1 | ! ---------------------------------------------------------------- |
---|
2 | ! Purpose: Thermodynamic data on H2O, NH3 |
---|
3 | ! Authour: Adapted from various sources by R. Wordsworth (2011) |
---|
4 | |
---|
5 | |
---|
6 | ! --------------------- |
---|
7 | ! NH3 |
---|
8 | ! --------------------- |
---|
9 | subroutine psat_NH3 ( T, p ) |
---|
10 | ! |
---|
11 | ! PSAT_NH3 makes a rough estimate of the vapor pressure. |
---|
12 | ! |
---|
13 | ! Interpolated from www.engineeringtoolbox.com data by RDW 21/09/11 for |
---|
14 | ! temperatures between 223 and 323 K. |
---|
15 | ! |
---|
16 | ! Parameters: |
---|
17 | ! |
---|
18 | ! Input, double precision T, the temperature, in degrees Kelvin. |
---|
19 | ! |
---|
20 | ! Output, double precision P, the vapor pressure, in MegaPascals. |
---|
21 | ! |
---|
22 | |
---|
23 | implicit none |
---|
24 | |
---|
25 | double precision p,T |
---|
26 | |
---|
27 | p=exp(-1.5609d-004*T**2 + 0.1236*T - 9.1530)/1d6 |
---|
28 | |
---|
29 | end subroutine psat_NH3 |
---|
30 | |
---|
31 | subroutine latheat_NH3 ( T, sc, sv ) |
---|
32 | ! |
---|
33 | ! PSAT_NH3 makes a rough estimate of the entropies of condensation / |
---|
34 | ! vapourisation. |
---|
35 | ! |
---|
36 | ! Interpolated from www.engineeringtoolbox.com data by RDW 21/09/11 for |
---|
37 | ! temperatures between 223 and 323 K. |
---|
38 | ! |
---|
39 | ! Parameters: |
---|
40 | ! |
---|
41 | ! Input, double precision T, the temperature, in degrees Kelvin. |
---|
42 | ! |
---|
43 | ! Output, double precision sc, the entropy of condensate, in J kg^-1 K^-1. |
---|
44 | ! double precision sv, the entropy of gas, in J kg^-1 K^-1. |
---|
45 | ! |
---|
46 | |
---|
47 | implicit none |
---|
48 | |
---|
49 | double precision T,sc,sv |
---|
50 | |
---|
51 | sv = 0.0492*T**2 - 40.4199*T + 1.2708e+004 |
---|
52 | sc = -0.0215*T**2 + 28.7138*T - 5.5267e+003 |
---|
53 | |
---|
54 | !L = -11.2373*T**2 + 2.5326d+03*T + 1.4099d+06 |
---|
55 | |
---|
56 | end subroutine latheat_NH3 |
---|
57 | |
---|
58 | |
---|
59 | ! --------------------- |
---|
60 | ! H2O |
---|
61 | ! --------------------- |
---|
62 | |
---|
63 | subroutine base ( t, rho, ab, cvb, dpdrb, dpdtb, gb, hb, pb, sb, ub ) |
---|
64 | ! |
---|
65 | !******************************************************************************* |
---|
66 | ! |
---|
67 | !! BASE calculates quantities associated with the base Helmholtz function. |
---|
68 | ! |
---|
69 | ! |
---|
70 | ! Discussion: |
---|
71 | ! |
---|
72 | ! The equation for the base Helmholtz function AB(T,RHO) is: |
---|
73 | ! |
---|
74 | ! AB(T,RHO) = R * T * ( |
---|
75 | ! - ln ( 1 - y ) |
---|
76 | ! - ( beta - 1 ) / ( 1 - y ) |
---|
77 | ! + ( alpha + beta + 1 ) / ( 2 * ( 1 - y )**2 ) |
---|
78 | ! + 4 * y * ( ( Bbar / b ) - gamma ) |
---|
79 | ! - 0.5 * ( alpha - beta + 3 ) |
---|
80 | ! + ln ( RHO * R * T / P0 ) ) |
---|
81 | ! (Equation 2) |
---|
82 | ! where |
---|
83 | ! |
---|
84 | ! y = b * rho / 4, |
---|
85 | ! alpha = 11, |
---|
86 | ! beta = 133/3, |
---|
87 | ! gamma = 7/2, |
---|
88 | ! P0 = 0.101325 MegaPascals = 1 atm |
---|
89 | ! |
---|
90 | ! and |
---|
91 | ! |
---|
92 | ! b(T) = b1 * ln(T/T0) + sum(j=0,1,3,5) b(j)*(T0/T)**j (Equation 3) |
---|
93 | ! |
---|
94 | ! Bbar(T) = sum(j=0,1,2,4) B(j)*(T0/T)**j (Equation 4). |
---|
95 | ! |
---|
96 | ! where |
---|
97 | ! |
---|
98 | ! T0=647.073 K and the coefficients b(j) and B(j) are |
---|
99 | ! |
---|
100 | ! j b(j) B(j) |
---|
101 | ! -- ----------- ---------- |
---|
102 | ! 0 0.7478629 1.1278334 |
---|
103 | ! 1 -0.3540782 -0.5944001 |
---|
104 | ! 2 0 -5.010996 |
---|
105 | ! 3 0.007159876 0 |
---|
106 | ! 4 0 0.63684256 |
---|
107 | ! 5 -0.003528426 0 |
---|
108 | ! |
---|
109 | ! For the derived quantities, the following relations are used: |
---|
110 | ! |
---|
111 | ! Pressure: PB = RHO**2 * dAB/dRHO |
---|
112 | ! Density derivative: DPDRB = 2*PB/RHO + RHO**2 * d2AB/dRHO2 |
---|
113 | ! Temperature derivative: DPDTB = RHO**2 * d2AB/(dRHO dT) |
---|
114 | ! Specific entropy: SB = ( UB - AB ) / T |
---|
115 | ! Specific internal energy: UB = AB + T * SB |
---|
116 | ! Specific enthalpy: HB = UB + PB / RHO |
---|
117 | ! Specific heat capacity |
---|
118 | ! at constant volume: CVB = - T * d2AB/dT2 |
---|
119 | ! Specific Gibbs function: GB = AB + PB / RHO |
---|
120 | ! |
---|
121 | ! |
---|
122 | ! Reference: |
---|
123 | ! |
---|
124 | ! Lester Haar, John Gallagher and George Kell, |
---|
125 | ! NBS/NRC Steam Tables: |
---|
126 | ! Thermodynamic and Transport Properties and Computer Programs |
---|
127 | ! for Vapor and Liquid States of Water in SI Units, |
---|
128 | ! Hemisphere Publishing Corporation, Washington, 1984, |
---|
129 | ! TJ270.H3 |
---|
130 | ! |
---|
131 | ! C A Meyer, R B McClintock, G J Silvestri, R C Spencer, |
---|
132 | ! ASME Steam Tables: Thermodynamic and Transport Properties of Steam, |
---|
133 | ! American Society of Mechanical Engineers, 1967. |
---|
134 | ! |
---|
135 | ! Modified: |
---|
136 | ! |
---|
137 | ! 03 February 2002 |
---|
138 | ! |
---|
139 | ! Parameters: |
---|
140 | ! |
---|
141 | ! Input, double precision T, the temperature, in degrees Kelvin. |
---|
142 | ! |
---|
143 | ! Input, double precision RHO, the density, in G/CM3. |
---|
144 | ! |
---|
145 | ! Output, double precision AB, the base value of the Helmholtz function, |
---|
146 | ! in KJ/kg. |
---|
147 | ! |
---|
148 | ! Output, double precision CVB, the base value of the isochoric (constant |
---|
149 | ! volume) heat capacity, in KJ/(kg degrees Kelvin). |
---|
150 | ! |
---|
151 | ! Output, double precision DPDRB, the base value of the partial |
---|
152 | ! derivative dP(T,RHO)/dRHO, with T held fixed, in (MegaPascals CM3)/G. |
---|
153 | ! |
---|
154 | ! Output, double precision DPDTB, the base value of the partial |
---|
155 | ! derivative dP(T,RHO)/dT, with RHO held fixed, in |
---|
156 | ! MegaPascals/degrees Kelvin. |
---|
157 | ! |
---|
158 | ! Output, double precision GB, the base value of the Gibbs free energy, |
---|
159 | ! in KJ/kg. |
---|
160 | ! |
---|
161 | ! Output, double precision HB, the base value of enthalpy, in KJ/kg. |
---|
162 | ! |
---|
163 | ! Output, double precision PB, the base pressure, in MegaPascals. |
---|
164 | ! |
---|
165 | ! Output, double precision SB, the base value of entropy, |
---|
166 | ! in KJ/(kg degrees Kelvin). |
---|
