source: trunk/LMDZ.GENERIC/libf/phystd/optcv.F90 @ 1974

Last change on this file since 1974 was 1725, checked in by jvatant, 7 years ago

Optimization of the optci/cv routines

  • The repeated calls to huge matrices gasi/v increased dramatically the execution time because of memory access
  • Added a tmpk variable
  • Save ~ 50% time on the RT, ~30% on the whole code on the tested simulations

JVO

  • Property svn:executable set to *
File size: 12.0 KB
Line 
1SUBROUTINE OPTCV(DTAUV,TAUV,TAUCUMV,PLEV,  &
2     QXVAER,QSVAER,GVAER,WBARV,COSBV,       &
3     TAURAY,TAUAERO,TMID,PMID,TAUGSURF,QVAR,MUVAR)
4
5  use radinc_h
6  use radcommon_h, only: gasv, tlimit, wrefVAR, Cmk, tgasref, pfgasref,wnov,scalep,indv,glat_ig
7  use gases_h
8  use comcstfi_mod, only: g, r, mugaz
9  use callkeys_mod, only: kastprof,continuum,graybody,H2Ocont_simple,callgasvis
10
11  implicit none
12
13  !==================================================================
14  !     
15  !     Purpose
16  !     -------
17  !     Calculates shortwave optical constants at each level.
18  !     
19  !     Authors
20  !     -------
21  !     Adapted from the NASA Ames code by R. Wordsworth (2009)
22  !     
23  !==================================================================
24  !     
25  !     THIS SUBROUTINE SETS THE OPTICAL CONSTANTS IN THE VISUAL 
26  !     IT CALCULATES FOR EACH LAYER, FOR EACH SPECTRAL INTERVAL IN THE VISUAL
27  !     LAYER: WBAR, DTAU, COSBAR
28  !     LEVEL: TAU
29  !     
30  !     TAUV(L,NW,NG) is the cumulative optical depth at the top of radiation code
31  !     layer L. NW is spectral wavelength interval, ng the Gauss point index.
32  !     
33  !     TLEV(L) - Temperature at the layer boundary
34  !     PLEV(L) - Pressure at the layer boundary (i.e. level)
35  !     GASV(NT,NPS,NW,NG) - Visible k-coefficients
36  !     
37  !-------------------------------------------------------------------
38
39
40  real*8 DTAUV(L_NLAYRAD,L_NSPECTV,L_NGAUSS)
41  real*8 DTAUKV(L_LEVELS,L_NSPECTV,L_NGAUSS)
42  real*8 TAUV(L_NLEVRAD,L_NSPECTV,L_NGAUSS)
43  real*8 TAUCUMV(L_LEVELS,L_NSPECTV,L_NGAUSS)
44  real*8 PLEV(L_LEVELS)
45  real*8 TMID(L_LEVELS), PMID(L_LEVELS)
46  real*8 COSBV(L_NLAYRAD,L_NSPECTV,L_NGAUSS)
47  real*8 WBARV(L_NLAYRAD,L_NSPECTV,L_NGAUSS)
48
49  ! for aerosols
50  real*8  QXVAER(L_LEVELS,L_NSPECTV,NAERKIND)
51  real*8  QSVAER(L_LEVELS,L_NSPECTV,NAERKIND)
52  real*8  GVAER(L_LEVELS,L_NSPECTV,NAERKIND)
53  real*8  TAUAERO(L_LEVELS,NAERKIND)
54  real*8  TAUAEROLK(L_LEVELS,L_NSPECTV,NAERKIND)
55  real*8  TAEROS(L_LEVELS,L_NSPECTV,NAERKIND)
56
57  integer L, NW, NG, K, LK, IAER
58  integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS)
59  real*8  ANS, TAUGAS
60  real*8  TAURAY(L_NSPECTV)
