[2032] | 1 | MODULE optcv_mod |
---|
| 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
| 5 | CONTAINS |
---|
| 6 | |
---|
[716] | 7 | SUBROUTINE OPTCV(DTAUV,TAUV,TAUCUMV,PLEV, & |
---|
| 8 | QXVAER,QSVAER,GVAER,WBARV,COSBV, & |
---|
[3654] | 9 | TAUAERO,TMID,PMID,TAUGSURF,QVAR,MUVAR,FRACVAR) |
---|
[253] | 10 | |
---|
[2032] | 11 | use radinc_h, only: L_NLAYRAD, L_NLEVRAD, L_LEVELS, L_NSPECTV, L_NGAUSS, L_REFVAR, NAERKIND |
---|
[2133] | 12 | use radcommon_h, only: gasv, tlimit, wrefVAR, Cmk, tgasref, pfgasref,wnov,scalep,indv,glat_ig |
---|
[2875] | 13 | use gases_h, only: gfrac, ngasmx, igas_H2, igas_H2O, igas_He, igas_N2, & |
---|
[3641] | 14 | igas_CH4, igas_CO2, igas_O2 |
---|
[1384] | 15 | use comcstfi_mod, only: g, r, mugaz |
---|
[3641] | 16 | use callkeys_mod, only: kastprof,continuum,graybody,callgasvis,varspec, & |
---|
[3654] | 17 | generic_continuum_database,rayleigh |
---|
[2543] | 18 | use recombin_corrk_mod, only: corrk_recombin, gasv_recomb |
---|
[2582] | 19 | use tpindex_mod, only: tpindex |
---|
[3693] | 20 | use interpolate_continuum_mod, only: interpolate_continuum |
---|
[3696] | 21 | use calc_rayleigh_mod, only: calc_rayleigh |
---|
[253] | 22 | |
---|
[716] | 23 | implicit none |
---|
[253] | 24 | |
---|
[716] | 25 | !================================================================== |
---|
| 26 | ! |
---|
| 27 | ! Purpose |
---|
| 28 | ! ------- |
---|
| 29 | ! Calculates shortwave optical constants at each level. |
---|
| 30 | ! |
---|
| 31 | ! Authors |
---|
| 32 | ! ------- |
---|
| 33 | ! Adapted from the NASA Ames code by R. Wordsworth (2009) |
---|
| 34 | ! |
---|
| 35 | !================================================================== |
---|
| 36 | ! |
---|
| 37 | ! THIS SUBROUTINE SETS THE OPTICAL CONSTANTS IN THE VISUAL |
---|
[1715] | 38 | ! IT CALCULATES FOR EACH LAYER, FOR EACH SPECTRAL INTERVAL IN THE VISUAL |
---|
[716] | 39 | ! LAYER: WBAR, DTAU, COSBAR |
---|
| 40 | ! LEVEL: TAU |
---|
| 41 | ! |
---|
| 42 | ! TAUV(L,NW,NG) is the cumulative optical depth at the top of radiation code |
---|
| 43 | ! layer L. NW is spectral wavelength interval, ng the Gauss point index. |
---|
| 44 | ! |
---|
| 45 | ! TLEV(L) - Temperature at the layer boundary |
---|
| 46 | ! PLEV(L) - Pressure at the layer boundary (i.e. level) |
---|
| 47 | ! GASV(NT,NPS,NW,NG) - Visible k-coefficients |
---|
| 48 | ! |
---|
| 49 | !------------------------------------------------------------------- |
---|
[253] | 50 | |
---|
| 51 | |
---|
[2972] | 52 | real*8,intent(out) :: DTAUV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
[1715] | 53 | real*8 DTAUKV(L_LEVELS,L_NSPECTV,L_NGAUSS) |
---|
[2972] | 54 | real*8,intent(out) :: TAUV(L_NLEVRAD,L_NSPECTV,L_NGAUSS) |
---|
| 55 | real*8,intent(out) :: TAUCUMV(L_LEVELS,L_NSPECTV,L_NGAUSS) |
---|
| 56 | real*8,intent(in) :: PLEV(L_LEVELS) |
---|
| 57 | real*8,intent(in) :: TMID(L_LEVELS), PMID(L_LEVELS) |
---|
| 58 | real*8,intent(out) :: COSBV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
| 59 | real*8,intent(out) :: WBARV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
[253] | 60 | |
---|
[716] | 61 | ! for aerosols |
---|
[2972] | 62 | real*8,intent(in) :: QXVAER(L_LEVELS,L_NSPECTV,NAERKIND) |
---|