167 | ! |
---|
168 | ! Output, double precision UB, the base value of internal energy, |
---|
169 | ! in KJ/kg. |
---|
170 | ! |
---|
171 | implicit none |
---|
172 | ! |
---|
173 | double precision ab |
---|
174 | double precision, parameter :: alpha = 11.0D+00 |
---|
175 | double precision b1 |
---|
176 | double precision b1t |
---|
177 | double precision b1tt |
---|
178 | double precision b2 |
---|
179 | double precision b2t |
---|
180 | double precision b2tt |
---|
181 | double precision, parameter :: beta = 44.333333333333D+00 |
---|
182 | double precision cvb |
---|
183 | double precision dpdrb |
---|
184 | double precision dpdtb |
---|
185 | double precision dz |
---|
186 | double precision dz0 |
---|
187 | double precision, parameter :: gamma = 3.5D+00 |
---|
188 | double precision gascon |
---|
189 | double precision gb |
---|
190 | double precision hb |
---|
191 | double precision, parameter :: p_zero = 0.101325D+00 |
---|
192 | double precision pb |
---|
193 | double precision rho |
---|
194 | double precision sb |
---|
195 | double precision t |
---|
196 | double precision ub |
---|
197 | double precision x |
---|
198 | double precision y |
---|
199 | double precision z |
---|
200 | double precision z0 |
---|
201 | ! |
---|
202 | ! Refuse to handle zero or negative temperatures. |
---|
203 | ! |
---|
204 | if ( t <= 0.0 ) then |
---|
205 | write ( *, '(a)' ) ' ' |
---|
206 | write ( *, '(a)' ) 'BASE - Fatal error!' |
---|
207 | write ( *, '(a)' ) ' The input temperature T must be positive.' |
---|
208 | write ( *, '(a,g14.6)' ) ' Input value was T = ', t |
---|
209 | stop |
---|
210 | end if |
---|
211 | ! |
---|
212 | ! Refuse to handle zero or negative density. |
---|
213 | ! |
---|
214 | if ( rho <= 0.0D+00 ) then |
---|
215 | write ( *, '(a)' ) ' ' |
---|
216 | write ( *, '(a)' ) 'BASE - Fatal error!' |
---|
217 | write ( *, '(a)' ) ' The input density RHO must be positive.' |
---|
218 | write ( *, '(a,g14.6)' ) ' Input value was RHO = ', rho |
---|
219 | stop |
---|
220 | end if |
---|
221 | ! |
---|
222 | ! Compute auxilliary quantities for Equation 2. |
---|
223 | ! |
---|
224 | call bb ( t, b1, b2, b1t, b2t, b1tt, b2tt ) |
---|
225 | |
---|
226 | y = 0.25D+00 * b1 * rho |
---|
227 | |
---|
228 | x = 1.0D+00 - y |
---|
229 | ! |
---|
230 | ! Evaluate Equation 2. |
---|
231 | ! |
---|
232 | ab = - log ( 1.0D+00 - y ) & |
---|
233 | - ( beta - 1.0D+00 ) / ( 1.0D+00 - y ) & |
---|
234 | + ( alpha + beta + 1.0D+00 ) / ( 2.0D+00 * ( 1.0D+00 - y )**2 ) & |
---|
235 | + 4.0D+00 * y * ( ( b2 / b1 ) - gamma ) & |
---|
236 | - 0.5D+00 * ( alpha - beta + 3.0D+00 ) & |
---|
237 | + log ( rho * gascon() * t / p_zero ) |
---|
238 | ! |
---|
239 | ! Determine quantities defined in terms of AB. |
---|
240 | ! |
---|
241 | pb = ( 1.0D+00 + alpha * y + beta * y**2 ) / ( 1.0D+00 - y )**3 & |
---|
242 | + 4.0D+00 * y * ( b2 / b1 - gamma ) |
---|
243 | |
---|
244 | z0 = ( 1.0D+00 + alpha * y + beta * y**2 ) / ( 1.0D+00 - y )**3 |
---|
245 | |
---|
246 | z = z0 + 4.0D+00 * y * ( b2 / b1 - gamma ) |
---|
247 | |
---|
248 | dz0 = ( alpha + 2.0D+00 * beta * y ) / ( 1.0D+00 - y )**3 & |
---|
249 | + 3.0D+00 * ( 1.0D+00 + alpha * y + beta * y**2 ) / ( 1.0D+00 - y )**4 |
---|
250 | |
---|
251 | dz = dz0 + 4.0D+00 * ( b2 / b1 - gamma ) |
---|
252 | |
---|
253 | gb = ab + pb |
---|
254 | |
---|
255 | ub = - t * b1t * ( pb - 1.0D+00 - rho * b2 ) / b1 - rho * t * b2t |
---|
256 | |
---|
257 | hb = pb + ub |
---|
258 | ! |
---|
259 | ! An incorrect version of this equation began: |
---|
260 | ! |
---|
261 | ! cvb = 2.0D+00 * ub + ( pb - 1.0D+00 ) & |
---|
262 | ! |
---|
263 | ! and caused me no end of trouble. My fault, JVB, 03 February 2002 |
---|
264 | ! |
---|
265 | cvb = 2.0D+00 * ub + ( z0 - 1.0D+00 ) & |
---|
266 | * ( ( t * b1t / b1 )**2 - t**2 * b1tt / b1 ) & |
---|
267 | - rho * t**2 * ( b2tt - gamma * b1tt ) - ( t * b1t / b1 )**2 * y * dz0 |
---|
268 | |
---|
269 | dpdtb = pb / t + rho * ( 0.25D+00 * ( dz0 + 4.0D+00 * ( b2 / b1 - gamma ) ) & |
---|
270 | * b1t + b2t - b2 / b1 * b1t ) |
---|
271 | |
---|
272 | sb = ub - ab |
---|
273 | |
---|
274 | dpdrb = pb + y * ( dz0 + 4.0D+00 * ( b2 / b1 - gamma ) ) |
---|
275 | ! |
---|
276 | ! Assign dimensions. |
---|
277 | ! |
---|
278 | ab = gascon() * t * ab |
---|
279 | cvb = gascon() * cvb |
---|
280 | dpdrb = gascon() * t * dpdrb |
---|
281 | dpdtb = gascon() * t * rho * dpdtb |
---|
282 | gb = gascon() * t * gb |
---|
283 | hb = gascon() * t * hb |
---|
284 | pb = gascon() * t * rho * pb |
---|
285 | sb = gascon() * sb |
---|
286 | ub = gascon() * t * ub |
---|
287 | |
---|
288 | return |
---|
289 | end subroutine base |
---|
290 | |
---|
291 | subroutine bb ( t, b1, b2, b1t, b2t, b1tt, b2tt ) |
---|
292 | ! |
---|
293 | !******************************************************************************* |
---|
294 | ! |
---|
295 | !! BB calculates the B's of equations 3 and 4. |
---|
296 | ! |
---|
297 | ! |
---|
298 | ! Discussion: |
---|
299 | ! |
---|
300 | ! Here |
---|
301 | ! |
---|
302 | ! b(T) = b1 * ln(T/T0) + sum(j=0,1,3,5) b(j)*(T0/T)**j (Equation 3) |
---|
303 | ! |
---|
304 | ! Bbar(T) = sum(j=0,1,2,4) B(j)*(T0/T)**j (Equation 4). |
---|
305 | ! |
---|
306 | ! where |
---|
307 | ! |
---|
308 | ! T0 = 647.073 K |
---|
309 | ! |
---|
310 | ! and the coefficients b(j) and B(j) are |
---|
311 | ! |
---|
312 | ! j b(j) B(j) |
---|
313 | ! -- ----------- ---------- |
---|
314 | ! 0 0.7478629 1.1278334 |
---|
315 | ! 1 -0.3540782 -0.5944001 |
---|
316 | ! 2 0 -5.010996 |
---|
317 | ! 3 0.007159876 0 |
---|
318 | ! 4 0 0.63684256 |
---|
319 | ! 5 -0.003528426 0 |
---|
320 | ! |
---|
321 | ! |
---|
322 | ! Reference: |
---|
323 | ! |
---|
324 | ! Lester Haar, John Gallagher and George Kell, |
---|
325 | ! NBS/NRC Steam Tables: |
---|
326 | ! Thermodynamic and Transport Properties and Computer Programs |
---|
327 | ! for Vapor and Liquid States of Water in SI Units, |
---|
328 | ! Hemisphere Publishing Corporation, Washington, 1984, |
---|
329 | ! TJ270.H3 |
---|
330 | ! |
---|
331 | ! C A Meyer, R B McClintock, G J Silvestri, R C Spencer, |
---|
332 | ! ASME Steam Tables: Thermodynamic and Transport Properties of Steam, |
---|
333 | ! American Society of Mechanical Engineers, 1967. |
---|
334 | ! |
---|
335 | ! Parameters: |
---|
336 | ! |
---|
337 | ! Input, double precision T, the temperature, in degrees Kelvin. |
