[253] | 1 | SUBROUTINE OPTCV(DTAUV,TAUV,TAUCUMV,PLEV, & |
---|
| 2 | QXVAER,QSVAER,GVAER,WBARV,COSBV, & |
---|
[305] | 3 | TAURAY,TAUAERO,TMID,PMID,TAUGSURF,QVAR,MUVAR) |
---|
[253] | 4 | |
---|
| 5 | use radinc_h |
---|
| 6 | use radcommon_h, only: gasv, tlimit, wrefVAR, Cmk, tgasref, pfgasref,wnov,scalep |
---|
[471] | 7 | use gases_h |
---|
[253] | 8 | |
---|
| 9 | implicit none |
---|
| 10 | |
---|
| 11 | !================================================================== |
---|
| 12 | ! |
---|
| 13 | ! Purpose |
---|
| 14 | ! ------- |
---|
| 15 | ! Calculates shortwave optical constants at each level. |
---|
| 16 | ! |
---|
| 17 | ! Authors |
---|
| 18 | ! ------- |
---|
| 19 | ! Adapted from the NASA Ames code by R. Wordsworth (2009) |
---|
| 20 | ! |
---|
| 21 | !================================================================== |
---|
| 22 | ! |
---|
| 23 | ! THIS SUBROUTINE SETS THE OPTICAL CONSTANTS IN THE VISUAL |
---|
| 24 | ! IT CALCUALTES FOR EACH LAYER, FOR EACH SPECRAL INTERVAL IN THE VISUAL |
---|
| 25 | ! LAYER: WBAR, DTAU, COSBAR |
---|
| 26 | ! LEVEL: TAU |
---|
| 27 | ! |
---|
| 28 | ! TAUV(L,NW,NG) is the cumulative optical depth at the top of radiation code |
---|
| 29 | ! layer L. NW is spectral wavelength interval, ng the Gauss point index. |
---|
| 30 | ! |
---|
| 31 | ! TLEV(L) - Temperature at the layer boundary |
---|
| 32 | ! PLEV(L) - Pressure at the layer boundary (i.e. level) |
---|
[305] | 33 | ! GASV(NT,NPS,NW,NG) - Visible k-coefficients |
---|
[253] | 34 | ! |
---|
| 35 | !------------------------------------------------------------------- |
---|
| 36 | |
---|
| 37 | #include "callkeys.h" |
---|
| 38 | #include "comcstfi.h" |
---|
| 39 | |
---|
| 40 | real*8 DTAUV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
| 41 | real*8 DTAUKV(L_LEVELS+1,L_NSPECTV,L_NGAUSS) |
---|
| 42 | real*8 TAUV(L_NLEVRAD,L_NSPECTV,L_NGAUSS) |
---|
| 43 | real*8 TAUCUMV(L_LEVELS,L_NSPECTV,L_NGAUSS) |
---|
| 44 | real*8 PLEV(L_LEVELS) |
---|
| 45 | real*8 TMID(L_LEVELS), PMID(L_LEVELS) |
---|
| 46 | real*8 COSBV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
| 47 | real*8 WBARV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
| 48 | real*8 TAURAY(L_NSPECTV) |
---|
| 49 | |
---|
| 50 | ! For aerosols |
---|
| 51 | real*8 QXVAER(L_LEVELS+1,L_NSPECTV,NAERKIND) |
---|
| 52 | real*8 QSVAER(L_LEVELS+1,L_NSPECTV,NAERKIND) |
---|
| 53 | real*8 GVAER(L_LEVELS+1,L_NSPECTV,NAERKIND) |
---|
| 54 | real*8 TAUAERO(L_LEVELS+1,NAERKIND) |
---|
| 55 | real*8 TAUAEROLK(L_LEVELS+1,L_NSPECTV,NAERKIND) |
---|
| 56 | real*8 TAEROS(L_LEVELS,L_NSPECTV,NAERKIND) |
---|
| 57 | |
---|
| 58 | integer L, NW, NG, K, NG1(L_NSPECTV), LK, IAER |
---|
| 59 | integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS) |
---|
| 60 | real*8 ANS, TAUGAS |
---|
| 61 | real*8 TRAY(L_LEVELS,L_NSPECTV) |
---|
| 62 | real*8 DPR(L_LEVELS), U(L_LEVELS) |
---|
| 63 | real*8 LCOEF(4), LKCOEF(L_LEVELS,4) |
---|
| 64 | |
---|
| 65 | real*8 taugsurf(L_NSPECTV,L_NGAUSS-1), TRAYAER |
---|
| 66 | |
---|
[305] | 67 | ! Variable species mixing ratio variables |
