[751] | 1 | subroutine physiq(ngrid,nlayer,nq, & |
---|
[787] | 2 | nametrac, & |
---|
[253] | 3 | firstcall,lastcall, & |
---|
| 4 | pday,ptime,ptimestep, & |
---|
| 5 | pplev,pplay,pphi, & |
---|
| 6 | pu,pv,pt,pq, & |
---|
| 7 | pw, & |
---|
| 8 | pdu,pdv,pdt,pdq,pdpsrf,tracerdyn) |
---|
| 9 | |
---|
[726] | 10 | use radinc_h, only : L_NSPECTI,L_NSPECTV,naerkind |
---|
[1016] | 11 | use watercommon_h, only : RLVTT, Psat_water,epsi |
---|
[471] | 12 | use gases_h |
---|
[600] | 13 | use radcommon_h, only: sigma |
---|
[858] | 14 | use radii_mod, only: h2o_reffrad, co2_reffrad, h2o_cloudrad |
---|
[726] | 15 | use aerosol_mod |
---|
[787] | 16 | use surfdat_h |
---|
| 17 | use comdiurn_h |
---|
| 18 | use comsaison_h |
---|
| 19 | use comsoil_h |
---|
| 20 | USE comgeomfi_h |
---|
| 21 | USE tracer_h |
---|
| 22 | |
---|
[253] | 23 | implicit none |
---|
| 24 | |
---|
| 25 | |
---|
| 26 | !================================================================== |
---|
| 27 | ! |
---|
| 28 | ! Purpose |
---|
| 29 | ! ------- |
---|
| 30 | ! Central subroutine for all the physics parameterisations in the |
---|
| 31 | ! universal model. Originally adapted from the Mars LMDZ model. |
---|
| 32 | ! |
---|
| 33 | ! The model can be run without or with tracer transport |
---|
| 34 | ! depending on the value of "tracer" in file "callphys.def". |
---|
| 35 | ! |
---|
| 36 | ! |
---|
| 37 | ! It includes: |
---|
| 38 | ! |
---|
| 39 | ! 1. Initialization: |
---|
| 40 | ! 1.1 Firstcall initializations |
---|
| 41 | ! 1.2 Initialization for every call to physiq |
---|
| 42 | ! 1.2.5 Compute mean mass and cp, R and thermal conduction coeff. |
---|
| 43 | ! 2. Compute radiative transfer tendencies |
---|
| 44 | ! (longwave and shortwave). |
---|
| 45 | ! 4. Vertical diffusion (turbulent mixing): |
---|
| 46 | ! 5. Convective adjustment |
---|
| 47 | ! 6. Condensation and sublimation of gases (currently just CO2). |
---|
| 48 | ! 7. TRACERS |
---|
| 49 | ! 7a. water and water ice |
---|
| 50 | ! 7c. other schemes for tracer transport (lifting, sedimentation) |
---|
| 51 | ! 7d. updates (pressure variations, surface budget) |
---|
| 52 | ! 9. Surface and sub-surface temperature calculations |
---|
| 53 | ! 10. Write outputs : |
---|
| 54 | ! - "startfi", "histfi" if it's time |
---|
| 55 | ! - Saving statistics if "callstats = .true." |
---|
| 56 | ! - Output any needed variables in "diagfi" |
---|
| 57 | ! 10. Diagnostics: mass conservation of tracers, radiative energy balance etc. |
---|
| 58 | ! |
---|
| 59 | ! arguments |
---|
| 60 | ! --------- |
---|
| 61 | ! |
---|
| 62 | ! input |
---|
| 63 | ! ----- |
---|
| 64 | ! ecri period (in dynamical timestep) to write output |
---|
| 65 | ! ngrid Size of the horizontal grid. |
---|
| 66 | ! All internal loops are performed on that grid. |
---|
| 67 | ! nlayer Number of vertical layers. |
---|
| 68 | ! nq Number of advected fields |
---|
| 69 | ! firstcall True at the first call |
---|
| 70 | ! lastcall True at the last call |
---|
| 71 | ! pday Number of days counted from the North. Spring |
---|
| 72 | ! equinoxe. |
---|
| 73 | ! ptime Universal time (0<ptime<1): ptime=0.5 at 12:00 UT |
---|
| 74 | ! ptimestep timestep (s) |
---|
| 75 | ! pplay(ngrid,nlayer) Pressure at the middle of the layers (Pa) |
---|
| 76 | ! pplev(ngrid,nlayer+1) intermediate pressure levels (pa) |
---|
| 77 | ! pphi(ngrid,nlayer) Geopotential at the middle of the layers (m2s-2) |
---|
| 78 | ! pu(ngrid,nlayer) u component of the wind (ms-1) |
---|
| 79 | ! pv(ngrid,nlayer) v component of the wind (ms-1) |
---|
| 80 | ! pt(ngrid,nlayer) Temperature (K) |
---|
| 81 | ! pq(ngrid,nlayer,nq) Advected fields |
---|
| 82 | ! pudyn(ngrid,nlayer) \ |
---|
| 83 | ! pvdyn(ngrid,nlayer) \ Dynamical temporal derivative for the |
---|
| 84 | ! ptdyn(ngrid,nlayer) / corresponding variables |
---|
| 85 | ! pqdyn(ngrid,nlayer,nq) / |
---|
| 86 | ! pw(ngrid,?) vertical velocity |
---|
| 87 | ! |
---|
| 88 | ! output |
---|
| 89 | ! ------ |
---|
| 90 | ! |
---|
| 91 | ! pdu(ngrid,nlayermx) \ |
---|
| 92 | ! pdv(ngrid,nlayermx) \ Temporal derivative of the corresponding |
---|
| 93 | ! pdt(ngrid,nlayermx) / variables due to physical processes. |
---|
| 94 | ! pdq(ngrid,nlayermx) / |
---|
| 95 | ! pdpsrf(ngrid) / |
---|
| 96 | ! tracerdyn call tracer in dynamical part of GCM ? |
---|
| 97 | ! |
---|
| 98 | ! |
---|
| 99 | ! Authors |
---|
| 100 | ! ------- |
---|
| 101 | ! Frederic Hourdin 15/10/93 |
---|
| 102 | ! Francois Forget 1994 |
---|
| 103 | ! Christophe Hourdin 02/1997 |
---|
| 104 | ! Subroutine completely rewritten by F. Forget (01/2000) |
---|
| 105 | ! Water ice clouds: Franck Montmessin (update 06/2003) |
---|
| 106 | ! Radiatively active tracers: J.-B. Madeleine (10/2008-06/2009) |
---|
| 107 | ! New correlated-k radiative scheme: R. Wordsworth (2009) |
---|
| 108 | ! Many specifically Martian subroutines removed: R. Wordsworth (2009) |
---|
| 109 | ! Improved water cycle: R. Wordsworth / B. Charnay (2010) |
---|
| 110 | ! To F90: R. Wordsworth (2010) |
---|
[594] | 111 | ! New turbulent diffusion scheme: J. Leconte (2012) |
---|
[716] | 112 | ! Loops converted to F90 matrix format: J. Leconte (2012) |
---|
[787] | 113 | ! No more ngridmx/nqmx, F90 commons and adaptation to parallel: A. Spiga (2012) |
---|
[253] | 114 | ! |
---|
| 115 | !================================================================== |
---|
| 116 | |
---|
| 117 | |
---|
| 118 | ! 0. Declarations : |
---|
| 119 | ! ------------------ |
---|
| 120 | |
---|
| 121 | #include "dimensions.h" |
---|
| 122 | #include "dimphys.h" |
---|
| 123 | #include "callkeys.h" |
---|
| 124 | #include "comcstfi.h" |
---|
| 125 | #include "planete.h" |
---|
| 126 | #include "control.h" |
---|
| 127 | #include "netcdf.inc" |
---|
| 128 | |
---|
| 129 | ! Arguments : |
---|
| 130 | ! ----------- |
---|
| 131 | |
---|
| 132 | ! inputs: |
---|
| 133 | ! ------- |
---|
[858] | 134 | integer,intent(in) :: ngrid ! number of atmospheric columns |
---|
| 135 | integer,intent(in) :: nlayer ! number of atmospheric layers |
---|
| 136 | integer,intent(in) :: nq ! number of tracers |
---|
| 137 | character*20,intent(in) :: nametrac(nq) ! name of the tracer from dynamics |
---|
| 138 | logical,intent(in) :: firstcall ! signals first call to physics |
---|
| 139 | logical,intent(in) :: lastcall ! signals last call to physics |
---|
| 140 | real,intent(in) :: pday ! number of elapsed sols since reference Ls=0 |
---|
| 141 | real,intent(in) :: ptime ! "universal time", given as fraction of sol (e.g.: 0.5 for noon) |
---|
| 142 | real,intent(in) :: ptimestep ! physics timestep (s) |
---|
| 143 | real,intent(in) :: pplev(ngrid,nlayer+1) ! inter-layer pressure (Pa) |
---|
| 144 | real,intent(in) :: pplay(ngrid,nlayer) ! mid-layer pressure (Pa) |
---|
| 145 | real,intent(in) :: pphi(ngrid,nlayer) ! geopotential at mid-layer (m2s-2) |
---|
| 146 | real,intent(in) :: pu(ngrid,nlayer) ! zonal wind component (m/s) |
---|
| 147 | real,intent(in) :: pv(ngrid,nlayer) ! meridional wind component (m/s) |
---|
| 148 | real,intent(in) :: pt(ngrid,nlayer) ! temperature (K) |
---|
| 149 | real,intent(in) :: pq(ngrid,nlayer,nq) ! tracers (.../kg_of_air) |
---|
| 150 | real,intent(in) :: pw(ngrid,nlayer) ! vertical velocity (m/s) |
---|
[253] | 151 | |
---|
| 152 | |
---|
[787] | 153 | |
---|
[253] | 154 | ! outputs: |
---|
| 155 | ! -------- |
---|
| 156 | ! physical tendencies |
---|
[858] | 157 | real,intent(out) :: pdu(ngrid,nlayer) ! zonal wind tendency (m/s/s) |
---|
| 158 | real,intent(out) :: pdv(ngrid,nlayer) ! meridional wind tendency (m/s/s) |
---|
| 159 | real,intent(out) :: pdt(ngrid,nlayer) ! temperature tendency (K/s) |
---|
| 160 | real,intent(out) :: pdq(ngrid,nlayer,nq) ! tracer tendencies (../kg/s) |
---|
| 161 | real,intent(out) :: pdpsrf(ngrid) ! surface pressure tendency (Pa/s) |
---|
| 162 | logical,intent(out) :: tracerdyn ! signal to the dynamics to advect tracers or not |
---|
[253] | 163 | |
---|
| 164 | ! Local saved variables: |
---|
| 165 | ! ---------------------- |
---|
| 166 | ! aerosol (dust or ice) extinction optical depth at reference wavelength |
---|
| 167 | ! "longrefvis" set in dimradmars.h , for one of the "naerkind" kind of |
---|
| 168 | ! aerosol optical properties: |
---|
[787] | 169 | ! real aerosol(ngrid,nlayermx,naerkind) |
---|
[253] | 170 | ! this is now internal to callcorrk and hence no longer needed here |
---|
| 171 | |
---|
| 172 | integer day_ini ! Initial date of the run (sol since Ls=0) |
---|
| 173 | integer icount ! counter of calls to physiq during the run. |
---|
[787] | 174 | real, dimension(:),allocatable,save :: tsurf ! Surface temperature (K) |
---|
| 175 | real, dimension(:,:),allocatable,save :: tsoil ! sub-surface temperatures (K) |
---|
| 176 | real, dimension(:),allocatable,save :: albedo ! Surface albedo |
---|
[253] | 177 | |
---|
[787] | 178 | real,dimension(:),allocatable,save :: albedo0 ! Surface albedo |
---|
| 179 | integer,dimension(:),allocatable,save :: rnat ! added by BC |
---|
[253] | 180 | |
---|
[787] | 181 | real,dimension(:),allocatable,save :: emis ! Thermal IR surface emissivity |
---|
| 182 | real,dimension(:,:),allocatable,save :: dtrad ! Net atm. radiative heating rate (K.s-1) |
---|
| 183 | real,dimension(:),allocatable,save :: fluxrad_sky ! rad. flux from sky absorbed by surface (W.m-2) |
---|
| 184 | real,dimension(:),allocatable,save :: fluxrad ! Net radiative surface flux (W.m-2) |
---|
| 185 | real,dimension(:),allocatable,save :: capcal ! surface heat capacity (J m-2 K-1) |
---|
| 186 | real,dimension(:),allocatable,save :: fluxgrd ! surface conduction flux (W.m-2) |
---|
| 187 | real,dimension(:,:),allocatable,save :: qsurf ! tracer on surface (e.g. kg.m-2) |
---|
| 188 | real,dimension(:,:),allocatable,save :: q2 ! Turbulent Kinetic Energy |
---|
[253] | 189 | |
---|
| 190 | save day_ini, icount |
---|
| 191 | |
---|
| 192 | ! Local variables : |
---|
| 193 | ! ----------------- |
---|
| 194 | |
---|
| 195 | ! aerosol (dust or ice) extinction optical depth at reference wavelength |
---|
| 196 | ! for the "naerkind" optically active aerosols: |
---|
[787] | 197 | real aerosol(ngrid,nlayermx,naerkind) |
---|
[858] | 198 | real zh(ngrid,nlayermx) ! potential temperature (K) |
---|
[253] | 199 | |
---|
| 200 | character*80 fichier |
---|
[728] | 201 | integer l,ig,ierr,iq,iaer |
---|
[253] | 202 | |
---|
[787] | 203 | !!! this is saved for diagnostic |
---|
| 204 | real,dimension(:),allocatable,save :: fluxsurf_lw ! incident LW (IR) surface flux (W.m-2) |
---|
| 205 | real,dimension(:),allocatable,save :: fluxsurf_sw ! incident SW (stellar) surface flux (W.m-2) |
---|
| 206 | real,dimension(:),allocatable,save :: fluxtop_lw ! Outgoing LW (IR) flux to space (W.m-2) |
---|
| 207 | real,dimension(:),allocatable,save :: fluxabs_sw ! Absorbed SW (stellar) flux (W.m-2) |
---|
| 208 | real,dimension(:),allocatable,save :: fluxtop_dn |
---|
| 209 | real,dimension(:),allocatable,save :: fluxdyn ! horizontal heat transport by dynamics |
---|
| 210 | real,dimension(:,:),allocatable,save :: OLR_nu ! Outgoing LW radition in each band (Normalized to the band width (W/m2/cm-1) |
---|
| 211 | real,dimension(:,:),allocatable,save :: OSR_nu ! Outgoing SW radition in each band (Normalized to the band width (W/m2/cm-1) |
---|
| 212 | real,dimension(:,:),allocatable,save :: zdtlw ! (K/s) |
---|
| 213 | real,dimension(:,:),allocatable,save :: zdtsw ! (K/s) |
---|
| 214 | real,dimension(:),allocatable,save :: sensibFlux ! turbulent flux given by the atm to the surface |
---|
[253] | 215 | |
---|
| 216 | real zls ! solar longitude (rad) |
---|
| 217 | real zday ! date (time since Ls=0, in martian days) |
---|
[787] | 218 | real zzlay(ngrid,nlayermx) ! altitude at the middle of the layers |
---|
| 219 | real zzlev(ngrid,nlayermx+1) ! altitude at layer boundaries |
---|
[253] | 220 | real latvl1,lonvl1 ! Viking Lander 1 point (for diagnostic) |
---|