---|
338 | ! |
---|
339 | ! Output, double precision B1, the coefficient b from equation 3, |
---|
340 | ! in CM3/G. |
---|
341 | ! |
---|
342 | ! Output, double precision B2, the coefficient Bbar from equation 4, |
---|
343 | ! in CM3/G. |
---|
344 | ! |
---|
345 | ! Output, double precision B1T, the derivative dB1/dT, |
---|
346 | ! in (CM3)/(G Degrees Kelvin). |
---|
347 | ! |
---|
348 | ! Output, double precision B2T, the derivative dB2/dT, |
---|
349 | ! in (CM3)/(G Degrees Kelvin). |
---|
350 | ! |
---|
351 | ! Output, double precision B1TT, the second derivative of B1 with |
---|
352 | ! respect to T, in (CM3)/(G (Degrees Kelvin)**2 ). |
---|
353 | ! |
---|
354 | ! Output, double precision B2TT, the second derivative of B2 with |
---|
355 | ! respect to T, in (CM3)/(G (Degrees Kelvin)**2 ). |
---|
356 | ! |
---|
357 | implicit none |
---|
358 | ! |
---|
359 | double precision b1 |
---|
360 | double precision b1t |
---|
361 | double precision b1tt |
---|
362 | double precision b2 |
---|
363 | double precision b2t |
---|
364 | double precision b2tt |
---|
365 | double precision, parameter, dimension ( 10 ) :: bp = (/ & |
---|
366 | 0.7478629D+00, -0.3540782D+00, 0.0D+00, 0.0D+00, & |
---|
367 | 0.007159876D+00, 0.0D+00, -0.003528426D+00, 0.0D+00, & |
---|
368 | 0.0D+00, 0.0D+00 /) |
---|
369 | double precision, parameter, dimension ( 10 ) :: bq = (/ & |
---|
370 | 1.1278334D+00, 0.0D+00, -0.5944001D+00, -5.010996D+00, & |
---|
371 | 0.0D+00, 0.63684256D+00, 0.0D+00, 0.0D+00, & |
---|
372 | 0.0D+00, 0.0D+00 /) |
---|
373 | integer i |
---|
374 | double precision t |
---|
375 | double precision, parameter :: t_ref = 647.073D+00 |
---|
376 | double precision v(10) |
---|
377 | ! |
---|
378 | ! Refuse to handle zero or negative temperatures. |
---|
379 | ! |
---|
380 | if ( t <= 0.0D+00 ) then |
---|
381 | write ( *, '(a)' ) ' ' |
---|
382 | write ( *, '(a)' ) 'BB - Fatal error!' |
---|
383 | write ( *, '(a)' ) ' The input temperature T must be positive.' |
---|
384 | write ( *, '(a,g14.6)' ) ' Input value was T = ', t |
---|
385 | stop |
---|
386 | end if |
---|
387 | ! |
---|
388 | ! Set V(I) = ( T_REF / T )**(I-1). |
---|
389 | ! |
---|
390 | v(1) = 1.0D+00 |
---|
391 | do i = 2, 10 |
---|
392 | v(i) = v(i-1) * t_ref / t |
---|
393 | end do |
---|
394 | ! |
---|
395 | ! Set B1, B1T, B1TT. |
---|
396 | ! |
---|
397 | b1 = bp(1) + bp(2) * log ( 1.0D+00 / v(2) ) |
---|
398 | b1t = bp(2) * v(2) / t_ref |
---|
399 | b1tt = 0.0D+00 |
---|
400 | do i = 3, 10 |
---|
401 | b1 = b1 + bp(i) * v(i-1) |
---|
402 | b1t = b1t - dble ( i - 2 ) * bp(i) * v(i-1) / t |
---|
403 | b1tt = b1tt + bp(i) * dble ( i - 2 )**2 * v(i-1) / t**2 |
---|
404 | end do |
---|
405 | |
---|
406 | b1tt = b1tt - ( b1t / t ) |
---|
407 | ! |
---|
408 | ! Set B2, B2T, B2TT. |
---|
409 | ! |
---|
410 | b2 = bq(1) |
---|
411 | b2t = 0.0D+00 |
---|
412 | b2tt = 0.0D+00 |
---|
413 | do i = 3, 10 |
---|
414 | b2 = b2 + bq(i) * v(i-1) |
---|
415 | b2t = b2t - dble ( i - 2 ) * bq(i) * v(i-1) / t |
---|
416 | b2tt = b2tt + bq(i) * dble ( i - 2 )**2 * v(i-1) / t**2 |
---|
417 | end do |
---|
418 | |
---|
419 | b2tt = b2tt - ( b2t / t ) |
---|
420 | |
---|
421 | return |
---|
422 | end subroutine bb |
---|
423 | |
---|
424 | |
---|
425 | subroutine ideal ( t, ai, cpi, cvi, gi, hi, si, ui ) |
---|
426 | ! |
---|
427 | !******************************************************************************* |
---|
428 | ! |
---|
429 | !! IDEAL computes ideal gas thermodynamic properties of water. |
---|
430 | ! |
---|
431 | ! |
---|
432 | ! Discussion: |
---|
433 | ! |
---|
434 | ! Values for thermodynamic properties of water in the ideal |
---|
435 | ! gas state were reported by Woolley. The formula for the ideal gas |
---|
436 | ! term of the Helmholtz function approximates a term by term summation of |
---|
437 | ! contributions from each of the rotation and vibration states. |
---|
438 | ! The formula, equation #6 in the reference, is: |
---|
439 | ! |
---|
440 | ! A(ideal)(T) = -R * T * ( 1 + ( C(1)/Tr + C(2) ) * ln(Tr) |
---|
441 | ! + Sum ( 3 <= I <= 18) C(I) * Tr**(I-6) |
---|
442 | ! |
---|
443 | ! where Tr=T/100 K. The C(i) are tabulated coefficients. Equation |
---|
444 | ! 6 can be used for temperatures below 3000 K, and is accurate to |
---|
445 | ! within the tolerance of the gas constant for 50<=T<=2000 K. |
---|
446 | ! |
---|
447 | ! Reference: |
---|
448 | ! |
---|
449 | ! Lester Haar, John Gallagher and George Kell, |
---|
450 | ! NBS/NRC Steam Tables: |
---|
451 | ! Thermodynamic and Transport Properties and Computer Programs |
---|
452 | ! for Vapor and Liquid States of Water in SI Units, |
---|
453 | ! Hemisphere Publishing Corporation, Washington, 1984, |
---|
454 | ! TJ270.H3 |
---|
455 | ! |
---|
456 | ! Parameters: |
---|
457 | ! |
---|
458 | ! Input, double precision T, the temperature, in degrees Kelvin. |
---|
459 | ! |
---|
460 | ! Output, double precision AI, the Helmholtz function, in KJ/kg. |
---|
461 | ! |
---|
462 | ! Output, double precision CPI, the heat capacity at constant pressure, |
---|
463 | ! in KJ/(kg degrees Kelvin). |
---|
464 | ! |
---|
465 | ! Output, double precision CVI, the heat capacity at constant volume, |
---|
466 | ! in KJ/(kg degrees Kelvin). |
---|
467 | ! |
---|
468 | ! Output, double precision GI, the Gibbs free energy, in KJ/kg. |
---|
469 | ! |
---|
470 | ! Output, double precision HI, the enthalpy, in KJ/kg. |
---|
471 | ! |
---|
472 | ! Output, double precision SI, the entropy, in KJ/(kg degrees Kelvin). |
---|
473 | ! |
---|
474 | ! Output, double precision UI, the internal energy, in KJ/kg. |
---|
475 | ! |
---|
476 | implicit none |
---|
477 | ! |
---|
478 | double precision ai |
---|
479 | double precision, parameter, dimension ( 18 ) :: c = (/ & |
---|
480 | 19.730271018D+00, 20.9662681977D+00, -0.483429455355D+00, & |
---|
481 | 6.05743189245D+00, 22.56023885D+00, -9.87532442D+00, & |
---|
482 | -4.3135538513D+00, 0.458155781D+00, -0.047754901883D+00, & |
---|
483 | 0.0041238460633D+00, -0.00027929052852D+00, 0.14481695261D-04, & |
---|
484 | -0.56473658748D-06, 0.16200446D-07, -0.3303822796D-09, & |
---|
485 | 0.451916067368D-11, -0.370734122708D-13, 0.137546068238D-15 /) |
---|
486 | double precision cpi |
---|
487 | double precision cvi |
---|
488 | double precision gascon |
---|
489 | double precision gi |
---|
490 | double precision hi |