---|
| 68 | real*8 QVAR(L_LEVELS), WRATIO(L_LEVELS), MUVAR(L_LEVELS) |
---|
[253] | 69 | real*8 KCOEF(4) |
---|
| 70 | integer NVAR(L_LEVELS) |
---|
| 71 | |
---|
| 72 | ! temporary variables for multiple aerosol calculation |
---|
| 73 | real*8 atemp, btemp, ctemp |
---|
| 74 | |
---|
| 75 | ! variables for k in units m^-1 |
---|
[305] | 76 | double precision wn_cont, p_cont, p_air, T_cont, dtemp |
---|
[253] | 77 | real*8 dz(L_LEVELS), DCONT |
---|
| 78 | |
---|
| 79 | integer igas |
---|
| 80 | |
---|
| 81 | !======================================================================= |
---|
| 82 | ! Determine the total gas opacity throughout the column, for each |
---|
| 83 | ! spectral interval, NW, and each Gauss point, NG. |
---|
| 84 | ! Calculate the continuum opacities, i.e., those that do not depend on |
---|
| 85 | ! NG, the Gauss index. |
---|
| 86 | |
---|
| 87 | taugsurf(:,:) = 0.0 |
---|
| 88 | dpr(:) = 0.0 |
---|
| 89 | lkcoef(:,:) = 0.0 |
---|
| 90 | |
---|
| 91 | do K=2,L_LEVELS |
---|
| 92 | DPR(k) = PLEV(K)-PLEV(K-1) |
---|
| 93 | |
---|
| 94 | ! if we have continuum opacities, we need dz |
---|
[305] | 95 | if(kastprof)then |
---|
| 96 | dz(k) = dpr(k)*(8314.5/muvar(k))*TMID(K)/(g*PMID(K)) |
---|
| 97 | U(k) = (Cmk*mugaz/(muvar(k)))*DPR(k) |
---|
| 98 | else |
---|
| 99 | dz(k) = dpr(k)*R*TMID(K)/(g*PMID(K)) |
---|
| 100 | U(k) = Cmk*DPR(k) ! only Cmk line in optci.F |
---|
| 101 | endif |
---|
[253] | 102 | |
---|
| 103 | call tpindex(PMID(K),TMID(K),QVAR(K),pfgasref,tgasref,WREFVAR, & |
---|
| 104 | LCOEF,MT(K),MP(K),NVAR(K),WRATIO(K)) |
---|
| 105 | |
---|
| 106 | do LK=1,4 |
---|
| 107 | LKCOEF(K,LK) = LCOEF(LK) |
---|
| 108 | end do |
---|
| 109 | |
---|
| 110 | DO NW=1,L_NSPECTV |
---|
| 111 | TRAY(K,NW) = TAURAY(NW) * DPR(K) |
---|
| 112 | |
---|
| 113 | do iaer=1,naerkind |
---|
| 114 | TAEROS(K,NW,IAER) = TAUAERO(K,IAER) * QXVAER(K,NW,IAER) |
---|
| 115 | end do |
---|
| 116 | ! |
---|
| 117 | |
---|
| 118 | END DO |
---|
| 119 | end do |
---|
| 120 | |
---|
| 121 | ! TRAYAER is Tau RAYleigh scattering, plus AERosol opacity |
---|
| 122 | |
---|
| 123 | ! we ignore K=1... |
---|
| 124 | do K=2,L_LEVELS |
---|
| 125 | do NW=1,L_NSPECTV |
---|
| 126 | |
---|
| 127 | TRAYAER = TRAY(K,NW) |
---|
| 128 | do iaer=1,naerkind |
---|
| 129 | TRAYAER = TRAYAER + TAEROS(K,NW,IAER) |
---|
| 130 | end do |
---|
| 131 | |
---|
| 132 | DCONT = 0.0 ! continuum absorption |
---|
| 133 | |
---|
[596] | 134 | if(callgasvis.and.Continuum.and.(.not.graybody))then |
---|
[305] | 135 | ! include continua if necessary |
---|
[596] | 136 | wn_cont = dble(wnov(nw)) |
---|
| 137 | T_cont = dble(TMID(k)) |
---|
| 138 | do igas=1,ngasmx |
---|
| 139 | |
---|
| 140 | if(gfrac(igas).eq.-1)then ! variable |
---|
| 141 | p_cont = dble(PMID(k)*scalep*QVAR(K)) ! qvar = mol/mol |
---|
| 142 | else |
---|
| 143 | p_cont = dble(PMID(k)*scalep*gfrac(igas)*(1.-QVAR(k))) |
---|
| 144 | endif |
---|
[305] | 145 | |
---|
[596] | 146 | dtemp=0.0 |
---|
| 147 | if(gnom(igas).eq.'H2_')then |
---|