| 63 | real*8,intent(in) :: QSVAER(L_LEVELS,L_NSPECTV,NAERKIND) |
---|
| 64 | real*8,intent(in) :: GVAER(L_LEVELS,L_NSPECTV,NAERKIND) |
---|
| 65 | real*8,intent(in) :: TAUAERO(L_LEVELS,NAERKIND) |
---|
| 66 | |
---|
| 67 | ! local arrays (saved for convenience as need be allocated) |
---|
| 68 | real*8,save,allocatable :: TAUAEROLK(:,:,:) |
---|
| 69 | real*8,save,allocatable :: TAEROS(:,:,:) |
---|
| 70 | !$OMP THREADPRIVATE(TAUAEROLK,TAEROS) |
---|
[253] | 71 | |
---|
[873] | 72 | integer L, NW, NG, K, LK, IAER |
---|
[716] | 73 | integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS) |
---|
| 74 | real*8 ANS, TAUGAS |
---|
[3654] | 75 | real*8 TAURAY(L_LEVELS,L_NSPECTV) |
---|
[716] | 76 | real*8 TRAY(L_LEVELS,L_NSPECTV) |
---|
| 77 | real*8 DPR(L_LEVELS), U(L_LEVELS) |
---|
| 78 | real*8 LCOEF(4), LKCOEF(L_LEVELS,4) |
---|
[253] | 79 | |
---|
[2972] | 80 | real*8,intent(out) :: taugsurf(L_NSPECTV,L_NGAUSS-1) |
---|
[918] | 81 | real*8 DCONT,DAERO |
---|
[1715] | 82 | real*8 DRAYAER |
---|
[873] | 83 | double precision wn_cont, p_cont, p_air, T_cont, dtemp, dtempc |
---|
| 84 | double precision p_cross |
---|
[253] | 85 | |
---|
[716] | 86 | ! variable species mixing ratio variables |
---|
[2972] | 87 | real*8,intent(in) :: QVAR(L_LEVELS) |
---|
| 88 | real*8,intent(in) :: MUVAR(L_LEVELS) |
---|
[3233] | 89 | real*8,intent(in) :: FRACVAR(ngasmx,L_LEVELS) |
---|
[2972] | 90 | real*8 :: WRATIO(L_LEVELS) |
---|
[873] | 91 | real*8 KCOEF(4) |
---|
[716] | 92 | integer NVAR(L_LEVELS) |
---|
[1725] | 93 | |
---|
| 94 | ! temporary variables to reduce memory access time to gasv |
---|
| 95 | real*8 tmpk(2,2) |
---|
| 96 | real*8 tmpkvar(2,2,2) |
---|
[253] | 97 | |
---|
[716] | 98 | ! temporary variables for multiple aerosol calculation |
---|
[918] | 99 | real*8 atemp(L_NLAYRAD,L_NSPECTV) |
---|
| 100 | real*8 btemp(L_NLAYRAD,L_NSPECTV) |
---|
| 101 | real*8 ctemp(L_NLAYRAD,L_NSPECTV) |
---|
[253] | 102 | |
---|
[716] | 103 | ! variables for k in units m^-1 |
---|
[873] | 104 | real*8 dz(L_LEVELS) |
---|
[253] | 105 | |
---|
[2131] | 106 | |
---|
[716] | 107 | integer igas, jgas |
---|
[253] | 108 | |
---|
[873] | 109 | integer interm |
---|
| 110 | |
---|
[2972] | 111 | logical :: firstcall=.true. |
---|
| 112 | !$OMP THREADPRIVATE(firstcall) |
---|
| 113 | |
---|
| 114 | if (firstcall) then |
---|
| 115 | ! allocate local arrays of size "naerkind" (which are also |
---|
| 116 | ! "saved" so that this is done only once in for all even if |
---|
| 117 | ! we don't need to store the value from a time step to the next) |
---|
| 118 | allocate(TAUAEROLK(L_LEVELS,L_NSPECTV,NAERKIND)) |
---|
| 119 | allocate(TAEROS(L_LEVELS,L_NSPECTV,NAERKIND)) |
---|
| 120 | firstcall=.false. |
---|
| 121 | endif ! of if (firstcall) |
---|
| 122 | |
---|
[873] | 123 | !! AS: to save time in computing continuum (see bilinearbig) |
---|
| 124 | IF (.not.ALLOCATED(indv)) THEN |
---|
[878] | 125 | ALLOCATE(indv(L_NSPECTV,ngasmx,ngasmx)) |
---|
[873] | 126 | indv = -9999 ! this initial value means "to be calculated" |
---|
| 127 | ENDIF |
---|
| 128 | |
---|
[716] | 129 | !======================================================================= |
---|
| 130 | ! Determine the total gas opacity throughout the column, for each |