---|
491 | integer i |
---|
492 | double precision si |
---|
493 | double precision t |
---|
494 | double precision temp |
---|
495 | double precision tt |
---|
496 | double precision ui |
---|
497 | ! |
---|
498 | ! Refuse to handle zero or negative temperatures. |
---|
499 | ! |
---|
500 | if ( t <= 0.0D+00 ) then |
---|
501 | write ( *, '(a)' ) ' ' |
---|
502 | write ( *, '(a)' ) 'IDEAL - Fatal error!' |
---|
503 | write ( *, '(a)' ) ' The input temperature T must be positive.' |
---|
504 | write ( *, '(a,g14.6)' ) ' Input value was T = ', t |
---|
505 | stop |
---|
506 | end if |
---|
507 | |
---|
508 | tt = t / 100.0D+00 |
---|
509 | |
---|
510 | gi = - ( c(1) / tt + c(2) ) * log ( tt ) |
---|
511 | do i = 3, 18 |
---|
512 | gi = gi - c(i) * tt**(i-6) |
---|
513 | end do |
---|
514 | |
---|
515 | hi = c(2) + c(1) * ( 1.0D+00 - log ( tt ) ) / tt |
---|
516 | do i = 3, 18 |
---|
517 | hi = hi + dble ( i - 6 ) * c(i) * tt**(i-6) |
---|
518 | end do |
---|
519 | |
---|
520 | cpi = c(2) - c(1) / tt |
---|
521 | do i = 3, 18 |
---|
522 | cpi = cpi + dble ( ( i - 6 ) * ( i - 5 ) ) * c(i) * tt**(i-6) |
---|
523 | end do |
---|
524 | |
---|
525 | ai = gi - 1.0D+00 |
---|
526 | ui = hi - 1.0D+00 |
---|
527 | cvi = cpi - 1.0D+00 |
---|
528 | si = hi - gi |
---|
529 | ! |
---|
530 | ! Assign dimensions. |
---|
531 | ! |
---|
532 | ai = gascon() * t * ai |
---|
533 | cpi = gascon() * cpi |
---|
534 | cvi = gascon() * cvi |
---|
535 | gi = gascon() * t * gi |
---|
536 | hi = gascon() * t * hi |
---|
537 | si = gascon() * si |
---|
538 | ui = gascon() * t * ui |
---|
539 | |
---|
540 | return |
---|
541 | end subroutine ideal |
---|
542 | |
---|
543 | |
---|
544 | subroutine resid ( t, rho, ar, cvr, dpdrr, dpdtr, gr, hr, pr, sr, ur ) |
---|
545 | ! |
---|
546 | !******************************************************************************* |
---|
547 | ! |
---|
548 | !! RESID calculates residual contributions to thermodynamic quantities. |
---|
549 | ! |
---|
550 | ! |
---|
551 | ! Discussion: |
---|
552 | ! |
---|
553 | ! The residual function consists of 40 terms. The first 36 are |
---|
554 | ! used in a global least squares fit to experimental data. |
---|
555 | ! |
---|
556 | ! Three terms were added that contribute only in the immediate |
---|
557 | ! neighborhood of the critical point |
---|
558 | ! (tk-5) <= T <= (tk+5) C |
---|
559 | ! 0.20 <= rho <= 0.44 g/cm3, |
---|
560 | ! |
---|
561 | ! A single term was added for the region of high pressure and |
---|
562 | ! low temperature: T < 75 C, P > 300 MPa. |
---|
563 | ! |
---|
564 | ! Except in these limited regions, the residual function is |
---|
565 | ! given by the first 36 terms. The equation is |
---|
566 | ! |
---|
567 | ! A(residual)(rho,T)= |
---|
568 | ! sum(i=1 to 36) (g(i)/k(i)) * (T0/T)**(l(i)) (1-exp(-rho))**(k(i)) |
---|
569 | ! + sum(i=37 to 40) g(i)*delta(i)**(k(i)) |
---|
570 | ! * exp(-alpha(i)*delta(i)**(k(i)) - beta(i)*tau(i)**2) |
---|
571 | ! (Equation 5) |
---|
572 | ! |
---|
573 | ! where |
---|
574 | ! |
---|
575 | ! g(i) are coefficients determined by fits to data, |
---|
576 | ! delta(i) are reduced densities (delta(i)=((rho-rho(i))/rho(i)) |
---|
577 | ! tau(i) are reduced temperatures (tau(i)=((T-tau(i))/tau(i)) |
---|
578 | ! rho(i) are specified densities. |
---|
579 | ! tau(i) are specified temperatures. |
---|
580 | ! The k(i) and l(i) are specified integers. |
---|
581 | ! |
---|
582 | ! Modified: |
---|
583 | ! |
---|
584 | ! 22 November 1998 |
---|
585 | ! |
---|
586 | ! Reference: |
---|
587 | ! |
---|
588 | ! Lester Haar, John Gallagher and George Kell, |
---|
589 | ! NBS/NRC Steam Tables: |
---|
590 | ! Thermodynamic and Transport Properties and Computer Programs |
---|
591 | ! for Vapor and Liquid States of Water in SI Units, |
---|
592 | ! Hemisphere Publishing Corporation, Washington, 1984, |
---|
593 | ! TJ270.H3 |
---|
594 | ! |
---|
595 | ! C A Meyer, R B McClintock, G J Silvestri, R C Spencer, |
---|
596 | ! ASME Steam Tables: Thermodynamic and Transport Properties of Steam, |
---|
597 | ! American Society of Mechanical Engineers, 1967. |
---|
598 | ! |
---|
599 | ! Parameters: |
---|
600 | ! |
---|
601 | ! Input, double precision T, the temperature, in degrees Kelvin. |
---|
602 | ! |
---|
603 | ! Input, double precision RHO, the density, in G/CM3. |
---|
604 | ! |
---|
605 | ! Output, double precision AR, the residual contribution to the |
---|
606 | ! Helmholtz function, in KJ/kg. |
---|
607 | ! |
---|
608 | ! Output, double precision CVR, the residual contribution to the |
---|
609 | ! isochoric (constant volume) heat capacity, in KJ/(kg degrees Kelvin). |
---|
610 | ! |
---|
611 | ! Output, double precision DPDRR, the residual contribution to |
---|
612 | ! the partial derivative dP(T,RHO)/dRHO, with T held fixed, in |
---|
613 | ! (MegaPascals CM3)/G. |
---|
614 | ! |
---|
615 | ! Output, double precision DPDTR, the residual contribution to |
---|
616 | ! the partial derivative dP(T,RHO)/dT, with RHO held fixed, |
---|
617 | ! in MegaPascals/degrees Kelvin. |
---|
618 | ! |
---|
619 | ! Output, double precision GR, the residual contribution to the Gibbs |
---|
620 | ! function, in KJ/kg. |
---|
621 | ! |
---|
622 | ! Output, double precision HR, the residual contribution to the |
---|
623 | ! enthalpy, in KJ/kg. |
---|
624 | ! |
---|
625 | ! Output, double precision PR, the residual contribution to the pressure, |
---|
626 | ! in MegaPascals. |
---|
627 | ! |
---|
628 | ! Output, double precision SR, the residual contribution to the entropy, |
---|
629 | ! in KJ/(kg degrees Kelvin). |
---|
630 | ! |
---|
631 | ! Output, double precision UR, the residual contribution to the |
---|
632 | ! internal energy, in KJ/kg. |
---|
633 | ! |
---|
634 | implicit none |
---|
635 | ! |
---|
636 | double precision, parameter, dimension ( 4 ) :: aad = (/ & |
---|
637 | 34.0D+00, 40.0D+00, 30.0D+00, 1050.0D+00 /) |
---|
638 | double precision, parameter, dimension ( 4 ) :: aat = (/ & |
---|
639 | 20000.0D+00, 20000.0D+00, 40000.0D+00, 25.0D+00 /) |
---|
640 | double precision, parameter, dimension ( 4 ) :: adz = (/ & |
---|
641 | 0.319D+00, 0.319D+00, 0.319D+00, 1.55D+00 /) |
---|
642 | double precision ar |
---|
643 | double precision att |
---|
644 | double precision, parameter, dimension ( 4 ) :: atz = (/ & |
---|
645 | 640.0D+00, 640.0D+00, 641.6D+00, 270.0D+00 /) |
