| 1 | MODULE optcv_mod |
|---|
| 2 | |
|---|
| 3 | IMPLICIT NONE |
|---|
| 4 | |
|---|
| 5 | CONTAINS |
|---|
| 6 | |
|---|
| 7 | SUBROUTINE OPTCV(DTAUV,TAUV,TAUCUMV,PLEV, & |
|---|
| 8 | QXVAER,QSVAER,GVAER,WBARV,COSBV, & |
|---|
| 9 | TAURAY,TAUAERO,TMID,PMID,TAUGSURF,QVAR,MUVAR) |
|---|
| 10 | |
|---|
| 11 | use radinc_h, only: L_NLAYRAD, L_NLEVRAD, L_LEVELS, L_NSPECTV, L_NGAUSS, L_REFVAR, NAERKIND |
|---|
| 12 | use radcommon_h, only: gasv, tlimit, wrefVAR, Cmk, tgasref, pfgasref,wnov,scalep,indv,glat_ig |
|---|
| 13 | use gases_h, only: gfrac, ngasmx, igas_H2, igas_H2O, igas_He, igas_N2 |
|---|
| 14 | use comcstfi_mod, only: g, r, mugaz |
|---|
| 15 | use callkeys_mod, only: kastprof,continuum,graybody,H2Ocont_simple,callgasvis |
|---|
| 16 | |
|---|
| 17 | implicit none |
|---|
| 18 | |
|---|
| 19 | !================================================================== |
|---|
| 20 | ! |
|---|
| 21 | ! Purpose |
|---|
| 22 | ! ------- |
|---|
| 23 | ! Calculates shortwave optical constants at each level. |
|---|
| 24 | ! |
|---|
| 25 | ! Authors |
|---|
| 26 | ! ------- |
|---|
| 27 | ! Adapted from the NASA Ames code by R. Wordsworth (2009) |
|---|
| 28 | ! |
|---|
| 29 | !================================================================== |
|---|
| 30 | ! |
|---|
| 31 | ! THIS SUBROUTINE SETS THE OPTICAL CONSTANTS IN THE VISUAL |
|---|
| 32 | ! IT CALCULATES FOR EACH LAYER, FOR EACH SPECTRAL INTERVAL IN THE VISUAL |
|---|
| 33 | ! LAYER: WBAR, DTAU, COSBAR |
|---|
| 34 | ! LEVEL: TAU |
|---|
| 35 | ! |
|---|
| 36 | ! TAUV(L,NW,NG) is the cumulative optical depth at the top of radiation code |
|---|
| 37 | ! layer L. NW is spectral wavelength interval, ng the Gauss point index. |
|---|
| 38 | ! |
|---|
| 39 | ! TLEV(L) - Temperature at the layer boundary |
|---|
| 40 | ! PLEV(L) - Pressure at the layer boundary (i.e. level) |
|---|
| 41 | ! GASV(NT,NPS,NW,NG) - Visible k-coefficients |
|---|
| 42 | ! |
|---|
| 43 | !------------------------------------------------------------------- |
|---|
| 44 | |
|---|
| 45 | |
|---|
| 46 | real*8 DTAUV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
|---|
| 47 | real*8 DTAUKV(L_LEVELS,L_NSPECTV,L_NGAUSS) |
|---|
| 48 | real*8 TAUV(L_NLEVRAD,L_NSPECTV,L_NGAUSS) |
|---|
| 49 | real*8 TAUCUMV(L_LEVELS,L_NSPECTV,L_NGAUSS) |
|---|
| 50 | real*8 PLEV(L_LEVELS) |
|---|
| 51 | real*8 TMID(L_LEVELS), PMID(L_LEVELS) |
|---|
| 52 | real*8 COSBV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
|---|
| 53 | real*8 WBARV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
|---|
| 54 | |
|---|
| 55 | ! for aerosols |
|---|
| 56 | real*8 QXVAER(L_LEVELS,L_NSPECTV,NAERKIND) |
|---|
| 57 | real*8 QSVAER(L_LEVELS,L_NSPECTV,NAERKIND) |
|---|
| 58 | real*8 GVAER(L_LEVELS,L_NSPECTV,NAERKIND) |
|---|