---|
| 131 | ! spectral interval, NW, and each Gauss point, NG. |
---|
| 132 | ! Calculate the continuum opacities, i.e., those that do not depend on |
---|
| 133 | ! NG, the Gauss index. |
---|
[253] | 134 | |
---|
[716] | 135 | taugsurf(:,:) = 0.0 |
---|
| 136 | dpr(:) = 0.0 |
---|
| 137 | lkcoef(:,:) = 0.0 |
---|
[253] | 138 | |
---|
[716] | 139 | do K=2,L_LEVELS |
---|
| 140 | DPR(k) = PLEV(K)-PLEV(K-1) |
---|
[253] | 141 | |
---|
[716] | 142 | ! if we have continuum opacities, we need dz |
---|
| 143 | if(kastprof)then |
---|
[3663] | 144 | dz(k) = dpr(k)*(1000.0d0*8.314463d0/muvar(k))*TMID(K)/(g*PMID(K)) |
---|
[1016] | 145 | U(k) = Cmk*DPR(k)*mugaz/muvar(k) |
---|
[716] | 146 | else |
---|
[1194] | 147 | dz(k) = dpr(k)*R*TMID(K)/(glat_ig*PMID(K))*mugaz/muvar(k) |
---|
[1016] | 148 | U(k) = Cmk*DPR(k)*mugaz/muvar(k) ! only Cmk line in optci.F |
---|
| 149 | !JL13 the mugaz/muvar factor takes into account water meanmolecular weight if water is present |
---|
[716] | 150 | endif |
---|
[253] | 151 | |
---|
[716] | 152 | call tpindex(PMID(K),TMID(K),QVAR(K),pfgasref,tgasref,WREFVAR, & |
---|
| 153 | LCOEF,MT(K),MP(K),NVAR(K),WRATIO(K)) |
---|
[253] | 154 | |
---|
[716] | 155 | do LK=1,4 |
---|
| 156 | LKCOEF(K,LK) = LCOEF(LK) |
---|
| 157 | end do |
---|
[918] | 158 | end do ! levels |
---|
[253] | 159 | |
---|
[1715] | 160 | ! Spectral dependance of aerosol absorption |
---|
[1987] | 161 | !JL18 It seems to be good to have aerosols in the first "radiative layer" of the gcm in the IR |
---|
| 162 | ! but visible does not handle very well diffusion in first layer. |
---|
| 163 | ! The tauaero and tauray are thus set to 0 (a small value for rayleigh because the code crashes otherwise) |
---|
| 164 | ! in the 4 first semilayers in optcv, but not optci. |
---|
| 165 | ! This solves random variations of the sw heating at the model top. |
---|
[918] | 166 | do iaer=1,naerkind |
---|
| 167 | do NW=1,L_NSPECTV |
---|
[1987] | 168 | TAEROS(1:4,NW,IAER)=0.d0 |
---|
| 169 | do K=5,L_LEVELS |
---|
[873] | 170 | TAEROS(K,NW,IAER) = TAUAERO(K,IAER) * QXVAER(K,NW,IAER) |
---|
[918] | 171 | end do ! levels |
---|
| 172 | end do |
---|
| 173 | end do |
---|
[1715] | 174 | |
---|
[3654] | 175 | !======================================================================= |
---|
| 176 | ! Set up the wavelength independent part of the Rayleigh scattering. |
---|
| 177 | ! WAVEV is in microns. There is no Rayleigh scattering in the IR. |
---|
| 178 | |
---|
| 179 | if(rayleigh) then |
---|
| 180 | call calc_rayleigh(QVAR,MUVAR,PMID,TMID,TAURAY) |
---|
| 181 | else |
---|
| 182 | print*,'setspv: No Rayleigh scattering, check for NaN in output!' |
---|
| 183 | do NW=1,L_NSPECTV |
---|
| 184 | TAURAY(:,NW) = 1E-16 |
---|
| 185 | end do |
---|
| 186 | endif |
---|
| 187 | |
---|
| 188 | ! Computation of pressure dependant part of Rayleigh scattering |
---|
[918] | 189 | do NW=1,L_NSPECTV |
---|
[1987] | 190 | TRAY(1:4,NW) = 1d-30 |
---|
| 191 | do K=5,L_LEVELS |
---|
[3654] | 192 | TRAY(K,NW) = TAURAY(K,NW) * DPR(K) |
---|
[918] | 193 | end do ! levels |
---|
| 194 | end do |
---|
| 195 | |
---|
[716] | 196 | ! we ignore K=1... |
---|
| 197 | do K=2,L_LEVELS |
---|
[873] | 198 | |
---|
[716] | 199 | do NW=1,L_NSPECTV |