| 221 | |
---|
| 222 | ! Tendencies due to various processes: |
---|
[787] | 223 | real dqsurf(ngrid,nq) |
---|
| 224 | real cldtlw(ngrid,nlayermx) ! (K/s) LW heating rate for clear areas |
---|
| 225 | real cldtsw(ngrid,nlayermx) ! (K/s) SW heating rate for clear areas |
---|
| 226 | real zdtsurf(ngrid) ! (K/s) |
---|
| 227 | real dtlscale(ngrid,nlayermx) |
---|
| 228 | real zdvdif(ngrid,nlayermx),zdudif(ngrid,nlayermx) ! (m.s-2) |
---|
| 229 | real zdhdif(ngrid,nlayermx), zdtsdif(ngrid) ! (K/s) |
---|
| 230 | real zdtdif(ngrid,nlayermx) ! (K/s) |
---|
| 231 | real zdvadj(ngrid,nlayermx),zduadj(ngrid,nlayermx) ! (m.s-2) |
---|
| 232 | real zdhadj(ngrid,nlayermx) ! (K/s) |
---|
| 233 | real zdtgw(ngrid,nlayermx) ! (K/s) |
---|
| 234 | real zdtmr(ngrid,nlayermx) |
---|
| 235 | real zdugw(ngrid,nlayermx),zdvgw(ngrid,nlayermx) ! (m.s-2) |
---|
| 236 | real zdtc(ngrid,nlayermx),zdtsurfc(ngrid) |
---|
| 237 | real zdvc(ngrid,nlayermx),zduc(ngrid,nlayermx) |
---|
| 238 | real zdumr(ngrid,nlayermx),zdvmr(ngrid,nlayermx) |
---|
| 239 | real zdtsurfmr(ngrid) |
---|
[728] | 240 | |
---|
[787] | 241 | real zdmassmr(ngrid,nlayermx),zdpsrfmr(ngrid) |
---|
[867] | 242 | real zdmassmr_col(ngrid) |
---|
[253] | 243 | |
---|
[787] | 244 | real zdqdif(ngrid,nlayermx,nq), zdqsdif(ngrid,nq) |
---|
| 245 | real zdqevap(ngrid,nlayermx) |
---|
| 246 | real zdqsed(ngrid,nlayermx,nq), zdqssed(ngrid,nq) |
---|
| 247 | real zdqdev(ngrid,nlayermx,nq), zdqsdev(ngrid,nq) |
---|
| 248 | real zdqadj(ngrid,nlayermx,nq) |
---|
| 249 | real zdqc(ngrid,nlayermx,nq) |
---|
| 250 | real zdqmr(ngrid,nlayermx,nq),zdqsurfmr(ngrid,nq) |
---|
| 251 | real zdqlscale(ngrid,nlayermx,nq) |
---|
| 252 | real zdqslscale(ngrid,nq) |
---|
| 253 | real zdqchim(ngrid,nlayermx,nq) |
---|
| 254 | real zdqschim(ngrid,nq) |
---|
[253] | 255 | |
---|
[787] | 256 | real zdteuv(ngrid,nlayermx) ! (K/s) |
---|
| 257 | real zdtconduc(ngrid,nlayermx) ! (K/s) |
---|
| 258 | real zdumolvis(ngrid,nlayermx) |
---|
| 259 | real zdvmolvis(ngrid,nlayermx) |
---|
| 260 | real zdqmoldiff(ngrid,nlayermx,nq) |
---|
[253] | 261 | |
---|
| 262 | ! Local variables for local calculations: |
---|
[787] | 263 | real zflubid(ngrid) |
---|
| 264 | real zplanck(ngrid),zpopsk(ngrid,nlayermx) |
---|
| 265 | real zdum1(ngrid,nlayermx) |
---|
| 266 | real zdum2(ngrid,nlayermx) |
---|
[253] | 267 | real ztim1,ztim2,ztim3, z1,z2 |
---|
| 268 | real ztime_fin |
---|
[787] | 269 | real zdh(ngrid,nlayermx) |
---|
[253] | 270 | integer length |
---|
| 271 | parameter (length=100) |
---|
| 272 | |
---|
| 273 | ! local variables only used for diagnostics (output in file "diagfi" or "stats") |
---|
| 274 | ! ------------------------------------------------------------------------------ |
---|
[787] | 275 | real ps(ngrid), zt(ngrid,nlayermx) |
---|
| 276 | real zu(ngrid,nlayermx),zv(ngrid,nlayermx) |
---|
| 277 | real zq(ngrid,nlayermx,nq) |
---|
[253] | 278 | character*2 str2 |
---|
| 279 | character*5 str5 |
---|
[787] | 280 | real zdtadj(ngrid,nlayermx) |
---|
| 281 | real zdtdyn(ngrid,nlayermx) |
---|
| 282 | real,allocatable,dimension(:,:),save :: ztprevious |
---|
| 283 | real reff(ngrid,nlayermx) ! effective dust radius (used if doubleq=T) |
---|
[253] | 284 | real qtot1,qtot2 ! total aerosol mass |
---|
| 285 | integer igmin, lmin |
---|
| 286 | logical tdiag |
---|
| 287 | |
---|
| 288 | real zplev(ngrid,nlayermx+1),zplay(ngrid,nlayermx) |
---|
| 289 | real zstress(ngrid), cd |
---|
[787] | 290 | real hco2(nq), tmean, zlocal(nlayermx) |
---|
| 291 | real vmr(ngrid,nlayermx) ! volume mixing ratio |
---|
[253] | 292 | |
---|
| 293 | real time_phys |
---|
| 294 | |
---|
| 295 | ! reinstated by RW for diagnostic |
---|
[787] | 296 | real,allocatable,dimension(:),save :: tau_col |
---|
[597] | 297 | |
---|
[253] | 298 | ! included by RW to reduce insanity of code |
---|
| 299 | real ISR,ASR,OLR,GND,DYN,GSR,Ts1,Ts2,Ts3,TsS |
---|
| 300 | |
---|
| 301 | ! included by RW to compute tracer column densities |
---|
[787] | 302 | real qcol(ngrid,nq) |
---|
[253] | 303 | |
---|
| 304 | ! included by RW for H2O precipitation |
---|
[787] | 305 | real zdtrain(ngrid,nlayermx) |
---|
| 306 | real zdqrain(ngrid,nlayermx,nq) |
---|
| 307 | real zdqsrain(ngrid) |
---|
| 308 | real zdqssnow(ngrid) |
---|
| 309 | real rainout(ngrid) |
---|
[253] | 310 | |
---|
| 311 | ! included by RW for H2O Manabe scheme |
---|
[787] | 312 | real dtmoist(ngrid,nlayermx) |
---|
| 313 | real dqmoist(ngrid,nlayermx,nq) |
---|
[253] | 314 | |
---|
[787] | 315 | real qvap(ngrid,nlayermx) |
---|
| 316 | real dqvaplscale(ngrid,nlayermx) |
---|
| 317 | real dqcldlscale(ngrid,nlayermx) |
---|
| 318 | real rneb_man(ngrid,nlayermx) |
---|
| 319 | real rneb_lsc(ngrid,nlayermx) |
---|
[253] | 320 | |
---|
| 321 | ! included by RW to account for surface cooling by evaporation |
---|
[787] | 322 | real dtsurfh2olat(ngrid) |
---|
[253] | 323 | |
---|
[597] | 324 | |
---|
[594] | 325 | ! to test energy conservation (RW+JL) |
---|
[787] | 326 | real mass(ngrid,nlayermx),massarea(ngrid,nlayermx) |
---|
[651] | 327 | real dEtot, dEtots, AtmToSurf_TurbFlux |
---|
[959] | 328 | real,save :: dEtotSW, dEtotsSW, dEtotLW, dEtotsLW |
---|
[787] | 329 | real dEzRadsw(ngrid,nlayermx),dEzRadlw(ngrid,nlayermx),dEzdiff(ngrid,nlayermx) |
---|
| 330 | real dEdiffs(ngrid),dEdiff(ngrid) |
---|
[1016] | 331 | real madjdE(ngrid), lscaledE(ngrid),madjdEz(ngrid,nlayermx), lscaledEz(ngrid,nlayermx) |
---|
[594] | 332 | !JL12 conservation test for mean flow kinetic energy has been disabled temporarily |
---|
| 333 | |
---|
[253] | 334 | real dItot, dVtot |
---|
| 335 | |
---|
| 336 | ! included by BC for evaporation |
---|
[787] | 337 | real qevap(ngrid,nlayermx,nq) |
---|
| 338 | real tevap(ngrid,nlayermx) |
---|
| 339 | real dqevap1(ngrid,nlayermx) |
---|
| 340 | real dtevap1(ngrid,nlayermx) |
---|
[253] | 341 | |
---|
| 342 | ! included by BC for hydrology |
---|
[787] | 343 | real hice(ngrid) |
---|
[253] | 344 | |
---|
| 345 | ! included by RW to test water conservation (by routine) |
---|
[594] | 346 | real h2otot |
---|
[253] | 347 | real dWtot, dWtots |
---|
| 348 | real h2o_surf_all |
---|
| 349 | logical watertest |
---|
| 350 | save watertest |
---|
| 351 | |
---|
| 352 | ! included by RW for RH diagnostic |
---|
[787] | 353 | real qsat(ngrid,nlayermx), RH(ngrid,nlayermx), H2Omaxcol(ngrid),psat_tmp |
---|
[253] | 354 | |
---|
| 355 | ! included by RW for hydrology |
---|
[787] | 356 | real dqs_hyd(ngrid,nq) |
---|
| 357 | real zdtsurf_hyd(ngrid) |
---|
[253] | 358 | |
---|
| 359 | ! included by RW for water cycle conservation tests |
---|
| 360 | real icesrf,liqsrf,icecol,vapcol |
---|
| 361 | |
---|
| 362 | ! included by BC for double radiative transfer call |
---|
| 363 | logical clearsky |
---|
[787] | 364 | real zdtsw1(ngrid,nlayermx) |
---|
| 365 | real zdtlw1(ngrid,nlayermx) |
---|
| 366 | real fluxsurf_lw1(ngrid) |
---|
| 367 | real fluxsurf_sw1(ngrid) |
---|
| 368 | real fluxtop_lw1(ngrid) |
---|
| 369 | real fluxabs_sw1(ngrid) |
---|
[526] | 370 | real tau_col1(ngrid) |
---|
| 371 | real OLR_nu1(ngrid,L_NSPECTI) |
---|
| 372 | real OSR_nu1(ngrid,L_NSPECTV) |
---|
[253] | 373 | real tf, ntf |
---|
| 374 | |
---|
| 375 | ! included by BC for cloud fraction computations |
---|
[787] | 376 | real,allocatable,dimension(:,:),save :: cloudfrac |
---|
| 377 | real,allocatable,dimension(:),save :: totcloudfrac |
---|
[253] | 378 | |
---|
| 379 | ! included by RW for vdifc water conservation test |
---|
| 380 | real nconsMAX |
---|
[787] | 381 | real vdifcncons(ngrid) |
---|
| 382 | real cadjncons(ngrid) |
---|
[253] | 383 | |
---|
[787] | 384 | ! double precision qsurf_hist(ngrid,nq) |
---|
| 385 | real,allocatable,dimension(:,:),save :: qsurf_hist |
---|
[253] | 386 | |
---|
| 387 | ! included by RW for temp convadj conservation test |
---|
| 388 | real playtest(nlayermx) |
---|
| 389 | real plevtest(nlayermx) |
---|
| 390 | real ttest(nlayermx) |
---|
| 391 | real qtest(nlayermx) |
---|
| 392 | integer igtest |
---|
| 393 | |
---|
[305] | 394 | ! included by RW for runway greenhouse 1D study |
---|
[787] | 395 | real muvar(ngrid,nlayermx+1) |
---|
[253] | 396 | |
---|
| 397 | ! included by RW for variable H2O particle sizes |
---|
[787] | 398 | real,allocatable,dimension(:,:,:),save :: reffrad ! aerosol effective radius (m) |
---|
| 399 | real,allocatable,dimension(:,:,:),save :: nueffrad ! aerosol effective radius variance |
---|
[858] | 400 | ! real :: nueffrad_dummy(ngrid,nlayermx,naerkind) !! AS. This is temporary. Check below why. |
---|
[787] | 401 | real :: reffh2oliq(ngrid,nlayermx) ! liquid water particles effective radius (m) |
---|
| 402 | real :: reffh2oice(ngrid,nlayermx) ! water ice particles effective radius (m) |
---|
[858] | 403 | ! real reffH2O(ngrid,nlayermx) |
---|
[787] | 404 | real reffcol(ngrid,naerkind) |
---|
[253] | 405 | |
---|
| 406 | ! included by RW for sourceevol |
---|
[787] | 407 | real,allocatable,dimension(:),save :: ice_initial |
---|
[305] | 408 | real delta_ice,ice_tot |
---|
[787] | 409 | real,allocatable,dimension(:),save :: ice_min |
---|
[728] | 410 | |
---|
[253] | 411 | integer num_run |
---|
[728] | 412 | logical,save :: ice_update |
---|
[996] | 413 | |
---|
[253] | 414 | !======================================================================= |
---|
| 415 | |
---|
| 416 | ! 1. Initialisation |
---|
| 417 | ! ----------------- |
---|
| 418 | |
---|
| 419 | ! 1.1 Initialisation only at first call |
---|
| 420 | ! --------------------------------------- |
---|
| 421 | if (firstcall) then |
---|
| 422 | |
---|
[858] | 423 | !!! ALLOCATE SAVED ARRAYS |
---|
| 424 | ALLOCATE(tsurf(ngrid)) |
---|
| 425 | ALLOCATE(tsoil(ngrid,nsoilmx)) |
---|
| 426 | ALLOCATE(albedo(ngrid)) |
---|
| 427 | ALLOCATE(albedo0(ngrid)) |
---|
| 428 | ALLOCATE(rnat(ngrid)) |
---|
| 429 | ALLOCATE(emis(ngrid)) |
---|
| 430 | ALLOCATE(dtrad(ngrid,nlayermx)) |
---|
| 431 | ALLOCATE(fluxrad_sky(ngrid)) |
---|
| 432 | ALLOCATE(fluxrad(ngrid)) |
---|
| 433 | ALLOCATE(capcal(ngrid)) |
---|
| 434 | ALLOCATE(fluxgrd(ngrid)) |
---|
| 435 | ALLOCATE(qsurf(ngrid,nq)) |
---|
| 436 | ALLOCATE(q2(ngrid,nlayermx+1)) |
---|
| 437 | ALLOCATE(ztprevious(ngrid,nlayermx)) |
---|
| 438 | ALLOCATE(cloudfrac(ngrid,nlayermx)) |
---|
| 439 | ALLOCATE(totcloudfrac(ngrid)) |
---|
| 440 | ALLOCATE(qsurf_hist(ngrid,nq)) |
---|
| 441 | ALLOCATE(reffrad(ngrid,nlayermx,naerkind)) |
---|
| 442 | ALLOCATE(nueffrad(ngrid,nlayermx,naerkind)) |
---|
| 443 | ALLOCATE(ice_initial(ngrid)) |
---|
| 444 | ALLOCATE(ice_min(ngrid)) |
---|
| 445 | ALLOCATE(fluxsurf_lw(ngrid)) |
---|
| 446 | ALLOCATE(fluxsurf_sw(ngrid)) |
---|
| 447 | ALLOCATE(fluxtop_lw(ngrid)) |
---|
| 448 | ALLOCATE(fluxabs_sw(ngrid)) |
---|
| 449 | ALLOCATE(fluxtop_dn(ngrid)) |
---|
| 450 | ALLOCATE(fluxdyn(ngrid)) |
---|
| 451 | ALLOCATE(OLR_nu(ngrid,L_NSPECTI)) |
---|
| 452 | ALLOCATE(OSR_nu(ngrid,L_NSPECTV)) |
---|
| 453 | ALLOCATE(sensibFlux(ngrid)) |
---|
| 454 | ALLOCATE(zdtlw(ngrid,nlayermx)) |
---|
| 455 | ALLOCATE(zdtsw(ngrid,nlayermx)) |
---|
| 456 | ALLOCATE(tau_col(ngrid)) |
---|
| 457 | |
---|
[787] | 458 | !! this is defined in comsaison_h |
---|
| 459 | ALLOCATE(mu0(ngrid)) |
---|
| 460 | ALLOCATE(fract(ngrid)) |
---|
| 461 | |
---|
[253] | 462 | ! variables set to 0 |
---|
| 463 | ! ~~~~~~~~~~~~~~~~~~ |
---|
| 464 | dtrad(:,:) = 0.0 |
---|
| 465 | fluxrad(:) = 0.0 |
---|
| 466 | tau_col(:) = 0.0 |
---|
| 467 | zdtsw(:,:) = 0.0 |
---|
| 468 | zdtlw(:,:) = 0.0 |
---|
[726] | 469 | |
---|
| 470 | ! initialize aerosol indexes |
---|
| 471 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 472 | call iniaerosol() |
---|
| 473 | |
---|
[253] | 474 | |
---|
| 475 | ! initialize tracer names, indexes and properties |
---|
| 476 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 477 | tracerdyn=tracer |
---|
[861] | 478 | IF (.NOT.ALLOCATED(noms)) ALLOCATE(noms(nq)) !! because noms is an argument of physdem1 |
---|
| 479 | !! whether or not tracer is on |
