------------------------------------------------------- |
---|
| 829 | ! 4. Vertical diffusion (turbulent mixing): |
---|
| 830 | ! ----------------------------------------- |
---|
| 831 | |
---|
| 832 | if (calldifv) then |
---|
[526] | 833 | |
---|
[253] | 834 | do ig=1,ngrid |
---|
| 835 | zflubid(ig)=fluxrad(ig)+fluxgrd(ig) |
---|
| 836 | enddo |
---|
| 837 | |
---|
| 838 | zdum1(:,:)=0.0 |
---|
| 839 | zdum2(:,:)=0.0 |
---|
| 840 | |
---|
[594] | 841 | |
---|
| 842 | !JL12 the following if test is temporarily there to allow us to compare the old vdifc with turbdiff |
---|
| 843 | if (UseTurbDiff) then |
---|
| 844 | |
---|
| 845 | call turbdiff(ngrid,nlayer,nq,rnat, & |
---|
[253] | 846 | ptimestep,capcal,lwrite, & |
---|
| 847 | pplay,pplev,zzlay,zzlev,z0, & |
---|
[594] | 848 | pu,pv,pt,zpopsk,pq,tsurf,emis,qsurf, & |
---|
| 849 | zdum1,zdum2,pdt,pdq,zflubid, & |
---|
| 850 | zdudif,zdvdif,zdtdif,zdtsdif, & |
---|
| 851 | sensibFlux,q2,zdqdif,zdqsdif,lastcall) |
---|
| 852 | |
---|
| 853 | else |
---|
| 854 | |
---|
| 855 | do l=1,nlayer |
---|
| 856 | do ig=1,ngrid |
---|
| 857 | zdh(ig,l)=pdt(ig,l)/zpopsk(ig,l) |
---|
| 858 | enddo |
---|
| 859 | enddo |
---|
| 860 | |
---|
| 861 | call vdifc(ngrid,nlayer,nq,rnat,zpopsk, & |
---|
| 862 | ptimestep,capcal,lwrite, & |
---|
| 863 | pplay,pplev,zzlay,zzlev,z0, & |
---|
[253] | 864 | pu,pv,zh,pq,tsurf,emis,qsurf, & |
---|
| 865 | zdum1,zdum2,zdh,pdq,zflubid, & |
---|
[594] | 866 | zdudif,zdvdif,zdhdif,zdtsdif, & |
---|
| 867 | sensibFlux,q2,zdqdif,zdqsdif,lastcall) |
---|
[253] | 868 | |
---|
[594] | 869 | do l=1,nlayer |
---|
| 870 | do ig=1,ngrid |
---|
| 871 | zdtdif(ig,l)=zdhdif(ig,l)*zpopsk(ig,l) ! for diagnostic only |
---|
| 872 | enddo |
---|
| 873 | enddo |
---|
| 874 | |
---|
| 875 | end if !turbdiff |
---|
| 876 | |
---|
[253] | 877 | do l=1,nlayer |
---|
| 878 | do ig=1,ngrid |
---|
| 879 | pdv(ig,l)=pdv(ig,l)+zdvdif(ig,l) |
---|
| 880 | pdu(ig,l)=pdu(ig,l)+zdudif(ig,l) |
---|
[594] | 881 | pdt(ig,l)=pdt(ig,l)+zdtdif(ig,l) |
---|
[253] | 882 | enddo |
---|
| 883 | enddo |
---|
| 884 | |
---|
| 885 | do ig=1,ngrid |
---|
| 886 | zdtsurf(ig)=zdtsurf(ig)+zdtsdif(ig) |
---|
| 887 | enddo |
---|
| 888 | |
---|
| 889 | if (tracer) then |
---|
| 890 | do iq=1, nq |
---|
| 891 | do l=1,nlayer |
---|
| 892 | do ig=1,ngrid |
---|
| 893 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqdif(ig,l,iq) |
---|
| 894 | enddo |
---|
| 895 | enddo |
---|
| 896 | enddo |
---|
| 897 | do iq=1, nq |
---|
| 898 | do ig=1,ngrid |
---|
| 899 | dqsurf(ig,iq)=dqsurf(ig,iq) + zdqsdif(ig,iq) |
---|
| 900 | enddo |
---|
| 901 | enddo |
---|
| 902 | |
---|
| 903 | end if ! of if (tracer) |
---|
| 904 | |
---|
| 905 | !------------------------- |
---|
| 906 | ! test energy conservation |
---|
| 907 | if(enertest)then |
---|
[651] | 908 | dEzdiff(:,:)=cpp*mass(:,:)*zdtdif(:,:) |
---|
[253] | 909 | do ig = 1, ngrid |
---|
[651] | 910 | dEdiff(ig)=SUM(dEzdiff (ig,:))+ sensibFlux(ig)! subtract flux to the ground |
---|
[622] | 911 | dEzdiff(ig,1)= dEzdiff(ig,1)+ sensibFlux(ig)! subtract flux to the ground |
---|
[253] | 912 | enddo |
---|
[651] | 913 | dEtot = SUM(dEdiff(:)*area(:))/totarea |
---|
| 914 | dEdiffs(:)=capcal(:)*zdtsdif(:)-zflubid(:)-sensibFlux(:) |
---|
| 915 | dEtots = SUM(dEdiffs(:)*area(:))/totarea |
---|
| 916 | AtmToSurf_TurbFlux=SUM(sensibFlux(:)*area(:))/totarea |
---|
[597] | 917 | if (UseTurbDiff) then |
---|
| 918 | print*,'In TurbDiff sensible flux (atm=>surf) =',AtmToSurf_TurbFlux,' W m-2' |
---|
| 919 | print*,'In TurbDiff non-cons atm nrj change =',dEtot,' W m-2' |
---|
| 920 | print*,'In TurbDiff (correc rad+latent heat) surf nrj change =',dEtots,' W m-2' |
---|
| 921 | else |
---|
| 922 | print*,'In vdifc sensible flux (atm=>surf) =',AtmToSurf_TurbFlux,' W m-2' |
---|
| 923 | print*,'In vdifc non-cons atm nrj change =',dEtot,' W m-2' |
---|
| 924 | print*,'In vdifc (correc rad+latent heat) surf nrj change =',dEtots,' W m-2' |
---|
| 925 | end if |
---|
[594] | 926 | ! JL12 note that the black body radiative flux emitted by the surface has been updated by the implicit scheme |
---|
| 927 | ! but not given back elsewhere |
---|
[253] | 928 | endif |
---|
| 929 | !------------------------- |
---|
| 930 | |
---|
| 931 | !------------------------- |
---|
| 932 | ! test water conservation |
---|
| 933 | if(watertest.and.water)then |
---|
[651] | 934 | dWtot = SUM(massarea(:,:)*zdqdif(:,:,igcm_h2o_vap))*ptimestep/totarea |
---|
| 935 | dWtots = SUM(zdqsdif(:,igcm_h2o_vap)*area(:))*ptimestep/totarea |
---|
[253] | 936 | do ig = 1, ngrid |
---|
[651] | 937 | vdifcncons(ig)=SUM(mass(ig,:)*zdqdif(ig,:,igcm_h2o_vap)) |
---|
| 938 | Enddo |
---|
| 939 | dWtot = dWtot + SUM(massarea(:,:)*zdqdif(:,:,igcm_h2o_ice))*ptimestep/totarea |
---|
| 940 | dWtots = dWtots + SUM(zdqsdif(:,igcm_h2o_ice)*area(:))*ptimestep/totarea |
---|
| 941 | do ig = 1, ngrid |
---|
| 942 | vdifcncons(ig)=vdifcncons(ig) + SUM(mass(ig,:)*zdqdif(ig,:,igcm_h2o_ice)) |
---|
| 943 | Enddo |
---|
| 944 | nconsMAX=MAXVAL(vdifcncons(:)) |
---|
[253] | 945 | |
---|
| 946 | print*,'---------------------------------------------------------------' |
---|
| 947 | print*,'In difv atmospheric water change =',dWtot,' kg m-2' |
---|
| 948 | print*,'In difv surface water change =',dWtots,' kg m-2' |
---|
| 949 | print*,'In difv non-cons factor =',dWtot+dWtots,' kg m-2' |
---|
| 950 | print*,'In difv MAX non-cons factor =',nconsMAX,' kg m-2 s-1' |
---|
| 951 | |
---|
| 952 | endif |
---|
| 953 | !------------------------- |
---|
| 954 | |
---|
| 955 | else |
---|
| 956 | |
---|
| 957 | if(.not.newtonian)then |
---|
| 958 | |
---|
| 959 | do ig=1,ngrid |
---|
| 960 | zdtsurf(ig) = zdtsurf(ig) + (fluxrad(ig) + fluxgrd(ig))/capcal(ig) |
---|
| 961 | enddo |
---|
| 962 | |
---|
| 963 | endif |
---|
| 964 | |
---|
| 965 | endif ! of if (calldifv) |
---|
| 966 | |
---|
| 967 | |
---|
| 968 | !----------------------------------------------------------------------- |