---|
[253] | 200 | |
---|
[1715] | 201 | DRAYAER = TRAY(K,NW) |
---|
| 202 | ! DRAYAER is Tau RAYleigh scattering, plus AERosol opacity |
---|
[716] | 203 | do iaer=1,naerkind |
---|
[1715] | 204 | DRAYAER = DRAYAER + TAEROS(K,NW,IAER) |
---|
[716] | 205 | end do |
---|
[253] | 206 | |
---|
[716] | 207 | DCONT = 0.0 ! continuum absorption |
---|
[253] | 208 | |
---|
[873] | 209 | if(continuum.and.(.not.graybody).and.callgasvis)then |
---|
[716] | 210 | ! include continua if necessary |
---|
[3641] | 211 | |
---|
| 212 | if(generic_continuum_database)then |
---|
| 213 | T_cont = dble(TMID(k)) |
---|
| 214 | do igas=1,ngasmx |
---|
| 215 | |
---|
| 216 | if(gfrac(igas).eq.-1)then ! variable |
---|
| 217 | p_cont = dble(PMID(k)*scalep*QVAR(k)) ! qvar = mol/mol |
---|
| 218 | elseif(varspec) then |
---|
| 219 | p_cont = dble(PMID(k)*scalep*FRACVAR(igas,k)*(1.-QVAR(k))) |
---|
| 220 | else |
---|
| 221 | p_cont = dble(PMID(k)*scalep*gfrac(igas)*(1.-QVAR(k))) |
---|
| 222 | endif |
---|
| 223 | |
---|
| 224 | dtemp=0.0 |
---|
| 225 | |
---|
| 226 | if (igas .eq. igas_N2) then |
---|
| 227 | call interpolate_continuum('',igas_N2,igas_N2,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 228 | do jgas=1,ngasmx |
---|
| 229 | if (jgas .eq. igas_H2) then |
---|
| 230 | call interpolate_continuum('',igas_N2,igas_H2,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 231 | elseif (jgas .eq. igas_O2) then |
---|
| 232 | call interpolate_continuum('',igas_N2,igas_O2,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 233 | elseif (jgas .eq. igas_CH4) then |
---|
| 234 | call interpolate_continuum('',igas_N2,igas_CH4,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 235 | endif |
---|
| 236 | enddo |
---|
| 237 | elseif (igas .eq. igas_O2) then |
---|
| 238 | call interpolate_continuum('',igas_O2,igas_O2,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 239 | do jgas=1,ngasmx |
---|
| 240 | if (jgas .eq. igas_CO2) then |
---|
| 241 | call interpolate_continuum('',igas_CO2,igas_O2,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 242 | endif |
---|
| 243 | enddo |
---|
| 244 | elseif (igas .eq. igas_H2) then |
---|
| 245 | call interpolate_continuum('',igas_H2,igas_H2,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 246 | do jgas=1,ngasmx |
---|
| 247 | if (jgas .eq. igas_CH4) then |
---|
| 248 | call interpolate_continuum('',igas_H2,igas_CH4,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 249 | elseif (jgas .eq. igas_He) then |
---|
| 250 | call interpolate_continuum('',igas_H2,igas_He,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 251 | endif |
---|
| 252 | enddo |
---|
| 253 | elseif (igas .eq. igas_CH4) then |
---|
| 254 | call interpolate_continuum('',igas_CH4,igas_CH4,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 255 | elseif (igas .eq. igas_H2O) then |
---|
| 256 | call interpolate_continuum('',igas_H2O,igas_H2O,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 257 | do jgas=1,ngasmx |
---|
| 258 | if (jgas .eq. igas_N2) then |
---|
| 259 | call interpolate_continuum('',igas_H2O,igas_N2,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 260 | elseif (jgas .eq. igas_O2) then |
---|