---|
646 | double precision cvr |
---|
647 | double precision dadt |
---|
648 | double precision ddz |
---|
649 | double precision del |
---|
650 | double precision dex |
---|
651 | double precision dfdt |
---|
652 | double precision dpdrr |
---|
653 | double precision dpdtr |
---|
654 | double precision e |
---|
655 | double precision errtol |
---|
656 | double precision ex0 |
---|
657 | double precision ex1 |
---|
658 | double precision ex2 |
---|
659 | double precision fct |
---|
660 | double precision, parameter, dimension ( 40 ) :: g = (/ & |
---|
661 | -530.62968529023D+00, 0.22744901424408D+04, 0.78779333020687D+03, & |
---|
662 | -69.830527374994D+00, 0.17863832875422D+05,-0.39514731563338D+05, & |
---|
663 | 0.33803884280753D+05, -0.13855050202703D+05,-0.25637436613260D+06, & |
---|
664 | 0.48212575981415D+06, -0.34183016969660D+06, 0.12223156417448D+06, & |
---|
665 | 0.11797433655832D+07, -0.21734810110373D+07, 0.10829952168620D+07, & |
---|
666 | -0.25441998064049D+06, -0.31377774947767D+07, 0.52911910757704D+07, & |
---|
667 | -0.13802577177877D+07, -0.25109914369001D+06, 0.46561826115608D+07, & |
---|
668 | -0.72752773275387D+07, 0.41774246148294D+06, 0.14016358244614D+07, & |
---|
669 | -0.31555231392127D+07, 0.47929666384584D+07, 0.40912664781209D+06, & |
---|
670 | -0.13626369388386D+07, 0.69625220862664D+06,-0.10834900096447D+07, & |
---|
671 | -0.22722827401688D+06, 0.38365486000660D+06, 0.68833257944332D+04, & |
---|
672 | 0.21757245522644D+05, -0.26627944829770D+04,-0.70730418082074D+05, & |
---|
673 | -0.225D+00, -1.68D+00, 0.055D+00, -93.0D+00 /) |
---|
674 | double precision gascon |
---|
675 | double precision gr |
---|
676 | double precision hr |
---|
677 | integer i |
---|
678 | integer, parameter, dimension ( 40 ) :: ii = (/ & |
---|
679 | 0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6, & |
---|
680 | 8,8,8,8,2,2,0,4,2,2,2,4 /) |
---|
681 | integer j |
---|
682 | integer, parameter, dimension ( 40 ) :: jj = (/ & |
---|
683 | 2,3,5,7,2,3,5,7,2,3,5,7,2,3,5,7,2,3,5,7,2,3,5,7,2,3,5,7,& |
---|
684 | 2,3,5,7,1,4,4,4,0,2,0,0 /) |
---|
685 | integer k |
---|
686 | integer l |
---|
687 | integer nc |
---|
688 | double precision pr |
---|
689 | double precision q10 |
---|
690 | double precision q20 |
---|
691 | double precision q2a |
---|
692 | double precision q5t |
---|
693 | double precision qm |
---|
694 | double precision qp |
---|
695 | double precision qr(11) |
---|
696 | double precision qt(10) |
---|
697 | double precision rho |
---|
698 | double precision sr |
---|
699 | double precision, parameter :: s_ref = 7.6180720166752D+00 |
---|
700 | double precision t |
---|
701 | double precision, parameter :: t_ref = 647.073D+00 |
---|
702 | double precision tau |
---|
703 | double precision tx |
---|
704 | double precision, parameter :: u_ref = - 4328.4549774261D+00 |
---|
705 | double precision ur |
---|
706 | double precision v |
---|
707 | ! |
---|
708 | errtol = sqrt ( epsilon ( errtol ) ) |
---|
709 | ! |
---|
710 | ! Refuse to handle zero or negative temperatures. |
---|
711 | ! |
---|
712 | if ( t <= 0.0D+00 ) then |
---|
713 | write ( *, '(a)' ) ' ' |
---|
714 | write ( *, '(a)' ) 'RESID - Fatal error!' |
---|
715 | write ( *, '(a)' ) ' The input temperature T must be positive.' |
---|
716 | write ( *, '(a,g14.6)' ) ' Input value was T = ', t |
---|
717 | stop |
---|
718 | end if |
---|
719 | ! |
---|
720 | ! Refuse to handle zero or negative density. |
---|
721 | ! |
---|
722 | if ( rho <= 0.0D+00 ) then |
---|
723 | write ( *, '(a)' ) ' ' |
---|
724 | write ( *, '(a)' ) 'RESID - Fatal error!' |
---|
725 | write ( *, '(a)' ) ' The input density RHO must be positive.' |
---|
726 | write ( *, '(a,g14.6)' ) ' Input value was RHO = ', rho |
---|
727 | stop |
---|
728 | end if |
---|
729 | |
---|
730 | nc = 36 |
---|
731 | dpdrr = 0.0D+00 |
---|
732 | pr = 0.0D+00 |
---|
733 | ar = 0.0D+00 |
---|
734 | dadt = 0.0D+00 |
---|
735 | cvr = 0.0D+00 |
---|
736 | dpdtr = 0.0D+00 |
---|
737 | |
---|
738 | ex0 = - rho |
---|
739 | ! ex0 = max ( ex0, - 225.0D+00 ) |
---|
740 | ! ex0 = min ( ex0, 225.0D+00 ) |
---|
741 | e = exp ( ex0 ) |
---|
742 | |
---|
743 | q10 = rho * rho * e |
---|
744 | q20 = 1.0D+00 - e |
---|
745 | |
---|
746 | qr(1) = 0.0D+00 |
---|
747 | qr(2) = q10 |
---|
748 | do i = 2, 10 |
---|
749 | qr(i+1) = qr(i) * q20 |
---|
750 | end do |
---|
751 | |
---|
752 | v = t_ref / t |
---|
753 | qt(1) = t / t_ref |
---|
754 | do i = 2, 10 |
---|
755 | qt(i) = qt(i-1) * v |
---|
756 | end do |
---|
757 | |
---|
758 | do i = 1, nc |
---|
759 | |
---|
760 | k = ii(i) + 1 |
---|
761 | l = jj(i) |
---|
762 | qp = g(i) * qr(k+1) * qt(l+1) |
---|
763 | pr = pr + qp |
---|
764 | |
---|
765 | dpdrr = dpdrr + ( 2.0D+00 / rho - ( 1.0D+00 - e * dble ( k - 1 ) / & |
---|
766 | ( 1.0D+00 - e ) ) ) * qp |
---|
767 | |
---|
768 | ar = ar + g(i) * qr(k+2) * qt(l+1) / ( rho**2 * e * dble ( k ) & |
---|
769 | * gascon ( ) * t ) |
---|
770 | |
---|
771 | dfdt = ( 1.0D+00 - e )**k * dble ( 1 - l ) * qt(l+2) / t_ref / dble ( k ) |
---|
772 | |
---|
773 | dadt = dadt + g(i) * dfdt |
---|
774 | |
---|
775 | dpdtr = dpdtr + g(i) * dfdt * rho**2 * e * dble ( k ) / ( 1.0D+00 - e ) |
---|
776 | |
---|
777 | cvr = cvr + g(i) * dble ( l ) * dfdt / gascon() |
---|
778 | |
---|
779 | end do |
---|
780 | |
---|
781 | qp = 0.0D+00 |
---|
782 | q2a = 0.0D+00 |
---|
783 | |
---|
784 | do j = 37, 40 |
---|
785 | |
---|
786 | k = ii(j) |
---|
787 | ddz = adz(j-36) |
---|
788 | del = rho / ddz - 1.0D+00 |
---|
789 | |
---|
790 | if ( abs ( del ) < errtol ) then |
---|
791 | del = errtol |
---|
792 | end if |
---|
793 | |
---|
794 | ex1 = - aad(j-36) * del**k |
---|
795 | ! ex1 = max ( ex1, - 225.0D+00 ) |
---|
796 | ! ex1 = min ( ex1, 225.0D+00 ) |
---|
797 | dex = exp ( ex1 ) * del**jj(j) |
---|
798 | |
---|
799 | att = aat(j-36) |
---|
800 | tx = atz(j-36) |
---|
801 | tau = ( t / tx ) - 1.0D+00 |
---|
802 | |
---|
803 | ex2 = - att * tau**2 |
---|
804 | ! ex2 = max ( ex2, - 225.0D+00 ) |
---|
805 | ! ex2 = min ( ex2, 225.0D+00 ) |
---|
806 | q10 = dex * exp ( ex2 ) |
---|
807 | |
---|
808 | qm = dble ( jj(j) ) / del - dble ( k ) * aad(j-36) * del**(k-1) |
---|
809 | fct = qm * rho**2 * q10 / ddz |
---|
810 | |
---|
811 | q5t = fct * ( 2.0D+00 / rho + qm / ddz ) - ( rho / ddz )**2 * q10 * & |
---|