---|
| 969 | ! 5. Dry convective adjustment: |
---|
| 970 | ! ----------------------------- |
---|
| 971 | |
---|
| 972 | if(calladj) then |
---|
| 973 | |
---|
| 974 | do l=1,nlayer |
---|
| 975 | do ig=1,ngrid |
---|
[586] | 976 | zdh(ig,l) = pdt(ig,l)/zpopsk(ig,l) |
---|
[253] | 977 | enddo |
---|
| 978 | enddo |
---|
| 979 | zduadj(:,:)=0.0 |
---|
| 980 | zdvadj(:,:)=0.0 |
---|
| 981 | zdhadj(:,:)=0.0 |
---|
| 982 | |
---|
| 983 | |
---|
[586] | 984 | call convadj(ngrid,nlayer,nq,ptimestep, & |
---|
| 985 | pplay,pplev,zpopsk, & |
---|
| 986 | pu,pv,zh,pq, & |
---|
| 987 | pdu,pdv,zdh,pdq, & |
---|
| 988 | zduadj,zdvadj,zdhadj, & |
---|
| 989 | zdqadj) |
---|
[253] | 990 | |
---|
| 991 | do l=1,nlayer |
---|
| 992 | do ig=1,ngrid |
---|
| 993 | pdu(ig,l) = pdu(ig,l) + zduadj(ig,l) |
---|
| 994 | pdv(ig,l) = pdv(ig,l) + zdvadj(ig,l) |
---|
[586] | 995 | pdt(ig,l) = pdt(ig,l) + zdhadj(ig,l)*zpopsk(ig,l) |
---|
| 996 | zdtadj(ig,l) = zdhadj(ig,l)*zpopsk(ig,l) ! for diagnostic only |
---|
[253] | 997 | enddo |
---|
| 998 | enddo |
---|
| 999 | |
---|
| 1000 | if(tracer) then |
---|
| 1001 | do iq=1, nq |
---|
| 1002 | do l=1,nlayer |
---|
| 1003 | do ig=1,ngrid |
---|
| 1004 | pdq(ig,l,iq) = pdq(ig,l,iq) + zdqadj(ig,l,iq) |
---|
| 1005 | enddo |
---|
| 1006 | enddo |
---|
| 1007 | enddo |
---|
| 1008 | end if |
---|
| 1009 | |
---|
| 1010 | !------------------------- |
---|
| 1011 | ! test energy conservation |
---|
| 1012 | if(enertest)then |
---|
[651] | 1013 | dEtot=cpp*SUM(massarea(:,:)*zdtadj(:,:))/totarea |
---|
[594] | 1014 | print*,'In convadj atmospheric energy change =',dEtot,' W m-2' |
---|
[253] | 1015 | endif |
---|
| 1016 | !------------------------- |
---|
| 1017 | |
---|
| 1018 | !------------------------- |
---|
| 1019 | ! test water conservation |
---|
| 1020 | if(watertest)then |
---|
[651] | 1021 | dWtot = SUM(massarea(:,:)*zdqadj(:,:,igcm_h2o_vap))*ptimestep/totarea |
---|
[253] | 1022 | do ig = 1, ngrid |
---|
[651] | 1023 | cadjncons(ig)=SUM(mass(ig,:)*zdqadj(ig,:,igcm_h2o_vap)) |
---|
| 1024 | Enddo |
---|
| 1025 | dWtot = dWtot + SUM(massarea(:,:)*zdqadj(:,:,igcm_h2o_ice))*ptimestep/totarea |
---|
| 1026 | do ig = 1, ngrid |
---|
| 1027 | cadjncons(ig)=cadjncons(ig) + SUM(mass(ig,:)*zdqadj(ig,:,igcm_h2o_ice)) |
---|
| 1028 | Enddo |
---|
| 1029 | nconsMAX=MAXVAL(cadjncons(:)) |
---|
[253] | 1030 | |
---|
| 1031 | print*,'In convadj atmospheric water change =',dWtot,' kg m-2' |
---|
[651] | 1032 | print*,'In convadj MAX non-cons factor =',nconsMAX,' kg m-2 s-1' |
---|
[253] | 1033 | endif |
---|
| 1034 | !------------------------- |
---|
| 1035 | |
---|
| 1036 | endif ! of if(calladj) |
---|
| 1037 | |
---|
| 1038 | !----------------------------------------------------------------------- |
---|
| 1039 | ! 6. Carbon dioxide condensation-sublimation: |
---|
| 1040 | ! ------------------------------------------- |
---|
| 1041 | |
---|
| 1042 | if (co2cond) then |
---|
| 1043 | if (.not.tracer) then |
---|
| 1044 | print*,'We need a CO2 ice tracer to condense CO2' |
---|
| 1045 | call abort |
---|
| 1046 | endif |
---|
| 1047 | |
---|
[305] | 1048 | call condense_cloud(ngrid,nlayer,nq,ptimestep, & |
---|
[253] | 1049 | capcal,pplay,pplev,tsurf,pt, & |
---|
| 1050 | pphi,pdt,pdu,pdv,zdtsurf,pu,pv,pq,pdq, & |
---|
| 1051 | qsurf(1,igcm_co2_ice),albedo,emis, & |
---|
| 1052 | zdtc,zdtsurfc,pdpsrf,zduc,zdvc, & |
---|
[586] | 1053 | zdqc,reffrad) |
---|
[253] | 1054 | |
---|
| 1055 | do l=1,nlayer |
---|
| 1056 | do ig=1,ngrid |
---|
| 1057 | pdt(ig,l)=pdt(ig,l)+zdtc(ig,l) |
---|
| 1058 | pdv(ig,l)=pdv(ig,l)+zdvc(ig,l) |
---|
| 1059 | pdu(ig,l)=pdu(ig,l)+zduc(ig,l) |
---|
| 1060 | enddo |
---|
| 1061 | enddo |
---|
| 1062 | do ig=1,ngrid |
---|
| 1063 | zdtsurf(ig) = zdtsurf(ig) + zdtsurfc(ig) |
---|
| 1064 | enddo |
---|
| 1065 | |
---|
| 1066 | do iq=1,nq ! should use new notation here ! |
---|
| 1067 | do l=1,nlayer |
---|
| 1068 | do ig=1,ngrid |
---|
| 1069 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqc(ig,l,iq) |
---|
| 1070 | enddo |
---|
| 1071 | enddo |
---|
| 1072 | enddo |
---|
| 1073 | ! Note: we do not add surface co2ice tendency |
---|
| 1074 | ! because qsurf(:,igcm_co2_ice) is updated in condens_co2cloud |
---|
| 1075 | |
---|
| 1076 | !------------------------- |
---|
| 1077 | ! test energy conservation |
---|
| 1078 | if(enertest)then |
---|
[651] | 1079 | dEtot = cpp*SUM(massarea(:,:)*zdtc(:,:))/totarea |
---|
| 1080 | dEtots = SUM(capcal(:)*zdtsurfc(:)*area(:))/totarea |
---|
[253] | 1081 | print*,'In co2cloud atmospheric energy change =',dEtot,' W m-2' |
---|
| 1082 | print*,'In co2cloud surface energy change =',dEtots,' W m-2' |
---|
| 1083 | endif |
---|
| 1084 | !------------------------- |
---|
| 1085 | |
---|
| 1086 | endif ! of if (co2cond) |
---|
| 1087 | |
---|
| 1088 | |
---|
| 1089 | !----------------------------------------------------------------------- |
---|
| 1090 | ! 7. Specific parameterizations for tracers |
---|
| 1091 | ! ----------------------------------------- |
---|
| 1092 | |
---|
| 1093 | if (tracer) then |
---|
| 1094 | |
---|
| 1095 | ! 7a. Water and ice |
---|
| 1096 | ! --------------- |
---|
| 1097 | if (water) then |
---|
| 1098 | |
---|
| 1099 | ! ---------------------------------------- |
---|
| 1100 | ! Water ice condensation in the atmosphere |
---|
| 1101 | ! ---------------------------------------- |
---|
| 1102 | if(watercond)then |
---|
| 1103 | |
---|
| 1104 | if(RLVTT.gt.1.e-8)then |
---|
| 1105 | |
---|
| 1106 | ! Re-evaporate cloud water/ice |
---|
| 1107 | call evap(ptimestep,pt,pq,pdq,pdt,dqevap,dtevap,qevap,tevap) |
---|
| 1108 | DO l = 1, nlayer |
---|
[305] | 1109 | DO ig = 1, ngrid |
---|
[253] | 1110 | pdq(ig,l,igcm_h2o_vap) = pdq(ig,l,igcm_h2o_vap)+dqevap(ig,l) |
---|
| 1111 | pdq(ig,l,igcm_h2o_ice) = pdq(ig,l,igcm_h2o_ice)-dqevap(ig,l) |
---|
| 1112 | pdt(ig,l) = pdt(ig,l)+dtevap(ig,l) |
---|
| 1113 | enddo |
---|