61  real*8  TRAY(L_LEVELS,L_NSPECTV)
62  real*8  DPR(L_LEVELS), U(L_LEVELS)
63  real*8  LCOEF(4), LKCOEF(L_LEVELS,4)
64
65  real*8 taugsurf(L_NSPECTV,L_NGAUSS-1)
66  real*8 DCONT,DAERO
67  real*8 DRAYAER
68  double precision wn_cont, p_cont, p_air, T_cont, dtemp, dtempc
69  double precision p_cross
70
71  ! variable species mixing ratio variables
72  real*8  QVAR(L_LEVELS), WRATIO(L_LEVELS), MUVAR(L_LEVELS)
73  real*8  KCOEF(4)
74  integer NVAR(L_LEVELS)
75 
76  ! temporary variables to reduce memory access time to gasv
77  real*8 tmpk(2,2)
78  real*8 tmpkvar(2,2,2)
79
80  ! temporary variables for multiple aerosol calculation
81  real*8 atemp(L_NLAYRAD,L_NSPECTV)
82  real*8 btemp(L_NLAYRAD,L_NSPECTV)
83  real*8 ctemp(L_NLAYRAD,L_NSPECTV)
84
85  ! variables for k in units m^-1
86  real*8 dz(L_LEVELS)
87
88  integer igas, jgas
89
90  integer interm
91
92  !! AS: to save time in computing continuum (see bilinearbig)
93  IF (.not.ALLOCATED(indv)) THEN
94      ALLOCATE(indv(L_NSPECTV,ngasmx,ngasmx))
95      indv = -9999 ! this initial value means "to be calculated"
96  ENDIF
97
98  !=======================================================================
99  !     Determine the total gas opacity throughout the column, for each
100  !     spectral interval, NW, and each Gauss point, NG.
101  !     Calculate the continuum opacities, i.e., those that do not depend on
102  !     NG, the Gauss index.
103
104  taugsurf(:,:) = 0.0
105  dpr(:)        = 0.0
106  lkcoef(:,:)   = 0.0
107
108  do K=2,L_LEVELS
109     DPR(k) = PLEV(K)-PLEV(K-1)
110
111     ! if we have continuum opacities, we need dz
112     if(kastprof)then
113        dz(k) = dpr(k)*(1000.0d0*8.3145d0/muvar(k))*TMID(K)/(g*PMID(K))
114        U(k)  = Cmk*DPR(k)*mugaz/muvar(k)
115     else
116        dz(k) = dpr(k)*R*TMID(K)/(glat_ig*PMID(K))*mugaz/muvar(k)
117        U(k)  = Cmk*DPR(k)*mugaz/muvar(k)     ! only Cmk line in optci.F 
118            !JL13 the mugaz/muvar factor takes into account water meanmolecular weight if water is present
119     endif
120
121     call tpindex(PMID(K),TMID(K),QVAR(K),pfgasref,tgasref,WREFVAR, &
122          LCOEF,MT(K),MP(K),NVAR(K),WRATIO(K))
123
124     do LK=1,4
125        LKCOEF(K,LK) = LCOEF(LK)
126     end do
127  end do                    ! levels
128
129  ! Spectral dependance of aerosol absorption
130  do iaer=1,naerkind
131     do NW=1,L_NSPECTV
132        do K=2,L_LEVELS
133           TAEROS(K,NW,IAER) = TAUAERO(K,IAER) * QXVAER(K,NW,IAER)
134        end do                    ! levels
135     end do
136  end do
137 
138  ! Rayleigh scattering
139  do NW=1,L_NSPECTV
140     do K=2,L_LEVELS
141        TRAY(K,NW)   = TAURAY(NW) * DPR(K)
142     end do                    ! levels
143  end do
144 
145  !     we ignore K=1...