| 261 | call interpolate_continuum('',igas_H2O,igas_O2,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 262 | elseif (jgas .eq. igas_CO2) then |
---|
| 263 | call interpolate_continuum('',igas_H2O,igas_CO2,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 264 | endif |
---|
| 265 | enddo |
---|
| 266 | elseif (igas .eq. igas_CO2) then |
---|
| 267 | call interpolate_continuum('',igas_CO2,igas_CO2,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 268 | do jgas=1,ngasmx |
---|
| 269 | if (jgas .eq. igas_H2) then |
---|
| 270 | call interpolate_continuum('',igas_CO2,igas_H2,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 271 | elseif (jgas .eq. igas_CH4) then |
---|
| 272 | call interpolate_continuum('',igas_CO2,igas_CH4,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 273 | endif |
---|
| 274 | enddo |
---|
| 275 | endif |
---|
| 276 | |
---|
| 277 | DCONT = DCONT + dtemp |
---|
| 278 | |
---|
| 279 | enddo ! igas=1,ngasmx |
---|
| 280 | |
---|
| 281 | else ! generic_continuum_database |
---|
| 282 | |
---|
| 283 | |
---|
[716] | 284 | wn_cont = dble(wnov(nw)) |
---|
| 285 | T_cont = dble(TMID(k)) |
---|
| 286 | do igas=1,ngasmx |
---|
[305] | 287 | |
---|
[716] | 288 | if(gfrac(igas).eq.-1)then ! variable |
---|
| 289 | p_cont = dble(PMID(k)*scalep*QVAR(k)) ! qvar = mol/mol |
---|
[3233] | 290 | elseif(varspec) then |
---|
| 291 | p_cont = dble(PMID(k)*scalep*FRACVAR(igas,k)*(1.-QVAR(k))) |
---|
[716] | 292 | else |
---|
| 293 | p_cont = dble(PMID(k)*scalep*gfrac(igas)*(1.-QVAR(k))) |
---|
| 294 | endif |
---|
[305] | 295 | |
---|
[716] | 296 | dtemp=0.0 |
---|
| 297 | if(igas.eq.igas_N2)then |
---|
[253] | 298 | |
---|
[878] | 299 | interm = indv(nw,igas,igas) |
---|
| 300 | ! call interpolateN2N2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
---|
| 301 | indv(nw,igas,igas) = interm |
---|
[716] | 302 | ! only goes to 500 cm^-1, so unless we're around a cold brown dwarf, this is irrelevant in the visible |
---|
[253] | 303 | |
---|
[716] | 304 | elseif(igas.eq.igas_H2)then |
---|
[253] | 305 | |
---|
[716] | 306 | ! first do self-induced absorption |
---|
[878] | 307 | interm = indv(nw,igas,igas) |
---|
[873] | 308 | call interpolateH2H2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
---|
[878] | 309 | indv(nw,igas,igas) = interm |
---|
[253] | 310 | |
---|
[716] | 311 | ! then cross-interactions with other gases |
---|
| 312 | do jgas=1,ngasmx |
---|
[3233] | 313 | if(varspec) then |
---|
| 314 | p_cross = dble(PMID(k)*scalep*FRACVAR(jgas,k)*(1.-QVAR(k))) |
---|
| 315 | else |
---|
| 316 | p_cross = dble(PMID(k)*scalep*gfrac(jgas)*(1.-QVAR(k))) |
---|
| 317 | endif |
---|
[873] | 318 | dtempc = 0.0 |
---|
| 319 | if(jgas.eq.igas_N2)then |
---|
[878] | 320 | interm = indv(nw,igas,jgas) |
---|
| 321 | call interpolateN2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
| 322 | indv(nw,igas,jgas) = interm |
---|
[716] | 323 | ! should be irrelevant in the visible |
---|
[2860] | 324 | elseif(jgas.eq.igas_CO2)then |
---|
| 325 | interm = indv(nw,igas,jgas) |
---|
| 326 | call interpolateCO2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
| 327 | indv(nw,igas,jgas) = interm |
---|
| 328 | ! might not be relevant in the visible |
---|
[716] | 329 | elseif(jgas.eq.igas_He)then |
---|