| 1114 | enddo |
---|
| 1115 | |
---|
| 1116 | call moistadj(pt,qevap,pplev,pplay,dtmoist,dqmoist,ptimestep,rneb_man) |
---|
| 1117 | do l=1,nlayer |
---|
| 1118 | do ig=1,ngrid |
---|
| 1119 | pdq(ig,l,igcm_h2o_vap) = pdq(ig,l,igcm_h2o_vap)+dqmoist(ig,l,igcm_h2o_vap) |
---|
| 1120 | pdq(ig,l,igcm_h2o_ice) = pdq(ig,l,igcm_h2o_ice)+dqmoist(ig,l,igcm_h2o_ice) |
---|
| 1121 | pdt(ig,l) = pdt(ig,l)+dtmoist(ig,l) |
---|
| 1122 | enddo |
---|
| 1123 | enddo |
---|
| 1124 | |
---|
| 1125 | !------------------------- |
---|
| 1126 | ! test energy conservation |
---|
| 1127 | if(enertest)then |
---|
[651] | 1128 | dEtot=cpp*SUM(massarea(:,:)*(dtmoist(:,:)+dtevap(:,:)))/totarea |
---|
[253] | 1129 | do ig = 1, ngrid |
---|
[651] | 1130 | madjdE(ig) = cpp*SUM(mass(:,:)*(dtmoist(:,:)+dtevap(:,:))) |
---|
[253] | 1131 | enddo |
---|
| 1132 | print*,'In moistadj atmospheric energy change =',dEtot,' W m-2' |
---|
[651] | 1133 | |
---|
| 1134 | ! test energy conservation |
---|
| 1135 | dWtot = SUM(massarea(:,:)*dqmoist(:,:,igcm_h2o_vap))*ptimestep/totarea |
---|
| 1136 | dWtot = dWtot + SUM(massarea(:,:)*dqmoist(:,:,igcm_h2o_ice))*ptimestep/totarea |
---|
[253] | 1137 | print*,'In moistadj atmospheric water change =',dWtot,' kg m-2' |
---|
| 1138 | endif |
---|
| 1139 | !------------------------- |
---|
| 1140 | |
---|
| 1141 | |
---|
| 1142 | endif |
---|
| 1143 | |
---|
| 1144 | |
---|
| 1145 | ! Re-evaporate cloud water/ice |
---|
| 1146 | call evap(ptimestep,pt,pq,pdq,pdt,dqevap,dtevap,qevap,tevap) |
---|
| 1147 | do l = 1, nlayer |
---|
| 1148 | do ig = 1, ngrid |
---|
| 1149 | pdq(ig,l,igcm_h2o_vap) = pdq(ig,l,igcm_h2o_vap)+dqevap(ig,l) |
---|
| 1150 | pdq(ig,l,igcm_h2o_ice) = pdq(ig,l,igcm_h2o_ice)-dqevap(ig,l) |
---|
| 1151 | pdt(ig,l) = pdt(ig,l)+dtevap(ig,l) |
---|
| 1152 | enddo |
---|
| 1153 | enddo ! note: we use qevap but not tevap in largescale/moistadj |
---|
| 1154 | ! otherwise is a big mess |
---|
| 1155 | |
---|
| 1156 | call largescale(ptimestep,pplev,pplay,pt,qevap, & ! a bug was here! |
---|
| 1157 | pdt,dtlscale,dqvaplscale,dqcldlscale,rneb_lsc,reffH2O) |
---|
| 1158 | do l=1,nlayer |
---|
| 1159 | do ig=1,ngrid |
---|
| 1160 | pdq(ig,l,igcm_h2o_vap) = pdq(ig,l,igcm_h2o_vap)+dqvaplscale(ig,l) |
---|
| 1161 | pdq(ig,l,igcm_h2o_ice) = pdq(ig,l,igcm_h2o_ice)+dqcldlscale(ig,l) |
---|
| 1162 | pdt(ig,l) = pdt(ig,l)+dtlscale(ig,l) |
---|
| 1163 | |
---|
| 1164 | if(.not.aerofixed)then |
---|
| 1165 | reffrad(ig,l,2)=reffH2O(ig,l) |
---|
| 1166 | endif |
---|
| 1167 | |
---|
| 1168 | enddo |
---|
| 1169 | enddo |
---|
| 1170 | |
---|
| 1171 | !------------------------- |
---|
| 1172 | ! test energy conservation |
---|
| 1173 | if(enertest)then |
---|
[651] | 1174 | dEtot=cpp*SUM(massarea(:,:)*(dtmoist(:,:)+dtevap(:,:)))/totarea |
---|
[253] | 1175 | do ig = 1, ngrid |
---|
[651] | 1176 | madjdE(ig) = cpp*SUM(mass(:,:)*(dtmoist(:,:)+dtevap(:,:))) |
---|
[253] | 1177 | enddo |
---|
[651] | 1178 | print*,'In moistadj atmospheric energy change =',dEtot,' W m-2' |
---|
| 1179 | |
---|
| 1180 | ! test energy conservation |
---|
| 1181 | dWtot = SUM(massarea(:,:)*dqmoist(:,:,igcm_h2o_vap))*ptimestep/totarea |
---|
| 1182 | dWtot = dWtot + SUM(massarea(:,:)*dqmoist(:,:,igcm_h2o_ice))*ptimestep/totarea |
---|
| 1183 | print*,'In moistadj atmospheric water change =',dWtot,' kg m-2' |
---|
[253] | 1184 | endif |
---|
| 1185 | !------------------------- |
---|
| 1186 | |
---|
| 1187 | ! compute cloud fraction |
---|
| 1188 | do l = 1, nlayer |
---|
| 1189 | do ig = 1,ngrid |
---|
| 1190 | cloudfrac(ig,l)=MAX(rneb_lsc(ig,l),rneb_man(ig,l)) |
---|
| 1191 | enddo |
---|
| 1192 | enddo |
---|
| 1193 | |
---|
| 1194 | ! compute total cloud fraction in column |
---|
| 1195 | call totalcloudfrac(cloudfrac,totcloudfrac) |
---|
| 1196 | |
---|
| 1197 | endif ! of if (watercondense) |
---|
| 1198 | |
---|
| 1199 | |
---|
| 1200 | ! -------------------------------- |
---|
| 1201 | ! Water ice / liquid precipitation |
---|
| 1202 | ! -------------------------------- |
---|
| 1203 | if(waterrain)then |
---|
| 1204 | |
---|
| 1205 | zdqrain(:,:,:) = 0.0 |
---|
| 1206 | zdqsrain(:) = 0.0 |
---|
| 1207 | zdqssnow(:) = 0.0 |
---|
| 1208 | |
---|
| 1209 | call rain(ptimestep,pplev,pplay,pt,pdt,pq,pdq, & |
---|
| 1210 | zdtrain,zdqrain,zdqsrain,zdqssnow,cloudfrac) |
---|
| 1211 | |
---|
| 1212 | do l=1,nlayer |
---|
| 1213 | do ig=1,ngrid |
---|
| 1214 | pdq(ig,l,igcm_h2o_vap) = pdq(ig,l,igcm_h2o_vap)+zdqrain(ig,l,igcm_h2o_vap) |
---|
| 1215 | pdq(ig,l,igcm_h2o_ice) = pdq(ig,l,igcm_h2o_ice)+zdqrain(ig,l,igcm_h2o_ice) |
---|
| 1216 | pdt(ig,l) = pdt(ig,l)+zdtrain(ig,l) |
---|
| 1217 | enddo |
---|
| 1218 | enddo |
---|
| 1219 | |
---|
| 1220 | do ig=1,ngrid |
---|
| 1221 | dqsurf(ig,igcm_h2o_vap) = dqsurf(ig,igcm_h2o_vap)+zdqsrain(ig) ! a bug was here |
---|
| 1222 | dqsurf(ig,igcm_h2o_ice) = dqsurf(ig,igcm_h2o_ice)+zdqssnow(ig) |
---|
| 1223 | rainout(ig) = zdqsrain(ig)+zdqssnow(ig) ! diagnostic |
---|
| 1224 | enddo |
---|
| 1225 | |
---|
| 1226 | |
---|
[651] | 1227 | |
---|
| 1228 | !------------------------- |
---|
| 1229 | ! test energy conservation |
---|
| 1230 | if(enertest)then |
---|
| 1231 | dEtot=cpp*SUM(massarea(:,:)*zdtrain(:,:))/totarea |
---|
[253] | 1232 | print*,'In rain atmospheric T energy change =',dEtot,' W m-2' |
---|
[651] | 1233 | dItot = SUM(massarea(:,:)*zdqrain(:,:,igcm_h2o_ice))/totarea*RLVTT/cpp |
---|
| 1234 | dItot = dItot + SUM(area(:)*zdqssnow(:))/totarea*RLVTT/cpp |
---|
| 1235 | dVtot = SUM(massarea(:,:)*zdqrain(:,:,igcm_h2o_vap))*ptimestep/totarea |
---|
| 1236 | dVtot = dItot + SUM(area(:)*zdqsrain(:))/totarea*RLVTT/cpp |
---|
| 1237 | dEtot = dItot + dVtot |
---|
| 1238 | print*,'In rain dItot =',dItot,' W m-2' |
---|
| 1239 | print*,'In rain dVtot =',dVtot,' W m-2' |
---|
[253] | 1240 | print*,'In rain atmospheric L energy change =',dEtot,' W m-2' |
---|
| 1241 | |
---|
[651] | 1242 | ! test water conservation |
---|
