[135] | 1 | SUBROUTINE OPTCV(DTAUV,TAUV,TAUCUMV,PLEV, |
---|
| 2 | & QXVAER,QSVAER,GVAER,WBARV,COSBV, |
---|
| 3 | & TAURAY,TAUAERO,TMID,PMID,TAUGSURF,QVAR) |
---|
| 4 | |
---|
| 5 | use radinc_h |
---|
| 6 | use radcommon_h, only: gasv, tlimit, wrefVAR, Cmk, tgasref, |
---|
| 7 | & pfgasref |
---|
| 8 | |
---|
| 9 | implicit none |
---|
| 10 | |
---|
| 11 | !================================================================== |
---|
| 12 | ! |
---|
| 13 | ! Purpose |
---|
| 14 | ! ------- |
---|
| 15 | ! Calculates shortwave optical constants at each level. |
---|
| 16 | ! |
---|
| 17 | ! Authors |
---|
| 18 | ! ------- |
---|
| 19 | ! Adapted from the NASA Ames code by R. Wordsworth (2009) |
---|
| 20 | ! |
---|
| 21 | !================================================================== |
---|
| 22 | |
---|
| 23 | |
---|
| 24 | C |
---|
| 25 | C THIS SUBROUTINE SETS THE OPTICAL CONSTANTS IN THE VISUAL |
---|
| 26 | C IT CALCUALTES FOR EACH LAYER, FOR EACH SPECRAL INTERVAL IN THE VISUAL |
---|
| 27 | C LAYER: WBAR, DTAU, COSBAR |
---|
| 28 | C LEVEL: TAU |
---|
| 29 | C |
---|
| 30 | C TAUV(L,NW,NG) is the cumulative optical depth at the top of radiation code |
---|
| 31 | C layer L. NW is spectral wavelength interval, ng the Gauss point index. |
---|
| 32 | C |
---|
| 33 | C TLEV(L) - Temperature at the layer boundary |
---|
| 34 | C PLEV(L) - Pressure at the layer boundary (i.e. level) |
---|
| 35 | C GASV(NT,NPS,NW,NG) - Visual CO2 k-coefficients |
---|
| 36 | C |
---|
| 37 | C----------------------------------------------------------------------C |
---|
| 38 | |
---|
| 39 | #include "callkeys.h" |
---|
| 40 | #include "comcstfi.h" |
---|
| 41 | |
---|
| 42 | real*8 DTAUV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
| 43 | real*8 DTAUKV(L_LEVELS+1,L_NSPECTV,L_NGAUSS) |
---|
| 44 | real*8 TAUV(L_NLEVRAD,L_NSPECTV,L_NGAUSS) |
---|
| 45 | real*8 TAUCUMV(L_LEVELS,L_NSPECTV,L_NGAUSS) |
---|
| 46 | real*8 PLEV(L_LEVELS) |
---|
| 47 | real*8 TMID(L_LEVELS), PMID(L_LEVELS) |
---|
| 48 | real*8 COSBV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
| 49 | real*8 WBARV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
| 50 | real*8 TAURAY(L_NSPECTV) |
---|
| 51 | |
---|
| 52 | ! For aerosols |
---|
| 53 | real*8 QXVAER(L_LEVELS+1,L_NSPECTV,NAERKIND) |
---|
| 54 | real*8 QSVAER(L_LEVELS+1,L_NSPECTV,NAERKIND) |
---|
| 55 | real*8 GVAER(L_LEVELS+1,L_NSPECTV,NAERKIND) |
---|
| 56 | real*8 TAUAERO(L_LEVELS+1,NAERKIND) |
---|
| 57 | real*8 TAUAEROLK(L_LEVELS+1,L_NSPECTV,NAERKIND) |
---|