[878] | 330 | interm = indv(nw,igas,jgas) |
---|
[873] | 331 | call interpolateH2He(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
[878] | 332 | indv(nw,igas,jgas) = interm |
---|
[716] | 333 | endif |
---|
[873] | 334 | dtemp = dtemp + dtempc |
---|
[716] | 335 | enddo |
---|
[2655] | 336 | |
---|
| 337 | elseif(igas.eq.igas_CH4)then |
---|
[253] | 338 | |
---|
[2655] | 339 | ! first do self-induced absorption |
---|
| 340 | interm = indv(nw,igas,igas) |
---|
| 341 | call interpolateCH4CH4(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
---|
| 342 | indv(nw,igas,igas) = interm |
---|
| 343 | |
---|
| 344 | ! then cross-interactions with other gases |
---|
| 345 | do jgas=1,ngasmx |
---|
[3233] | 346 | if(varspec) then |
---|
| 347 | p_cross = dble(PMID(k)*scalep*FRACVAR(jgas,k)*(1.-QVAR(k))) |
---|
| 348 | else |
---|
| 349 | p_cross = dble(PMID(k)*scalep*gfrac(jgas)*(1.-QVAR(k))) |
---|
| 350 | endif |
---|
[2655] | 351 | dtempc = 0.0d0 |
---|
| 352 | if(jgas.eq.igas_H2)then |
---|
| 353 | interm = indv(nw,igas,jgas) |
---|
| 354 | call interpolateH2CH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
| 355 | indv(nw,igas,jgas) = interm |
---|
[2861] | 356 | elseif(jgas.eq.igas_CO2)then |
---|
| 357 | interm = indv(nw,igas,jgas) |
---|
| 358 | call interpolateCO2CH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
| 359 | indv(nw,igas,jgas) = interm |
---|
| 360 | ! might not be relevant in the visible |
---|
[2655] | 361 | elseif(jgas.eq.igas_He)then |
---|
| 362 | interm = indv(nw,igas,jgas) |
---|
| 363 | call interpolateHeCH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
| 364 | indv(nw,igas,jgas) = interm |
---|
| 365 | endif |
---|
| 366 | dtemp = dtemp + dtempc |
---|
| 367 | enddo |
---|
| 368 | |
---|
[2520] | 369 | elseif(igas.eq.igas_H2O.and.T_cont.gt.100.0)then |
---|
| 370 | ! Compute self and foreign (with air) continuum of H2O |
---|
[716] | 371 | p_air = dble(PMID(k)*scalep) - p_cont ! note assumes background is air! |
---|
[2520] | 372 | interm = indv(nw,igas,igas) |
---|
| 373 | call interpolateH2O_self_foreign(wn_cont,T_cont,p_cont,p_air,dtemp,.false.,interm) ! MTCKD v3.3 |
---|
| 374 | indv(nw,igas,igas) = interm |
---|
[253] | 375 | |
---|
[716] | 376 | endif |
---|
[253] | 377 | |
---|
[716] | 378 | DCONT = DCONT + dtemp |
---|
[253] | 379 | |
---|
[716] | 380 | enddo |
---|
[253] | 381 | |
---|
[873] | 382 | DCONT = DCONT*dz(k) |
---|
| 383 | |
---|
[3641] | 384 | endif ! generic_continuum_database |
---|
| 385 | endif ! continuum |
---|
| 386 | |
---|
[873] | 387 | do ng=1,L_NGAUSS-1 |
---|
[305] | 388 | |
---|
[873] | 389 | ! Now compute TAUGAS |
---|
[253] | 390 | |
---|
[873] | 391 | ! Interpolate between water mixing ratios |
---|
| 392 | ! WRATIO = 0.0 if the requested water amount is equal to, or outside the |
---|
| 393 | ! the water data range |
---|
| 394 | |
---|
| 395 | if(L_REFVAR.eq.1)then ! added by RW for special no variable case |
---|
[1725] | 396 | |
---|
| 397 | ! JVO 2017 : added tmpk because the repeated calls to gasi/v increased dramatically |
---|
| 398 | ! the execution time of optci/v -> ~ factor 2 on the whole radiative |
---|
| 399 | ! transfer on the tested simulations ! |
---|
| 400 | |
---|
[2543] | 401 | IF (corrk_recombin) THEN ! Added by JVO |