---|
[253] | 480 | if (tracer) then |
---|
[787] | 481 | call initracer(ngrid,nq,nametrac) |
---|
[253] | 482 | endif ! end tracer |
---|
| 483 | |
---|
[726] | 484 | ! |
---|
| 485 | |
---|
[253] | 486 | ! read startfi (initial parameters) |
---|
| 487 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[787] | 488 | call phyetat0(ngrid,"startfi.nc",0,0,nsoilmx,nq, & |
---|
[253] | 489 | day_ini,time_phys,tsurf,tsoil,emis,q2,qsurf, & |
---|
| 490 | cloudfrac,totcloudfrac,hice) |
---|
| 491 | |
---|
| 492 | if (pday.ne.day_ini) then |
---|
| 493 | write(*,*) "ERROR in physiq.F90:" |
---|
| 494 | write(*,*) "bad synchronization between physics and dynamics" |
---|
| 495 | write(*,*) "dynamics day: ",pday |
---|
| 496 | write(*,*) "physics day: ",day_ini |
---|
| 497 | stop |
---|
| 498 | endif |
---|
| 499 | |
---|
| 500 | write (*,*) 'In physiq day_ini =', day_ini |
---|
| 501 | |
---|
| 502 | ! Initialize albedo and orbital calculation |
---|
| 503 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[787] | 504 | call surfini(ngrid,nq,qsurf,albedo0) |
---|
[253] | 505 | call iniorbit(apoastr,periastr,year_day,peri_day,obliquit) |
---|
| 506 | |
---|
[728] | 507 | albedo(:)=albedo0(:) |
---|
[253] | 508 | |
---|
| 509 | if(tlocked)then |
---|
| 510 | print*,'Planet is tidally locked at resonance n=',nres |
---|
| 511 | print*,'Make sure you have the right rotation rate!!!' |
---|
| 512 | endif |
---|
| 513 | |
---|
| 514 | ! initialize soil |
---|
| 515 | ! ~~~~~~~~~~~~~~~ |
---|
| 516 | if (callsoil) then |
---|
[787] | 517 | call soil(ngrid,nsoilmx,firstcall,lastcall,inertiedat, & |
---|
[253] | 518 | ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
| 519 | else |
---|
| 520 | print*,'WARNING! Thermal conduction in the soil turned off' |
---|
[918] | 521 | capcal(:)=1.e6 |
---|
[952] | 522 | fluxgrd(:)=intheat |
---|
| 523 | print*,'Flux from ground = ',intheat,' W m^-2' |
---|
[253] | 524 | endif |
---|
| 525 | icount=1 |
---|
| 526 | |
---|
| 527 | ! decide whether to update ice at end of run |
---|
| 528 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 529 | ice_update=.false. |
---|
| 530 | if(sourceevol)then |
---|
[955] | 531 | open(128,file='num_run',form='formatted', & |
---|
| 532 | status="old",iostat=ierr) |
---|
| 533 | if (ierr.ne.0) then |
---|
| 534 | write(*,*) "physiq: Error! No num_run file!" |
---|
| 535 | write(*,*) " (which is needed for sourceevol option)" |
---|
| 536 | stop |
---|
| 537 | endif |
---|
[253] | 538 | read(128,*) num_run |
---|
| 539 | close(128) |
---|
| 540 | |
---|
[365] | 541 | if(num_run.ne.0.and.mod(num_run,2).eq.0)then |
---|
| 542 | !if(num_run.ne.0.and.mod(num_run,3).eq.0)then |
---|
[253] | 543 | print*,'Updating ice at end of this year!' |
---|
| 544 | ice_update=.true. |
---|
| 545 | ice_min(:)=1.e4 |
---|
| 546 | endif |
---|
| 547 | endif |
---|
| 548 | |
---|
| 549 | ! define surface as continent or ocean |
---|
| 550 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[728] | 551 | rnat(:)=1 |
---|
[787] | 552 | do ig=1,ngrid |
---|
[253] | 553 | ! if(iceball.or.oceanball.or.(inertiedat(ig,1).gt.1.E4))then |
---|
| 554 | if(inertiedat(ig,1).gt.1.E4)then |
---|
| 555 | rnat(ig)=0 |
---|
| 556 | endif |
---|
| 557 | enddo |
---|
| 558 | |
---|
| 559 | print*,'WARNING! Surface type currently decided by surface inertia' |
---|
| 560 | print*,'This should be improved e.g. in newstart.F' |
---|
| 561 | |
---|
| 562 | |
---|
| 563 | ! initialise surface history variable |
---|
| 564 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[728] | 565 | qsurf_hist(:,:)=qsurf(:,:) |
---|
[253] | 566 | |
---|
| 567 | ! initialise variable for dynamical heating diagnostic |
---|
| 568 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 569 | ztprevious(:,:)=pt(:,:) |
---|
| 570 | |
---|
| 571 | ! Set temperature just above condensation temperature (for Early Mars) |
---|
| 572 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 573 | if(nearco2cond) then |
---|
| 574 | write(*,*)' WARNING! Starting at Tcond+1K' |
---|
| 575 | do l=1, nlayer |
---|
| 576 | do ig=1,ngrid |
---|
| 577 | pdt(ig,l)= ((-3167.8)/(log(.01*pplay(ig,l))-23.23)+4 & |
---|
| 578 | -pt(ig,l)) / ptimestep |
---|
| 579 | enddo |
---|
| 580 | enddo |
---|
| 581 | endif |
---|
| 582 | |
---|
| 583 | if(meanOLR)then |
---|
| 584 | ! to record global radiative balance |
---|
| 585 | call system('rm -f rad_bal.out') |
---|
| 586 | ! to record global mean/max/min temperatures |
---|
| 587 | call system('rm -f tem_bal.out') |
---|
| 588 | ! to record global hydrological balance |
---|
| 589 | call system('rm -f h2o_bal.out') |
---|
| 590 | endif |
---|
| 591 | |
---|
| 592 | watertest=.false. |
---|
| 593 | if(water)then |
---|
| 594 | ! initialise variables for water cycle |
---|
| 595 | |
---|
[365] | 596 | if(enertest)then |
---|
| 597 | watertest = .true. |
---|
| 598 | endif |
---|
| 599 | |
---|
[728] | 600 | if(ice_update)then |
---|
| 601 | ice_initial(:)=qsurf(:,igcm_h2o_ice) |
---|
| 602 | endif |
---|
[253] | 603 | |
---|
| 604 | endif |
---|
| 605 | call su_watercycle ! even if we don't have a water cycle, we might |
---|
| 606 | ! need epsi for the wvp definitions in callcorrk.F |
---|
| 607 | |
---|
| 608 | endif ! (end of "if firstcall") |
---|
| 609 | |
---|
| 610 | ! --------------------------------------------------- |
---|
| 611 | ! 1.2 Initializations done at every physical timestep: |
---|
| 612 | ! --------------------------------------------------- |
---|
| 613 | |
---|
| 614 | ! Initialize various variables |
---|
| 615 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 616 | |
---|
[787] | 617 | pdu(1:ngrid,1:nlayermx) = 0.0 |
---|
| 618 | pdv(1:ngrid,1:nlayermx) = 0.0 |
---|
[253] | 619 | if ( .not.nearco2cond ) then |
---|
[787] | 620 | pdt(1:ngrid,1:nlayermx) = 0.0 |
---|
[728] | 621 | endif |
---|
[787] | 622 | pdq(1:ngrid,1:nlayermx,1:nq) = 0.0 |
---|
| 623 | pdpsrf(1:ngrid) = 0.0 |
---|
| 624 | zflubid(1:ngrid) = 0.0 |
---|
| 625 | zdtsurf(1:ngrid) = 0.0 |
---|
| 626 | dqsurf(1:ngrid,1:nq)= 0.0 |
---|
[253] | 627 | |
---|
| 628 | zday=pday+ptime ! compute time, in sols (and fraction thereof) |
---|
| 629 | |
---|
| 630 | ! Compute Stellar Longitude (Ls) |
---|
| 631 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 632 | if (season) then |
---|
| 633 | call stellarlong(zday,zls) |
---|
| 634 | else |
---|
| 635 | call stellarlong(float(day_ini),zls) |
---|
| 636 | end if |
---|
| 637 | |
---|
| 638 | ! Compute geopotential between layers |
---|
| 639 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 640 | |
---|
[787] | 641 | zzlay(1:ngrid,1:nlayermx)=pphi(1:ngrid,1:nlayermx)/g |
---|
[728] | 642 | |
---|
[787] | 643 | zzlev(1:ngrid,1)=0. |
---|
| 644 | zzlev(1:ngrid,nlayer+1)=1.e7 ! dummy top of last layer above 10000 km... |
---|
[728] | 645 | |
---|
[253] | 646 | do l=2,nlayer |
---|
| 647 | do ig=1,ngrid |
---|
| 648 | z1=(pplay(ig,l-1)+pplev(ig,l))/(pplay(ig,l-1)-pplev(ig,l)) |
---|
| 649 | z2=(pplev(ig,l)+pplay(ig,l))/(pplev(ig,l)-pplay(ig,l)) |
---|
| 650 | zzlev(ig,l)=(z1*zzlay(ig,l-1)+z2*zzlay(ig,l))/(z1+z2) |
---|
| 651 | enddo |
---|
| 652 | enddo |
---|
| 653 | ! Potential temperature calculation may not be the same in physiq and dynamic... |
---|
| 654 | |
---|
| 655 | ! Compute potential temperature |
---|
| 656 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 657 | |
---|
[597] | 658 | do l=1,nlayer |
---|
[787] | 659 | do ig=1,ngrid |
---|
[253] | 660 | zpopsk(ig,l)=(pplay(ig,l)/pplev(ig,1))**rcp |
---|
[597] | 661 | zh(ig,l)=pt(ig,l)/zpopsk(ig,l) |
---|
[651] | 662 | mass(ig,l) = (pplev(ig,l) - pplev(ig,l+1))/g |
---|
| 663 | massarea(ig,l)=mass(ig,l)*area(ig) |
---|
[253] | 664 | enddo |
---|
| 665 | enddo |
---|
| 666 | |
---|
| 667 | !----------------------------------------------------------------------- |
---|
| 668 | ! 2. Compute radiative tendencies |
---|
| 669 | !----------------------------------------------------------------------- |
---|
| 670 | |
---|
| 671 | if (callrad) then |
---|
[526] | 672 | if( mod(icount-1,iradia).eq.0.or.lastcall) then |
---|
[253] | 673 | |
---|
| 674 | ! Compute local stellar zenith angles |
---|
| 675 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 676 | call orbite(zls,dist_star,declin) |
---|
| 677 | |
---|
| 678 | if (tlocked) then |
---|
| 679 | ztim1=SIN(declin) |
---|
[773] | 680 | ! ztim2=COS(declin)*COS(2.*pi*(zday/year_day) - zls*nres) |
---|
| 681 | ! ztim3=-COS(declin)*SIN(2.*pi*(zday/year_day) - zls*nres) |
---|
| 682 | ! JL12 corrects tidally resonant cases. nres=omega_rot/omega_orb |
---|
[775] | 683 | ztim2=COS(declin)*COS(2.*pi*(zday/year_day)*nres - zls) |
---|
| 684 | ztim3=-COS(declin)*SIN(2.*pi*(zday/year_day)*nres - zls) |
---|
[253] | 685 | |
---|
[728] | 686 | call stelang(ngrid,sinlon,coslon,sinlat,coslat, & |
---|
[253] | 687 | ztim1,ztim2,ztim3,mu0,fract) |
---|
| 688 | |
---|
| 689 | elseif (diurnal) then |
---|
| 690 | ztim1=SIN(declin) |
---|
| 691 | ztim2=COS(declin)*COS(2.*pi*(zday-.5)) |
---|
| 692 | ztim3=-COS(declin)*SIN(2.*pi*(zday-.5)) |
---|
| 693 | |
---|
| 694 | call stelang(ngrid,sinlon,coslon,sinlat,coslat, & |
---|
| 695 | ztim1,ztim2,ztim3,mu0,fract) |
---|
| 696 | |
---|
| 697 | else |
---|
| 698 | |
---|
| 699 | call mucorr(ngrid,declin,lati,mu0,fract,10000.,rad) |
---|
| 700 | ! WARNING: this function appears not to work in 1D |
---|
| 701 | |
---|
| 702 | endif |
---|
| 703 | |
---|
| 704 | if (corrk) then |
---|
| 705 | |
---|
| 706 | ! a) Call correlated-k radiative transfer scheme |
---|
| 707 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 708 | |
---|
| 709 | if(kastprof)then |
---|
[305] | 710 | print*,'kastprof should not = true here' |
---|
| 711 | call abort |
---|
[253] | 712 | endif |
---|
[1016] | 713 | if(water) then |
---|
| 714 | muvar(1:ngrid,1:nlayermx)=mugaz/(1.e0+(1.e0/epsi-1.e0)*pq(1:ngrid,1:nlayermx,igcm_h2o_vap)) |
---|
| 715 | muvar(1:ngrid,nlayermx+1)=mugaz/(1.e0+(1.e0/epsi-1.e0)*pq(1:ngrid,nlayermx,igcm_h2o_vap)) |
---|
| 716 | ! take into account water effect on mean molecular weight |
---|
| 717 | else |
---|
| 718 | muvar(1:ngrid,1:nlayermx+1)=mugaz |
---|
| 719 | endif |
---|
[538] | 720 | |
---|
[526] | 721 | ! standard callcorrk |
---|
| 722 | clearsky=.false. |
---|
[538] | 723 | call callcorrk(ngrid,nlayer,pq,nq,qsurf, & |
---|
[526] | 724 | albedo,emis,mu0,pplev,pplay,pt, & |
---|
[586] | 725 | tsurf,fract,dist_star,aerosol,muvar, & |
---|
[526] | 726 | zdtlw,zdtsw,fluxsurf_lw,fluxsurf_sw,fluxtop_lw, & |
---|
[538] | 727 | fluxabs_sw,fluxtop_dn,OLR_nu,OSR_nu, & |
---|
[858] | 728 | tau_col,cloudfrac,totcloudfrac, & |
---|
[526] | 729 | clearsky,firstcall,lastcall) |
---|
[253] | 730 | |
---|
[526] | 731 | ! Option to call scheme once more for clear regions |
---|
[253] | 732 | if(CLFvarying)then |
---|
| 733 | |
---|
[716] | 734 | ! ---> PROBLEMS WITH ALLOCATED ARRAYS |
---|
| 735 | ! (temporary solution in callcorrk: do not deallocate if CLFvarying ...) |
---|
[253] | 736 | clearsky=.true. |
---|
[538] | 737 | call callcorrk(ngrid,nlayer,pq,nq,qsurf, & |
---|
[253] | 738 | albedo,emis,mu0,pplev,pplay,pt, & |
---|
[586] | 739 | tsurf,fract,dist_star,aerosol,muvar, & |
---|
[253] | 740 | zdtlw1,zdtsw1,fluxsurf_lw1,fluxsurf_sw1,fluxtop_lw1, & |
---|
[526] | 741 | fluxabs_sw1,fluxtop_dn,OLR_nu1,OSR_nu1, & |
---|
[858] | 742 | tau_col1,cloudfrac,totcloudfrac, & |
---|
[538] | 743 | clearsky,firstcall,lastcall) |
---|
[716] | 744 | clearsky = .false. ! just in case. |
---|
[253] | 745 | |
---|
| 746 | ! Sum the fluxes and heating rates from cloudy/clear cases |
---|
| 747 | do ig=1,ngrid |
---|
| 748 | tf=totcloudfrac(ig) |
---|
| 749 | ntf=1.-tf |
---|
| 750 | |
---|
[526] | 751 | fluxsurf_lw(ig) = ntf*fluxsurf_lw1(ig) + tf*fluxsurf_lw(ig) |
---|
| 752 | fluxsurf_sw(ig) = ntf*fluxsurf_sw1(ig) + tf*fluxsurf_sw(ig) |
---|
| 753 | fluxtop_lw(ig) = ntf*fluxtop_lw1(ig) + tf*fluxtop_lw(ig) |
---|