| 58 | real*8 TAEROS(L_LEVELS,L_NSPECTV,NAERKIND) |
---|
| 59 | |
---|
| 60 | integer L, NW, NG, K, NG1(L_NSPECTV), LK, IAER |
---|
| 61 | integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS) |
---|
| 62 | real*8 ANS, TAUGAS |
---|
| 63 | real*8 TRAY(L_LEVELS,L_NSPECTV) |
---|
| 64 | real*8 DPR(L_LEVELS), U(L_LEVELS) |
---|
| 65 | real*8 LCOEF(4), LKCOEF(L_LEVELS,4) |
---|
| 66 | |
---|
| 67 | real*8 taugsurf(L_NSPECTV,L_NGAUSS-1), TRAYAER |
---|
| 68 | |
---|
| 69 | ! Water mixing ratio variables |
---|
| 70 | real*8 QVAR(L_LEVELS), WRATIO(L_LEVELS) |
---|
| 71 | real*8 KCOEF(4) |
---|
| 72 | integer NVAR(L_LEVELS) |
---|
| 73 | |
---|
| 74 | ! temporary variables for multiple aerosol calculation |
---|
| 75 | real*8 atemp, btemp, ctemp |
---|
| 76 | |
---|
| 77 | ! variables for k in units m^-1 |
---|
| 78 | real*8 rho, dz |
---|
| 79 | |
---|
| 80 | !======================================================================= |
---|
| 81 | ! Determine the total gas opacity throughout the column, for each |
---|
| 82 | ! spectral interval, NW, and each Gauss point, NG. |
---|
| 83 | ! Calculate the continuum opacities, i.e., those that do not depend on |
---|
| 84 | ! NG, the Gauss index. |
---|
| 85 | |
---|
| 86 | do K=2,L_LEVELS |
---|
| 87 | DPR(k) = PLEV(K)-PLEV(K-1) |
---|
| 88 | |
---|
| 89 | |
---|
| 90 | rho = PLEV(K)/(R*TMID(K)) |
---|
| 91 | dz = -DPR(k)/(g*rho) |
---|
| 92 | !print*,'rho=',rho |
---|
| 93 | !print*,'dz=',dz |
---|
| 94 | |
---|
| 95 | U(k) = Cmk*DPR(k) |
---|
| 96 | |
---|
| 97 | call tpindex(PMID(K),TMID(K),QVAR(K),pfgasref,tgasref,WREFVAR, |
---|
| 98 | * LCOEF,MT(K),MP(K),NVAR(K),WRATIO(K)) |
---|
| 99 | |
---|
| 100 | do LK=1,4 |
---|
| 101 | LKCOEF(K,LK) = LCOEF(LK) |
---|
| 102 | end do |
---|
| 103 | |
---|
| 104 | DO NW=1,L_NSPECTV |
---|
| 105 | TRAY(K,NW) = TAURAY(NW) * DPR(K) |
---|
| 106 | |
---|
| 107 | do iaer=1,naerkind |
---|
| 108 | TAEROS(K,NW,IAER) = TAUAERO(K,IAER) * QXVAER(K,NW,IAER) |
---|
| 109 | end do |
---|
| 110 | ! |
---|
| 111 | |
---|
| 112 | END DO |
---|
| 113 | end do |
---|
| 114 | |
---|
| 115 | ! TRAYAER is Tau RAYleigh scattering, plus AERosol opacity |
---|
| 116 | |
---|
| 117 | |
---|
| 118 | ! we ignore K=1... hope this is ok... |
---|
| 119 | do K=2,L_LEVELS |
---|
| 120 | do NW=1,L_NSPECTV |
---|
| 121 | |
---|
| 122 | TRAYAER = TRAY(K,NW) |
---|
| 123 | do iaer=1,naerkind |
---|
| 124 | TRAYAER = TRAYAER + TAEROS(K,NW,IAER) |
---|
| 125 | end do |
---|
| 126 | |
---|
| 127 | do NG=1,L_NGAUSS-1 |
---|
| 128 | |
---|
| 129 | !======================================================================= |