812 | ( dble ( jj(j) ) / del**2 + dble ( k * ( k - 1 ) ) * aad(j-36) * & |
---|
813 | del**(k-2) ) |
---|
814 | |
---|
815 | dpdrr = dpdrr + q5t * g(j) |
---|
816 | qp = qp + g(j) * fct |
---|
817 | dadt = dadt - 2.0D+00 * g(j) * att * tau * q10 / tx |
---|
818 | dpdtr = dpdtr - 2.0D+00 * g(j) * att * tau * fct / tx |
---|
819 | |
---|
820 | q2a = q2a + t * g(j) * att * ( 4.0D+00 * ex2 + 2.0D+00 ) * q10 / tx**2 |
---|
821 | |
---|
822 | ar = ar + q10 * g(j) / ( gascon() * t ) |
---|
823 | |
---|
824 | end do |
---|
825 | |
---|
826 | cvr = cvr + q2a / gascon() |
---|
827 | pr = pr + qp |
---|
828 | sr = - dadt / gascon() |
---|
829 | ur = ar + sr |
---|
830 | ! |
---|
831 | ! Assign dimensions. |
---|
832 | ! |
---|
833 | ar = gascon() * t * ar |
---|
834 | cvr = gascon() * cvr |
---|
835 | sr = gascon() * sr |
---|
836 | ur = gascon() * t * ur |
---|
837 | ! |
---|
838 | ! Adjust energies. |
---|
839 | ! |
---|
840 | ar = ar + gascon ( ) * t * s_ref - gascon ( ) * u_ref |
---|
841 | sr = sr - gascon ( ) * s_ref |
---|
842 | ur = ur - gascon ( ) * u_ref |
---|
843 | |
---|
844 | gr = ar + pr / rho |
---|
845 | hr = ur + pr / rho |
---|
846 | |
---|
847 | return |
---|
848 | end subroutine resid |
---|
849 | |
---|
850 | subroutine psat_H2O ( t, p ) |
---|
851 | ! |
---|
852 | !******************************************************************************* |
---|
853 | ! |
---|
854 | !! PSAT_H2O makes a rough estimate of the vapor pressure. |
---|
855 | ! |
---|
856 | ! |
---|
857 | ! Discussion: |
---|
858 | ! |
---|
859 | ! The calculation agrees with tabulated data to within |
---|
860 | ! 0.02% for temperature to within a degree or so of the critical |
---|
861 | ! temperature. The approximate vapor pressure can be refined |
---|
862 | ! by imposing the condition that the Gibbs functions of the vapor |
---|
863 | ! and liquid phases be equal. |
---|
864 | ! |
---|
865 | ! Modified: |
---|
866 | ! |
---|
867 | ! 21 November 1998 |
---|
868 | ! |
---|
869 | ! Reference: |
---|
870 | ! |
---|
871 | ! Lester Haar, John Gallagher and George Kell, |
---|
872 | ! NBS/NRC Steam Tables: |
---|
873 | ! Thermodynamic and Transport Properties and Computer Programs |
---|
874 | ! for Vapor and Liquid States of Water in SI Units, |
---|
875 | ! Hemisphere Publishing Corporation, Washington, 1984, |
---|
876 | ! TJ270.H3 |
---|
877 | ! |
---|
878 | ! C A Meyer, R B McClintock, G J Silvestri, R C Spencer, |
---|
879 | ! ASME Steam Tables: Thermodynamic and Transport Properties of Steam, |
---|
880 | ! American Society of Mechanical Engineers, 1967. |
---|
881 | ! |
---|
882 | ! Parameters: |
---|
883 | ! |
---|
884 | ! Input, double precision T, the temperature, in degrees Kelvin. |
---|
885 | ! |
---|
886 | ! Output, double precision P, the vapor pressure, in MegaPascals. |
---|
887 | ! |
---|
888 | implicit none |
---|
889 | ! |
---|
890 | double precision, parameter, dimension ( 8 ) :: a = (/ & |
---|
891 | -7.8889166D+00, 2.5514255D+00, -6.716169D+00, 33.239495D+00, & |
---|
892 | -105.38479D+00, 174.35319D+00, -148.39348D+00, 48.631602D+00 /) |
---|
893 | double precision b |
---|
894 | integer i |
---|
895 | double precision p |
---|
896 | double precision q |
---|
897 | double precision t |
---|
898 | double precision, parameter :: t_ref = 647.25D+00 |
---|
899 | double precision v |
---|
900 | double precision w |
---|
901 | double precision z |
---|
902 | ! |
---|
903 | ! Refuse to handle zero or negative temperatures. |
---|
904 | ! |
---|
905 | if ( t <= 0.0D+00 ) then |
---|
906 | write ( *, '(a)' ) ' ' |
---|
907 | write ( *, '(a)' ) 'PSAT_H2O - Fatal error!' |
---|
908 | write ( *, '(a)' ) ' The input temperature T must be positive.' |
---|
909 | write ( *, '(a,g14.6)' ) ' Input value was T = ', t |
---|
910 | stop |
---|
911 | end if |
---|
912 | |
---|
913 | if ( t <= 314.0D+00 ) then |
---|
914 | |
---|
915 | p = 0.1D+00 * exp ( 6.3573118D+00 - 8858.843D+00 / t & |
---|
916 | + 607.56335D+00 * t**( -0.6D+00 ) ) |
---|
917 | |
---|
918 | else |
---|
919 | |
---|
920 | v = t / t_ref |
---|
921 | w = abs ( 1.0D+00 - v ) |
---|
922 | b = 0.0D+00 |
---|
923 | do i = 1, 8 |
---|
924 | z = i |
---|
925 | b = b + a(i) * w**( ( z + 1.0D+00 ) / 2.0D+00 ) |
---|
926 | end do |
---|
927 | |
---|
928 | q = b / v |
---|
929 | p = 22.093D+00 * exp ( q ) |
---|
930 | |
---|
931 | end if |
---|
932 | |
---|
933 | return |
---|
934 | end subroutine psat_H2O |
---|
935 | |
---|
936 | |
---|
937 | subroutine tdpsdt ( t, dp ) |
---|
938 | ! |
---|
939 | !******************************************************************************* |
---|
940 | ! |
---|
941 | !! TDPSDT computes the quantity T * dP(Sat)/dT. |
---|
942 | ! |
---|
943 | ! |
---|
944 | ! Discussion: |
---|
945 | ! |
---|
946 | ! Here T is the temperature and P(Sat) is the vapor pressure. |
---|
947 | ! It is used by TSAT_EST and TSAT. |
---|
948 | ! |
---|
949 | ! Reference: |
---|
950 | ! |
---|
951 | ! Lester Haar, John Gallagher and George Kell, |
---|
952 | ! NBS/NRC Steam Tables: |
---|
953 | ! Thermodynamic and Transport Properties and Computer Programs |
---|
954 | ! for Vapor and Liquid States of Water in SI Units, |
---|
955 | ! Hemisphere Publishing Corporation, Washington, 1984, |
---|
956 | ! TJ270.H3 |
---|
957 | ! |
---|
958 | ! C A Meyer, R B McClintock, G J Silvestri, R C Spencer, |
---|
959 | ! ASME Steam Tables: Thermodynamic and Transport Properties of Steam, |
---|
960 | ! American Society of Mechanical Engineers, 1967. |
---|
961 | ! |
---|
962 | ! Parameters: |
---|
963 | ! |
---|
964 | ! Input, double precision T, the temperature, in degrees Kelvin. |
---|
965 | ! |
---|
966 | ! Output, double precision DP, the value T*(dP(Sat)/dT), |
---|
967 | ! in MegaPascals. |
---|
968 | ! |
---|
969 | implicit none |
---|
970 | ! |
---|
971 | double precision, parameter, dimension ( 8 ) :: a = (/ & |
---|
972 | -7.8889166D+00, 2.5514255D+00, -6.716169D+00, 33.239495D+00, & |
---|
973 | -105.38479D+00, 174.35319D+00, -148.39348D+00, 48.631602D+00 /) |
---|
974 | double precision b |
---|
975 | double precision c |
---|
976 | double precision dp |
---|
977 | integer i |
---|
978 | double precision q |
---|
979 | double precision t |
---|
980 | double precision, parameter :: t_ref = 647.25D+00 |
---|
981 | double precision v |
---|
982 | double precision w |
---|
983 | double precision y |
---|
984 | double precision z |
---|