| 754 | fluxabs_sw(ig) = ntf*fluxabs_sw1(ig) + tf*fluxabs_sw(ig) |
---|
| 755 | tau_col(ig) = ntf*tau_col1(ig) + tf*tau_col(ig) |
---|
[253] | 756 | |
---|
[728] | 757 | zdtlw(ig,1:nlayermx) = ntf*zdtlw1(ig,1:nlayermx) + tf*zdtlw(ig,1:nlayermx) |
---|
| 758 | zdtsw(ig,1:nlayermx) = ntf*zdtsw1(ig,1:nlayermx) + tf*zdtsw(ig,1:nlayermx) |
---|
[253] | 759 | |
---|
[728] | 760 | OSR_nu(ig,1:L_NSPECTV) = ntf*OSR_nu1(ig,1:L_NSPECTV) + tf*OSR_nu(ig,1:L_NSPECTV) |
---|
[743] | 761 | OLR_nu(ig,1:L_NSPECTI) = ntf*OLR_nu1(ig,1:L_NSPECTI) + tf*OLR_nu(ig,1:L_NSPECTI) |
---|
[253] | 762 | |
---|
[526] | 763 | enddo |
---|
[253] | 764 | |
---|
[526] | 765 | endif !CLFvarying |
---|
[253] | 766 | |
---|
| 767 | ! Radiative flux from the sky absorbed by the surface (W.m-2) |
---|
| 768 | GSR=0.0 |
---|
[787] | 769 | fluxrad_sky(1:ngrid)=emis(1:ngrid)*fluxsurf_lw(1:ngrid)+fluxsurf_sw(1:ngrid)*(1.-albedo(1:ngrid)) |
---|
[253] | 770 | |
---|
[952] | 771 | !if(noradsurf)then ! no lower surface; SW flux just disappears |
---|
| 772 | ! GSR = SUM(fluxsurf_sw(1:ngrid)*area(1:ngrid))/totarea |
---|
| 773 | ! fluxrad_sky(1:ngrid)=emis(1:ngrid)*fluxsurf_lw(1:ngrid) |
---|
| 774 | ! print*,'SW lost in deep atmosphere = ',GSR,' W m^-2' |
---|
| 775 | !endif |
---|
[253] | 776 | |
---|
| 777 | ! Net atmospheric radiative heating rate (K.s-1) |
---|
[787] | 778 | dtrad(1:ngrid,1:nlayermx)=zdtsw(1:ngrid,1:nlayermx)+zdtlw(1:ngrid,1:nlayermx) |
---|
[253] | 779 | |
---|
| 780 | elseif(newtonian)then |
---|
| 781 | |
---|
| 782 | ! b) Call Newtonian cooling scheme |
---|
| 783 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[787] | 784 | call newtrelax(ngrid,mu0,sinlat,zpopsk,pt,pplay,pplev,dtrad,firstcall) |
---|
[253] | 785 | |
---|
[787] | 786 | zdtsurf(1:ngrid) = +(pt(1:ngrid,1)-tsurf(1:ngrid))/ptimestep |
---|
[253] | 787 | ! e.g. surface becomes proxy for 1st atmospheric layer ? |
---|
| 788 | |
---|
| 789 | else |
---|
| 790 | |
---|
| 791 | ! c) Atmosphere has no radiative effect |
---|
| 792 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[787] | 793 | fluxtop_dn(1:ngrid) = fract(1:ngrid)*mu0(1:ngrid)*Fat1AU/dist_star**2 |
---|
[728] | 794 | if(ngrid.eq.1)then ! / by 4 globally in 1D case... |
---|
| 795 | fluxtop_dn(1) = fract(1)*Fat1AU/dist_star**2/2.0 |
---|
| 796 | endif |
---|
[787] | 797 | fluxsurf_sw(1:ngrid) = fluxtop_dn(1:ngrid) |
---|
| 798 | fluxrad_sky(1:ngrid) = fluxtop_dn(1:ngrid)*(1.-albedo(1:ngrid)) |
---|
| 799 | fluxtop_lw(1:ngrid) = emis(1:ngrid)*sigma*tsurf(1:ngrid)**4 |
---|
[728] | 800 | ! radiation skips the atmosphere entirely |
---|
[253] | 801 | |
---|
| 802 | |
---|
[787] | 803 | dtrad(1:ngrid,1:nlayermx)=0.0 |
---|
[728] | 804 | ! hence no atmospheric radiative heating |
---|
| 805 | |
---|
[253] | 806 | endif ! if corrk |
---|
| 807 | |
---|
| 808 | endif ! of if(mod(icount-1,iradia).eq.0) |
---|
[787] | 809 | |
---|
[253] | 810 | |
---|
| 811 | ! Transformation of the radiative tendencies |
---|
| 812 | ! ------------------------------------------ |
---|
| 813 | |
---|
[787] | 814 | zplanck(1:ngrid)=tsurf(1:ngrid)*tsurf(1:ngrid) |
---|
| 815 | zplanck(1:ngrid)=emis(1:ngrid)*sigma*zplanck(1:ngrid)*zplanck(1:ngrid) |
---|
| 816 | fluxrad(1:ngrid)=fluxrad_sky(1:ngrid)-zplanck(1:ngrid) |
---|
| 817 | pdt(1:ngrid,1:nlayermx)=pdt(1:ngrid,1:nlayermx)+dtrad(1:ngrid,1:nlayermx) |
---|
[253] | 818 | |
---|
| 819 | !------------------------- |
---|
| 820 | ! test energy conservation |
---|
| 821 | if(enertest)then |
---|
[651] | 822 | dEtotSW = cpp*SUM(massarea(:,:)*zdtsw(:,:))/totarea |
---|
| 823 | dEtotLW = cpp*SUM(massarea(:,:)*zdtlw(:,:))/totarea |
---|
[959] | 824 | dEtotsSW = SUM(fluxsurf_sw(:)*(1.-albedo(:))*area(:))/totarea !JL13 carefull, albedo can have changed since the last time we called corrk |
---|
[726] | 825 | dEtotsLW = SUM((fluxsurf_lw(:)*emis(:)-zplanck(:))*area(:))/totarea |
---|
[651] | 826 | dEzRadsw(:,:)=cpp*mass(:,:)*zdtsw(:,:) |
---|
| 827 | dEzRadlw(:,:)=cpp*mass(:,:)*zdtlw(:,:) |
---|
[253] | 828 | print*,'---------------------------------------------------------------' |
---|
[594] | 829 | print*,'In corrk SW atmospheric heating =',dEtotSW,' W m-2' |
---|
| 830 | print*,'In corrk LW atmospheric heating =',dEtotLW,' W m-2' |
---|
| 831 | print*,'atmospheric net rad heating (SW+LW) =',dEtotLW+dEtotSW,' W m-2' |
---|
| 832 | print*,'In corrk SW surface heating =',dEtotsSW,' W m-2' |
---|
| 833 | print*,'In corrk LW surface heating =',dEtotsLW,' W m-2' |
---|
| 834 | print*,'surface net rad heating (SW+LW) =',dEtotsLW+dEtotsSW,' W m-2' |
---|
[253] | 835 | endif |
---|
| 836 | !------------------------- |
---|
| 837 | |
---|
| 838 | endif ! of if (callrad) |
---|
| 839 | |
---|
| 840 | !----------------------------------------------------------------------- |
---|
| 841 | ! 4. Vertical diffusion (turbulent mixing): |
---|
| 842 | ! ----------------------------------------- |
---|
| 843 | |
---|
| 844 | if (calldifv) then |
---|
[526] | 845 | |
---|
[787] | 846 | zflubid(1:ngrid)=fluxrad(1:ngrid)+fluxgrd(1:ngrid) |
---|
[253] | 847 | |
---|
[787] | 848 | zdum1(1:ngrid,1:nlayermx)=0.0 |
---|
| 849 | zdum2(1:ngrid,1:nlayermx)=0.0 |
---|
[253] | 850 | |
---|
[594] | 851 | |
---|
| 852 | !JL12 the following if test is temporarily there to allow us to compare the old vdifc with turbdiff |
---|
| 853 | if (UseTurbDiff) then |
---|
| 854 | |
---|
| 855 | call turbdiff(ngrid,nlayer,nq,rnat, & |
---|
[253] | 856 | ptimestep,capcal,lwrite, & |
---|
| 857 | pplay,pplev,zzlay,zzlev,z0, & |
---|
[594] | 858 | pu,pv,pt,zpopsk,pq,tsurf,emis,qsurf, & |
---|
| 859 | zdum1,zdum2,pdt,pdq,zflubid, & |
---|
| 860 | zdudif,zdvdif,zdtdif,zdtsdif, & |
---|
[728] | 861 | sensibFlux,q2,zdqdif,zdqevap,zdqsdif,lastcall) |
---|
[594] | 862 | |
---|
| 863 | else |
---|
| 864 | |
---|
[787] | 865 | zdh(1:ngrid,1:nlayermx)=pdt(1:ngrid,1:nlayermx)/zpopsk(1:ngrid,1:nlayermx) |
---|
[594] | 866 | |
---|
| 867 | call vdifc(ngrid,nlayer,nq,rnat,zpopsk, & |
---|
| 868 | ptimestep,capcal,lwrite, & |
---|
| 869 | pplay,pplev,zzlay,zzlev,z0, & |
---|
[253] | 870 | pu,pv,zh,pq,tsurf,emis,qsurf, & |
---|
| 871 | zdum1,zdum2,zdh,pdq,zflubid, & |
---|
[594] | 872 | zdudif,zdvdif,zdhdif,zdtsdif, & |
---|
| 873 | sensibFlux,q2,zdqdif,zdqsdif,lastcall) |
---|
[253] | 874 | |
---|
[787] | 875 | zdtdif(1:ngrid,1:nlayermx)=zdhdif(1:ngrid,1:nlayermx)*zpopsk(1:ngrid,1:nlayermx) ! for diagnostic only |
---|
| 876 | zdqevap(1:ngrid,1:nlayermx)=0. |
---|
[594] | 877 | |
---|
| 878 | end if !turbdiff |
---|
| 879 | |
---|
[787] | 880 | pdv(1:ngrid,1:nlayermx)=pdv(1:ngrid,1:nlayermx)+zdvdif(1:ngrid,1:nlayermx) |
---|
| 881 | pdu(1:ngrid,1:nlayermx)=pdu(1:ngrid,1:nlayermx)+zdudif(1:ngrid,1:nlayermx) |
---|
| 882 | pdt(1:ngrid,1:nlayermx)=pdt(1:ngrid,1:nlayermx)+zdtdif(1:ngrid,1:nlayermx) |
---|
| 883 | zdtsurf(1:ngrid)=zdtsurf(1:ngrid)+zdtsdif(1:ngrid) |
---|
[253] | 884 | if (tracer) then |
---|
[787] | 885 | pdq(1:ngrid,1:nlayermx,1:nq)=pdq(1:ngrid,1:nlayermx,1:nq)+ zdqdif(1:ngrid,1:nlayermx,1:nq) |
---|
| 886 | dqsurf(1:ngrid,1:nq)=dqsurf(1:ngrid,1:nq) + zdqsdif(1:ngrid,1:nq) |
---|
[253] | 887 | end if ! of if (tracer) |
---|
| 888 | |
---|
| 889 | !------------------------- |
---|
| 890 | ! test energy conservation |
---|
| 891 | if(enertest)then |
---|
[651] | 892 | dEzdiff(:,:)=cpp*mass(:,:)*zdtdif(:,:) |
---|
[253] | 893 | do ig = 1, ngrid |
---|
[651] | 894 | dEdiff(ig)=SUM(dEzdiff (ig,:))+ sensibFlux(ig)! subtract flux to the ground |
---|
[622] | 895 | dEzdiff(ig,1)= dEzdiff(ig,1)+ sensibFlux(ig)! subtract flux to the ground |
---|
[253] | 896 | enddo |
---|
[651] | 897 | dEtot = SUM(dEdiff(:)*area(:))/totarea |
---|
| 898 | dEdiffs(:)=capcal(:)*zdtsdif(:)-zflubid(:)-sensibFlux(:) |
---|
| 899 | dEtots = SUM(dEdiffs(:)*area(:))/totarea |
---|
| 900 | AtmToSurf_TurbFlux=SUM(sensibFlux(:)*area(:))/totarea |
---|
[597] | 901 | if (UseTurbDiff) then |
---|
| 902 | print*,'In TurbDiff sensible flux (atm=>surf) =',AtmToSurf_TurbFlux,' W m-2' |
---|
| 903 | print*,'In TurbDiff non-cons atm nrj change =',dEtot,' W m-2' |
---|
| 904 | print*,'In TurbDiff (correc rad+latent heat) surf nrj change =',dEtots,' W m-2' |
---|
| 905 | else |
---|
| 906 | print*,'In vdifc sensible flux (atm=>surf) =',AtmToSurf_TurbFlux,' W m-2' |
---|
| 907 | print*,'In vdifc non-cons atm nrj change =',dEtot,' W m-2' |
---|
| 908 | print*,'In vdifc (correc rad+latent heat) surf nrj change =',dEtots,' W m-2' |
---|
| 909 | end if |
---|
[594] | 910 | ! JL12 note that the black body radiative flux emitted by the surface has been updated by the implicit scheme |
---|
| 911 | ! but not given back elsewhere |
---|
[253] | 912 | endif |
---|
| 913 | !------------------------- |
---|
| 914 | |
---|
| 915 | !------------------------- |
---|
| 916 | ! test water conservation |
---|
| 917 | if(watertest.and.water)then |
---|
[651] | 918 | dWtot = SUM(massarea(:,:)*zdqdif(:,:,igcm_h2o_vap))*ptimestep/totarea |
---|
| 919 | dWtots = SUM(zdqsdif(:,igcm_h2o_vap)*area(:))*ptimestep/totarea |
---|
[253] | 920 | do ig = 1, ngrid |
---|
[651] | 921 | vdifcncons(ig)=SUM(mass(ig,:)*zdqdif(ig,:,igcm_h2o_vap)) |
---|
| 922 | Enddo |
---|
| 923 | dWtot = dWtot + SUM(massarea(:,:)*zdqdif(:,:,igcm_h2o_ice))*ptimestep/totarea |
---|
| 924 | dWtots = dWtots + SUM(zdqsdif(:,igcm_h2o_ice)*area(:))*ptimestep/totarea |
---|
| 925 | do ig = 1, ngrid |
---|
| 926 | vdifcncons(ig)=vdifcncons(ig) + SUM(mass(ig,:)*zdqdif(ig,:,igcm_h2o_ice)) |
---|
| 927 | Enddo |
---|
| 928 | nconsMAX=MAXVAL(vdifcncons(:)) |
---|
[253] | 929 | |
---|
| 930 | print*,'---------------------------------------------------------------' |
---|
| 931 | print*,'In difv atmospheric water change =',dWtot,' kg m-2' |
---|
| 932 | print*,'In difv surface water change =',dWtots,' kg m-2' |
---|
| 933 | print*,'In difv non-cons factor =',dWtot+dWtots,' kg m-2' |
---|
| 934 | print*,'In difv MAX non-cons factor =',nconsMAX,' kg m-2 s-1' |
---|
| 935 | |
---|
| 936 | endif |
---|
| 937 | !------------------------- |
---|
| 938 | |
---|
| 939 | else |
---|
| 940 | |
---|
| 941 | if(.not.newtonian)then |
---|
| 942 | |
---|
[787] | 943 | zdtsurf(1:ngrid) = zdtsurf(1:ngrid) + (fluxrad(1:ngrid) + fluxgrd(1:ngrid))/capcal(1:ngrid) |
---|
[253] | 944 | |
---|
| 945 | endif |
---|
| 946 | |
---|
| 947 | endif ! of if (calldifv) |
---|
| 948 | |
---|
| 949 | |
---|
| 950 | !----------------------------------------------------------------------- |
---|
| 951 | ! 5. Dry convective adjustment: |
---|
| 952 | ! ----------------------------- |
---|
| 953 | |
---|
| 954 | if(calladj) then |
---|
| 955 | |
---|
[787] | 956 | zdh(1:ngrid,1:nlayermx) = pdt(1:ngrid,1:nlayermx)/zpopsk(1:ngrid,1:nlayermx) |
---|
| 957 | zduadj(1:ngrid,1:nlayermx)=0.0 |
---|
| 958 | zdvadj(1:ngrid,1:nlayermx)=0.0 |
---|
| 959 | zdhadj(1:ngrid,1:nlayermx)=0.0 |
---|
[253] | 960 | |
---|
| 961 | |
---|
[586] | 962 | call convadj(ngrid,nlayer,nq,ptimestep, & |
---|
| 963 | pplay,pplev,zpopsk, & |
---|
| 964 | pu,pv,zh,pq, & |
---|
| 965 | pdu,pdv,zdh,pdq, & |
---|
| 966 | zduadj,zdvadj,zdhadj, & |
---|
| 967 | zdqadj) |
---|
[253] | 968 | |
---|
[787] | 969 | pdu(1:ngrid,1:nlayermx) = pdu(1:ngrid,1:nlayermx) + zduadj(1:ngrid,1:nlayermx) |
---|
| 970 | pdv(1:ngrid,1:nlayermx) = pdv(1:ngrid,1:nlayermx) + zdvadj(1:ngrid,1:nlayermx) |
---|
| 971 | pdt(1:ngrid,1:nlayermx) = pdt(1:ngrid,1:nlayermx) + zdhadj(1:ngrid,1:nlayermx)*zpopsk(1:ngrid,1:nlayermx) |
---|
| 972 | zdtadj(1:ngrid,1:nlayermx) = zdhadj(1:ngrid,1:nlayermx)*zpopsk(1:ngrid,1:nlayermx) ! for diagnostic only |
---|
[728] | 973 | |
---|
[253] | 974 | if(tracer) then |
---|
[787] | 975 | pdq(1:ngrid,1:nlayermx,1:nq) = pdq(1:ngrid,1:nlayermx,1:nq) + zdqadj(1:ngrid,1:nlayermx,1:nq) |
---|
[253] | 976 | end if |
---|
| 977 | |
---|
| 978 | !------------------------- |
---|
| 979 | ! test energy conservation |
---|
| 980 | if(enertest)then |
---|
[651] | 981 | dEtot=cpp*SUM(massarea(:,:)*zdtadj(:,:))/totarea |
---|
[594] | 982 | print*,'In convadj atmospheric energy change =',dEtot,' W m-2' |