146  do K=2,L_LEVELS
147
148     do NW=1,L_NSPECTV
149
150        DRAYAER = TRAY(K,NW)
151        !     DRAYAER is Tau RAYleigh scattering, plus AERosol opacity
152        do iaer=1,naerkind
153           DRAYAER = DRAYAER + TAEROS(K,NW,IAER)
154        end do
155
156        DCONT = 0.0 ! continuum absorption
157
158        if(continuum.and.(.not.graybody).and.callgasvis)then
159           ! include continua if necessary
160           wn_cont = dble(wnov(nw))
161           T_cont  = dble(TMID(k))
162           do igas=1,ngasmx
163
164              if(gfrac(igas).eq.-1)then ! variable
165                 p_cont  = dble(PMID(k)*scalep*QVAR(k)) ! qvar = mol/mol
166              else
167                 p_cont  = dble(PMID(k)*scalep*gfrac(igas)*(1.-QVAR(k)))
168              endif
169
170              dtemp=0.0
171              if(igas.eq.igas_N2)then
172
173                 interm = indv(nw,igas,igas)
174!                 call interpolateN2N2(wn_cont,T_cont,p_cont,dtemp,.false.,interm)
175                 indv(nw,igas,igas) = interm
176                 ! only goes to 500 cm^-1, so unless we're around a cold brown dwarf, this is irrelevant in the visible
177
178              elseif(igas.eq.igas_H2)then
179
180                 ! first do self-induced absorption
181                 interm = indv(nw,igas,igas)
182                 call interpolateH2H2(wn_cont,T_cont,p_cont,dtemp,.false.,interm)
183                 indv(nw,igas,igas) = interm
184
185                 ! then cross-interactions with other gases
186                 do jgas=1,ngasmx
187                    p_cross = dble(PMID(k)*scalep*gfrac(jgas)*(1.-QVAR(k)))
188                    dtempc  = 0.0
189                    if(jgas.eq.igas_N2)then
190                       interm = indv(nw,igas,jgas)
191                       call interpolateN2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm)
192                       indv(nw,igas,jgas) = interm
193                       ! should be irrelevant in the visible
194                    elseif(jgas.eq.igas_He)then
195                       interm = indv(nw,igas,jgas)
196                       call interpolateH2He(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm)
197                       indv(nw,igas,jgas) = interm
198                    endif
199                    dtemp = dtemp + dtempc
200                 enddo
201
202              elseif(igas.eq.igas_H2O.and.T_cont.gt.200.0)then
203
204                 p_air = dble(PMID(k)*scalep) - p_cont ! note assumes background is air!
205                 if(H2Ocont_simple)then
206                    call interpolateH2Ocont_PPC(wn_cont,T_cont,p_cont,p_air,dtemp,.false.)
207                 else
208                    interm = indv(nw,igas,igas)
209                    call interpolateH2Ocont_CKD(wn_cont,T_cont,p_cont,p_air,dtemp,.false.,interm)
210                    indv(nw,igas,igas) = interm
211                 endif
212
213              endif
214
215              DCONT = DCONT + dtemp
216
217           enddo
218
219           DCONT = DCONT*dz(k)
220
221        endif
222
223        do ng=1,L_NGAUSS-1
224
225           ! Now compute TAUGAS
226
227           ! Interpolate between water mixing ratios
228           ! WRATIO = 0.0 if the requested water amount is equal to, or outside the
229           ! the water data range
230
231           if(L_REFVAR.eq.1)then ! added by RW for special no variable case
232           
233              ! JVO 2017 : added tmpk because the repeated calls to gasi/v increased dramatically
234              ! the execution time of optci/v -> ~ factor 2 on the whole radiative
235              ! transfer on the tested simulations !
236
237              tmpk = GASV(MT(K):MT(K)+1,MP(K):MP(K)+1,1,NW,NG)
238             
239              KCOEF(1) = tmpk(1,1) ! KCOEF(1) = GASV(MT(K),MP(K),1,NW,NG)
240              KCOEF(2) = tmpk(1,2) ! KCOEF(2) = GASV(MT(K),MP(K)+1,1,NW,NG)
241              KCOEF(3) = tmpk(2,2) ! KCOEF(3) = GASV(MT(K)+1,MP(K)+1,1,NW,NG)
242              KCOEF(4) = tmpk(2,1) ! KCOEF(4) = GASV(MT(K)+1,MP(K),1,NW,NG)
243
244           else
245
246              tmpkvar = GASV(MT(K):MT(K)+1,MP(K):MP(K)+1,NVAR(K):NVAR(K)+1,NW,NG)
247
248              KCOEF(1) = tmpkvar(1,1,1) + WRATIO(K) *  &