---|
| 130 | ! Now compute TAUGAS |
---|
| 131 | ! Interpolate between water mixing ratios |
---|
| 132 | ! WRATIO = 0.0 if the requested water amount is equal to, or outside the |
---|
| 133 | ! the water data range |
---|
| 134 | |
---|
| 135 | if (L_REFVAR.eq.1)then ! added by RW for special no variable case |
---|
| 136 | KCOEF(1) = GASV(MT(K),MP(K),1,NW,NG) |
---|
| 137 | KCOEF(2) = GASV(MT(K),MP(K)+1,1,NW,NG) |
---|
| 138 | KCOEF(3) = GASV(MT(K)+1,MP(K)+1,1,NW,NG) |
---|
| 139 | KCOEF(4) = GASV(MT(K)+1,MP(K),1,NW,NG) |
---|
| 140 | else |
---|
| 141 | KCOEF(1) = GASV(MT(K),MP(K),NVAR(K),NW,NG) + WRATIO(K)* |
---|
| 142 | * (GASV(MT(K),MP(K),NVAR(K)+1,NW,NG) - |
---|
| 143 | * GASV(MT(K),MP(K),NVAR(K),NW,NG)) |
---|
| 144 | |
---|
| 145 | KCOEF(2) = GASV(MT(K),MP(K)+1,NVAR(K),NW,NG) + WRATIO(K)* |
---|
| 146 | * (GASV(MT(K),MP(K)+1,NVAR(K)+1,NW,NG) - |
---|
| 147 | * GASV(MT(K),MP(K)+1,NVAR(K),NW,NG)) |
---|
| 148 | |
---|
| 149 | KCOEF(3) = GASV(MT(K)+1,MP(K)+1,NVAR(K),NW,NG) + WRATIO(K)* |
---|
| 150 | * (GASV(MT(K)+1,MP(K)+1,NVAR(K)+1,NW,NG) - |
---|
| 151 | * GASV(MT(K)+1,MP(K)+1,NVAR(K),NW,NG)) |
---|
| 152 | |
---|
| 153 | KCOEF(4) = GASV(MT(K)+1,MP(K),NVAR(K),NW,NG) + WRATIO(K)* |
---|
| 154 | * (GASV(MT(K)+1,MP(K),NVAR(K)+1,NW,NG) - |
---|
| 155 | * GASV(MT(K)+1,MP(K),NVAR(K),NW,NG)) |
---|
| 156 | endif |
---|
| 157 | |
---|
| 158 | ! Interpolate the gaseous k-coefficients to the requested T,P values |
---|
| 159 | |
---|
| 160 | ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) + |
---|
| 161 | * LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4) |
---|
| 162 | |
---|
| 163 | TAUGAS = U(k)*ANS |
---|
| 164 | TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS |
---|
| 165 | DTAUKV(K,nw,ng) = TAUGAS + TRAYAER |
---|
| 166 | end do |
---|
| 167 | |
---|
| 168 | |
---|
| 169 | ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS), |
---|
| 170 | ! which holds continuum opacity only |
---|
| 171 | |
---|
| 172 | NG = L_NGAUSS |
---|
| 173 | DTAUKV(K,nw,ng) = TRAY(K,NW) |
---|
| 174 | do iaer=1,naerkind |
---|
| 175 | DTAUKV(K,nw,ng) = DTAUKV(K,nw,ng) + TAEROS(K,NW,IAER) |
---|
| 176 | end do |
---|
| 177 | |
---|
| 178 | end do |
---|
| 179 | end do |
---|
| 180 | |
---|
| 181 | |
---|
| 182 | !======================================================================= |
---|
| 183 | ! Now the full treatment for the layers, where besides the opacity |
---|
| 184 | ! we need to calculate the scattering albedo and asymmetry factors |
---|
| 185 | |
---|