---|
[253] | 983 | endif |
---|
| 984 | !------------------------- |
---|
| 985 | |
---|
| 986 | !------------------------- |
---|
| 987 | ! test water conservation |
---|
| 988 | if(watertest)then |
---|
[651] | 989 | dWtot = SUM(massarea(:,:)*zdqadj(:,:,igcm_h2o_vap))*ptimestep/totarea |
---|
[253] | 990 | do ig = 1, ngrid |
---|
[651] | 991 | cadjncons(ig)=SUM(mass(ig,:)*zdqadj(ig,:,igcm_h2o_vap)) |
---|
| 992 | Enddo |
---|
| 993 | dWtot = dWtot + SUM(massarea(:,:)*zdqadj(:,:,igcm_h2o_ice))*ptimestep/totarea |
---|
| 994 | do ig = 1, ngrid |
---|
| 995 | cadjncons(ig)=cadjncons(ig) + SUM(mass(ig,:)*zdqadj(ig,:,igcm_h2o_ice)) |
---|
| 996 | Enddo |
---|
| 997 | nconsMAX=MAXVAL(cadjncons(:)) |
---|
[253] | 998 | |
---|
| 999 | print*,'In convadj atmospheric water change =',dWtot,' kg m-2' |
---|
[651] | 1000 | print*,'In convadj MAX non-cons factor =',nconsMAX,' kg m-2 s-1' |
---|
[253] | 1001 | endif |
---|
| 1002 | !------------------------- |
---|
[787] | 1003 | |
---|
[253] | 1004 | endif ! of if(calladj) |
---|
| 1005 | |
---|
| 1006 | !----------------------------------------------------------------------- |
---|
| 1007 | ! 6. Carbon dioxide condensation-sublimation: |
---|
| 1008 | ! ------------------------------------------- |
---|
| 1009 | |
---|
| 1010 | if (co2cond) then |
---|
| 1011 | if (.not.tracer) then |
---|
| 1012 | print*,'We need a CO2 ice tracer to condense CO2' |
---|
| 1013 | call abort |
---|
| 1014 | endif |
---|
[305] | 1015 | call condense_cloud(ngrid,nlayer,nq,ptimestep, & |
---|
[253] | 1016 | capcal,pplay,pplev,tsurf,pt, & |
---|
| 1017 | pphi,pdt,pdu,pdv,zdtsurf,pu,pv,pq,pdq, & |
---|
| 1018 | qsurf(1,igcm_co2_ice),albedo,emis, & |
---|
| 1019 | zdtc,zdtsurfc,pdpsrf,zduc,zdvc, & |
---|
[858] | 1020 | zdqc) |
---|
[253] | 1021 | |
---|
| 1022 | |
---|
[787] | 1023 | pdt(1:ngrid,1:nlayermx)=pdt(1:ngrid,1:nlayermx)+zdtc(1:ngrid,1:nlayermx) |
---|
| 1024 | pdv(1:ngrid,1:nlayermx)=pdv(1:ngrid,1:nlayermx)+zdvc(1:ngrid,1:nlayermx) |
---|
| 1025 | pdu(1:ngrid,1:nlayermx)=pdu(1:ngrid,1:nlayermx)+zduc(1:ngrid,1:nlayermx) |
---|
| 1026 | zdtsurf(1:ngrid) = zdtsurf(1:ngrid) + zdtsurfc(1:ngrid) |
---|
[728] | 1027 | |
---|
[787] | 1028 | pdq(1:ngrid,1:nlayermx,1:nq)=pdq(1:ngrid,1:nlayermx,1:nq)+ zdqc(1:ngrid,1:nlayermx,1:nq) |
---|
[253] | 1029 | ! Note: we do not add surface co2ice tendency |
---|
| 1030 | ! because qsurf(:,igcm_co2_ice) is updated in condens_co2cloud |
---|
| 1031 | |
---|
| 1032 | !------------------------- |
---|
| 1033 | ! test energy conservation |
---|
| 1034 | if(enertest)then |
---|
[651] | 1035 | dEtot = cpp*SUM(massarea(:,:)*zdtc(:,:))/totarea |
---|
| 1036 | dEtots = SUM(capcal(:)*zdtsurfc(:)*area(:))/totarea |
---|
[253] | 1037 | print*,'In co2cloud atmospheric energy change =',dEtot,' W m-2' |
---|
| 1038 | print*,'In co2cloud surface energy change =',dEtots,' W m-2' |
---|
| 1039 | endif |
---|
| 1040 | !------------------------- |
---|
| 1041 | |
---|
| 1042 | endif ! of if (co2cond) |
---|
| 1043 | |
---|
| 1044 | |
---|
| 1045 | !----------------------------------------------------------------------- |
---|
| 1046 | ! 7. Specific parameterizations for tracers |
---|
| 1047 | ! ----------------------------------------- |
---|
| 1048 | |
---|
| 1049 | if (tracer) then |
---|
| 1050 | |
---|
| 1051 | ! 7a. Water and ice |
---|
| 1052 | ! --------------- |
---|
| 1053 | if (water) then |
---|
| 1054 | |
---|
| 1055 | ! ---------------------------------------- |
---|
| 1056 | ! Water ice condensation in the atmosphere |
---|
| 1057 | ! ---------------------------------------- |
---|
[728] | 1058 | if(watercond.and.(RLVTT.gt.1.e-8))then |
---|
[253] | 1059 | |
---|
[728] | 1060 | ! ---------------- |
---|
| 1061 | ! Moist convection |
---|
| 1062 | ! ---------------- |
---|
[773] | 1063 | |
---|
[787] | 1064 | dqmoist(1:ngrid,1:nlayermx,1:nq)=0. |
---|
| 1065 | dtmoist(1:ngrid,1:nlayermx)=0. |
---|
[253] | 1066 | |
---|
[1016] | 1067 | call moistadj(ngrid,nq,pt,pq,pdq,pplev,pplay,dtmoist,dqmoist,ptimestep,rneb_man) |
---|
[253] | 1068 | |
---|
[787] | 1069 | pdq(1:ngrid,1:nlayermx,igcm_h2o_vap) = pdq(1:ngrid,1:nlayermx,igcm_h2o_vap) & |
---|
| 1070 | +dqmoist(1:ngrid,1:nlayermx,igcm_h2o_vap) |
---|
| 1071 | pdq(1:ngrid,1:nlayermx,igcm_h2o_ice) =pdq(1:ngrid,1:nlayermx,igcm_h2o_ice) & |
---|
| 1072 | +dqmoist(1:ngrid,1:nlayermx,igcm_h2o_ice) |
---|
| 1073 | pdt(1:ngrid,1:nlayermx) = pdt(1:ngrid,1:nlayermx)+dtmoist(1:ngrid,1:nlayermx) |
---|
[728] | 1074 | |
---|
[253] | 1075 | !------------------------- |
---|
| 1076 | ! test energy conservation |
---|
| 1077 | if(enertest)then |
---|
[728] | 1078 | dEtot=cpp*SUM(massarea(:,:)*dtmoist(:,:))/totarea |
---|
[1016] | 1079 | madjdEz(:,:)=cpp*mass(:,:)*dtmoist(:,:) |
---|
[787] | 1080 | do ig=1,ngrid |
---|
[728] | 1081 | madjdE(ig) = cpp*SUM(mass(:,:)*dtmoist(:,:)) |
---|
[253] | 1082 | enddo |
---|
| 1083 | print*,'In moistadj atmospheric energy change =',dEtot,' W m-2' |
---|
[773] | 1084 | print*,'In moistadj MAX atmospheric energy change =',MAXVAL(dtmoist(:,:))*ptimestep,'K/step' |
---|
| 1085 | print*,'In moistadj MIN atmospheric energy change =',MINVAL(dtmoist(:,:))*ptimestep,'K/step' |
---|
[651] | 1086 | |
---|
| 1087 | ! test energy conservation |
---|
| 1088 | dWtot = SUM(massarea(:,:)*dqmoist(:,:,igcm_h2o_vap))*ptimestep/totarea |
---|
| 1089 | dWtot = dWtot + SUM(massarea(:,:)*dqmoist(:,:,igcm_h2o_ice))*ptimestep/totarea |
---|
[253] | 1090 | print*,'In moistadj atmospheric water change =',dWtot,' kg m-2' |
---|
| 1091 | endif |
---|
| 1092 | !------------------------- |
---|
| 1093 | |
---|
| 1094 | |
---|
[728] | 1095 | ! -------------------------------- |
---|
| 1096 | ! Large scale condensation/evaporation |
---|
| 1097 | ! -------------------------------- |
---|
[787] | 1098 | call largescale(ngrid,nq,ptimestep,pplev,pplay,pt,pq,pdt,pdq,dtlscale,dqvaplscale,dqcldlscale,rneb_lsc) |
---|
[253] | 1099 | |
---|
[787] | 1100 | pdt(1:ngrid,1:nlayermx) = pdt(1:ngrid,1:nlayermx)+dtlscale(1:ngrid,1:nlayermx) |
---|
| 1101 | pdq(1:ngrid,1:nlayermx,igcm_h2o_vap) = pdq(1:ngrid,1:nlayermx,igcm_h2o_vap)+dqvaplscale(1:ngrid,1:nlayermx) |
---|
| 1102 | pdq(1:ngrid,1:nlayermx,igcm_h2o_ice) = pdq(1:ngrid,1:nlayermx,igcm_h2o_ice)+dqcldlscale(1:ngrid,1:nlayermx) |
---|
[253] | 1103 | |
---|
| 1104 | !------------------------- |
---|
| 1105 | ! test energy conservation |
---|
| 1106 | if(enertest)then |
---|
[1016] | 1107 | lscaledEz(:,:) = cpp*mass(:,:)*dtlscale(:,:) |
---|
[787] | 1108 | do ig=1,ngrid |
---|
[728] | 1109 | lscaledE(ig) = cpp*SUM(mass(:,:)*dtlscale(:,:)) |
---|
[253] | 1110 | enddo |
---|
[728] | 1111 | dEtot=cpp*SUM(massarea(:,:)*(dtlscale(:,:)))/totarea |
---|
[989] | 1112 | ! if(isnan(dEtot)) then ! NB: isnan() is not a standard function... |
---|
| 1113 | ! print*,'Nan in largescale, abort' |
---|
| 1114 | ! STOP |
---|
| 1115 | ! endif |
---|
[728] | 1116 | print*,'In largescale atmospheric energy change =',dEtot,' W m-2' |
---|
| 1117 | |
---|
| 1118 | ! test water conservation |
---|
| 1119 | dWtot = SUM(massarea(:,:)*dqvaplscale(:,:))*ptimestep/totarea |
---|
| 1120 | dWtot = dWtot + SUM(massarea(:,:)*dqcldlscale(:,:))*ptimestep/totarea |
---|
| 1121 | print*,'In largescale atmospheric water change =',dWtot,' kg m-2' |
---|
[253] | 1122 | endif |
---|
| 1123 | !------------------------- |
---|
| 1124 | |
---|
| 1125 | ! compute cloud fraction |
---|
| 1126 | do l = 1, nlayer |
---|
[787] | 1127 | do ig=1,ngrid |
---|
[253] | 1128 | cloudfrac(ig,l)=MAX(rneb_lsc(ig,l),rneb_man(ig,l)) |
---|
| 1129 | enddo |
---|
| 1130 | enddo |
---|
| 1131 | |
---|
[728] | 1132 | endif ! of if (watercondense) |
---|
[253] | 1133 | |
---|
| 1134 | |
---|
| 1135 | ! -------------------------------- |
---|
| 1136 | ! Water ice / liquid precipitation |
---|
| 1137 | ! -------------------------------- |
---|
[728] | 1138 | if(waterrain)then |
---|
[253] | 1139 | |
---|
[787] | 1140 | zdqrain(1:ngrid,1:nlayermx,1:nq) = 0.0 |
---|
| 1141 | zdqsrain(1:ngrid) = 0.0 |
---|
| 1142 | zdqssnow(1:ngrid) = 0.0 |
---|
[253] | 1143 | |
---|
[787] | 1144 | call rain(ngrid,nq,ptimestep,pplev,pplay,pt,pdt,pq,pdq, & |
---|
[253] | 1145 | zdtrain,zdqrain,zdqsrain,zdqssnow,cloudfrac) |
---|
| 1146 | |
---|
[787] | 1147 | pdq(1:ngrid,1:nlayermx,igcm_h2o_vap) = pdq(1:ngrid,1:nlayermx,igcm_h2o_vap) & |
---|
| 1148 | +zdqrain(1:ngrid,1:nlayermx,igcm_h2o_vap) |
---|
| 1149 | pdq(1:ngrid,1:nlayermx,igcm_h2o_ice) = pdq(1:ngrid,1:nlayermx,igcm_h2o_ice) & |
---|
| 1150 | +zdqrain(1:ngrid,1:nlayermx,igcm_h2o_ice) |
---|
| 1151 | pdt(1:ngrid,1:nlayermx) = pdt(1:ngrid,1:nlayermx)+zdtrain(1:ngrid,1:nlayermx) |
---|
| 1152 | dqsurf(1:ngrid,igcm_h2o_vap) = dqsurf(1:ngrid,igcm_h2o_vap)+zdqsrain(1:ngrid) ! a bug was here |
---|
| 1153 | dqsurf(1:ngrid,igcm_h2o_ice) = dqsurf(1:ngrid,igcm_h2o_ice)+zdqssnow(1:ngrid) |
---|
| 1154 | rainout(1:ngrid) = zdqsrain(1:ngrid)+zdqssnow(1:ngrid) ! diagnostic |
---|
[253] | 1155 | |
---|
| 1156 | |
---|
[651] | 1157 | !------------------------- |
---|
| 1158 | ! test energy conservation |
---|
| 1159 | if(enertest)then |
---|
| 1160 | dEtot=cpp*SUM(massarea(:,:)*zdtrain(:,:))/totarea |
---|
[253] | 1161 | print*,'In rain atmospheric T energy change =',dEtot,' W m-2' |
---|
[651] | 1162 | dItot = SUM(massarea(:,:)*zdqrain(:,:,igcm_h2o_ice))/totarea*RLVTT/cpp |
---|
| 1163 | dItot = dItot + SUM(area(:)*zdqssnow(:))/totarea*RLVTT/cpp |
---|
| 1164 | dVtot = SUM(massarea(:,:)*zdqrain(:,:,igcm_h2o_vap))*ptimestep/totarea |
---|
[728] | 1165 | dVtot = dVtot + SUM(area(:)*zdqsrain(:))/totarea*RLVTT/cpp |
---|
[651] | 1166 | dEtot = dItot + dVtot |
---|
| 1167 | print*,'In rain dItot =',dItot,' W m-2' |
---|
| 1168 | print*,'In rain dVtot =',dVtot,' W m-2' |
---|
[253] | 1169 | print*,'In rain atmospheric L energy change =',dEtot,' W m-2' |
---|
| 1170 | |
---|
[651] | 1171 | ! test water conservation |
---|
| 1172 | dWtot = SUM(massarea(:,:)*zdqrain(:,:,igcm_h2o_vap))*ptimestep/totarea |
---|
| 1173 | dWtot = dWtot + SUM(massarea(:,:)*zdqrain(:,:,igcm_h2o_ice))*ptimestep/totarea |
---|
| 1174 | dWtots = SUM((zdqsrain(:)+zdqssnow(:))*area(:))*ptimestep/totarea |
---|
[253] | 1175 | print*,'In rain atmospheric water change =',dWtot,' kg m-2' |
---|
| 1176 | print*,'In rain surface water change =',dWtots,' kg m-2' |
---|
| 1177 | print*,'In rain non-cons factor =',dWtot+dWtots,' kg m-2' |
---|
| 1178 | endif |
---|
| 1179 | !------------------------- |
---|
| 1180 | |
---|
[728] | 1181 | end if ! of if (waterrain) |
---|
| 1182 | end if ! of if (water) |
---|
[253] | 1183 | |
---|
| 1184 | |
---|
| 1185 | ! 7c. Aerosol particles |
---|
| 1186 | ! ------------------- |
---|
| 1187 | ! ------------- |
---|
| 1188 | ! Sedimentation |
---|
| 1189 | ! ------------- |
---|
| 1190 | if (sedimentation) then |
---|
[787] | 1191 | zdqsed(1:ngrid,1:nlayermx,1:nq) = 0.0 |
---|
| 1192 | zdqssed(1:ngrid,1:nq) = 0.0 |
---|
[253] | 1193 | |
---|
| 1194 | |
---|
| 1195 | !------------------------- |
---|
| 1196 | ! find qtot |
---|
| 1197 | if(watertest)then |
---|
[959] | 1198 | iq=igcm_h2o_ice |
---|
[651] | 1199 | dWtot = SUM(massarea(:,:)*pq(:,:,iq))*ptimestep/totarea |
---|
| 1200 | dWtots = SUM(massarea(:,:)*pdq(:,:,iq))*ptimestep/totarea |
---|
[253] | 1201 | print*,'Before sedim pq =',dWtot,' kg m-2' |
---|
| 1202 | print*,'Before sedim pdq =',dWtots,' kg m-2' |
---|
| 1203 | endif |
---|
| 1204 | !------------------------- |
---|
| 1205 | |
---|
| 1206 | call callsedim(ngrid,nlayer,ptimestep, & |
---|
[858] | 1207 | pplev,zzlev,pt,pdt,pq,pdq,zdqsed,zdqssed,nq) |
---|
[253] | 1208 | |
---|
| 1209 | !------------------------- |
---|
| 1210 | ! find qtot |
---|
| 1211 | if(watertest)then |
---|
[959] | 1212 | iq=igcm_h2o_ice |
---|
[651] | 1213 | dWtot = SUM(massarea(:,:)*pq(:,:,iq))*ptimestep/totarea |
---|
| 1214 | dWtots = SUM(massarea(:,:)*pdq(:,:,iq))*ptimestep/totarea |
---|
[253] | 1215 | print*,'After sedim pq =',dWtot,' kg m-2' |