| 1243 | dWtot = SUM(massarea(:,:)*zdqrain(:,:,igcm_h2o_vap))*ptimestep/totarea |
---|
| 1244 | dWtot = dWtot + SUM(massarea(:,:)*zdqrain(:,:,igcm_h2o_ice))*ptimestep/totarea |
---|
| 1245 | dWtots = SUM((zdqsrain(:)+zdqssnow(:))*area(:))*ptimestep/totarea |
---|
[253] | 1246 | print*,'In rain atmospheric water change =',dWtot,' kg m-2' |
---|
| 1247 | print*,'In rain surface water change =',dWtots,' kg m-2' |
---|
| 1248 | print*,'In rain non-cons factor =',dWtot+dWtots,' kg m-2' |
---|
| 1249 | endif |
---|
| 1250 | !------------------------- |
---|
| 1251 | |
---|
| 1252 | end if ! of if (waterrain) |
---|
| 1253 | end if ! of if (water) |
---|
| 1254 | |
---|
| 1255 | |
---|
| 1256 | ! 7c. Aerosol particles |
---|
| 1257 | ! ------------------- |
---|
| 1258 | ! ------------- |
---|
| 1259 | ! Sedimentation |
---|
| 1260 | ! ------------- |
---|
| 1261 | if (sedimentation) then |
---|
| 1262 | zdqsed(:,:,:) = 0.0 |
---|
| 1263 | zdqssed(:,:) = 0.0 |
---|
| 1264 | |
---|
| 1265 | |
---|
| 1266 | !------------------------- |
---|
| 1267 | ! find qtot |
---|
| 1268 | if(watertest)then |
---|
| 1269 | iq=3 |
---|
[651] | 1270 | dWtot = SUM(massarea(:,:)*pq(:,:,iq))*ptimestep/totarea |
---|
| 1271 | dWtots = SUM(massarea(:,:)*pdq(:,:,iq))*ptimestep/totarea |
---|
[253] | 1272 | print*,'Before sedim pq =',dWtot,' kg m-2' |
---|
| 1273 | print*,'Before sedim pdq =',dWtots,' kg m-2' |
---|
| 1274 | endif |
---|
| 1275 | !------------------------- |
---|
| 1276 | |
---|
| 1277 | call callsedim(ngrid,nlayer,ptimestep, & |
---|
| 1278 | pplev,zzlev,pt,pq,pdq,zdqsed,zdqssed,nq,reffH2O) |
---|
| 1279 | |
---|
| 1280 | !------------------------- |
---|
| 1281 | ! find qtot |
---|
| 1282 | if(watertest)then |
---|
| 1283 | iq=3 |
---|
[651] | 1284 | dWtot = SUM(massarea(:,:)*pq(:,:,iq))*ptimestep/totarea |
---|
| 1285 | dWtots = SUM(massarea(:,:)*pdq(:,:,iq))*ptimestep/totarea |
---|
[253] | 1286 | print*,'After sedim pq =',dWtot,' kg m-2' |
---|
| 1287 | print*,'After sedim pdq =',dWtots,' kg m-2' |
---|
| 1288 | endif |
---|
| 1289 | !------------------------- |
---|
| 1290 | |
---|
| 1291 | do iq=1,nq |
---|
| 1292 | ! for now, we only allow H2O ice to sediment |
---|
| 1293 | ! and as in rain.F90, whether it falls as rain or snow depends |
---|
| 1294 | ! only on the surface temperature |
---|
| 1295 | do ig=1,ngrid |
---|
| 1296 | do l=1,nlayer |
---|
| 1297 | pdq(ig,l,iq) = pdq(ig,l,iq) + zdqsed(ig,l,iq) |
---|
| 1298 | enddo |
---|
| 1299 | dqsurf(ig,iq) = dqsurf(ig,iq) + zdqssed(ig,iq) |
---|
| 1300 | enddo |
---|
| 1301 | enddo |
---|
| 1302 | |
---|
| 1303 | !------------------------- |
---|
| 1304 | ! test water conservation |
---|
| 1305 | if(watertest)then |
---|
[651] | 1306 | dWtot = SUM(massarea(:,:)*(zdqsed(:,:,igcm_h2o_vap)+zdqsed(:,:,igcm_h2o_ice)))*ptimestep/totarea |
---|
| 1307 | dWtots = SUM((zdqssed(:,igcm_h2o_vap)+zdqssed(:,igcm_h2o_ice))*area(:))*ptimestep/totarea |
---|
[253] | 1308 | print*,'In sedim atmospheric ice change =',dWtot,' kg m-2' |
---|
| 1309 | print*,'In sedim surface ice change =',dWtots,' kg m-2' |
---|
| 1310 | print*,'In sedim non-cons factor =',dWtot+dWtots,' kg m-2' |
---|
| 1311 | endif |
---|
| 1312 | !------------------------- |
---|
| 1313 | |
---|
| 1314 | end if ! of if (sedimentation) |
---|
| 1315 | |
---|
| 1316 | |
---|
| 1317 | ! 7d. Updates |
---|
| 1318 | ! --------- |
---|
| 1319 | |
---|
| 1320 | ! --------------------------------- |
---|
| 1321 | ! Updating tracer budget on surface |
---|
| 1322 | ! --------------------------------- |
---|
| 1323 | |
---|
| 1324 | if(hydrology)then |
---|
| 1325 | |
---|
| 1326 | call hydrol(ptimestep,rnat,tsurf,qsurf,dqsurf,dqs_hyd, & |
---|
| 1327 | capcal,albedo0,albedo,mu0,zdtsurf,zdtsurf_hyd,hice) |
---|
| 1328 | ! note: for now, also changes albedo in the subroutine |
---|
| 1329 | |
---|
| 1330 | do ig=1,ngrid |
---|
| 1331 | zdtsurf(ig) = zdtsurf(ig) + zdtsurf_hyd(ig) |
---|
| 1332 | do iq=1,nq |
---|
| 1333 | qsurf(ig,iq) = qsurf(ig,iq)+ptimestep*dqs_hyd(ig,iq) |
---|
| 1334 | enddo |
---|
| 1335 | enddo |
---|
| 1336 | ! when hydrology is used, other dqsurf tendencies are all added to dqs_hyd inside |
---|
| 1337 | |
---|
| 1338 | !------------------------- |
---|
| 1339 | ! test energy conservation |
---|
| 1340 | if(enertest)then |
---|
[651] | 1341 | dEtots = SUM(area(:)*capcal(:)*zdtsurf_hyd(:))/totarea |
---|
| 1342 | print*,'In hydrol surface energy change =',dEtots,' W m-2' |
---|
[253] | 1343 | endif |
---|
| 1344 | !------------------------- |
---|
| 1345 | |
---|
| 1346 | !------------------------- |
---|
| 1347 | ! test water conservation |
---|
| 1348 | if(watertest)then |
---|
[651] | 1349 | dWtots = SUM(dqs_hyd(:,igcm_h2o_ice)*area(:))*ptimestep/totarea |
---|
[253] | 1350 | print*,'In hydrol surface ice change =',dWtots,' kg m-2' |
---|
[651] | 1351 | dWtots = SUM(dqs_hyd(:,igcm_h2o_vap)*area(:))*ptimestep/totarea |
---|
[253] | 1352 | print*,'In hydrol surface water change =',dWtots,' kg m-2' |
---|
| 1353 | print*,'---------------------------------------------------------------' |
---|
| 1354 | endif |
---|
| 1355 | !------------------------- |
---|
| 1356 | |
---|
| 1357 | ELSE ! of if (hydrology) |
---|
| 1358 | |
---|
| 1359 | do iq=1,nq |
---|
| 1360 | do ig=1,ngrid |
---|
| 1361 | qsurf(ig,iq)=qsurf(ig,iq)+ptimestep*dqsurf(ig,iq) |
---|
| 1362 | enddo |
---|
| 1363 | enddo |
---|
| 1364 | |
---|
| 1365 | END IF ! of if (hydrology) |
---|
| 1366 | |
---|
| 1367 | ! Add qsurf to qsurf_hist, which is what we save in |
---|
| 1368 | ! diagfi.nc etc. At the same time, we set the water |
---|
| 1369 | ! content of ocean gridpoints back to zero, in order |
---|
| 1370 | ! to avoid rounding errors in vdifc, rain |
---|
[622] | 1371 | qsurf_hist(:,:) = qsurf(:,:) |
---|
[253] | 1372 | |
---|
| 1373 | if(ice_update)then |
---|
| 1374 | do ig = 1, ngrid |
---|
| 1375 | ice_min(ig)=min(ice_min(ig),qsurf(ig,igcm_h2o_ice)) |
---|
| 1376 | enddo |