| 148 | call interpolateH2H2(wn_cont,T_cont,p_cont,dtemp,.false.) |
---|
| 149 | elseif(gnom(igas).eq.'H2O'.and.T_cont.gt.200.0)then |
---|
| 150 | p_air = dble(PMID(k)*scalep) - p_cont ! note assumes air!! |
---|
| 151 | call interpolateH2Ocont(wn_cont,T_cont,p_cont,p_air,dtemp,.false.) |
---|
| 152 | endif |
---|
[305] | 153 | |
---|
[596] | 154 | DCONT = DCONT + dtemp |
---|
[253] | 155 | |
---|
[596] | 156 | enddo |
---|
[253] | 157 | |
---|
[596] | 158 | DCONT = DCONT*dz(k) |
---|
[366] | 159 | endif |
---|
[253] | 160 | |
---|
| 161 | do NG=1,L_NGAUSS-1 |
---|
| 162 | |
---|
| 163 | !======================================================================= |
---|
| 164 | ! Now compute TAUGAS |
---|
| 165 | ! Interpolate between water mixing ratios |
---|
| 166 | ! WRATIO = 0.0 if the requested water amount is equal to, or outside the |
---|
| 167 | ! the water data range |
---|
| 168 | |
---|
| 169 | if (L_REFVAR.eq.1)then ! added by RW for special no variable case |
---|
| 170 | KCOEF(1) = GASV(MT(K),MP(K),1,NW,NG) |
---|
| 171 | KCOEF(2) = GASV(MT(K),MP(K)+1,1,NW,NG) |
---|
| 172 | KCOEF(3) = GASV(MT(K)+1,MP(K)+1,1,NW,NG) |
---|
| 173 | KCOEF(4) = GASV(MT(K)+1,MP(K),1,NW,NG) |
---|
| 174 | else |
---|
| 175 | KCOEF(1) = GASV(MT(K),MP(K),NVAR(K),NW,NG) + WRATIO(K)* & |
---|
| 176 | (GASV(MT(K),MP(K),NVAR(K)+1,NW,NG) - & |
---|
| 177 | GASV(MT(K),MP(K),NVAR(K),NW,NG)) |
---|
| 178 | |
---|
| 179 | KCOEF(2) = GASV(MT(K),MP(K)+1,NVAR(K),NW,NG) + WRATIO(K)* & |
---|
| 180 | (GASV(MT(K),MP(K)+1,NVAR(K)+1,NW,NG) - & |
---|
| 181 | GASV(MT(K),MP(K)+1,NVAR(K),NW,NG)) |
---|
| 182 | |
---|
| 183 | KCOEF(3) = GASV(MT(K)+1,MP(K)+1,NVAR(K),NW,NG) + WRATIO(K)*& |
---|
| 184 | (GASV(MT(K)+1,MP(K)+1,NVAR(K)+1,NW,NG) - & |
---|
| 185 | GASV(MT(K)+1,MP(K)+1,NVAR(K),NW,NG)) |
---|
| 186 | |
---|
| 187 | KCOEF(4) = GASV(MT(K)+1,MP(K),NVAR(K),NW,NG) + WRATIO(K)* & |
---|
| 188 | (GASV(MT(K)+1,MP(K),NVAR(K)+1,NW,NG) - & |
---|
| 189 | GASV(MT(K)+1,MP(K),NVAR(K),NW,NG)) |
---|
| 190 | endif |
---|
| 191 | |
---|
| 192 | ! Interpolate the gaseous k-coefficients to the requested T,P values |
---|
| 193 | |
---|
| 194 | ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) + & |
---|
| 195 | LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4) |
---|
| 196 | |
---|
| 197 | TAUGAS = U(k)*ANS |
---|
| 198 | |
---|
[305] | 199 | |
---|
[253] | 200 | !TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS |
---|
| 201 | TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS + DCONT |
---|
| 202 | DTAUKV(K,nw,ng) = TAUGAS + TRAYAER & ! TRAYAER includes all scattering contributions |
---|
| 203 | + DCONT ! for continuum absorption |
---|
| 204 | |
---|
| 205 | end do |
---|
| 206 | |
---|
| 207 | |
---|
| 208 | ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS), |
---|
| 209 | ! which holds continuum opacity only |
---|
| 210 | |
---|
| 211 | NG = L_NGAUSS |
---|
| 212 | DTAUKV(K,nw,ng) = TRAY(K,NW) + DCONT ! For parameterized continuum absorption |
---|
| 213 | do iaer=1,naerkind |
---|
| 214 | DTAUKV(K,nw,ng) = DTAUKV(K,nw,ng) + TAEROS(K,NW,IAER) |