985 | ! |
---|
986 | ! Refuse to handle zero or negative temperatures. |
---|
987 | ! |
---|
988 | if ( t <= 0.0D+00 ) then |
---|
989 | write ( *, '(a)' ) ' ' |
---|
990 | write ( *, '(a)' ) 'TDPSDT - Fatal error!' |
---|
991 | write ( *, '(a)' ) ' The input temperature T must be positive.' |
---|
992 | write ( *, '(a,g14.6)' ) ' Input value was T = ', t |
---|
993 | stop |
---|
994 | end if |
---|
995 | |
---|
996 | v = t / t_ref |
---|
997 | w = 1.0D+00 - v |
---|
998 | b = 0.0D+00 |
---|
999 | c = 0.0D+00 |
---|
1000 | do i = 1, 8 |
---|
1001 | z = dble ( i + 1 ) / 2.0D+00 |
---|
1002 | y = a(i) * w**z |
---|
1003 | c = c + ( y / w ) * ( 0.5D+00 - 0.5D+00 * dble ( i ) - 1.0D+00 / v ) |
---|
1004 | b = b + y |
---|
1005 | end do |
---|
1006 | |
---|
1007 | q = b / v |
---|
1008 | dp = 22.093D+00 * exp ( q ) * c |
---|
1009 | |
---|
1010 | return |
---|
1011 | end subroutine tdpsdt |
---|
1012 | |
---|
1013 | |
---|
1014 | |
---|
1015 | subroutine therm ( t, rho, a, cjth, cjtt, cp, cv, dpdr, dpdt, g, h, p, s, u ) |
---|
1016 | ! |
---|
1017 | !******************************************************************************* |
---|
1018 | ! |
---|
1019 | !! THERM calculates thermodynamic functions given temperature and density. |
---|
1020 | ! |
---|
1021 | ! |
---|
1022 | ! Discussion: |
---|
1023 | ! |
---|
1024 | ! Thermodynamic values were calculated from an analytic equation |
---|
1025 | ! that approximates the Helmholtz function (specific Helmholtz |
---|
1026 | ! energy) for ordinary water and steam, of the form A=A(rho,T) |
---|
1027 | ! where A is the Helmholtz function, rho the density, and T |
---|
1028 | ! the absolute (thermodynamic) temperature. Any thermodynamic |
---|
1029 | ! value for any state, liquid, vapor or metastable, may be |
---|
1030 | ! calculated by differentiation of this equation in accord with |
---|
1031 | ! the first and second laws of thermodynamics. |
---|
1032 | ! |
---|
1033 | ! The International Association for the Properties of Steam |
---|
1034 | ! has provisionally accepted this formulation for the range |
---|
1035 | ! 273.15 <= T <= 1273.15 degrees Kelvin, where, for 423.15 <= T, |
---|
1036 | ! the maximum pressure is Pmax = 1500 MPa = 15000 bar, and for |
---|
1037 | ! 273.15 <= T < 423.15, the maximum pressure is |
---|
1038 | ! Pmax = 100 * (5 + (T-273.15)/15) MPa. |
---|
1039 | ! |
---|
1040 | ! Close to the critical point, a small region is excluded: |
---|
1041 | ! Abs(T-Tk) < 1, abs((rho-rhok)/rhok) < 0.3. |
---|
1042 | ! |
---|
1043 | ! The equation has a wider useful range, namely, fluid states |
---|
1044 | ! of pure, undissociated water and steam defined by |
---|
1045 | ! 260 <= T <= 2500 K and 0 <= P <= 3000 MPa. |
---|
1046 | ! |
---|
1047 | ! Thermodynamic property values for specific volume, density, |
---|
1048 | ! specific internal energy, specific enthalpy, and specific |
---|
1049 | ! entropy of water and steam were tabulated over the range |
---|
1050 | ! 0 <= t <= 2000 C, 0 <= P <= 3000 MPa. The reference |
---|
1051 | ! state is the liquid at the triple point, for which the |
---|
1052 | ! internal energy and entropy have been assigned the value zero. |
---|
1053 | ! |
---|
1054 | ! Thermodynamic quantities are determined from the Helmholtz function |
---|
1055 | ! A(rho,T), which is computed as the sum of three terms: |
---|
1056 | ! |
---|
1057 | ! A(rho,T) = A(base)(rho,T) + A(residual)(rho,T) + A(ideal)(T) |
---|
1058 | ! (Equation 1) |
---|
1059 | ! |
---|
1060 | ! Because A(rho,T) is everywhere single valued and analytic, |
---|
1061 | ! we can derive closed form relations for all other properties. |
---|
1062 | ! In the following, unless otherwise indicated, the independent |
---|
1063 | ! variables are temperature T and density RHO, and differentiation |
---|
1064 | ! with respect to one variable is to imply that the other is fixed. |
---|
1065 | ! |
---|
1066 | ! Pressure: P = RHO**2 * dA/dRHO |
---|
1067 | ! Density derivative: dP/dRHO = 2*P/RHO + RHO**2 * d2A/dRHO2 |
---|
1068 | ! Temperature derivative: dP/dT = RHO**2 * d2A/(dRHO dT) |
---|
1069 | ! Specific entropy: S = - dA/dT |
---|
1070 | ! Specific internal energy: U = A + T*S |
---|
1071 | ! Specific enthalpy: H = U + P/RHO |
---|
1072 | ! Specific heat capacity |
---|
1073 | ! at constant volume: Cv = - T * d2A/dT2 |
---|
1074 | ! Specific Gibbs function: G = A + P/RHO |
---|
1075 | ! Specific heat capacity |
---|
1076 | ! at constant pressure: Cp = Cv + (T*(dP/dT)**2)/(RHO**2*dP/dRHO) |
---|
1077 | ! Speed of sound: Omega = Sqrt ((Cp/Cv) * dP/dRHO) |
---|
1078 | ! Second virial coefficient: B = 1/(2*R*T) * (d2P/dRHO2) (at RHO=0) |
---|
1079 | ! Isothermal Joule-Thomson |
---|
1080 | ! coefficient: DeltaT = (dH/dP) (fixed T) = |
---|
1081 | ! (1/RHO)-(T*dP/dT)/(RHO**2*dP/dRHO) |
---|
1082 | ! Joule-Thomson coefficient: Mu = (dT/dP) (fixed H) = DeltaT/Cp |
---|
1083 | ! Isentropic temperature- |
---|
1084 | ! pressure coefficient: BetaS = (dT/dP) (fixed S) = |
---|
1085 | ! (DeltaT - 1/RHO)/Cp |
---|
1086 | ! |
---|
1087 | ! Modified: |
---|
1088 | ! |
---|
1089 | ! 19 November 1998 |
---|
1090 | ! |
---|
1091 | ! Reference: |
---|
1092 | ! |
---|
1093 | ! Lester Haar, John Gallagher and George Kell, |
---|
1094 | ! NBS/NRC Steam Tables: |
---|
1095 | ! Thermodynamic and Transport Properties and Computer Programs |
---|
1096 | ! for Vapor and Liquid States of Water in SI Units, |
---|
1097 | ! Hemisphere Publishing Corporation, Washington, 1984, |
---|
1098 | ! TJ270.H3 |
---|
1099 | ! |
---|
1100 | ! C A Meyer, R B McClintock, G J Silvestri, R C Spencer, |
---|
1101 | ! ASME Steam Tables: Thermodynamic and Transport Properties of Steam, |
---|
1102 | ! American Society of Mechanical Engineers, 1967. |
---|
1103 | ! |
---|
1104 | ! Parameters: |
---|
1105 | ! |
---|
1106 | ! Input, double precision T, the temperature, in degrees Kelvin. |
---|
1107 | ! |
---|
1108 | ! Input, double precision RHO, the fluid density, in G/CM3. |
---|
1109 | ! |
---|
1110 | ! Output, double precision A, the Helmholtz function, in KJ/kg. |
---|
1111 | ! |
---|
1112 | ! Output, double precision CJTH, the Joule-Thomson coefficient, |
---|
1113 | ! in K/MegaPascals. |
---|
1114 | ! |
---|
1115 | ! Output, double precision CJTT, the isothermal Joule-Thomson coefficient, |
---|
1116 | ! in CM3/G. |
---|
1117 | ! |
---|