---|
| 1216 | print*,'After sedim pdq =',dWtots,' kg m-2' |
---|
| 1217 | endif |
---|
| 1218 | !------------------------- |
---|
| 1219 | |
---|
[728] | 1220 | ! for now, we only allow H2O ice to sediment |
---|
[253] | 1221 | ! and as in rain.F90, whether it falls as rain or snow depends |
---|
| 1222 | ! only on the surface temperature |
---|
[787] | 1223 | pdq(1:ngrid,1:nlayermx,1:nq) = pdq(1:ngrid,1:nlayermx,1:nq) + zdqsed(1:ngrid,1:nlayermx,1:nq) |
---|
| 1224 | dqsurf(1:ngrid,1:nq) = dqsurf(1:ngrid,1:nq) + zdqssed(1:ngrid,1:nq) |
---|
[253] | 1225 | |
---|
| 1226 | !------------------------- |
---|
| 1227 | ! test water conservation |
---|
| 1228 | if(watertest)then |
---|
[651] | 1229 | dWtot = SUM(massarea(:,:)*(zdqsed(:,:,igcm_h2o_vap)+zdqsed(:,:,igcm_h2o_ice)))*ptimestep/totarea |
---|
| 1230 | dWtots = SUM((zdqssed(:,igcm_h2o_vap)+zdqssed(:,igcm_h2o_ice))*area(:))*ptimestep/totarea |
---|
[253] | 1231 | print*,'In sedim atmospheric ice change =',dWtot,' kg m-2' |
---|
| 1232 | print*,'In sedim surface ice change =',dWtots,' kg m-2' |
---|
| 1233 | print*,'In sedim non-cons factor =',dWtot+dWtots,' kg m-2' |
---|
| 1234 | endif |
---|
| 1235 | !------------------------- |
---|
| 1236 | |
---|
| 1237 | end if ! of if (sedimentation) |
---|
| 1238 | |
---|
| 1239 | |
---|
| 1240 | ! 7d. Updates |
---|
| 1241 | ! --------- |
---|
| 1242 | |
---|
[728] | 1243 | ! ----------------------------------- |
---|
| 1244 | ! Updating atm mass and tracer budget |
---|
| 1245 | ! ----------------------------------- |
---|
| 1246 | |
---|
| 1247 | if(mass_redistrib) then |
---|
| 1248 | |
---|
[787] | 1249 | zdmassmr(1:ngrid,1:nlayermx) = mass(1:ngrid,1:nlayermx) * & |
---|
| 1250 | ( zdqevap(1:ngrid,1:nlayermx) & |
---|
| 1251 | + zdqrain(1:ngrid,1:nlayermx,igcm_h2o_vap) & |
---|
| 1252 | + dqmoist(1:ngrid,1:nlayermx,igcm_h2o_vap) & |
---|
| 1253 | + dqvaplscale(1:ngrid,1:nlayermx) ) |
---|
[863] | 1254 | |
---|
| 1255 | do ig = 1, ngrid |
---|
| 1256 | zdmassmr_col(ig)=SUM(zdmassmr(ig,1:nlayermx)) |
---|
| 1257 | enddo |
---|
[728] | 1258 | |
---|
[787] | 1259 | call writediagfi(ngrid,"mass_evap","mass gain"," ",3,zdmassmr) |
---|
[863] | 1260 | call writediagfi(ngrid,"mass_evap_col","mass gain col"," ",2,zdmassmr_col) |
---|
[787] | 1261 | call writediagfi(ngrid,"mass","mass"," ",3,mass) |
---|
[728] | 1262 | |
---|
| 1263 | call mass_redistribution(ngrid,nlayer,nq,ptimestep, & |
---|
| 1264 | rnat,capcal,pplay,pplev,pt,tsurf,pq,qsurf, & |
---|
| 1265 | pu,pv,pdt,zdtsurf,pdq,pdu,pdv,zdmassmr, & |
---|
| 1266 | zdtmr,zdtsurfmr,zdpsrfmr,zdumr,zdvmr,zdqmr,zdqsurfmr) |
---|
| 1267 | |
---|
| 1268 | |
---|
[787] | 1269 | pdq(1:ngrid,1:nlayermx,1:nq) = pdq(1:ngrid,1:nlayermx,1:nq) + zdqmr(1:ngrid,1:nlayermx,1:nq) |
---|
| 1270 | dqsurf(1:ngrid,1:nq) = dqsurf(1:ngrid,1:nq) + zdqsurfmr(1:ngrid,1:nq) |
---|
| 1271 | pdt(1:ngrid,1:nlayermx) = pdt(1:ngrid,1:nlayermx) + zdtmr(1:ngrid,1:nlayermx) |
---|
| 1272 | pdu(1:ngrid,1:nlayermx) = pdu(1:ngrid,1:nlayermx) + zdumr(1:ngrid,1:nlayermx) |
---|
| 1273 | pdv(1:ngrid,1:nlayermx) = pdv(1:ngrid,1:nlayermx) + zdvmr(1:ngrid,1:nlayermx) |
---|
| 1274 | pdpsrf(1:ngrid) = pdpsrf(1:ngrid) + zdpsrfmr(1:ngrid) |
---|
| 1275 | zdtsurf(1:ngrid) = zdtsurf(1:ngrid) + zdtsurfmr(1:ngrid) |
---|
[728] | 1276 | |
---|
| 1277 | ! print*,'after mass redistrib, q=',pq(211,1:nlayermx,igcm_h2o_vap)+ptimestep*pdq(211,1:nlayermx,igcm_h2o_vap) |
---|
| 1278 | endif |
---|
| 1279 | |
---|
| 1280 | |
---|
| 1281 | |
---|
[253] | 1282 | ! --------------------------------- |
---|
| 1283 | ! Updating tracer budget on surface |
---|
| 1284 | ! --------------------------------- |
---|
| 1285 | |
---|
| 1286 | if(hydrology)then |
---|
| 1287 | |
---|
[787] | 1288 | call hydrol(ngrid,nq,ptimestep,rnat,tsurf,qsurf,dqsurf,dqs_hyd, & |
---|
[253] | 1289 | capcal,albedo0,albedo,mu0,zdtsurf,zdtsurf_hyd,hice) |
---|
| 1290 | ! note: for now, also changes albedo in the subroutine |
---|
| 1291 | |
---|
[787] | 1292 | zdtsurf(1:ngrid) = zdtsurf(1:ngrid) + zdtsurf_hyd(1:ngrid) |
---|
| 1293 | qsurf(1:ngrid,1:nq) = qsurf(1:ngrid,1:nq) + ptimestep*dqs_hyd(1:ngrid,1:nq) |
---|
[253] | 1294 | ! when hydrology is used, other dqsurf tendencies are all added to dqs_hyd inside |
---|
| 1295 | |
---|
| 1296 | !------------------------- |
---|
| 1297 | ! test energy conservation |
---|
| 1298 | if(enertest)then |
---|
[651] | 1299 | dEtots = SUM(area(:)*capcal(:)*zdtsurf_hyd(:))/totarea |
---|
| 1300 | print*,'In hydrol surface energy change =',dEtots,' W m-2' |
---|
[253] | 1301 | endif |
---|
| 1302 | !------------------------- |
---|
| 1303 | |
---|
| 1304 | !------------------------- |
---|
| 1305 | ! test water conservation |
---|
| 1306 | if(watertest)then |
---|
[651] | 1307 | dWtots = SUM(dqs_hyd(:,igcm_h2o_ice)*area(:))*ptimestep/totarea |
---|
[253] | 1308 | print*,'In hydrol surface ice change =',dWtots,' kg m-2' |
---|
[651] | 1309 | dWtots = SUM(dqs_hyd(:,igcm_h2o_vap)*area(:))*ptimestep/totarea |
---|
[253] | 1310 | print*,'In hydrol surface water change =',dWtots,' kg m-2' |
---|
| 1311 | print*,'---------------------------------------------------------------' |
---|
| 1312 | endif |
---|
| 1313 | !------------------------- |
---|
| 1314 | |
---|
| 1315 | ELSE ! of if (hydrology) |
---|
| 1316 | |
---|
[787] | 1317 | qsurf(1:ngrid,1:nq)=qsurf(1:ngrid,1:nq)+ptimestep*dqsurf(1:ngrid,1:nq) |
---|
[253] | 1318 | |
---|
| 1319 | END IF ! of if (hydrology) |
---|
| 1320 | |
---|
| 1321 | ! Add qsurf to qsurf_hist, which is what we save in |
---|
| 1322 | ! diagfi.nc etc. At the same time, we set the water |
---|
| 1323 | ! content of ocean gridpoints back to zero, in order |
---|
| 1324 | ! to avoid rounding errors in vdifc, rain |
---|
[622] | 1325 | qsurf_hist(:,:) = qsurf(:,:) |
---|
[253] | 1326 | |
---|
| 1327 | if(ice_update)then |
---|
[787] | 1328 | ice_min(1:ngrid)=min(ice_min(1:ngrid),qsurf(1:ngrid,igcm_h2o_ice)) |
---|
[253] | 1329 | endif |
---|
| 1330 | |
---|
| 1331 | endif ! of if (tracer) |
---|
| 1332 | |
---|
| 1333 | !----------------------------------------------------------------------- |
---|
| 1334 | ! 9. Surface and sub-surface soil temperature |
---|
| 1335 | !----------------------------------------------------------------------- |
---|
| 1336 | |
---|
| 1337 | ! Increment surface temperature |
---|
[787] | 1338 | tsurf(1:ngrid)=tsurf(1:ngrid)+ptimestep*zdtsurf(1:ngrid) |
---|
[253] | 1339 | |
---|
| 1340 | ! Compute soil temperatures and subsurface heat flux |
---|
| 1341 | if (callsoil) then |
---|
[787] | 1342 | call soil(ngrid,nsoilmx,.false.,lastcall,inertiedat, & |
---|
[253] | 1343 | ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
| 1344 | endif |
---|
| 1345 | |
---|
| 1346 | !------------------------- |
---|
| 1347 | ! test energy conservation |
---|
| 1348 | if(enertest)then |
---|
[728] | 1349 | dEtots = SUM(area(:)*capcal(:)*zdtsurf(:))/totarea |
---|
[597] | 1350 | print*,'Surface energy change =',dEtots,' W m-2' |
---|
[253] | 1351 | endif |
---|
| 1352 | !------------------------- |
---|
| 1353 | |
---|
| 1354 | !----------------------------------------------------------------------- |
---|
| 1355 | ! 10. Perform diagnostics and write output files |
---|
| 1356 | !----------------------------------------------------------------------- |
---|
| 1357 | |
---|
| 1358 | ! ------------------------------- |
---|
| 1359 | ! Dynamical fields incrementation |
---|
| 1360 | ! ------------------------------- |
---|
| 1361 | ! For output only: the actual model integration is performed in the dynamics |
---|
| 1362 | |
---|
| 1363 | ! temperature, zonal and meridional wind |
---|
[787] | 1364 | zt(1:ngrid,1:nlayermx) = pt(1:ngrid,1:nlayermx) + pdt(1:ngrid,1:nlayermx)*ptimestep |
---|
| 1365 | zu(1:ngrid,1:nlayermx) = pu(1:ngrid,1:nlayermx) + pdu(1:ngrid,1:nlayermx)*ptimestep |
---|
| 1366 | zv(1:ngrid,1:nlayermx) = pv(1:ngrid,1:nlayermx) + pdv(1:ngrid,1:nlayermx)*ptimestep |
---|
[253] | 1367 | |
---|
[728] | 1368 | ! diagnostic |
---|
[787] | 1369 | zdtdyn(1:ngrid,1:nlayermx) = pt(1:ngrid,1:nlayermx)-ztprevious(1:ngrid,1:nlayermx) |
---|
| 1370 | ztprevious(1:ngrid,1:nlayermx) = zt(1:ngrid,1:nlayermx) |
---|
[253] | 1371 | |
---|
| 1372 | if(firstcall)then |
---|
[787] | 1373 | zdtdyn(1:ngrid,1:nlayermx)=0.0 |
---|
[253] | 1374 | endif |
---|
| 1375 | |
---|
| 1376 | ! dynamical heating diagnostic |
---|
| 1377 | do ig=1,ngrid |
---|
[728] | 1378 | fluxdyn(ig)= SUM(zdtdyn(ig,:) *mass(ig,:))*cpp/ptimestep |
---|
[253] | 1379 | enddo |
---|
| 1380 | |
---|
| 1381 | ! tracers |
---|
[787] | 1382 | zq(1:ngrid,1:nlayermx,1:nq) = pq(1:ngrid,1:nlayermx,1:nq) + pdq(1:ngrid,1:nlayermx,1:nq)*ptimestep |
---|
[253] | 1383 | |
---|
| 1384 | ! surface pressure |
---|
[787] | 1385 | ps(1:ngrid) = pplev(1:ngrid,1) + pdpsrf(1:ngrid)*ptimestep |
---|
[253] | 1386 | |
---|
| 1387 | ! pressure |
---|
| 1388 | do l=1,nlayer |
---|
[787] | 1389 | zplev(1:ngrid,l) = pplev(1:ngrid,l)/pplev(1:ngrid,1)*ps(:) |
---|
| 1390 | zplay(1:ngrid,l) = pplay(1:ngrid,l)/pplev(1:ngrid,1)*ps(1:ngrid) |
---|
[253] | 1391 | enddo |
---|
| 1392 | |
---|
| 1393 | ! --------------------------------------------------------- |
---|
| 1394 | ! Surface and soil temperature information |
---|
| 1395 | ! --------------------------------------------------------- |
---|
| 1396 | |
---|
[651] | 1397 | Ts1 = SUM(area(:)*tsurf(:))/totarea |
---|
| 1398 | Ts2 = MINVAL(tsurf(:)) |
---|
| 1399 | Ts3 = MAXVAL(tsurf(:)) |
---|
[253] | 1400 | if(callsoil)then |
---|
[651] | 1401 | TsS = SUM(area(:)*tsoil(:,nsoilmx))/totarea ! mean temperature at bottom soil layer |
---|
[880] | 1402 | if (cursor == 1) then |
---|
| 1403 | print*,' ave[Tsurf] min[Tsurf] max[Tsurf] ave[Tdeep]' |
---|
| 1404 | print*,Ts1,Ts2,Ts3,TsS |
---|
| 1405 | endif |
---|
[959] | 1406 | else |
---|
| 1407 | if (cursor == 1) then |
---|
| 1408 | print*,' ave[Tsurf] min[Tsurf] max[Tsurf]' |
---|
| 1409 | print*,Ts1,Ts2,Ts3 |
---|
| 1410 | endif |
---|
| 1411 | end if |
---|
[253] | 1412 | |
---|
| 1413 | ! --------------------------------------------------------- |
---|
| 1414 | ! Check the energy balance of the simulation during the run |
---|
| 1415 | ! --------------------------------------------------------- |
---|
| 1416 | |
---|
| 1417 | if(corrk)then |
---|
| 1418 | |
---|
[651] | 1419 | ISR = SUM(area(:)*fluxtop_dn(:))/totarea |
---|
| 1420 | ASR = SUM(area(:)*fluxabs_sw(:))/totarea |
---|
| 1421 | OLR = SUM(area(:)*fluxtop_lw(:))/totarea |
---|
| 1422 | GND = SUM(area(:)*fluxgrd(:))/totarea |
---|
| 1423 | DYN = SUM(area(:)*fluxdyn(:))/totarea |
---|
[787] | 1424 | do ig=1,ngrid |
---|
[253] | 1425 | if(fluxtop_dn(ig).lt.0.0)then |
---|
| 1426 | print*,'fluxtop_dn has gone crazy' |
---|
| 1427 | print*,'fluxtop_dn=',fluxtop_dn(ig) |
---|
| 1428 | print*,'tau_col=',tau_col(ig) |
---|
| 1429 | print*,'aerosol=',aerosol(ig,:,:) |
---|
| 1430 | print*,'temp= ',pt(ig,:) |
---|
| 1431 | print*,'pplay= ',pplay(ig,:) |
---|
| 1432 | call abort |
---|
| 1433 | endif |
---|
| 1434 | end do |
---|
| 1435 | |
---|
[787] | 1436 | if(ngrid.eq.1)then |
---|
[253] | 1437 | DYN=0.0 |
---|
| 1438 | endif |
---|
| 1439 | |
---|
[959] | 1440 | print*,' ISR ASR OLR GND DYN [W m^-2]' |
---|
| 1441 | print*, ISR,ASR,OLR,GND,DYN |
---|
[961] | 1442 | |
---|
[253] | 1443 | if(enertest)then |
---|
[651] | 1444 | print*,'SW flux/heating difference SW++ - ASR = ',dEtotSW+dEtotsSW-ASR,' W m-2' |
---|
| 1445 | print*,'LW flux/heating difference LW++ - OLR = ',dEtotLW+dEtotsLW+OLR,' W m-2' |
---|
| 1446 | print*,'LW energy balance LW++ + ASR = ',dEtotLW+dEtotsLW+ASR,' W m-2' |
---|
[253] | 1447 | endif |
---|
| 1448 | |
---|
| 1449 | if(meanOLR)then |
---|
[787] | 1450 | if((ngrid.gt.1) .or. (mod(icount-1,nint(ecritphy)).eq.0))then |
---|
[253] | 1451 | ! to record global radiative balance |
---|
[588] | 1452 | open(92,file="rad_bal.out",form='formatted',position='append') |
---|
[651] | 1453 | write(92,*) zday,ISR,ASR,OLR |