---|
| 402 | tmpk = GASV_RECOMB(MT(K):MT(K)+1,MP(K):MP(K)+1,1,NW,NG) ! contains the mix of recombined species |
---|
| 403 | ELSE |
---|
| 404 | tmpk = GASV(MT(K):MT(K)+1,MP(K):MP(K)+1,1,NW,NG) |
---|
| 405 | ENDIF |
---|
[1725] | 406 | |
---|
| 407 | KCOEF(1) = tmpk(1,1) ! KCOEF(1) = GASV(MT(K),MP(K),1,NW,NG) |
---|
| 408 | KCOEF(2) = tmpk(1,2) ! KCOEF(2) = GASV(MT(K),MP(K)+1,1,NW,NG) |
---|
| 409 | KCOEF(3) = tmpk(2,2) ! KCOEF(3) = GASV(MT(K)+1,MP(K)+1,1,NW,NG) |
---|
| 410 | KCOEF(4) = tmpk(2,1) ! KCOEF(4) = GASV(MT(K)+1,MP(K),1,NW,NG) |
---|
| 411 | |
---|
[716] | 412 | else |
---|
[873] | 413 | |
---|
[2543] | 414 | IF (corrk_recombin) THEN |
---|
| 415 | tmpkvar = GASV_RECOMB(MT(K):MT(K)+1,MP(K):MP(K)+1,NVAR(K):NVAR(K)+1,NW,NG) |
---|
| 416 | ELSE |
---|
| 417 | tmpkvar = GASV(MT(K):MT(K)+1,MP(K):MP(K)+1,NVAR(K):NVAR(K)+1,NW,NG) |
---|
| 418 | ENDIF |
---|
[253] | 419 | |
---|
[1725] | 420 | KCOEF(1) = tmpkvar(1,1,1) + WRATIO(K) * & |
---|
| 421 | ( tmpkvar(1,1,2)-tmpkvar(1,1,1) ) |
---|
[253] | 422 | |
---|
[1725] | 423 | KCOEF(2) = tmpkvar(1,2,1) + WRATIO(K) * & |
---|
| 424 | ( tmpkvar(1,2,2)-tmpkvar(1,2,1) ) |
---|
[253] | 425 | |
---|
[1725] | 426 | KCOEF(3) = tmpkvar(2,2,1) + WRATIO(K) * & |
---|
| 427 | ( tmpkvar(2,2,2)-tmpkvar(2,2,1) ) |
---|
| 428 | |
---|
| 429 | KCOEF(4) = tmpkvar(2,1,1) + WRATIO(K) * & |
---|
| 430 | ( tmpkvar(2,1,2)-tmpkvar(2,1,1) ) |
---|
[873] | 431 | |
---|
[1725] | 432 | |
---|
[716] | 433 | endif |
---|
[253] | 434 | |
---|
[873] | 435 | ! Interpolate the gaseous k-coefficients to the requested T,P values |
---|
[253] | 436 | |
---|
[873] | 437 | ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) + & |
---|
[716] | 438 | LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4) |
---|
[253] | 439 | |
---|
[873] | 440 | TAUGAS = U(k)*ANS |
---|
[253] | 441 | |
---|
[716] | 442 | TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS + DCONT |
---|
[873] | 443 | DTAUKV(K,nw,ng) = TAUGAS & |
---|
[1715] | 444 | + DRAYAER & ! DRAYAER includes all scattering contributions |
---|
[873] | 445 | + DCONT ! For parameterized continuum aborption |
---|
[253] | 446 | |
---|
[716] | 447 | end do |
---|
[253] | 448 | |
---|
[873] | 449 | ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS), |
---|
| 450 | ! which holds continuum opacity only |
---|
[253] | 451 | |
---|
[873] | 452 | NG = L_NGAUSS |
---|
[1715] | 453 | DTAUKV(K,nw,ng) = DRAYAER + DCONT ! Scattering + parameterized continuum absorption |
---|
[253] | 454 | |
---|
[716] | 455 | end do |
---|
| 456 | end do |
---|
[253] | 457 | |
---|
| 458 | |
---|
[716] | 459 | !======================================================================= |
---|
| 460 | ! Now the full treatment for the layers, where besides the opacity |
---|
| 461 | ! we need to calculate the scattering albedo and asymmetry factors |
---|
[253] | 462 | |
---|
[1987] | 463 | !JL18 It seems to be good to have aerosols in the first "radiative layer" of the gcm in the IR |
---|
| 464 | ! but not in the visible |
---|
| 465 | ! The tauaero is thus set to 0 in the 4 first semilayers in optcv, but not optci. |
---|
| 466 | ! This solves random variations of the sw heating at the model top. |
---|