| 59 | real*8 TAUAERO(L_LEVELS,NAERKIND) |
|---|
| 60 | real*8 TAUAEROLK(L_LEVELS,L_NSPECTV,NAERKIND) |
|---|
| 61 | real*8 TAEROS(L_LEVELS,L_NSPECTV,NAERKIND) |
|---|
| 62 | |
|---|
| 63 | integer L, NW, NG, K, LK, IAER |
|---|
| 64 | integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS) |
|---|
| 65 | real*8 ANS, TAUGAS |
|---|
| 66 | real*8 TAURAY(L_NSPECTV) |
|---|
| 67 | real*8 TRAY(L_LEVELS,L_NSPECTV) |
|---|
| 68 | real*8 DPR(L_LEVELS), U(L_LEVELS) |
|---|
| 69 | real*8 LCOEF(4), LKCOEF(L_LEVELS,4) |
|---|
| 70 | |
|---|
| 71 | real*8 taugsurf(L_NSPECTV,L_NGAUSS-1) |
|---|
| 72 | real*8 DCONT,DAERO |
|---|
| 73 | real*8 DRAYAER |
|---|
| 74 | double precision wn_cont, p_cont, p_air, T_cont, dtemp, dtempc |
|---|
| 75 | double precision p_cross |
|---|
| 76 | |
|---|
| 77 | ! variable species mixing ratio variables |
|---|
| 78 | real*8 QVAR(L_LEVELS), WRATIO(L_LEVELS), MUVAR(L_LEVELS) |
|---|
| 79 | real*8 KCOEF(4) |
|---|
| 80 | integer NVAR(L_LEVELS) |
|---|
| 81 | |
|---|
| 82 | ! temporary variables to reduce memory access time to gasv |
|---|
| 83 | real*8 tmpk(2,2) |
|---|
| 84 | real*8 tmpkvar(2,2,2) |
|---|
| 85 | |
|---|
| 86 | ! temporary variables for multiple aerosol calculation |
|---|
| 87 | real*8 atemp(L_NLAYRAD,L_NSPECTV) |
|---|
| 88 | real*8 btemp(L_NLAYRAD,L_NSPECTV) |
|---|
| 89 | real*8 ctemp(L_NLAYRAD,L_NSPECTV) |
|---|
| 90 | |
|---|
| 91 | ! variables for k in units m^-1 |
|---|
| 92 | real*8 dz(L_LEVELS) |
|---|
| 93 | |
|---|
| 94 | integer igas, jgas |
|---|
| 95 | |
|---|
| 96 | integer interm |
|---|
| 97 | |
|---|
| 98 | !! AS: to save time in computing continuum (see bilinearbig) |
|---|
| 99 | IF (.not.ALLOCATED(indv)) THEN |
|---|
| 100 | ALLOCATE(indv(L_NSPECTV,ngasmx,ngasmx)) |
|---|
| 101 | indv = -9999 ! this initial value means "to be calculated" |
|---|
| 102 | ENDIF |
|---|
| 103 | |
|---|
| 104 | !======================================================================= |
|---|
| 105 | ! Determine the total gas opacity throughout the column, for each |
|---|
| 106 | ! spectral interval, NW, and each Gauss point, NG. |
|---|
| 107 | ! Calculate the continuum opacities, i.e., those that do not depend on |
|---|
| 108 | ! NG, the Gauss index. |
|---|
| 109 | |
|---|
| 110 | taugsurf(:,:) = 0.0 |
|---|
| 111 | dpr(:) = 0.0 |
|---|
| 112 | lkcoef(:,:) = 0.0 |
|---|
| 113 | |
|---|
| 114 | do K=2,L_LEVELS |
|---|
| 115 | DPR(k) = PLEV(K)-PLEV(K-1) |
|---|
| 116 | |
|---|
| 117 | ! if we have continuum opacities, we need dz |
|---|
| 118 | if(kastprof)then |
|---|
| 119 | dz(k) = dpr(k)*(1000.0d0*8.3145d0/muvar(k))*TMID(K)/(g*PMID(K)) |
|---|
| 120 | U(k) = Cmk*DPR(k)*mugaz/muvar(k) |
|---|
| 121 | else |
|---|
| 122 | dz(k) = dpr(k)*R*TMID(K)/(glat_ig*PMID(K))*mugaz/muvar(k) |
|---|