---|
[253] | 1454 | close(92) |
---|
[588] | 1455 | open(93,file="tem_bal.out",form='formatted',position='append') |
---|
[253] | 1456 | write(93,*) zday,Ts1,Ts2,Ts3,TsS |
---|
| 1457 | close(93) |
---|
| 1458 | endif |
---|
| 1459 | endif |
---|
| 1460 | |
---|
| 1461 | endif |
---|
| 1462 | |
---|
[651] | 1463 | |
---|
[253] | 1464 | ! ------------------------------------------------------------------ |
---|
| 1465 | ! Diagnostic to test radiative-convective timescales in code |
---|
| 1466 | ! ------------------------------------------------------------------ |
---|
| 1467 | if(testradtimes)then |
---|
[588] | 1468 | open(38,file="tau_phys.out",form='formatted',position='append') |
---|
[253] | 1469 | ig=1 |
---|
| 1470 | do l=1,nlayer |
---|
| 1471 | write(38,*) -1./pdt(ig,l),pt(ig,l),pplay(ig,l) |
---|
| 1472 | enddo |
---|
| 1473 | close(38) |
---|
[726] | 1474 | print*,'As testradtimes enabled,' |
---|
| 1475 | print*,'exiting physics on first call' |
---|
[253] | 1476 | call abort |
---|
| 1477 | endif |
---|
| 1478 | |
---|
| 1479 | ! --------------------------------------------------------- |
---|
| 1480 | ! Compute column amounts (kg m-2) if tracers are enabled |
---|
| 1481 | ! --------------------------------------------------------- |
---|
| 1482 | if(tracer)then |
---|
[787] | 1483 | qcol(1:ngrid,1:nq)=0.0 |
---|
[253] | 1484 | do iq=1,nq |
---|
[787] | 1485 | do ig=1,ngrid |
---|
[728] | 1486 | qcol(ig,iq) = SUM( zq(ig,1:nlayermx,iq) * mass(ig,1:nlayermx)) |
---|
| 1487 | enddo |
---|
[253] | 1488 | enddo |
---|
| 1489 | |
---|
[726] | 1490 | ! Generalised for arbitrary aerosols now. (LK) |
---|
[787] | 1491 | reffcol(1:ngrid,1:naerkind)=0.0 |
---|
[728] | 1492 | if(co2cond.and.(iaero_co2.ne.0))then |
---|
[858] | 1493 | call co2_reffrad(ngrid,nq,zq,reffrad(1,1,iaero_co2)) |
---|
[787] | 1494 | do ig=1,ngrid |
---|
[728] | 1495 | reffcol(ig,iaero_co2) = SUM(zq(ig,1:nlayermx,igcm_co2_ice)*reffrad(ig,1:nlayermx,iaero_co2)*mass(ig,1:nlayermx)) |
---|
[253] | 1496 | enddo |
---|
[728] | 1497 | endif |
---|
| 1498 | if(water.and.(iaero_h2o.ne.0))then |
---|
[858] | 1499 | call h2o_reffrad(ngrid,zq(1,1,igcm_h2o_ice),zt, & |
---|
| 1500 | reffrad(1,1,iaero_h2o),nueffrad(1,1,iaero_h2o)) |
---|
[787] | 1501 | do ig=1,ngrid |
---|
[728] | 1502 | reffcol(ig,iaero_h2o) = SUM(zq(ig,1:nlayermx,igcm_h2o_ice)*reffrad(ig,1:nlayermx,iaero_h2o)*mass(ig,1:nlayermx)) |
---|
| 1503 | enddo |
---|
| 1504 | endif |
---|
[253] | 1505 | |
---|
| 1506 | endif |
---|
| 1507 | |
---|
| 1508 | ! --------------------------------------------------------- |
---|
| 1509 | ! Test for water conservation if water is enabled |
---|
| 1510 | ! --------------------------------------------------------- |
---|
| 1511 | |
---|
| 1512 | if(water)then |
---|
| 1513 | |
---|
[651] | 1514 | icesrf = SUM(area(:)*qsurf_hist(:,igcm_h2o_ice))/totarea |
---|
| 1515 | liqsrf = SUM(area(:)*qsurf_hist(:,igcm_h2o_vap))/totarea |
---|
| 1516 | icecol = SUM(area(:)*qcol(:,igcm_h2o_ice))/totarea |
---|
| 1517 | vapcol = SUM(area(:)*qcol(:,igcm_h2o_vap))/totarea |
---|
[253] | 1518 | |
---|
[651] | 1519 | h2otot = icesrf + liqsrf + icecol + vapcol |
---|
[253] | 1520 | |
---|
[651] | 1521 | print*,' Total water amount [kg m^-2]: ',h2otot |
---|
[253] | 1522 | print*,' Surface ice Surface liq. Atmos. con. Atmos. vap. [kg m^-2] ' |
---|
[651] | 1523 | print*, icesrf,liqsrf,icecol,vapcol |
---|
[253] | 1524 | |
---|
| 1525 | if(meanOLR)then |
---|
[787] | 1526 | if((ngrid.gt.1) .or. (mod(icount-1,nint(ecritphy)).eq.0))then |
---|
[253] | 1527 | ! to record global water balance |
---|
[588] | 1528 | open(98,file="h2o_bal.out",form='formatted',position='append') |
---|
[651] | 1529 | write(98,*) zday,icesrf,liqsrf,icecol,vapcol |
---|
[253] | 1530 | close(98) |
---|
| 1531 | endif |
---|
| 1532 | endif |
---|
| 1533 | |
---|
| 1534 | endif |
---|
| 1535 | |
---|
| 1536 | ! --------------------------------------------------------- |
---|
| 1537 | ! Calculate RH for diagnostic if water is enabled |
---|
| 1538 | ! --------------------------------------------------------- |
---|
| 1539 | |
---|
| 1540 | if(water)then |
---|
| 1541 | do l = 1, nlayer |
---|
[787] | 1542 | do ig=1,ngrid |
---|
[728] | 1543 | call Psat_water(zt(ig,l),pplay(ig,l),psat_tmp,qsat(ig,l)) |
---|
[253] | 1544 | RH(ig,l) = zq(ig,l,igcm_h2o_vap) / qsat(ig,l) |
---|
| 1545 | enddo |
---|
| 1546 | enddo |
---|
| 1547 | |
---|
| 1548 | ! compute maximum possible H2O column amount (100% saturation) |
---|
| 1549 | do ig=1,ngrid |
---|
[728] | 1550 | H2Omaxcol(ig) = SUM( qsat(ig,:) * mass(ig,:)) |
---|
[253] | 1551 | enddo |
---|
| 1552 | |
---|
| 1553 | endif |
---|
| 1554 | |
---|
[996] | 1555 | |
---|
[880] | 1556 | if (cursor == 1) then |
---|
| 1557 | print*,'--> Ls =',zls*180./pi |
---|
| 1558 | endif |
---|
[253] | 1559 | ! ------------------------------------------------------------------- |
---|
| 1560 | ! Writing NetCDF file "RESTARTFI" at the end of the run |
---|
| 1561 | ! ------------------------------------------------------------------- |
---|
| 1562 | ! Note: 'restartfi' is stored just before dynamics are stored |
---|
| 1563 | ! in 'restart'. Between now and the writting of 'restart', |
---|
| 1564 | ! there will have been the itau=itau+1 instruction and |
---|
| 1565 | ! a reset of 'time' (lastacll = .true. when itau+1= itaufin) |
---|
| 1566 | ! thus we store for time=time+dtvr |
---|
| 1567 | |
---|
| 1568 | if(lastcall) then |
---|
| 1569 | ztime_fin = ptime + ptimestep/(float(iphysiq)*daysec) |
---|
| 1570 | |
---|
| 1571 | |
---|
| 1572 | ! Update surface ice distribution to iterate to steady state if requested |
---|
| 1573 | if(ice_update)then |
---|
[305] | 1574 | |
---|
[787] | 1575 | do ig=1,ngrid |
---|
[253] | 1576 | |
---|
[305] | 1577 | delta_ice = (qsurf(ig,igcm_h2o_ice)-ice_initial(ig)) |
---|
| 1578 | |
---|
[365] | 1579 | ! add multiple years of evolution |
---|
[728] | 1580 | qsurf_hist(ig,igcm_h2o_ice) = qsurf_hist(ig,igcm_h2o_ice) + delta_ice*icetstep |
---|
[305] | 1581 | |
---|
| 1582 | ! if ice has gone -ve, set to zero |
---|
| 1583 | if(qsurf_hist(ig,igcm_h2o_ice).lt.0.0)then |
---|
| 1584 | qsurf_hist(ig,igcm_h2o_ice) = 0.0 |
---|
[253] | 1585 | endif |
---|
[305] | 1586 | |
---|
[365] | 1587 | ! if ice is seasonal, set to zero (NEW) |
---|
| 1588 | if(ice_min(ig).lt.0.01)then |
---|
| 1589 | qsurf_hist(ig,igcm_h2o_ice) = 0.0 |
---|
[253] | 1590 | endif |
---|
| 1591 | |
---|
| 1592 | enddo |
---|
[305] | 1593 | |
---|
| 1594 | ! enforce ice conservation |
---|
[728] | 1595 | ice_tot= SUM(qsurf_hist(:,igcm_h2o_ice)*area(:) ) |
---|
| 1596 | qsurf_hist(:,igcm_h2o_ice) = qsurf_hist(:,igcm_h2o_ice)*(icesrf/ice_tot) |
---|
[305] | 1597 | |
---|
[253] | 1598 | endif |
---|
| 1599 | |
---|
| 1600 | write(*,*)'PHYSIQ: for physdem ztime_fin =',ztime_fin |
---|
[907] | 1601 | #ifdef CPP_PARA |
---|
| 1602 | ! for now in parallel we use a different routine to write restartfi.nc |
---|
| 1603 | call phyredem(ngrid,"restartfi.nc", & |
---|
| 1604 | ptimestep,pday,ztime_fin,tsurf,tsoil,emis,q2,qsurf_hist, & |
---|
| 1605 | cloudfrac,totcloudfrac,hice) |
---|
| 1606 | #else |
---|
[787] | 1607 | call physdem1(ngrid,"restartfi.nc",long,lati,nsoilmx,nq, & |
---|
[253] | 1608 | ptimestep,pday,ztime_fin,tsurf,tsoil,emis,q2,qsurf_hist, & |
---|
| 1609 | area,albedodat,inertiedat,zmea,zstd,zsig,zgam,zthe, & |
---|
[787] | 1610 | cloudfrac,totcloudfrac,hice,noms) |
---|
[907] | 1611 | #endif |
---|
[253] | 1612 | endif |
---|
| 1613 | |
---|
[861] | 1614 | |
---|
[253] | 1615 | ! ----------------------------------------------------------------- |
---|
| 1616 | ! Saving statistics : |
---|
| 1617 | ! ----------------------------------------------------------------- |
---|
| 1618 | ! ("stats" stores and accumulates 8 key variables in file "stats.nc" |
---|
| 1619 | ! which can later be used to make the statistic files of the run: |
---|
| 1620 | ! "stats") only possible in 3D runs ! |
---|
| 1621 | |
---|
| 1622 | |
---|
| 1623 | if (callstats) then |
---|
| 1624 | |
---|
| 1625 | call wstats(ngrid,"ps","Surface pressure","Pa",2,ps) |
---|
| 1626 | call wstats(ngrid,"tsurf","Surface temperature","K",2,tsurf) |
---|
| 1627 | call wstats(ngrid,"fluxsurf_lw", & |
---|
| 1628 | "Thermal IR radiative flux to surface","W.m-2",2, & |
---|
| 1629 | fluxsurf_lw) |
---|
| 1630 | ! call wstats(ngrid,"fluxsurf_sw", & |
---|
| 1631 | ! "Solar radiative flux to surface","W.m-2",2, & |
---|
| 1632 | ! fluxsurf_sw_tot) |
---|
| 1633 | call wstats(ngrid,"fluxtop_lw", & |
---|
| 1634 | "Thermal IR radiative flux to space","W.m-2",2, & |
---|
| 1635 | fluxtop_lw) |
---|
| 1636 | ! call wstats(ngrid,"fluxtop_sw", & |
---|
| 1637 | ! "Solar radiative flux to space","W.m-2",2, & |
---|
| 1638 | ! fluxtop_sw_tot) |
---|
[526] | 1639 | |
---|
| 1640 | call wstats(ngrid,"ISR","incoming stellar rad.","W m-2",2,fluxtop_dn) |
---|
| 1641 | call wstats(ngrid,"ASR","absorbed stellar rad.","W m-2",2,fluxabs_sw) |
---|
| 1642 | call wstats(ngrid,"OLR","outgoing longwave rad.","W m-2",2,fluxtop_lw) |
---|
| 1643 | |
---|
[253] | 1644 | call wstats(ngrid,"temp","Atmospheric temperature","K",3,zt) |
---|
| 1645 | call wstats(ngrid,"u","Zonal (East-West) wind","m.s-1",3,zu) |
---|
| 1646 | call wstats(ngrid,"v","Meridional (North-South) wind","m.s-1",3,zv) |
---|
| 1647 | call wstats(ngrid,"w","Vertical (down-up) wind","m.s-1",3,pw) |
---|
| 1648 | call wstats(ngrid,"q2","Boundary layer eddy kinetic energy","m2.s-2",3,q2) |
---|
| 1649 | |
---|
| 1650 | if (tracer) then |
---|
[526] | 1651 | do iq=1,nq |
---|
| 1652 | call wstats(ngrid,noms(iq),noms(iq),'kg/kg',3,zq(1,1,iq)) |
---|
[787] | 1653 | call wstats(ngrid,trim(noms(iq))//'_surf',trim(noms(iq))//'_surf', & |
---|
[526] | 1654 | 'kg m^-2',2,qsurf(1,iq) ) |
---|
| 1655 | |
---|
[787] | 1656 | call wstats(ngrid,trim(noms(iq))//'_col',trim(noms(iq))//'_col', & |
---|
[526] | 1657 | 'kg m^-2',2,qcol(1,iq) ) |
---|
[787] | 1658 | ! call wstats(ngrid,trim(noms(iq))//'_reff', & |
---|
[726] | 1659 | ! trim(noms(iq))//'_reff', & |
---|
| 1660 | ! 'm',3,reffrad(1,1,iq)) |
---|
[526] | 1661 | end do |
---|
[253] | 1662 | if (water) then |
---|
[787] | 1663 | vmr=zq(1:ngrid,1:nlayermx,igcm_h2o_vap)*mugaz/mmol(igcm_h2o_vap) |
---|
[253] | 1664 | call wstats(ngrid,"vmr_h2ovapor", & |
---|
| 1665 | "H2O vapour volume mixing ratio","mol/mol", & |
---|
| 1666 | 3,vmr) |
---|
| 1667 | endif ! of if (water) |
---|
| 1668 | |
---|
| 1669 | endif !tracer |
---|
| 1670 | |
---|
| 1671 | if(lastcall) then |
---|
| 1672 | write (*,*) "Writing stats..." |
---|
| 1673 | call mkstats(ierr) |
---|
| 1674 | endif |
---|
| 1675 | endif !if callstats |
---|
| 1676 | |
---|
| 1677 | |
---|
| 1678 | ! ---------------------------------------------------------------------- |
---|
| 1679 | ! output in netcdf file "DIAGFI", containing any variable for diagnostic |
---|
| 1680 | ! (output with period "ecritphy", set in "run.def") |
---|
| 1681 | ! ---------------------------------------------------------------------- |
---|
| 1682 | ! writediagfi can also be called from any other subroutine for any variable. |
---|
| 1683 | ! but its preferable to keep all the calls in one place... |
---|
| 1684 | |
---|
[996] | 1685 | call writediagfi(ngrid,"Ls","solar longitude","deg",0,zls*180./pi) |
---|
[253] | 1686 | call writediagfi(ngrid,"tsurf","Surface temperature","K",2,tsurf) |
---|
| 1687 | call writediagfi(ngrid,"ps","Surface pressure","Pa",2,ps) |
---|
| 1688 | call writediagfi(ngrid,"temp","temperature","K",3,zt) |
---|
[597] | 1689 | call writediagfi(ngrid,"teta","potential temperature","K",3,zh) |
---|
[253] | 1690 | call writediagfi(ngrid,"u","Zonal wind","m.s-1",3,zu) |
---|
| 1691 | call writediagfi(ngrid,"v","Meridional wind","m.s-1",3,zv) |
---|
| 1692 | call writediagfi(ngrid,"w","Vertical wind","m.s-1",3,pw) |
---|
[731] | 1693 | call writediagfi(ngrid,"p","Pressure","Pa",3,pplay) |
---|
[253] | 1694 | |
---|