[873] | 467 | do iaer=1,naerkind |
---|
[918] | 468 | DO NW=1,L_NSPECTV |
---|
[1987] | 469 | TAUAEROLK(1:4,NW,IAER)=0.d0 |
---|
| 470 | DO K=5,L_LEVELS |
---|
[1715] | 471 | TAUAEROLK(K,NW,IAER) = TAUAERO(K,IAER) * QSVAER(K,NW,IAER) ! effect of scattering albedo |
---|
[918] | 472 | ENDDO |
---|
| 473 | ENDDO |
---|
[873] | 474 | end do |
---|
[253] | 475 | |
---|
[716] | 476 | DO NW=1,L_NSPECTV |
---|
[919] | 477 | DO L=1,L_NLAYRAD-1 |
---|
[918] | 478 | K = 2*L+1 |
---|
| 479 | atemp(L,NW) = SUM(GVAER(K,NW,1:naerkind) * TAUAEROLK(K,NW,1:naerkind))+SUM(GVAER(K+1,NW,1:naerkind) * TAUAEROLK(K+1,NW,1:naerkind)) |
---|
| 480 | btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind)) + SUM(TAUAEROLK(K+1,NW,1:naerkind)) |
---|
[1715] | 481 | ctemp(L,NW) = btemp(L,NW) + 0.9999*(TRAY(K,NW) + TRAY(K+1,NW)) ! JVO 2017 : does this 0.999 is really meaningful ? |
---|
[918] | 482 | btemp(L,NW) = btemp(L,NW) + TRAY(K,NW) + TRAY(K+1,NW) |
---|
| 483 | COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW) |
---|
| 484 | END DO ! L vertical loop |
---|
[919] | 485 | |
---|
[1715] | 486 | ! Last level |
---|
| 487 | L = L_NLAYRAD |
---|
| 488 | K = 2*L+1 |
---|
| 489 | atemp(L,NW) = SUM(GVAER(K,NW,1:naerkind) * TAUAEROLK(K,NW,1:naerkind)) |
---|
[919] | 490 | btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind)) |
---|
[1715] | 491 | ctemp(L,NW) = btemp(L,NW) + 0.9999*TRAY(K,NW) ! JVO 2017 : does this 0.999 is really meaningful ? |
---|
[919] | 492 | btemp(L,NW) = btemp(L,NW) + TRAY(K,NW) |
---|
| 493 | COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW) |
---|
| 494 | |
---|
| 495 | |
---|
[918] | 496 | END DO ! NW spectral loop |
---|
| 497 | |
---|
| 498 | DO NG=1,L_NGAUSS |
---|
| 499 | DO NW=1,L_NSPECTV |
---|
[873] | 500 | DO L=1,L_NLAYRAD-1 |
---|
[253] | 501 | |
---|
[873] | 502 | K = 2*L+1 |
---|
| 503 | DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) + DTAUKV(K+1,NW,NG) |
---|
[918] | 504 | WBARV(L,nw,ng) = ctemp(L,NW) / DTAUV(L,nw,ng) |
---|
[253] | 505 | |
---|
[873] | 506 | END DO ! L vertical loop |
---|
[253] | 507 | |
---|
[1715] | 508 | ! Last level |
---|
[253] | 509 | |
---|
[716] | 510 | L = L_NLAYRAD |
---|
| 511 | K = 2*L+1 |
---|
[919] | 512 | DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) |
---|
| 513 | |
---|
| 514 | WBARV(L,NW,NG) = ctemp(L,NW) / DTAUV(L,NW,NG) |
---|
[1722] | 515 | |
---|
[918] | 516 | END DO ! NW spectral loop |
---|
| 517 | END DO ! NG Gauss loop |
---|
[716] | 518 | |
---|
| 519 | ! Total extinction optical depths |
---|
| 520 | |
---|
[918] | 521 | DO NG=1,L_NGAUSS ! full gauss loop |
---|
| 522 | DO NW=1,L_NSPECTV |
---|
[716] | 523 | TAUCUMV(1,NW,NG)=0.0D0 |
---|
| 524 | DO K=2,L_LEVELS |
---|
| 525 | TAUCUMV(K,NW,NG)=TAUCUMV(K-1,NW,NG)+DTAUKV(K,NW,NG) |
---|
| 526 | END DO |
---|
[1987] | 527 | |
---|
[2004] | 528 | DO L=1,L_NLAYRAD |
---|
[1987] | 529 | TAUV(L,NW,NG)=TAUCUMV(2*L,NW,NG) |
---|
| 530 | END DO |
---|
[2004] | 531 | TAUV(L,NW,NG)=TAUCUMV(2*L_NLAYRAD+1,NW,NG) |
---|
[918] | 532 | END DO |
---|
| 533 | END DO ! end full gauss loop |
---|
[716] | 534 | |
---|
| 535 | |
---|
[2131] | 536 | |
---|
| 537 | |
---|
[2032] | 538 | end subroutine optcv |
---|
[873] | 539 | |
---|
[2032] | 540 | END MODULE optcv_mod |
---|