249                        ( tmpkvar(1,1,2)-tmpkvar(1,1,1) )
250
251              KCOEF(2) = tmpkvar(1,2,1) + WRATIO(K) *  &
252                        ( tmpkvar(1,2,2)-tmpkvar(1,2,1) )
253
254              KCOEF(3) = tmpkvar(2,2,1) + WRATIO(K) *  &
255                        ( tmpkvar(2,2,2)-tmpkvar(2,2,1) )
256             
257              KCOEF(4) = tmpkvar(2,1,1) + WRATIO(K) *  &
258                        ( tmpkvar(2,1,2)-tmpkvar(2,1,1) )
259
260
261           endif
262
263           ! Interpolate the gaseous k-coefficients to the requested T,P values
264
265           ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) +            &
266                LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4)
267
268           TAUGAS  = U(k)*ANS
269
270           TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS + DCONT
271           DTAUKV(K,nw,ng) = TAUGAS &
272                             + DRAYAER & ! DRAYAER includes all scattering contributions
273                             + DCONT ! For parameterized continuum aborption
274
275        end do
276
277        ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS),
278        ! which holds continuum opacity only
279
280        NG              = L_NGAUSS
281        DTAUKV(K,nw,ng) = DRAYAER + DCONT ! Scattering + parameterized continuum absorption
282
283     end do
284  end do
285
286
287  !=======================================================================
288  !     Now the full treatment for the layers, where besides the opacity
289  !     we need to calculate the scattering albedo and asymmetry factors
290
291  do iaer=1,naerkind
292    DO NW=1,L_NSPECTV
293      DO K=2,L_LEVELS
294           TAUAEROLK(K,NW,IAER) = TAUAERO(K,IAER) * QSVAER(K,NW,IAER) ! effect of scattering albedo
295      ENDDO
296    ENDDO
297  end do
298
299  DO NW=1,L_NSPECTV
300     DO L=1,L_NLAYRAD-1
301        K              = 2*L+1
302        atemp(L,NW) = SUM(GVAER(K,NW,1:naerkind) * TAUAEROLK(K,NW,1:naerkind))+SUM(GVAER(K+1,NW,1:naerkind) * TAUAEROLK(K+1,NW,1:naerkind))
303        btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind)) + SUM(TAUAEROLK(K+1,NW,1:naerkind))
304        ctemp(L,NW) = btemp(L,NW) + 0.9999*(TRAY(K,NW) + TRAY(K+1,NW))  ! JVO 2017 : does this 0.999 is really meaningful ?
305        btemp(L,NW) = btemp(L,NW) + TRAY(K,NW) + TRAY(K+1,NW)
306        COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW)
307     END DO ! L vertical loop
308     
309     ! Last level
310     L           = L_NLAYRAD
311     K           = 2*L+1
312     atemp(L,NW) = SUM(GVAER(K,NW,1:naerkind) * TAUAEROLK(K,NW,1:naerkind))
313     btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind))
314     ctemp(L,NW) = btemp(L,NW) + 0.9999*TRAY(K,NW) ! JVO 2017 : does this 0.999 is really meaningful ?
315     btemp(L,NW) = btemp(L,NW) + TRAY(K,NW)
316     COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW)
317     
318     
319  END DO                    ! NW spectral loop
320
321  DO NG=1,L_NGAUSS
322    DO NW=1,L_NSPECTV
323     DO L=1,L_NLAYRAD-1
324
325        K              = 2*L+1
326        DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) + DTAUKV(K+1,NW,NG)
327        WBARV(L,nw,ng) = ctemp(L,NW) / DTAUV(L,nw,ng)
328
329      END DO ! L vertical loop
330
331        ! Last level
332
333        L              = L_NLAYRAD
334        K              = 2*L+1
335        DTAUV(L,nw,ng) = DTAUKV(K,NW,NG)
336
337        WBARV(L,NW,NG) = ctemp(L,NW) / DTAUV(L,NW,NG)
338
339     END DO                 ! NW spectral loop
340  END DO                    ! NG Gauss loop
341
342  ! Total extinction optical depths
343
344  DO NG=1,L_NGAUSS       ! full gauss loop
345     DO NW=1,L_NSPECTV       
346        TAUV(1,NW,NG)=0.0D0
347        DO L=1,L_NLAYRAD
348           TAUV(L+1,NW,NG)=TAUV(L,NW,NG)+DTAUV(L,NW,NG)
349        END DO
350
351        TAUCUMV(1,NW,NG)=0.0D0
352        DO K=2,L_LEVELS
353           TAUCUMV(K,NW,NG)=TAUCUMV(K-1,NW,NG)+DTAUKV(K,NW,NG)
354        END DO
355     END DO           
356  END DO                 ! end full gauss loop
357
358
359  return
360
361
362end subroutine optcv
Note: See TracBrowser for help on using the repository browser.