[965] | 1695 | ! Subsurface temperatures |
---|
[969] | 1696 | ! call writediagsoil(ngrid,"tsurf","Surface temperature","K",2,tsurf) |
---|
| 1697 | ! call writediagsoil(ngrid,"temp","temperature","K",3,tsoil) |
---|
[965] | 1698 | |
---|
[253] | 1699 | ! Total energy balance diagnostics |
---|
| 1700 | if(callrad.and.(.not.newtonian))then |
---|
[731] | 1701 | call writediagfi(ngrid,"ALB","Surface albedo"," ",2,albedo) |
---|
[253] | 1702 | call writediagfi(ngrid,"ISR","incoming stellar rad.","W m-2",2,fluxtop_dn) |
---|
| 1703 | call writediagfi(ngrid,"ASR","absorbed stellar rad.","W m-2",2,fluxabs_sw) |
---|
| 1704 | call writediagfi(ngrid,"OLR","outgoing longwave rad.","W m-2",2,fluxtop_lw) |
---|
[1016] | 1705 | ! call writediagfi(ngrid,"ASRcs","absorbed stellar rad (cs).","W m-2",2,fluxabs_sw1) |
---|
| 1706 | ! call writediagfi(ngrid,"OLRcs","outgoing longwave rad (cs).","W m-2",2,fluxtop_lw1) |
---|
| 1707 | ! call writediagfi(ngrid,"fluxsurfsw","sw surface flux.","W m-2",2,fluxsurf_sw) |
---|
| 1708 | ! call writediagfi(ngrid,"fluxsurflw","lw back radiation.","W m-2",2,fluxsurf_lw) |
---|
| 1709 | ! call writediagfi(ngrid,"fluxsurfswcs","sw surface flux (cs).","W m-2",2,fluxsurf_sw1) |
---|
| 1710 | ! call writediagfi(ngrid,"fluxsurflwcs","lw back radiation (cs).","W m-2",2,fluxsurf_lw1) |
---|
[253] | 1711 | call writediagfi(ngrid,"GND","heat flux from ground","W m-2",2,fluxgrd) |
---|
| 1712 | call writediagfi(ngrid,"DYN","dynamical heat input","W m-2",2,fluxdyn) |
---|
| 1713 | endif |
---|
[594] | 1714 | |
---|
| 1715 | if(enertest) then |
---|
[622] | 1716 | if (calldifv) then |
---|
[787] | 1717 | call writediagfi(ngrid,"q2","turbulent kinetic energy","J.kg^-1",3,q2) |
---|
| 1718 | ! call writediagfi(ngrid,"dEzdiff","turbulent diffusion heating (-sensible flux)","w.m^-2",3,dEzdiff) |
---|
| 1719 | ! call writediagfi(ngrid,"dEdiff","integrated turbulent diffusion heating (-sensible flux)","w.m^-2",2,dEdiff) |
---|
| 1720 | ! call writediagfi(ngrid,"dEdiffs","In TurbDiff (correc rad+latent heat) surf nrj change","w.m^-2",2,dEdiffs) |
---|
| 1721 | call writediagfi(ngrid,"sensibFlux","sensible heat flux","w.m^-2",2,sensibFlux) |
---|
[622] | 1722 | endif |
---|
[596] | 1723 | if (corrk) then |
---|
[918] | 1724 | call writediagfi(ngrid,"dEzradsw","radiative heating","w.m^-2",3,dEzradsw) |
---|
| 1725 | call writediagfi(ngrid,"dEzradlw","radiative heating","w.m^-2",3,dEzradlw) |
---|
[596] | 1726 | endif |
---|
[594] | 1727 | if(watercond) then |
---|
[1016] | 1728 | ! call writediagfi(ngrid,"lscaledEz","heat from largescale","W m-2",3,lscaledEz) |
---|
| 1729 | ! call writediagfi(ngrid,"madjdEz","heat from moistadj","W m-2",3,madjdEz) |
---|
[594] | 1730 | call writediagfi(ngrid,"lscaledE","heat from largescale","W m-2",2,lscaledE) |
---|
[622] | 1731 | call writediagfi(ngrid,"madjdE","heat from moistadj","W m-2",2,madjdE) |
---|
[1016] | 1732 | call writediagfi(ngrid,"qsatatm","atm qsat"," ",3,qsat) |
---|
[787] | 1733 | ! call writediagfi(ngrid,"h2o_max_col","maximum H2O column amount","kg.m^-2",2,H2Omaxcol) |
---|
[594] | 1734 | endif |
---|
| 1735 | endif |
---|
[253] | 1736 | |
---|
| 1737 | ! Temporary inclusions for heating diagnostics |
---|
| 1738 | ! call writediagfi(ngrid,"zdtdyn","Dyn. heating","T s-1",3,zdtdyn) |
---|
[863] | 1739 | call writediagfi(ngrid,"zdtsw","SW heating","T s-1",3,zdtsw) |
---|
| 1740 | call writediagfi(ngrid,"zdtlw","LW heating","T s-1",3,zdtlw) |
---|
| 1741 | call writediagfi(ngrid,"dtrad","radiative heating","K s-1",3,dtrad) |
---|
[253] | 1742 | |
---|
| 1743 | ! debugging |
---|
[368] | 1744 | !call writediagfi(ngrid,'rnat','Terrain type',' ',2,real(rnat)) |
---|
[253] | 1745 | !call writediagfi(ngrid,'pphi','Geopotential',' ',3,pphi) |
---|
| 1746 | |
---|
| 1747 | ! Output aerosols |
---|
[728] | 1748 | if (igcm_co2_ice.ne.0.and.iaero_co2.ne.0) & |
---|
[787] | 1749 | call writediagfi(ngrid,'CO2ice_reff','CO2ice_reff','m',3,reffrad(1,1,iaero_co2)) |
---|
[728] | 1750 | if (igcm_h2o_ice.ne.0.and.iaero_h2o.ne.0) & |
---|
[787] | 1751 | call writediagfi(ngrid,'H2Oice_reff','H2Oice_reff','m',3,reffrad(:,:,iaero_h2o)) |
---|
[728] | 1752 | if (igcm_co2_ice.ne.0.and.iaero_co2.ne.0) & |
---|
[787] | 1753 | call writediagfi(ngrid,'CO2ice_reffcol','CO2ice_reffcol','um kg m^-2',2,reffcol(1,iaero_co2)) |
---|
[728] | 1754 | if (igcm_h2o_ice.ne.0.and.iaero_h2o.ne.0) & |
---|
[787] | 1755 | call writediagfi(ngrid,'H2Oice_reffcol','H2Oice_reffcol','um kg m^-2',2,reffcol(1,iaero_h2o)) |
---|
[253] | 1756 | |
---|
| 1757 | ! Output tracers |
---|
| 1758 | if (tracer) then |
---|
| 1759 | do iq=1,nq |
---|
[368] | 1760 | call writediagfi(ngrid,noms(iq),noms(iq),'kg/kg',3,zq(1,1,iq)) |
---|
[787] | 1761 | ! call writediagfi(ngrid,trim(noms(iq))//'_surf',trim(noms(iq))//'_surf', & |
---|
[253] | 1762 | ! 'kg m^-2',2,qsurf(1,iq) ) |
---|
[787] | 1763 | call writediagfi(ngrid,trim(noms(iq))//'_surf',trim(noms(iq))//'_surf', & |
---|
[253] | 1764 | 'kg m^-2',2,qsurf_hist(1,iq) ) |
---|
[787] | 1765 | call writediagfi(ngrid,trim(noms(iq))//'_col',trim(noms(iq))//'_col', & |
---|
[253] | 1766 | 'kg m^-2',2,qcol(1,iq) ) |
---|
| 1767 | |
---|
[594] | 1768 | if(watercond.or.CLFvarying)then |
---|
[918] | 1769 | call writediagfi(ngrid,"rneb_man","H2O cloud fraction (conv)"," ",3,rneb_man) |
---|
| 1770 | call writediagfi(ngrid,"rneb_lsc","H2O cloud fraction (large scale)"," ",3,rneb_lsc) |
---|
| 1771 | call writediagfi(ngrid,"CLF","H2O cloud fraction"," ",3,cloudfrac) |
---|
[253] | 1772 | call writediagfi(ngrid,"CLFt","H2O column cloud fraction"," ",2,totcloudfrac) |
---|
[1016] | 1773 | call writediagfi(ngrid,"RH","relative humidity"," ",3,RH) |
---|
[253] | 1774 | endif |
---|
| 1775 | |
---|
| 1776 | if(waterrain)then |
---|
[787] | 1777 | call writediagfi(ngrid,"rain","rainfall","kg m-2 s-1",2,zdqsrain) |
---|
| 1778 | call writediagfi(ngrid,"snow","snowfall","kg m-2 s-1",2,zdqssnow) |
---|
[253] | 1779 | endif |
---|
| 1780 | |
---|
| 1781 | if(hydrology)then |
---|
[787] | 1782 | call writediagfi(ngrid,"hice","oceanic ice height","m",2,hice) |
---|
[253] | 1783 | endif |
---|
| 1784 | |
---|
| 1785 | if(ice_update)then |
---|
[787] | 1786 | call writediagfi(ngrid,"ice_min","min annual ice","m",2,ice_min) |
---|
| 1787 | call writediagfi(ngrid,"ice_ini","initial annual ice","m",2,ice_initial) |
---|
[253] | 1788 | endif |
---|
| 1789 | |
---|
| 1790 | do ig=1,ngrid |
---|
| 1791 | if(tau_col(ig).gt.1.e3)then |
---|
[959] | 1792 | ! print*,'WARNING: tau_col=',tau_col(ig) |
---|
| 1793 | ! print*,'at ig=',ig,'in PHYSIQ' |
---|
[253] | 1794 | endif |
---|
| 1795 | end do |
---|
| 1796 | |
---|
[787] | 1797 | call writediagfi(ngrid,"tau_col","Total aerosol optical depth","[]",2,tau_col) |
---|
[253] | 1798 | |
---|
| 1799 | enddo |
---|
| 1800 | endif |
---|
| 1801 | |
---|
[526] | 1802 | ! output spectrum |
---|
| 1803 | if(specOLR.and.corrk)then |
---|
[728] | 1804 | call writediagspecIR(ngrid,"OLR3D","OLR(lon,lat,band)","W/m^2/cm^-1",3,OLR_nu) |
---|
| 1805 | call writediagspecVI(ngrid,"OSR3D","OSR(lon,lat,band)","W/m^2/cm^-1",3,OSR_nu) |
---|
[526] | 1806 | endif |
---|
[253] | 1807 | |
---|
| 1808 | icount=icount+1 |
---|
| 1809 | |
---|
[471] | 1810 | if (lastcall) then |
---|
[787] | 1811 | |
---|
| 1812 | ! deallocate gas variables |
---|
[716] | 1813 | IF ( ALLOCATED( gnom ) ) DEALLOCATE( gnom ) |
---|
| 1814 | IF ( ALLOCATED( gfrac ) ) DEALLOCATE( gfrac ) ! both allocated in su_gases.F90 |
---|
[787] | 1815 | |
---|
| 1816 | ! deallocate saved arrays |
---|
| 1817 | ! this is probably not that necessary |
---|
| 1818 | ! ... but probably a good idea to clean the place before we leave |
---|
| 1819 | IF ( ALLOCATED(tsurf)) DEALLOCATE(tsurf) |
---|
| 1820 | IF ( ALLOCATED(tsoil)) DEALLOCATE(tsoil) |
---|
| 1821 | IF ( ALLOCATED(albedo)) DEALLOCATE(albedo) |
---|
| 1822 | IF ( ALLOCATED(albedo0)) DEALLOCATE(albedo0) |
---|
| 1823 | IF ( ALLOCATED(rnat)) DEALLOCATE(rnat) |
---|
| 1824 | IF ( ALLOCATED(emis)) DEALLOCATE(emis) |
---|
| 1825 | IF ( ALLOCATED(dtrad)) DEALLOCATE(dtrad) |
---|
| 1826 | IF ( ALLOCATED(fluxrad_sky)) DEALLOCATE(fluxrad_sky) |
---|
| 1827 | IF ( ALLOCATED(fluxrad)) DEALLOCATE(fluxrad) |
---|
| 1828 | IF ( ALLOCATED(capcal)) DEALLOCATE(capcal) |
---|
| 1829 | IF ( ALLOCATED(fluxgrd)) DEALLOCATE(fluxgrd) |
---|
| 1830 | IF ( ALLOCATED(qsurf)) DEALLOCATE(qsurf) |
---|
| 1831 | IF ( ALLOCATED(q2)) DEALLOCATE(q2) |
---|
| 1832 | IF ( ALLOCATED(ztprevious)) DEALLOCATE(ztprevious) |
---|
| 1833 | IF ( ALLOCATED(cloudfrac)) DEALLOCATE(cloudfrac) |
---|
| 1834 | IF ( ALLOCATED(totcloudfrac)) DEALLOCATE(totcloudfrac) |
---|
| 1835 | IF ( ALLOCATED(qsurf_hist)) DEALLOCATE(qsurf_hist) |
---|
| 1836 | IF ( ALLOCATED(reffrad)) DEALLOCATE(reffrad) |
---|
| 1837 | IF ( ALLOCATED(nueffrad)) DEALLOCATE(nueffrad) |
---|
| 1838 | IF ( ALLOCATED(ice_initial)) DEALLOCATE(ice_initial) |
---|
| 1839 | IF ( ALLOCATED(ice_min)) DEALLOCATE(ice_min) |
---|
| 1840 | |
---|
| 1841 | IF ( ALLOCATED(fluxsurf_lw)) DEALLOCATE(fluxsurf_lw) |
---|
| 1842 | IF ( ALLOCATED(fluxsurf_sw)) DEALLOCATE(fluxsurf_sw) |
---|
| 1843 | IF ( ALLOCATED(fluxtop_lw)) DEALLOCATE(fluxtop_lw) |
---|
| 1844 | IF ( ALLOCATED(fluxabs_sw)) DEALLOCATE(fluxabs_sw) |
---|
| 1845 | IF ( ALLOCATED(fluxtop_dn)) DEALLOCATE(fluxtop_dn) |
---|
| 1846 | IF ( ALLOCATED(fluxdyn)) DEALLOCATE(fluxdyn) |
---|
| 1847 | IF ( ALLOCATED(OLR_nu)) DEALLOCATE(OLR_nu) |
---|
| 1848 | IF ( ALLOCATED(OSR_nu)) DEALLOCATE(OSR_nu) |
---|
| 1849 | IF ( ALLOCATED(sensibFlux)) DEALLOCATE(sensibFlux) |
---|
| 1850 | IF ( ALLOCATED(zdtlw)) DEALLOCATE(zdtlw) |
---|
| 1851 | IF ( ALLOCATED(zdtsw)) DEALLOCATE(zdtsw) |
---|
| 1852 | IF ( ALLOCATED(tau_col)) DEALLOCATE(tau_col) |
---|
| 1853 | |
---|
| 1854 | !! this is defined in comsaison_h |
---|
| 1855 | IF ( ALLOCATED(mu0)) DEALLOCATE(mu0) |
---|
| 1856 | IF ( ALLOCATED(fract)) DEALLOCATE(fract) |
---|
| 1857 | |
---|
| 1858 | !! this is defined in comsoil_h |
---|
| 1859 | IF ( ALLOCATED(layer)) DEALLOCATE(layer) |
---|
| 1860 | IF ( ALLOCATED(mlayer)) DEALLOCATE(mlayer) |
---|
| 1861 | IF ( ALLOCATED(inertiedat)) DEALLOCATE(inertiedat) |
---|
| 1862 | |
---|
| 1863 | !! this is defined in surfdat_h |
---|
| 1864 | IF ( ALLOCATED(albedodat)) DEALLOCATE(albedodat) |
---|
| 1865 | IF ( ALLOCATED(phisfi)) DEALLOCATE(phisfi) |
---|
| 1866 | IF ( ALLOCATED(zmea)) DEALLOCATE(zmea) |
---|
| 1867 | IF ( ALLOCATED(zstd)) DEALLOCATE(zstd) |
---|
| 1868 | IF ( ALLOCATED(zsig)) DEALLOCATE(zsig) |
---|
| 1869 | IF ( ALLOCATED(zgam)) DEALLOCATE(zgam) |
---|
| 1870 | IF ( ALLOCATED(zthe)) DEALLOCATE(zthe) |
---|
| 1871 | IF ( ALLOCATED(dryness)) DEALLOCATE(dryness) |
---|
| 1872 | IF ( ALLOCATED(watercaptag)) DEALLOCATE(watercaptag) |
---|
| 1873 | |
---|
| 1874 | !! this is defined in tracer_h |
---|
| 1875 | IF ( ALLOCATED(noms)) DEALLOCATE(noms) |
---|
| 1876 | IF ( ALLOCATED(mmol)) DEALLOCATE(mmol) |
---|
| 1877 | IF ( ALLOCATED(radius)) DEALLOCATE(radius) |
---|
| 1878 | IF ( ALLOCATED(rho_q)) DEALLOCATE(rho_q) |
---|
| 1879 | IF ( ALLOCATED(qext)) DEALLOCATE(qext) |
---|
| 1880 | IF ( ALLOCATED(alpha_lift)) DEALLOCATE(alpha_lift) |
---|
| 1881 | IF ( ALLOCATED(alpha_devil)) DEALLOCATE(alpha_devil) |
---|
| 1882 | IF ( ALLOCATED(qextrhor)) DEALLOCATE(qextrhor) |
---|
| 1883 | IF ( ALLOCATED(igcm_dustbin)) DEALLOCATE(igcm_dustbin) |
---|
| 1884 | |
---|
| 1885 | !! this is defined in comgeomfi_h |
---|
| 1886 | IF ( ALLOCATED(lati)) DEALLOCATE(lati) |
---|
| 1887 | IF ( ALLOCATED(long)) DEALLOCATE(long) |
---|
| 1888 | IF ( ALLOCATED(area)) DEALLOCATE(area) |
---|
| 1889 | IF ( ALLOCATED(sinlat)) DEALLOCATE(sinlat) |
---|
| 1890 | IF ( ALLOCATED(coslat)) DEALLOCATE(coslat) |
---|
| 1891 | IF ( ALLOCATED(sinlon)) DEALLOCATE(sinlon) |
---|
| 1892 | IF ( ALLOCATED(coslon)) DEALLOCATE(coslon) |
---|
| 1893 | |
---|
[471] | 1894 | endif |
---|
| 1895 | |
---|
[253] | 1896 | return |
---|
[751] | 1897 | end subroutine physiq |
---|