| 123 | U(k) = Cmk*DPR(k)*mugaz/muvar(k) ! only Cmk line in optci.F |
|---|
| 124 | !JL13 the mugaz/muvar factor takes into account water meanmolecular weight if water is present |
|---|
| 125 | endif |
|---|
| 126 | |
|---|
| 127 | call tpindex(PMID(K),TMID(K),QVAR(K),pfgasref,tgasref,WREFVAR, & |
|---|
| 128 | LCOEF,MT(K),MP(K),NVAR(K),WRATIO(K)) |
|---|
| 129 | |
|---|
| 130 | do LK=1,4 |
|---|
| 131 | LKCOEF(K,LK) = LCOEF(LK) |
|---|
| 132 | end do |
|---|
| 133 | end do ! levels |
|---|
| 134 | |
|---|
| 135 | ! Spectral dependance of aerosol absorption |
|---|
| 136 | !JL18 It seems to be good to have aerosols in the first "radiative layer" of the gcm in the IR |
|---|
| 137 | ! but visible does not handle very well diffusion in first layer. |
|---|
| 138 | ! The tauaero and tauray are thus set to 0 (a small value for rayleigh because the code crashes otherwise) |
|---|
| 139 | ! in the 4 first semilayers in optcv, but not optci. |
|---|
| 140 | ! This solves random variations of the sw heating at the model top. |
|---|
| 141 | do iaer=1,naerkind |
|---|
| 142 | do NW=1,L_NSPECTV |
|---|
| 143 | TAEROS(1:4,NW,IAER)=0.d0 |
|---|
| 144 | do K=5,L_LEVELS |
|---|
| 145 | TAEROS(K,NW,IAER) = TAUAERO(K,IAER) * QXVAER(K,NW,IAER) |
|---|
| 146 | end do ! levels |
|---|
| 147 | end do |
|---|
| 148 | end do |
|---|
| 149 | |
|---|
| 150 | ! Rayleigh scattering |
|---|
| 151 | do NW=1,L_NSPECTV |
|---|
| 152 | TRAY(1:4,NW) = 1d-30 |
|---|
| 153 | do K=5,L_LEVELS |
|---|
| 154 | TRAY(K,NW) = TAURAY(NW) * DPR(K) |
|---|
| 155 | end do ! levels |
|---|
| 156 | end do |
|---|
| 157 | |
|---|
| 158 | ! we ignore K=1... |
|---|
| 159 | do K=2,L_LEVELS |
|---|
| 160 | |
|---|
| 161 | do NW=1,L_NSPECTV |
|---|
| 162 | |
|---|
| 163 | DRAYAER = TRAY(K,NW) |
|---|
| 164 | ! DRAYAER is Tau RAYleigh scattering, plus AERosol opacity |
|---|
| 165 | do iaer=1,naerkind |
|---|
| 166 | DRAYAER = DRAYAER + TAEROS(K,NW,IAER) |
|---|
| 167 | end do |
|---|
| 168 | |
|---|
| 169 | DCONT = 0.0 ! continuum absorption |
|---|
| 170 | |
|---|
| 171 | if(continuum.and.(.not.graybody).and.callgasvis)then |
|---|
| 172 | ! include continua if necessary |
|---|
| 173 | wn_cont = dble(wnov(nw)) |
|---|
| 174 | T_cont = dble(TMID(k)) |
|---|
| 175 | do igas=1,ngasmx |
|---|
| 176 | |
|---|
| 177 | if(gfrac(igas).eq.-1)then ! variable |
|---|
| 178 | p_cont = dble(PMID(k)*scalep*QVAR(k)) ! qvar = mol/mol |
|---|
| 179 | else |
|---|
| 180 | p_cont = dble(PMID(k)*scalep*gfrac(igas)*(1.-QVAR(k))) |
|---|
| 181 | endif |
|---|
| 182 | |
|---|
| 183 | dtemp=0.0 |
|---|
| 184 | if(igas.eq.igas_N2)then |
|---|
| 185 | |
|---|
| 186 | interm = indv(nw,igas,igas) |
|---|
| 187 | ! call interpolateN2N2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
|---|
| 188 | indv(nw,igas,igas) = interm |