1118 | ! Output, double precision CP, the isobaric (constant pressure) heat |
---|
1119 | ! capacity, in KJ/(kg degrees Kelvin). |
---|
1120 | ! |
---|
1121 | ! Output, double precision CV, the isochoric (constant volume) heat capacity, |
---|
1122 | ! in KJ/(kg degrees Kelvin). |
---|
1123 | ! |
---|
1124 | ! Output, double precision DPDR, the partial derivative |
---|
1125 | ! dP(T,RHO)/dRHO, with T held fixed, in MegaPascals*CM3/G. |
---|
1126 | ! |
---|
1127 | ! Output, double precision DPDT, the partial derivative |
---|
1128 | ! dP(T,RHO)/dT, with RHO held fixed, in MegaPascals/degrees Kelvin. |
---|
1129 | ! |
---|
1130 | ! Output, double precision G, the Gibbs free energy, in KJ/kg. |
---|
1131 | ! |
---|
1132 | ! Output, double precision H, the enthalpy, in KJ/kg. |
---|
1133 | ! |
---|
1134 | ! Output, double precision P, the pressure, in MegaPascals. |
---|
1135 | ! |
---|
1136 | ! Output, double precision S, the entropy, in KJ/(kg degrees Kelvin). |
---|
1137 | ! |
---|
1138 | ! Output, double precision U, the internal energy, in KJ/kg. |
---|
1139 | ! |
---|
1140 | implicit none |
---|
1141 | ! |
---|
1142 | double precision a |
---|
1143 | double precision ab |
---|
1144 | double precision ai |
---|
1145 | double precision ar |
---|
1146 | double precision cjth |
---|
1147 | double precision cjtt |
---|
1148 | double precision cp |
---|
1149 | double precision cpi |
---|
1150 | double precision cv |
---|
1151 | double precision cvb |
---|
1152 | double precision cvi |
---|
1153 | double precision cvr |
---|
1154 | logical, parameter :: debug = .false. |
---|
1155 | ! logical, parameter :: debug = .true. |
---|
1156 | double precision dpdr |
---|
1157 | double precision dpdrb |
---|
1158 | double precision dpdrr |
---|
1159 | double precision dpdt |
---|
1160 | double precision dpdtb |
---|
1161 | double precision dpdtr |
---|
1162 | double precision g |
---|
1163 | double precision gb |
---|
1164 | double precision gi |
---|
1165 | double precision gr |
---|
1166 | double precision h |
---|
1167 | double precision hb |
---|
1168 | double precision hi |
---|
1169 | double precision hr |
---|
1170 | double precision p |
---|
1171 | double precision pb |
---|
1172 | double precision pr |
---|
1173 | double precision rho |
---|
1174 | double precision s |
---|
1175 | double precision sb |
---|
1176 | double precision si |
---|
1177 | double precision sr |
---|
1178 | double precision t |
---|
1179 | double precision u |
---|
1180 | double precision ub |
---|
1181 | double precision ui |
---|
1182 | double precision ur |
---|
1183 | ! |
---|
1184 | ! Refuse to handle zero or negative temperatures. |
---|
1185 | ! |
---|
1186 | if ( t <= 0.0D+00 ) then |
---|
1187 | write ( *, '(a)' ) ' ' |
---|
1188 | write ( *, '(a)' ) 'THERM - Fatal error!' |
---|
1189 | write ( *, '(a)' ) ' The input temperature T must be positive.' |
---|
1190 | write ( *, '(a,g14.6)' ) ' Input value was T = ', t |
---|
1191 | stop |
---|
1192 | end if |
---|
1193 | ! |
---|
1194 | ! Refuse to handle zero or negative density. |
---|
1195 | ! |
---|
1196 | if ( rho <= 0.0D+00 ) then |
---|
1197 | write ( *, '(a)' ) ' ' |
---|
1198 | write ( *, '(a)' ) 'THERM - Fatal error!' |
---|
1199 | write ( *, '(a)' ) ' The input density RHO must be positive.' |
---|
1200 | write ( *, '(a,g14.6)' ) ' Input value was RHO = ', rho |
---|
1201 | stop |
---|
1202 | end if |
---|
1203 | |
---|
1204 | call ideal ( t, ai, cpi, cvi, gi, hi, si, ui ) |
---|
1205 | |
---|
1206 | call resid ( t, rho, ar, cvr, dpdrr, dpdtr, gr, hr, pr, sr, ur ) |
---|
1207 | |
---|
1208 | call base ( t, rho, ab, cvb, dpdrb, dpdtb, gb, hb, pb, sb, ub ) |
---|
1209 | |
---|
1210 | a = ab + ar + ai |
---|
1211 | cv = cvb + cvr + cvi |
---|
1212 | |
---|
1213 | if ( debug ) then |
---|
1214 | write ( *, * ) ' ' |
---|
1215 | write ( *, * ) 'THERM:' |
---|
1216 | write ( *, * ) ' CVB = ', cvb |
---|
1217 | write ( *, * ) ' CVR = ', cvr |
---|
1218 | write ( *, * ) ' CVI = ', cvi |
---|
1219 | write ( *, * ) ' CV = ', cv |
---|
1220 | end if |
---|
1221 | |
---|
1222 | |
---|
1223 | dpdr = dpdrb + dpdrr |
---|
1224 | dpdt = dpdtb + dpdtr |
---|
1225 | p = pb + pr |
---|
1226 | s = sb + sr + si |
---|
1227 | u = ub + ur + ui |
---|
1228 | |
---|
1229 | if ( debug ) then |
---|
1230 | write ( *, * ) ' ' |
---|
1231 | write ( *, * ) 'THERM:' |
---|
1232 | write ( *, * ) ' UB = ', ub |
---|
1233 | write ( *, * ) ' UR = ', ur |
---|
1234 | write ( *, * ) ' UI = ', ui |
---|
1235 | end if |
---|
1236 | |
---|
1237 | g = a + p / rho |
---|
1238 | h = u + p / rho |
---|
1239 | cp = cv + t * dpdt**2 / ( dpdr * rho**2 ) |
---|
1240 | cjtt = 1.0D+00 / rho - t * dpdt / ( dpdr * rho**2 ) |
---|
1241 | cjth = - cjtt / cp |
---|
1242 | |
---|
1243 | return |
---|
1244 | end subroutine therm |
---|
1245 | |
---|
1246 | function gascon ( ) |
---|
1247 | ! |
---|
1248 | !******************************************************************************* |
---|
1249 | ! |
---|
1250 | !! GASCON returns the value of the specific gas constant. |
---|
1251 | ! |
---|
1252 | ! |
---|
1253 | ! Note: |
---|
1254 | ! |
---|
1255 | ! The specific gas constant R is related to the universal gas |
---|
1256 | ! constant R-bar = 8.31441 J/(mol degrees Kelvin) by the molar mass |
---|
1257 | ! M = 18.0152 g/mol: |
---|
1258 | ! |
---|
1259 | ! R = R-bar / M. |
---|
1260 | ! |
---|
1261 | ! Reference: |
---|
1262 | ! |
---|
1263 | ! Lester Haar, John Gallagher and George Kell, |
---|
1264 | ! NBS/NRC Steam Tables: |
---|
1265 | ! Thermodynamic and Transport Properties and Computer Programs |
---|
1266 | ! for Vapor and Liquid States of Water in SI Units, |
---|
1267 | ! Hemisphere Publishing Corporation, Washington, 1984, |
---|
1268 | ! TJ270.H3 |
---|
1269 | ! |
---|
1270 | ! C A Meyer, R B McClintock, G J Silvestri, R C Spencer, |
---|
1271 | ! ASME Steam Tables: Thermodynamic and Transport Properties of Steam, |
---|
1272 | ! American Society of Mechanical Engineers, 1967. |
---|
1273 | ! |
---|
1274 | ! Parameters: |
---|
1275 | ! |
---|
1276 | ! Output, double precision GASCON, the value of the specific gas |
---|
1277 | ! constant, in J/(g degrees Kelvin). |
---|
1278 | ! |
---|
1279 | implicit none |
---|
1280 | ! |
---|
1281 | double precision gascon |
---|
1282 | ! |
---|
1283 | gascon = 0.461522D+00 |
---|
1284 | |
---|
1285 | return |
---|
1286 | end function gascon |
---|