---|
| 1377 | endif |
---|
| 1378 | |
---|
| 1379 | endif ! of if (tracer) |
---|
| 1380 | |
---|
| 1381 | !----------------------------------------------------------------------- |
---|
| 1382 | ! 9. Surface and sub-surface soil temperature |
---|
| 1383 | !----------------------------------------------------------------------- |
---|
| 1384 | |
---|
| 1385 | |
---|
| 1386 | ! Increment surface temperature |
---|
[305] | 1387 | do ig=1,ngrid |
---|
| 1388 | tsurf(ig)=tsurf(ig)+ptimestep*zdtsurf(ig) |
---|
| 1389 | enddo |
---|
[253] | 1390 | |
---|
| 1391 | ! Compute soil temperatures and subsurface heat flux |
---|
| 1392 | if (callsoil) then |
---|
| 1393 | call soil(ngrid,nsoilmx,.false.,inertiedat, & |
---|
| 1394 | ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
| 1395 | endif |
---|
| 1396 | |
---|
| 1397 | !------------------------- |
---|
| 1398 | ! test energy conservation |
---|
| 1399 | if(enertest)then |
---|
| 1400 | dEtots=0.0 |
---|
| 1401 | do ig = 1, ngrid |
---|
| 1402 | dEtots = dEtots + capcal(ig)*zdtsurf(ig)*area(ig) |
---|
| 1403 | enddo |
---|
| 1404 | dEtots=dEtots/totarea |
---|
[597] | 1405 | print*,'Surface energy change =',dEtots,' W m-2' |
---|
[253] | 1406 | endif |
---|
| 1407 | !------------------------- |
---|
| 1408 | |
---|
| 1409 | !----------------------------------------------------------------------- |
---|
| 1410 | ! 10. Perform diagnostics and write output files |
---|
| 1411 | !----------------------------------------------------------------------- |
---|
| 1412 | |
---|
| 1413 | ! ------------------------------- |
---|
| 1414 | ! Dynamical fields incrementation |
---|
| 1415 | ! ------------------------------- |
---|
| 1416 | ! For output only: the actual model integration is performed in the dynamics |
---|
| 1417 | |
---|
| 1418 | ! temperature, zonal and meridional wind |
---|
| 1419 | do l=1,nlayer |
---|
| 1420 | do ig=1,ngrid |
---|
| 1421 | zt(ig,l) = pt(ig,l) + pdt(ig,l)*ptimestep |
---|
| 1422 | zu(ig,l) = pu(ig,l) + pdu(ig,l)*ptimestep |
---|
| 1423 | zv(ig,l) = pv(ig,l) + pdv(ig,l)*ptimestep |
---|
| 1424 | |
---|
| 1425 | ! diagnostic |
---|
| 1426 | zdtdyn(ig,l) = ztprevious(ig,l)-pt(ig,l) |
---|
| 1427 | ztprevious(ig,l) = zt(ig,l) |
---|
| 1428 | enddo |
---|
| 1429 | enddo |
---|
| 1430 | |
---|
| 1431 | if(firstcall)then |
---|
| 1432 | zdtdyn(:,:)=0.0 |
---|
| 1433 | endif |
---|
| 1434 | |
---|
| 1435 | ! dynamical heating diagnostic |
---|
| 1436 | fluxdyn(:)=0. |
---|
| 1437 | do ig=1,ngrid |
---|
| 1438 | do l=1,nlayer |
---|
| 1439 | fluxdyn(ig)=fluxdyn(ig) - (zdtdyn(ig,l)/ptimestep) & |
---|
[586] | 1440 | *(pplev(ig,l)-pplev(ig,l+1))*cpp/g |
---|
[253] | 1441 | enddo |
---|
| 1442 | enddo |
---|
| 1443 | |
---|
| 1444 | ! tracers |
---|
| 1445 | do iq=1, nq |
---|
| 1446 | do l=1,nlayer |
---|
| 1447 | do ig=1,ngrid |
---|
| 1448 | zq(ig,l,iq) = pq(ig,l,iq) + pdq(ig,l,iq)*ptimestep |
---|
| 1449 | enddo |
---|
| 1450 | enddo |
---|
| 1451 | enddo |
---|
| 1452 | |
---|
| 1453 | ! surface pressure |
---|
| 1454 | do ig=1,ngrid |
---|
| 1455 | ps(ig) = pplev(ig,1) + pdpsrf(ig)*ptimestep |
---|
| 1456 | enddo |
---|
| 1457 | |
---|
| 1458 | ! pressure |
---|
| 1459 | do l=1,nlayer |
---|
| 1460 | do ig=1,ngrid |
---|
| 1461 | zplev(ig,l) = pplev(ig,l)/pplev(ig,1)*ps(ig) |
---|
| 1462 | zplay(ig,l) = pplay(ig,l)/pplev(ig,1)*ps(ig) |
---|
| 1463 | enddo |
---|
| 1464 | enddo |
---|
| 1465 | |
---|
| 1466 | ! --------------------------------------------------------- |
---|
| 1467 | ! Surface and soil temperature information |
---|
| 1468 | ! --------------------------------------------------------- |
---|
| 1469 | |
---|
[651] | 1470 | Ts1 = SUM(area(:)*tsurf(:))/totarea |
---|
| 1471 | Ts2 = MINVAL(tsurf(:)) |
---|
| 1472 | Ts3 = MAXVAL(tsurf(:)) |
---|
[253] | 1473 | if(callsoil)then |
---|
[651] | 1474 | TsS = SUM(area(:)*tsoil(:,nsoilmx))/totarea ! mean temperature at bottom soil layer |
---|
[253] | 1475 | print*,' ave[Tsurf] min[Tsurf] max[Tsurf] ave[Tdeep]' |
---|
| 1476 | print*,Ts1,Ts2,Ts3,TsS |
---|
| 1477 | else |
---|
| 1478 | print*,' ave[Tsurf] min[Tsurf] max[Tsurf]' |
---|
| 1479 | print*,Ts1,Ts2,Ts3 |
---|
| 1480 | endif |
---|
| 1481 | |
---|
| 1482 | ! --------------------------------------------------------- |
---|
| 1483 | ! Check the energy balance of the simulation during the run |
---|
| 1484 | ! --------------------------------------------------------- |
---|
| 1485 | |
---|
| 1486 | if(corrk)then |
---|
| 1487 | |
---|
[651] | 1488 | ISR = SUM(area(:)*fluxtop_dn(:))/totarea |
---|
| 1489 | ASR = SUM(area(:)*fluxabs_sw(:))/totarea |
---|
| 1490 | OLR = SUM(area(:)*fluxtop_lw(:))/totarea |
---|
| 1491 | GND = SUM(area(:)*fluxgrd(:))/totarea |
---|
| 1492 | DYN = SUM(area(:)*fluxdyn(:))/totarea |
---|
| 1493 | do ig=1,ngrid |
---|
[253] | 1494 | if(fluxtop_dn(ig).lt.0.0)then |
---|
| 1495 | print*,'fluxtop_dn has gone crazy' |
---|
| 1496 | print*,'fluxtop_dn=',fluxtop_dn(ig) |
---|
| 1497 | print*,'tau_col=',tau_col(ig) |
---|
| 1498 | print*,'aerosol=',aerosol(ig,:,:) |
---|
| 1499 | print*,'temp= ',pt(ig,:) |
---|
| 1500 | print*,'pplay= ',pplay(ig,:) |
---|
| 1501 | call abort |
---|
| 1502 | endif |
---|
| 1503 | end do |
---|
| 1504 | |
---|
| 1505 | if(ngridmx.eq.1)then |
---|
| 1506 | DYN=0.0 |
---|
| 1507 | endif |
---|
| 1508 | |
---|
| 1509 | print*,' ISR ASR OLR GND DYN [W m^-2]' |
---|
[651] | 1510 | print*, ISR,ASR,OLR,GND,DYN |
---|
[253] | 1511 | |
---|
| 1512 | if(enertest)then |
---|
[651] | 1513 | print*,'SW flux/heating difference SW++ - ASR = ',dEtotSW+dEtotsSW-ASR,' W m-2' |
---|
| 1514 | print*,'LW flux/heating difference LW++ - OLR = ',dEtotLW+dEtotsLW+OLR,' W m-2' |
---|
| 1515 | print*,'LW energy balance LW++ + ASR = ',dEtotLW+dEtotsLW+ASR,' W m-2' |
---|
[253] | 1516 | endif |
---|
| 1517 | |
---|
| 1518 | if(meanOLR)then |
---|
[526] | 1519 | if((ngridmx.gt.1) .or. (mod(icount-1,nint(ecritphy)).eq.0))then |
---|