|---|
| 189 | ! only goes to 500 cm^-1, so unless we're around a cold brown dwarf, this is irrelevant in the visible |
|---|
| 190 | |
|---|
| 191 | elseif(igas.eq.igas_H2)then |
|---|
| 192 | |
|---|
| 193 | ! first do self-induced absorption |
|---|
| 194 | interm = indv(nw,igas,igas) |
|---|
| 195 | call interpolateH2H2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
|---|
| 196 | indv(nw,igas,igas) = interm |
|---|
| 197 | |
|---|
| 198 | ! then cross-interactions with other gases |
|---|
| 199 | do jgas=1,ngasmx |
|---|
| 200 | p_cross = dble(PMID(k)*scalep*gfrac(jgas)*(1.-QVAR(k))) |
|---|
| 201 | dtempc = 0.0 |
|---|
| 202 | if(jgas.eq.igas_N2)then |
|---|
| 203 | interm = indv(nw,igas,jgas) |
|---|
| 204 | call interpolateN2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
|---|
| 205 | indv(nw,igas,jgas) = interm |
|---|
| 206 | ! should be irrelevant in the visible |
|---|
| 207 | elseif(jgas.eq.igas_He)then |
|---|
| 208 | interm = indv(nw,igas,jgas) |
|---|
| 209 | call interpolateH2He(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
|---|
| 210 | indv(nw,igas,jgas) = interm |
|---|
| 211 | endif |
|---|
| 212 | dtemp = dtemp + dtempc |
|---|
| 213 | enddo |
|---|
| 214 | |
|---|
| 215 | elseif(igas.eq.igas_H2O.and.T_cont.gt.200.0)then |
|---|
| 216 | |
|---|
| 217 | p_air = dble(PMID(k)*scalep) - p_cont ! note assumes background is air! |
|---|
| 218 | if(H2Ocont_simple)then |
|---|
| 219 | call interpolateH2Ocont_PPC(wn_cont,T_cont,p_cont,p_air,dtemp,.false.) |
|---|
| 220 | else |
|---|
| 221 | interm = indv(nw,igas,igas) |
|---|
| 222 | call interpolateH2Ocont_CKD(wn_cont,T_cont,p_cont,p_air,dtemp,.false.,interm) |
|---|
| 223 | indv(nw,igas,igas) = interm |
|---|
| 224 | endif |
|---|
| 225 | |
|---|
| 226 | endif |
|---|
| 227 | |
|---|
| 228 | DCONT = DCONT + dtemp |
|---|
| 229 | |
|---|
| 230 | enddo |
|---|
| 231 | |
|---|
| 232 | DCONT = DCONT*dz(k) |
|---|
| 233 | |
|---|
| 234 | endif |
|---|
| 235 | |
|---|
| 236 | do ng=1,L_NGAUSS-1 |
|---|
| 237 | |
|---|
| 238 | ! Now compute TAUGAS |
|---|
| 239 | |
|---|
| 240 | ! Interpolate between water mixing ratios |
|---|
| 241 | ! WRATIO = 0.0 if the requested water amount is equal to, or outside the |
|---|
| 242 | ! the water data range |
|---|
| 243 | |
|---|
| 244 | if(L_REFVAR.eq.1)then ! added by RW for special no variable case |
|---|
| 245 | |
|---|
| 246 | ! JVO 2017 : added tmpk because the repeated calls to gasi/v increased dramatically |
|---|
| 247 | ! the execution time of optci/v -> ~ factor 2 on the whole radiative |
|---|
| 248 | ! transfer on the tested simulations ! |
|---|
| 249 | |
|---|
| 250 | tmpk = GASV(MT(K):MT(K)+1,MP(K):MP(K)+1,1,NW,NG) |
|---|
| 251 | |
|---|
| 252 | KCOEF(1) = tmpk(1,1) ! KCOEF(1) = GASV(MT(K),MP(K),1,NW,NG) |