---|
| 215 | ! & + DCONT ! For parameterized continuum absorption |
---|
| 216 | end do ! a bug was here! |
---|
| 217 | |
---|
| 218 | end do |
---|
| 219 | end do |
---|
| 220 | |
---|
| 221 | |
---|
| 222 | !======================================================================= |
---|
| 223 | ! Now the full treatment for the layers, where besides the opacity |
---|
| 224 | ! we need to calculate the scattering albedo and asymmetry factors |
---|
| 225 | |
---|
| 226 | DO NW=1,L_NSPECTV |
---|
| 227 | DO K=2,L_LEVELS |
---|
| 228 | do iaer=1,naerkind |
---|
| 229 | TAUAEROLK(K,NW,IAER) = TAUAERO(K,IAER) * QSVAER(K,NW,IAER) |
---|
| 230 | end do |
---|
| 231 | ENDDO |
---|
| 232 | ENDDO |
---|
| 233 | |
---|
| 234 | |
---|
| 235 | DO NW=1,L_NSPECTV |
---|
| 236 | DO NG=1,L_NGAUSS |
---|
| 237 | DO L=1,L_NLAYRAD-1 |
---|
| 238 | K = 2*L+1 |
---|
| 239 | |
---|
| 240 | DTAUV(L,nw,ng) = DTAUKV(K,NW,NG)+DTAUKV(K+1,NW,NG) |
---|
| 241 | |
---|
| 242 | atemp=0. |
---|
| 243 | btemp=TRAY(K,NW) + TRAY(K+1,NW) |
---|
| 244 | ctemp=0.9999*(TRAY(K,NW) + TRAY(K+1,NW)) |
---|
| 245 | do iaer=1,naerkind |
---|
| 246 | atemp = atemp + & |
---|
| 247 | GVAER(K,NW,IAER) * TAUAEROLK(K,NW,IAER) + & |
---|
| 248 | GVAER(K+1,NW,IAER) * TAUAEROLK(K+1,NW,IAER) |
---|
| 249 | btemp = btemp + & |
---|
| 250 | TAUAEROLK(K,NW,IAER) + TAUAEROLK(K+1,NW,IAER) |
---|
| 251 | ctemp = ctemp + & |
---|
| 252 | TAUAEROLK(K,NW,IAER) + TAUAEROLK(K+1,NW,IAER) |
---|
| 253 | end do |
---|
| 254 | |
---|
| 255 | COSBV(L,NW,NG) = atemp/btemp |
---|
| 256 | WBARV(L,nw,ng) = ctemp/DTAUV(L,nw,ng) |
---|
| 257 | |
---|
| 258 | END DO |
---|
| 259 | |
---|
| 260 | ! No vertical averaging on bottom layer |
---|
| 261 | |
---|
| 262 | L = L_NLAYRAD |
---|
| 263 | K = 2*L+1 |
---|
| 264 | DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) |
---|
| 265 | |
---|
| 266 | atemp=0. |
---|
| 267 | btemp=TRAY(K,NW) |
---|
| 268 | ctemp=0.9999*TRAY(K,NW) |
---|
| 269 | do iaer=1,naerkind |
---|
| 270 | atemp = atemp + GVAER(K,NW,IAER) * TAUAEROLK(K,NW,IAER) |
---|
| 271 | btemp = btemp + TAUAEROLK(K,NW,IAER) |
---|
| 272 | ctemp = ctemp + TAUAEROLK(K,NW,IAER) |
---|
| 273 | end do |
---|
| 274 | COSBV(L,NW,NG) = atemp/btemp |
---|
| 275 | WBARV(L,nw,ng) = ctemp/DTAUV(L,nw,ng) |
---|
| 276 | |
---|
| 277 | END DO ! NG gauss point loop |
---|
| 278 | END DO ! NW spectral loop |
---|
| 279 | |
---|
| 280 | |
---|
| 281 | |
---|
| 282 | ! Total extinction optical depths |
---|
| 283 | |
---|
| 284 | DO NW=1,L_NSPECTV |
---|
| 285 | DO NG=1,L_NGAUSS ! full gauss loop |
---|
| 286 | TAUV(1,NW,NG)=0.0D0 |
---|
| 287 | DO L=1,L_NLAYRAD |
---|
| 288 | TAUV(L+1,NW,NG)=TAUV(L,NW,NG)+DTAUV(L,NW,NG) |
---|
| 289 | END DO |
---|
| 290 | |
---|
| 291 | TAUCUMV(1,NW,NG)=0.0D0 |
---|
| 292 | DO K=2,L_LEVELS |
---|
| 293 | TAUCUMV(K,NW,NG)=TAUCUMV(K-1,NW,NG)+DTAUKV(K,NW,NG) |
---|
| 294 | END DO |
---|
| 295 | END DO ! end full gauss loop |
---|
| 296 | END DO |
---|
| 297 | |
---|
| 298 | |
---|
| 299 | RETURN |
---|
| 300 | END SUBROUTINE OPTCV |
---|