[253] | 1520 | ! to record global radiative balance |
---|
[588] | 1521 | open(92,file="rad_bal.out",form='formatted',position='append') |
---|
[651] | 1522 | write(92,*) zday,ISR,ASR,OLR |
---|
[253] | 1523 | close(92) |
---|
[588] | 1524 | open(93,file="tem_bal.out",form='formatted',position='append') |
---|
[253] | 1525 | write(93,*) zday,Ts1,Ts2,Ts3,TsS |
---|
| 1526 | close(93) |
---|
| 1527 | endif |
---|
| 1528 | endif |
---|
| 1529 | |
---|
| 1530 | endif |
---|
| 1531 | |
---|
[651] | 1532 | |
---|
[253] | 1533 | ! ------------------------------------------------------------------ |
---|
| 1534 | ! Diagnostic to test radiative-convective timescales in code |
---|
| 1535 | ! ------------------------------------------------------------------ |
---|
| 1536 | if(testradtimes)then |
---|
[588] | 1537 | open(38,file="tau_phys.out",form='formatted',position='append') |
---|
[253] | 1538 | ig=1 |
---|
| 1539 | do l=1,nlayer |
---|
| 1540 | write(38,*) -1./pdt(ig,l),pt(ig,l),pplay(ig,l) |
---|
| 1541 | enddo |
---|
| 1542 | close(38) |
---|
| 1543 | print*,'As testradtimes enabled, exiting physics on first call' |
---|
| 1544 | call abort |
---|
| 1545 | endif |
---|
| 1546 | |
---|
| 1547 | ! --------------------------------------------------------- |
---|
| 1548 | ! Compute column amounts (kg m-2) if tracers are enabled |
---|
| 1549 | ! --------------------------------------------------------- |
---|
| 1550 | if(tracer)then |
---|
| 1551 | qcol(:,:)=0.0 |
---|
| 1552 | do iq=1,nq |
---|
| 1553 | do ig=1,ngrid |
---|
| 1554 | do l=1,nlayer |
---|
| 1555 | qcol(ig,iq) = qcol(ig,iq) + zq(ig,l,iq) * & |
---|
| 1556 | (pplev(ig,l) - pplev(ig,l+1)) / g |
---|
| 1557 | enddo |
---|
| 1558 | enddo |
---|
| 1559 | enddo |
---|
| 1560 | |
---|
| 1561 | ! not generalised for arbitrary aerosols yet!!! |
---|
| 1562 | reffcol(:,:)=0.0 |
---|
| 1563 | do ig=1,ngrid |
---|
| 1564 | do l=1,nlayer |
---|
[305] | 1565 | if(co2cond)then |
---|
| 1566 | reffcol(ig,1) = reffcol(ig,1) + zq(ig,l,igcm_co2_ice) * & |
---|
| 1567 | reffrad(ig,l,1) * & |
---|
| 1568 | (pplev(ig,l) - pplev(ig,l+1)) / g |
---|
| 1569 | endif |
---|
[253] | 1570 | if(water)then |
---|
[305] | 1571 | reffcol(ig,2) = reffcol(ig,2) + zq(ig,l,igcm_h2o_ice) * & |
---|
| 1572 | reffrad(ig,l,2) * & |
---|
| 1573 | (pplev(ig,l) - pplev(ig,l+1)) / g |
---|
[253] | 1574 | endif |
---|
| 1575 | enddo |
---|
| 1576 | enddo |
---|
| 1577 | |
---|
| 1578 | endif |
---|
| 1579 | |
---|
| 1580 | ! --------------------------------------------------------- |
---|
| 1581 | ! Test for water conservation if water is enabled |
---|
| 1582 | ! --------------------------------------------------------- |
---|
| 1583 | |
---|
| 1584 | if(water)then |
---|
| 1585 | |
---|
[651] | 1586 | icesrf = SUM(area(:)*qsurf_hist(:,igcm_h2o_ice))/totarea |
---|
| 1587 | liqsrf = SUM(area(:)*qsurf_hist(:,igcm_h2o_vap))/totarea |
---|
| 1588 | icecol = SUM(area(:)*qcol(:,igcm_h2o_ice))/totarea |
---|
| 1589 | vapcol = SUM(area(:)*qcol(:,igcm_h2o_vap))/totarea |
---|
[253] | 1590 | |
---|
[651] | 1591 | h2otot = icesrf + liqsrf + icecol + vapcol |
---|
[253] | 1592 | |
---|
[651] | 1593 | print*,' Total water amount [kg m^-2]: ',h2otot |
---|
[253] | 1594 | print*,' Surface ice Surface liq. Atmos. con. Atmos. vap. [kg m^-2] ' |
---|
[651] | 1595 | print*, icesrf,liqsrf,icecol,vapcol |
---|
[253] | 1596 | |
---|
| 1597 | if(meanOLR)then |
---|
[526] | 1598 | if((ngridmx.gt.1) .or. (mod(icount-1,nint(ecritphy)).eq.0))then |
---|
[253] | 1599 | ! to record global water balance |
---|
[588] | 1600 | open(98,file="h2o_bal.out",form='formatted',position='append') |
---|
[651] | 1601 | write(98,*) zday,icesrf,liqsrf,icecol,vapcol |
---|
[253] | 1602 | close(98) |
---|
| 1603 | endif |
---|
| 1604 | endif |
---|
| 1605 | |
---|
| 1606 | endif |
---|
| 1607 | |
---|
| 1608 | ! --------------------------------------------------------- |
---|
| 1609 | ! Calculate RH for diagnostic if water is enabled |
---|
| 1610 | ! --------------------------------------------------------- |
---|
| 1611 | |
---|
| 1612 | if(water)then |
---|
| 1613 | do l = 1, nlayer |
---|
| 1614 | do ig = 1, ngrid |
---|
| 1615 | call watersat(pt(ig,l),pplay(ig,l),qsat(ig,l)) |
---|
| 1616 | RH(ig,l) = zq(ig,l,igcm_h2o_vap) / qsat(ig,l) |
---|
| 1617 | enddo |
---|
| 1618 | enddo |
---|
| 1619 | |
---|
| 1620 | ! compute maximum possible H2O column amount (100% saturation) |
---|
| 1621 | do ig=1,ngrid |
---|
| 1622 | H2Omaxcol(ig)=0.0 |
---|
| 1623 | do l=1,nlayer |
---|
| 1624 | H2Omaxcol(ig) = H2Omaxcol(ig) + qsat(ig,l) * & |
---|
| 1625 | (pplev(ig,l) - pplev(ig,l+1))/g |
---|
| 1626 | enddo |
---|
| 1627 | enddo |
---|
| 1628 | |
---|
| 1629 | endif |
---|
| 1630 | |
---|
| 1631 | |
---|
| 1632 | print*,'' |
---|
| 1633 | print*,'--> Ls =',zls*180./pi |
---|
| 1634 | ! ------------------------------------------------------------------- |
---|
| 1635 | ! Writing NetCDF file "RESTARTFI" at the end of the run |
---|
| 1636 | ! ------------------------------------------------------------------- |
---|
| 1637 | ! Note: 'restartfi' is stored just before dynamics are stored |
---|
| 1638 | ! in 'restart'. Between now and the writting of 'restart', |
---|
| 1639 | ! there will have been the itau=itau+1 instruction and |
---|
| 1640 | ! a reset of 'time' (lastacll = .true. when itau+1= itaufin) |
---|
| 1641 | ! thus we store for time=time+dtvr |
---|
| 1642 | |
---|
| 1643 | if(lastcall) then |
---|
| 1644 | ztime_fin = ptime + ptimestep/(float(iphysiq)*daysec) |
---|
| 1645 | |
---|
| 1646 | |
---|
| 1647 | ! Update surface ice distribution to iterate to steady state if requested |
---|
| 1648 | if(ice_update)then |
---|
[305] | 1649 | |
---|
[253] | 1650 | do ig = 1, ngrid |
---|
| 1651 | |
---|
[305] | 1652 | delta_ice = (qsurf(ig,igcm_h2o_ice)-ice_initial(ig)) |
---|
| 1653 | |
---|
[365] | 1654 | ! add multiple years of evolution |
---|