|---|
| 253 | KCOEF(2) = tmpk(1,2) ! KCOEF(2) = GASV(MT(K),MP(K)+1,1,NW,NG) |
|---|
| 254 | KCOEF(3) = tmpk(2,2) ! KCOEF(3) = GASV(MT(K)+1,MP(K)+1,1,NW,NG) |
|---|
| 255 | KCOEF(4) = tmpk(2,1) ! KCOEF(4) = GASV(MT(K)+1,MP(K),1,NW,NG) |
|---|
| 256 | |
|---|
| 257 | else |
|---|
| 258 | |
|---|
| 259 | tmpkvar = GASV(MT(K):MT(K)+1,MP(K):MP(K)+1,NVAR(K):NVAR(K)+1,NW,NG) |
|---|
| 260 | |
|---|
| 261 | KCOEF(1) = tmpkvar(1,1,1) + WRATIO(K) * & |
|---|
| 262 | ( tmpkvar(1,1,2)-tmpkvar(1,1,1) ) |
|---|
| 263 | |
|---|
| 264 | KCOEF(2) = tmpkvar(1,2,1) + WRATIO(K) * & |
|---|
| 265 | ( tmpkvar(1,2,2)-tmpkvar(1,2,1) ) |
|---|
| 266 | |
|---|
| 267 | KCOEF(3) = tmpkvar(2,2,1) + WRATIO(K) * & |
|---|
| 268 | ( tmpkvar(2,2,2)-tmpkvar(2,2,1) ) |
|---|
| 269 | |
|---|
| 270 | KCOEF(4) = tmpkvar(2,1,1) + WRATIO(K) * & |
|---|
| 271 | ( tmpkvar(2,1,2)-tmpkvar(2,1,1) ) |
|---|
| 272 | |
|---|
| 273 | |
|---|
| 274 | endif |
|---|
| 275 | |
|---|
| 276 | ! Interpolate the gaseous k-coefficients to the requested T,P values |
|---|
| 277 | |
|---|
| 278 | ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) + & |
|---|
| 279 | LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4) |
|---|
| 280 | |
|---|
| 281 | TAUGAS = U(k)*ANS |
|---|
| 282 | |
|---|
| 283 | TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS + DCONT |
|---|
| 284 | DTAUKV(K,nw,ng) = TAUGAS & |
|---|
| 285 | + DRAYAER & ! DRAYAER includes all scattering contributions |
|---|
| 286 | + DCONT ! For parameterized continuum aborption |
|---|
| 287 | |
|---|
| 288 | end do |
|---|
| 289 | |
|---|
| 290 | ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS), |
|---|
| 291 | ! which holds continuum opacity only |
|---|
| 292 | |
|---|
| 293 | NG = L_NGAUSS |
|---|
| 294 | DTAUKV(K,nw,ng) = DRAYAER + DCONT ! Scattering + parameterized continuum absorption |
|---|
| 295 | |
|---|
| 296 | end do |
|---|
| 297 | end do |
|---|
| 298 | |
|---|
| 299 | |
|---|
| 300 | !======================================================================= |
|---|
| 301 | ! Now the full treatment for the layers, where besides the opacity |
|---|
| 302 | ! we need to calculate the scattering albedo and asymmetry factors |
|---|
| 303 | |
|---|
| 304 | !JL18 It seems to be good to have aerosols in the first "radiative layer" of the gcm in the IR |
|---|
| 305 | ! but not in the visible |
|---|
| 306 | ! The tauaero is thus set to 0 in the 4 first semilayers in optcv, but not optci. |
|---|
| 307 | ! This solves random variations of the sw heating at the model top. |
|---|
| 308 | do iaer=1,naerkind |
|---|
| 309 | DO NW=1,L_NSPECTV |
|---|
| 310 | TAUAEROLK(1:4,NW,IAER)=0.d0 |
|---|
| 311 | DO K=5,L_LEVELS |
|---|
| 312 | TAUAEROLK(K,NW,IAER) = TAUAERO(K,IAER) * QSVAER(K,NW,IAER) ! effect of scattering albedo |