| 186 | DO NW=1,L_NSPECTV |
---|
| 187 | DO K=2,L_LEVELS |
---|
| 188 | do iaer=1,naerkind |
---|
| 189 | TAUAEROLK(K,NW,IAER) = TAUAERO(K,IAER) * QSVAER(K,NW,IAER) |
---|
| 190 | end do |
---|
| 191 | ENDDO |
---|
| 192 | ENDDO |
---|
| 193 | |
---|
| 194 | |
---|
| 195 | DO NW=1,L_NSPECTV |
---|
| 196 | DO NG=1,L_NGAUSS |
---|
| 197 | DO L=1,L_NLAYRAD-1 |
---|
| 198 | K = 2*L+1 |
---|
| 199 | |
---|
| 200 | DTAUV(L,nw,ng) = DTAUKV(K,NW,NG)+DTAUKV(K+1,NW,NG) |
---|
| 201 | |
---|
| 202 | atemp=0. |
---|
| 203 | btemp=TRAY(K,NW) + TRAY(K+1,NW) |
---|
| 204 | ctemp=0.9999*(TRAY(K,NW) + TRAY(K+1,NW)) |
---|
| 205 | do iaer=1,naerkind |
---|
| 206 | atemp = atemp + |
---|
| 207 | * GVAER(K,NW,IAER) * TAUAEROLK(K,NW,IAER) + |
---|
| 208 | * GVAER(K+1,NW,IAER) * TAUAEROLK(K+1,NW,IAER) |
---|
| 209 | btemp = btemp + |
---|
| 210 | * TAUAEROLK(K,NW,IAER) + TAUAEROLK(K+1,NW,IAER) |
---|
| 211 | ctemp = ctemp + |
---|
| 212 | * TAUAEROLK(K,NW,IAER) + TAUAEROLK(K+1,NW,IAER) |
---|
| 213 | end do |
---|
| 214 | |
---|
| 215 | COSBV(L,NW,NG) = atemp/btemp |
---|
| 216 | WBARV(L,nw,ng) = ctemp/DTAUV(L,nw,ng) |
---|
| 217 | |
---|
| 218 | END DO |
---|
| 219 | |
---|
| 220 | ! No vertical averaging on bottom layer |
---|
| 221 | |
---|
| 222 | L = L_NLAYRAD |
---|
| 223 | K = 2*L+1 |
---|
| 224 | DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) |
---|
| 225 | |
---|
| 226 | atemp=0. |
---|
| 227 | btemp=TRAY(K,NW) |
---|
| 228 | ctemp=0.9999*TRAY(K,NW) |
---|
| 229 | do iaer=1,naerkind |
---|
| 230 | atemp = atemp + GVAER(K,NW,IAER) * TAUAEROLK(K,NW,IAER) |
---|
| 231 | btemp = btemp + TAUAEROLK(K,NW,IAER) |
---|
| 232 | ctemp = ctemp + TAUAEROLK(K,NW,IAER) |
---|
| 233 | end do |
---|
| 234 | COSBV(L,NW,NG) = atemp/btemp |
---|
| 235 | WBARV(L,nw,ng) = ctemp/DTAUV(L,nw,ng) |
---|
| 236 | |
---|
| 237 | END DO ! NG gauss point loop |
---|
| 238 | END DO ! NW spectral loop |
---|
| 239 | |
---|
| 240 | |
---|
| 241 | |
---|
| 242 | ! Total extinction optical depths |
---|
| 243 | |
---|
| 244 | DO NW=1,L_NSPECTV |
---|
| 245 | DO NG=1,L_NGAUSS ! full gauss loop |
---|
| 246 | TAUV(1,NW,NG)=0.0D0 |
---|
| 247 | DO L=1,L_NLAYRAD |
---|
| 248 | TAUV(L+1,NW,NG)=TAUV(L,NW,NG)+DTAUV(L,NW,NG) |
---|
| 249 | END DO |
---|
| 250 | |
---|
| 251 | TAUCUMV(1,NW,NG)=0.0D0 |
---|
| 252 | DO K=2,L_LEVELS |
---|
| 253 | TAUCUMV(K,NW,NG)=TAUCUMV(K-1,NW,NG)+DTAUKV(K,NW,NG) |
---|
| 254 | END DO |
---|
| 255 | END DO ! end full gauss loop |
---|
| 256 | END DO |
---|
| 257 | |
---|
| 258 | |
---|
| 259 | RETURN |
---|
| 260 | END |
---|