[305] | 1655 | qsurf_hist(ig,igcm_h2o_ice) = & |
---|
[365] | 1656 | !qsurf_hist(ig,igcm_h2o_ice) + delta_ice*100.0 |
---|
[486] | 1657 | qsurf_hist(ig,igcm_h2o_ice) + delta_ice*icetstep |
---|
[305] | 1658 | |
---|
| 1659 | ! if ice has gone -ve, set to zero |
---|
| 1660 | if(qsurf_hist(ig,igcm_h2o_ice).lt.0.0)then |
---|
| 1661 | qsurf_hist(ig,igcm_h2o_ice) = 0.0 |
---|
[365] | 1662 | !qsurf_hist(ig,igcm_h2o_vap) = 0.0 |
---|
[253] | 1663 | endif |
---|
[305] | 1664 | |
---|
[365] | 1665 | ! if ice is seasonal, set to zero (NEW) |
---|
| 1666 | if(ice_min(ig).lt.0.01)then |
---|
| 1667 | qsurf_hist(ig,igcm_h2o_ice) = 0.0 |
---|
| 1668 | !qsurf_hist(ig,igcm_h2o_vap) = 0.0 |
---|
[253] | 1669 | endif |
---|
| 1670 | |
---|
| 1671 | enddo |
---|
[305] | 1672 | |
---|
| 1673 | ! enforce ice conservation |
---|
| 1674 | ice_tot=0.0 |
---|
| 1675 | do ig = 1, ngrid |
---|
| 1676 | ice_tot = ice_tot + qsurf_hist(ig,igcm_h2o_ice)*area(ig) |
---|
| 1677 | enddo |
---|
| 1678 | do ig = 1, ngrid |
---|
| 1679 | qsurf_hist(ig,igcm_h2o_ice) = qsurf_hist(ig,igcm_h2o_ice)*(icesrf/ice_tot) |
---|
| 1680 | enddo |
---|
| 1681 | |
---|
[253] | 1682 | endif |
---|
| 1683 | |
---|
| 1684 | write(*,*)'PHYSIQ: for physdem ztime_fin =',ztime_fin |
---|
| 1685 | call physdem1("restartfi.nc",long,lati,nsoilmx,nq, & |
---|
| 1686 | ptimestep,pday,ztime_fin,tsurf,tsoil,emis,q2,qsurf_hist, & |
---|
| 1687 | area,albedodat,inertiedat,zmea,zstd,zsig,zgam,zthe, & |
---|
| 1688 | cloudfrac,totcloudfrac,hice) |
---|
| 1689 | endif |
---|
| 1690 | |
---|
| 1691 | ! ----------------------------------------------------------------- |
---|
| 1692 | ! Saving statistics : |
---|
| 1693 | ! ----------------------------------------------------------------- |
---|
| 1694 | ! ("stats" stores and accumulates 8 key variables in file "stats.nc" |
---|
| 1695 | ! which can later be used to make the statistic files of the run: |
---|
| 1696 | ! "stats") only possible in 3D runs ! |
---|
| 1697 | |
---|
| 1698 | |
---|
| 1699 | if (callstats) then |
---|
| 1700 | |
---|
| 1701 | call wstats(ngrid,"ps","Surface pressure","Pa",2,ps) |
---|
| 1702 | call wstats(ngrid,"tsurf","Surface temperature","K",2,tsurf) |
---|
| 1703 | call wstats(ngrid,"fluxsurf_lw", & |
---|
| 1704 | "Thermal IR radiative flux to surface","W.m-2",2, & |
---|
| 1705 | fluxsurf_lw) |
---|
| 1706 | ! call wstats(ngrid,"fluxsurf_sw", & |
---|
| 1707 | ! "Solar radiative flux to surface","W.m-2",2, & |
---|
| 1708 | ! fluxsurf_sw_tot) |
---|
| 1709 | call wstats(ngrid,"fluxtop_lw", & |
---|
| 1710 | "Thermal IR radiative flux to space","W.m-2",2, & |
---|
| 1711 | fluxtop_lw) |
---|
| 1712 | ! call wstats(ngrid,"fluxtop_sw", & |
---|
| 1713 | ! "Solar radiative flux to space","W.m-2",2, & |
---|
| 1714 | ! fluxtop_sw_tot) |
---|
[526] | 1715 | |
---|
| 1716 | call wstats(ngrid,"ISR","incoming stellar rad.","W m-2",2,fluxtop_dn) |
---|
| 1717 | call wstats(ngrid,"ASR","absorbed stellar rad.","W m-2",2,fluxabs_sw) |
---|
| 1718 | call wstats(ngrid,"OLR","outgoing longwave rad.","W m-2",2,fluxtop_lw) |
---|
| 1719 | |
---|
[253] | 1720 | call wstats(ngrid,"temp","Atmospheric temperature","K",3,zt) |
---|
| 1721 | call wstats(ngrid,"u","Zonal (East-West) wind","m.s-1",3,zu) |
---|
| 1722 | call wstats(ngrid,"v","Meridional (North-South) wind","m.s-1",3,zv) |
---|
| 1723 | call wstats(ngrid,"w","Vertical (down-up) wind","m.s-1",3,pw) |
---|
| 1724 | call wstats(ngrid,"q2","Boundary layer eddy kinetic energy","m2.s-2",3,q2) |
---|
| 1725 | |
---|
| 1726 | if (tracer) then |
---|
[526] | 1727 | do iq=1,nq |
---|
| 1728 | call wstats(ngrid,noms(iq),noms(iq),'kg/kg',3,zq(1,1,iq)) |
---|
| 1729 | call wstats(ngridmx,trim(noms(iq))//'_surf',trim(noms(iq))//'_surf', & |
---|
| 1730 | 'kg m^-2',2,qsurf(1,iq) ) |
---|
| 1731 | |
---|
| 1732 | call wstats(ngridmx,trim(noms(iq))//'_col',trim(noms(iq))//'_col', & |
---|
| 1733 | 'kg m^-2',2,qcol(1,iq) ) |
---|
| 1734 | call wstats(ngridmx,trim(noms(iq))//'_reff', & |
---|
| 1735 | trim(noms(iq))//'_reff', & |
---|
| 1736 | 'm',3,reffrad(1,1,iq)) |
---|
| 1737 | end do |
---|
[253] | 1738 | if (water) then |
---|
| 1739 | vmr=zq(1:ngridmx,1:nlayermx,igcm_h2o_vap)*mugaz/mmol(igcm_h2o_vap) |
---|
| 1740 | call wstats(ngrid,"vmr_h2ovapor", & |
---|
| 1741 | "H2O vapour volume mixing ratio","mol/mol", & |
---|
| 1742 | 3,vmr) |
---|
| 1743 | endif ! of if (water) |
---|
| 1744 | |
---|
| 1745 | endif !tracer |
---|
| 1746 | |
---|
| 1747 | if(lastcall) then |
---|
| 1748 | write (*,*) "Writing stats..." |
---|
| 1749 | call mkstats(ierr) |
---|
| 1750 | endif |
---|
| 1751 | endif !if callstats |
---|
| 1752 | |
---|
| 1753 | |
---|
| 1754 | ! ---------------------------------------------------------------------- |
---|
| 1755 | ! output in netcdf file "DIAGFI", containing any variable for diagnostic |
---|
| 1756 | ! (output with period "ecritphy", set in "run.def") |
---|
| 1757 | ! ---------------------------------------------------------------------- |
---|
| 1758 | ! writediagfi can also be called from any other subroutine for any variable. |
---|
| 1759 | ! but its preferable to keep all the calls in one place... |
---|
| 1760 | |
---|
| 1761 | call writediagfi(ngrid,"tsurf","Surface temperature","K",2,tsurf) |
---|
| 1762 | call writediagfi(ngrid,"ps","Surface pressure","Pa",2,ps) |
---|
| 1763 | call writediagfi(ngrid,"temp","temperature","K",3,zt) |
---|
[597] | 1764 | call writediagfi(ngrid,"teta","potential temperature","K",3,zh) |
---|
[253] | 1765 | call writediagfi(ngrid,"u","Zonal wind","m.s-1",3,zu) |
---|
| 1766 | call writediagfi(ngrid,"v","Meridional wind","m.s-1",3,zv) |
---|
| 1767 | call writediagfi(ngrid,"w","Vertical wind","m.s-1",3,pw) |
---|
| 1768 | call writediagfi(ngrid,'p','Pressure','Pa',3,pplay) |
---|
| 1769 | |
---|
| 1770 | ! Total energy balance diagnostics |
---|
| 1771 | if(callrad.and.(.not.newtonian))then |
---|
| 1772 | call writediagfi(ngrid,'ALB','Surface albedo',' ',2,albedo) |