|---|
| 313 | ENDDO |
|---|
| 314 | ENDDO |
|---|
| 315 | end do |
|---|
| 316 | |
|---|
| 317 | DO NW=1,L_NSPECTV |
|---|
| 318 | DO L=1,L_NLAYRAD-1 |
|---|
| 319 | K = 2*L+1 |
|---|
| 320 | atemp(L,NW) = SUM(GVAER(K,NW,1:naerkind) * TAUAEROLK(K,NW,1:naerkind))+SUM(GVAER(K+1,NW,1:naerkind) * TAUAEROLK(K+1,NW,1:naerkind)) |
|---|
| 321 | btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind)) + SUM(TAUAEROLK(K+1,NW,1:naerkind)) |
|---|
| 322 | ctemp(L,NW) = btemp(L,NW) + 0.9999*(TRAY(K,NW) + TRAY(K+1,NW)) ! JVO 2017 : does this 0.999 is really meaningful ? |
|---|
| 323 | btemp(L,NW) = btemp(L,NW) + TRAY(K,NW) + TRAY(K+1,NW) |
|---|
| 324 | COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW) |
|---|
| 325 | END DO ! L vertical loop |
|---|
| 326 | |
|---|
| 327 | ! Last level |
|---|
| 328 | L = L_NLAYRAD |
|---|
| 329 | K = 2*L+1 |
|---|
| 330 | atemp(L,NW) = SUM(GVAER(K,NW,1:naerkind) * TAUAEROLK(K,NW,1:naerkind)) |
|---|
| 331 | btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind)) |
|---|
| 332 | ctemp(L,NW) = btemp(L,NW) + 0.9999*TRAY(K,NW) ! JVO 2017 : does this 0.999 is really meaningful ? |
|---|
| 333 | btemp(L,NW) = btemp(L,NW) + TRAY(K,NW) |
|---|
| 334 | COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW) |
|---|
| 335 | |
|---|
| 336 | |
|---|
| 337 | END DO ! NW spectral loop |
|---|
| 338 | |
|---|
| 339 | DO NG=1,L_NGAUSS |
|---|
| 340 | DO NW=1,L_NSPECTV |
|---|
| 341 | DO L=1,L_NLAYRAD-1 |
|---|
| 342 | |
|---|
| 343 | K = 2*L+1 |
|---|
| 344 | DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) + DTAUKV(K+1,NW,NG) |
|---|
| 345 | WBARV(L,nw,ng) = ctemp(L,NW) / DTAUV(L,nw,ng) |
|---|
| 346 | |
|---|
| 347 | END DO ! L vertical loop |
|---|
| 348 | |
|---|
| 349 | ! Last level |
|---|
| 350 | |
|---|
| 351 | L = L_NLAYRAD |
|---|
| 352 | K = 2*L+1 |
|---|
| 353 | DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) |
|---|
| 354 | |
|---|
| 355 | WBARV(L,NW,NG) = ctemp(L,NW) / DTAUV(L,NW,NG) |
|---|
| 356 | |
|---|
| 357 | END DO ! NW spectral loop |
|---|
| 358 | END DO ! NG Gauss loop |
|---|
| 359 | |
|---|
| 360 | ! Total extinction optical depths |
|---|
| 361 | |
|---|
| 362 | DO NG=1,L_NGAUSS ! full gauss loop |
|---|
| 363 | DO NW=1,L_NSPECTV |
|---|
| 364 | TAUCUMV(1,NW,NG)=0.0D0 |
|---|
| 365 | DO K=2,L_LEVELS |
|---|
| 366 | TAUCUMV(K,NW,NG)=TAUCUMV(K-1,NW,NG)+DTAUKV(K,NW,NG) |
|---|
| 367 | END DO |
|---|
| 368 | |
|---|
| 369 | DO L=1,L_NLAYRAD |
|---|
| 370 | TAUV(L,NW,NG)=TAUCUMV(2*L,NW,NG) |
|---|
| 371 | END DO |
|---|
| 372 | TAUV(L,NW,NG)=TAUCUMV(2*L_NLAYRAD+1,NW,NG) |
|---|
| 373 | END DO |
|---|
| 374 | END DO ! end full gauss loop |
|---|
| 375 | |
|---|
| 376 | |
|---|
| 377 | end subroutine optcv |
|---|
| 378 | |
|---|
| 379 | END MODULE optcv_mod |
|---|