---|
| 1773 | call writediagfi(ngrid,"ISR","incoming stellar rad.","W m-2",2,fluxtop_dn) |
---|
| 1774 | call writediagfi(ngrid,"ASR","absorbed stellar rad.","W m-2",2,fluxabs_sw) |
---|
| 1775 | call writediagfi(ngrid,"OLR","outgoing longwave rad.","W m-2",2,fluxtop_lw) |
---|
| 1776 | call writediagfi(ngrid,"GND","heat flux from ground","W m-2",2,fluxgrd) |
---|
| 1777 | call writediagfi(ngrid,"DYN","dynamical heat input","W m-2",2,fluxdyn) |
---|
| 1778 | endif |
---|
[594] | 1779 | |
---|
| 1780 | if(enertest) then |
---|
[622] | 1781 | if (calldifv) then |
---|
| 1782 | call writediagfi(ngridmx,"q2","turbulent kinetic energy","J.kg^-1",3,q2) |
---|
| 1783 | call writediagfi(ngridmx,"dEzdiff","turbulent diffusion heating (-sensible flux)","w.m^-2",3,dEzdiff) |
---|
| 1784 | call writediagfi(ngridmx,"dEdiff","integrated turbulent diffusion heating (-sensible flux)","w.m^-2",2,dEdiff) |
---|
| 1785 | call writediagfi(ngridmx,"dEdiffs","In TurbDiff (correc rad+latent heat) surf nrj change","w.m^-2",2,dEdiffs) |
---|
| 1786 | call writediagfi(ngridmx,"sensibFlux","sensible heat flux","w.m^-2",2,sensibFlux) |
---|
| 1787 | endif |
---|
[596] | 1788 | if (corrk) then |
---|
| 1789 | call writediagfi(ngridmx,"dEzradsw","radiative heating","w.m^-2",3,dEzradsw) |
---|
| 1790 | call writediagfi(ngridmx,"dEzradlw","radiative heating","w.m^-2",3,dEzradlw) |
---|
| 1791 | endif |
---|
[594] | 1792 | if(watercond) then |
---|
| 1793 | call writediagfi(ngrid,"lscaledE","heat from largescale","W m-2",2,lscaledE) |
---|
[622] | 1794 | call writediagfi(ngrid,"madjdE","heat from moistadj","W m-2",2,madjdE) |
---|
| 1795 | call writediagfi(ngridmx,"RH","relative humidity"," ",3,RH) |
---|
| 1796 | call writediagfi(ngridmx,"h2o_max_col","maximum H2O column amount","kg.m^-2",2,H2Omaxcol) |
---|
[594] | 1797 | endif |
---|
| 1798 | endif |
---|
[253] | 1799 | |
---|
| 1800 | ! Temporary inclusions for heating diagnostics |
---|
| 1801 | ! call writediagfi(ngrid,"zdtdyn","Dyn. heating","T s-1",3,zdtdyn) |
---|
| 1802 | ! call writediagfi(ngrid,"zdtsw","SW heating","T s-1",3,zdtsw) |
---|
| 1803 | ! call writediagfi(ngrid,"zdtlw","LW heating","T s-1",3,zdtlw) |
---|
| 1804 | ! call writediagfi(ngrid,"dtrad","radiative heating","K s-1",3,dtrad) |
---|
| 1805 | |
---|
| 1806 | ! debugging |
---|
[368] | 1807 | !call writediagfi(ngrid,'rnat','Terrain type',' ',2,real(rnat)) |
---|
[253] | 1808 | !call writediagfi(ngrid,'pphi','Geopotential',' ',3,pphi) |
---|
| 1809 | |
---|
| 1810 | ! Output aerosols |
---|
[526] | 1811 | if (igcm_co2_ice.ne.0) call writediagfi(ngridmx,'CO2ice_reff','CO2ice_reff','m',3,reffrad(1,1,1)) |
---|
| 1812 | if (igcm_h2o_ice.ne.0) call writediagfi(ngridmx,'H2Oice_reff','H2Oice_reff','m',3,reffrad(1,1,2)) |
---|
| 1813 | if (igcm_co2_ice.ne.0) call writediagfi(ngridmx,'CO2ice_reffcol','CO2ice_reffcol','um kg m^-2',2,reffcol(1,1)) |
---|
| 1814 | if (igcm_h2o_ice.ne.0) call writediagfi(ngridmx,'H2Oice_reffcol','H2Oice_reffcol','um kg m^-2',2,reffcol(1,2)) |
---|
[253] | 1815 | |
---|
| 1816 | ! Output tracers |
---|
| 1817 | if (tracer) then |
---|
| 1818 | do iq=1,nq |
---|
[368] | 1819 | call writediagfi(ngrid,noms(iq),noms(iq),'kg/kg',3,zq(1,1,iq)) |
---|
[253] | 1820 | ! call writediagfi(ngridmx,trim(noms(iq))//'_surf',trim(noms(iq))//'_surf', & |
---|
| 1821 | ! 'kg m^-2',2,qsurf(1,iq) ) |
---|
| 1822 | call writediagfi(ngridmx,trim(noms(iq))//'_surf',trim(noms(iq))//'_surf', & |
---|
| 1823 | 'kg m^-2',2,qsurf_hist(1,iq) ) |
---|
| 1824 | call writediagfi(ngridmx,trim(noms(iq))//'_col',trim(noms(iq))//'_col', & |
---|
| 1825 | 'kg m^-2',2,qcol(1,iq) ) |
---|
| 1826 | |
---|
[594] | 1827 | if(watercond.or.CLFvarying)then |
---|
[622] | 1828 | ! call writediagfi(ngrid,"rneb_man","H2O cloud fraction (conv)"," ",3,rneb_man) |
---|
| 1829 | ! call writediagfi(ngrid,"rneb_lsc","H2O cloud fraction (large scale)"," ",3,rneb_lsc) |
---|
| 1830 | ! call writediagfi(ngrid,"CLF","H2O cloud fraction"," ",3,cloudfrac) |
---|
[253] | 1831 | call writediagfi(ngrid,"CLFt","H2O column cloud fraction"," ",2,totcloudfrac) |
---|
| 1832 | endif |
---|
| 1833 | |
---|
| 1834 | if(waterrain)then |
---|
| 1835 | call writediagfi(ngridmx,"rain","rainfall","kg m-2 s-1",2,zdqsrain) |
---|
| 1836 | call writediagfi(ngridmx,"snow","snowfall","kg m-2 s-1",2,zdqssnow) |
---|
| 1837 | endif |
---|
| 1838 | |
---|
| 1839 | if(hydrology)then |
---|
| 1840 | call writediagfi(ngridmx,"hice","oceanic ice height","m",2,hice) |
---|
| 1841 | endif |
---|
| 1842 | |
---|
| 1843 | if(ice_update)then |
---|
| 1844 | call writediagfi(ngridmx,"ice_min","min annual ice","m",2,ice_min) |
---|
| 1845 | call writediagfi(ngridmx,"ice_ini","initial annual ice","m",2,ice_initial) |
---|
| 1846 | endif |
---|
| 1847 | |
---|
| 1848 | do ig=1,ngrid |
---|
| 1849 | if(tau_col(ig).gt.1.e3)then |
---|
| 1850 | print*,'WARNING: tau_col=',tau_col(ig) |
---|
| 1851 | print*,'at ig=',ig,'in PHYSIQ' |
---|
| 1852 | endif |
---|
| 1853 | end do |
---|
| 1854 | |
---|
| 1855 | call writediagfi(ngridmx,"tau_col","Total aerosol optical depth","[]",2,tau_col) |
---|
| 1856 | |
---|
| 1857 | enddo |
---|
| 1858 | endif |
---|
| 1859 | |
---|
[526] | 1860 | ! output spectrum |
---|
| 1861 | if(specOLR.and.corrk)then |
---|
| 1862 | call writediagspecIR(ngrid,"OLR3D","OLR(lon,lat,band)","W/m^2/cm^-1",3,OLR_nu) |
---|
| 1863 | call writediagspecVI(ngrid,"OSR3D","OSR(lon,lat,band)","W/m^2/cm^-1",3,OSR_nu) |
---|
| 1864 | endif |
---|
[253] | 1865 | |
---|
| 1866 | |
---|
| 1867 | icount=icount+1 |
---|
| 1868 | |
---|
[716] | 1869 | ! deallocate gas variables |
---|
[471] | 1870 | if (lastcall) then |
---|
[716] | 1871 | IF ( ALLOCATED( gnom ) ) DEALLOCATE( gnom ) |
---|
| 1872 | IF ( ALLOCATED( gfrac ) ) DEALLOCATE( gfrac ) ! both allocated in su_gases.F90 |
---|
[471] | 1873 | endif |
---|
| 1874 | |
---|
| 1875 | |
---|
[253] | 1876 | return |
---|
| 1877 | end subroutine physiq |
---|